Перевод: со всех языков на русский

с русского на все языки

разного+назначения

  • 21 palillo

    m dim de palo
    2) бараба́нная па́лочка
    3) держа́лка для ( вязальной) спи́цы
    4) коклю́шка
    5) иск сте́ка
    6)

    tb palillo de dientes — зубочи́стка

    7) pred

    tb hecho un palillo — разг худо́й как жердь, спи́чка; ко́жа да ко́сти

    Diccionario Español-Ruso de Uso Moderno > palillo

  • 22 cartridge

    Англо-русский сельскохозяйственный словарь > cartridge

  • 23 cartridge

    Англо-русский словарь по деревообрабатывающей промышленности > cartridge

  • 24 form coating

    покрытие, смазка форм
    * * *

    Англо-русский строительный словарь > form coating

  • 25 gaming system

    аппаратно-программная система, специализированная для компьютерных игр и содержащая соответственно сбалансированный набор ресурсов - процессоров разного назначения, устройств памяти, акселераторов и т. п.; решает такие задачи, требующие высокой (иногда очень высокой) вычислительной мощности, как имитация (моделирование) физической среды (physics simulation), исполнение конкретной игры (game title), интерактивное взаимодействие с игроком (игроками) и т. п. Даже самые мощные стандартные ПК не всегда способны обеспечить нужное качество игры, если в их конфигурации нет игровых и графических акселераторов современного уровня

    Англо-русский толковый словарь терминов и сокращений по ВТ, Интернету и программированию. > gaming system

  • 26 heterogeneous processor environment

    вычислительная среда с процессорами самой разной функциональности и разного назначения

    Англо-русский толковый словарь терминов и сокращений по ВТ, Интернету и программированию. > heterogeneous processor environment

  • 27 mikst

    I
    сущ. микст (смешанный регистр певческого голоса, переходный между грудным и головным регистром)
    II
    прил. смешанный; mikst-qatar ж.-д. поезд-микст (поезд из вагонов разного назначения)

    Azərbaycanca-rusca lüğət > mikst

  • 28 pesticide combiné

    1. комбинированный пестицид

     

    комбинированный пестицид
    Пестицид, состоящий из смеси нескольких действующих веществ разного назначения, действия которых распространяются на большее число вредных организмов, чем действие одного из них.
    [ ГОСТ 21507-81]

    Тематики

    Обобщающие термины

    EN

    DE

    FR

    Франко-русский словарь нормативно-технической терминологии > pesticide combiné

  • 29 kombiniertes Pestizid

    1. комбинированный пестицид

     

    комбинированный пестицид
    Пестицид, состоящий из смеси нескольких действующих веществ разного назначения, действия которых распространяются на большее число вредных организмов, чем действие одного из них.
    [ ГОСТ 21507-81]

    Тематики

    Обобщающие термины

    EN

    DE

    FR

    Немецко-русский словарь нормативно-технической терминологии > kombiniertes Pestizid

  • 30 rod

    1. пруток металла для наварки (св.)
    2. пробковый стержень
    3. отчёт или протокол о принятии решения
    4. катанка
    5. измерительная рейка
    6. заземлитель
    7. геодезическая рейка
    8. брус (металлургия)

     

    брус
    Физ. тело, поперечное сечение к-рого мало по сравнению с длиной. Б., работающий гл. обр. на изгиб, наз. балкой. Б. обычно являются составными элементами конструкций машин и сооружений.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

     

    геодезическая рейка
    рейка

    Визирная цель, являющаяся линейной мерой.
    [ ГОСТ 21830-76]

    Тематики

    Обобщающие термины

    Синонимы

    EN

    DE

    FR

     

    заземлитель
    Проводящая часть или совокупность соединенных между собой проводящих частей, находящихся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду.
    [ПУЭ]

    заземлитель
    Устройство в виде металлической трубы, стержня пластины или полосы, заглубленной в грунт для электрического соединения с землёй
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    заземлитель
    Устройство, состоящее из одного или нескольких электродов, погруженных в грунт и имеющее низкое переходное сопротивление для токов, стекающих в землю.
    [ОСТ 45.121-97]

    заземлитель
    Металлический проводник или группа проводников любой формы, находящихся в непосредственном соприкосновении с землей и предназначенных для создания с ней электрического контакта определенного сопротивления.
    [ ГОСТ Р 50889-96]

    0637

    Рис. ABB
    Система ТТ

    1 - заземляемая точка;
    2 - заземляющий проводник (earthing conductor);
    3 - заземлитель (заземляющий электрод);
    4 - открытая проводящая часть (exposed-conductive-part);
    5 - заземляющее устройство (earthing arrangement) электроустановки;
    6 - заземляющее устройство нейтрали;
    7 - источник питания;
    8 - однофазная нагрузка;
    RA - сопротивление заземляющего устройства электроустановки;
    RB - сопротивление заземляющего устройства нейтрали;

    Тематики

    EN

    DE

    FR

     

    катанка
    Сортовой прокат преимущ. круглого сечения диам. 5—10 мм; используется в кач-ве заготовки при волочении проволоки разного назначения, а также при изготовлении сетки, винтов, болтов, гвоздей и др. изделий. В России на проволочных и мелкосортных станах изготовляют стальную к. двух видов: круглую телеграфную.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

     

    отчёт или протокол о принятии решения

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    пробковый стержень
    Часть пробкового прутка.
    [ ГОСТ Р ИСО 633-2011]

    Тематики

    EN

     

    пруток металла для наварки (св.)

    [ http://slovarionline.ru/anglo_russkiy_slovar_neftegazovoy_promyishlennosti/]

    Тематики

    EN

    106. Геодезическая рейка

    Рейка

    D. Geodätische Late

    E. Geodetic staff.

    Rod

    F. Mire

    Визирная цель, являющаяся линейной мерой

    Источник: ГОСТ 21830-76: Приборы геодезические. Термины и определения оригинал документа

    Англо-русский словарь нормативно-технической терминологии > rod

  • 31 small hydropower engineering potential sources

    1. источники ресурсов малой гидроэнергетики

     

    источники ресурсов малой гидроэнергетики
    Естественные и искусственные водотоки, водохранилища, озера и пруды, водохозяйственные или гидравлические системы разного назначения, а также другие малые водные потоки, потенциал которых может быть использован для получения электрической энергии при помощи установок малой мощности.
    [ ГОСТ Р 51238-98]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > small hydropower engineering potential sources

  • 32 wire rod

    1. катанка

     

    катанка
    Сортовой прокат преимущ. круглого сечения диам. 5—10 мм; используется в кач-ве заготовки при волочении проволоки разного назначения, а также при изготовлении сетки, винтов, болтов, гвоздей и др. изделий. В России на проволочных и мелкосортных станах изготовляют стальную к. двух видов: круглую телеграфную.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > wire rod

  • 33 composite pesticide

    1. комбинированный пестицид

     

    комбинированный пестицид
    Пестицид, состоящий из смеси нескольких действующих веществ разного назначения, действия которых распространяются на большее число вредных организмов, чем действие одного из них.
    [ ГОСТ 21507-81]

    Тематики

    Обобщающие термины

    EN

    DE

    FR

    Англо-русский словарь нормативно-технической терминологии > composite pesticide

  • 34 carbon-base materials

    1. углеродные материалы

     

    углеродные материалы
    Материалы разного назначения на основе природ, или искусств, графита. Технология у. м. включает процессы термин, обработки. Конструкц. графиты и электроды, как правило, обжигают при 900—1100 °С и графитиз. при 2400-3000 °С. Для защиты от окисления при эксплуатации в окислит. средах при t > 600 °С на изделия из углеродных материалов наносят диффуз.-реакц. путем покрытия (ДРП): шликерно-обжиговые карбид., борид. и стеклосилицид. классов и получ. химич. реакцией из пара (напр., на основе SiC). При эксплуатации углерод. изделий с покрытием в окислит. средах при t > 1500 °С рекоменд. покрытия карбидно-борид. класса системы Hf(Zr)-B-Si-C или оксидно-борид. класса системы Hf(Zr)-B-Si-O. При эксплуат. темп-ре 1300—1500 °С используют покрытия стеклосилицид. класса на основе борсиликат. стекла и Mo(W)Si2.
    Области применения у. м. с ДРП: тигли для плавки металлов и их сплавов, нагреватели электрич. печей, элементы металлургич. печей (рольганги, задвижки и др.), работающие при высоких темп-pax на воздухе, а тж. теплонапряж. детали космич. аппаратов (кромки крыльев, носовой обтекатель), авиац. газотурбинных (элементы камеры сгорания, направл. аппараты, рабочие колеса турбин) и прямоточных двигателей.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > carbon-base materials

  • 35 switching technology

    1. технология коммутации

     

    технология коммутации
    -
    [Интент]

    Современные технологии коммутации
    [ http://www.xnets.ru/plugins/content/content.php?content.84]

    Статья подготовлена на основании материалов опубликованных в журналах "LAN", "Сети и системы связи", в книге В.Олифер и Н.Олифер "Новые технологии и оборудование IP-сетей", на сайтах www.citforum.ru и опубликована в журнале "Компьютерные решения" NN4-6 за 2000 год.

    Введение

    На сегодня практически все организации, имеющие локальные сети, остановили свой выбор на сетях типа Ethernet. Данный выбор оправдан тем, что начало внедрения такой сети сопряжено с низкой стоимостью и простотой реализации, а развитие - с хорошей масштабируемостью и экономичностью.

    Бросив взгляд назад - увидим, что развитие активного оборудования сетей шло в соответствии с требованиями к полосе пропускания и надежности. Требования, предъявляемые к большей надежности, привели к отказу от применения в качестве среды передачи коаксиального кабеля и перевода сетей на витую пару. В результате такого перехода отказ работы соединения между одной из рабочих станций и концентратором перестал сказываться на работе других рабочих станций сети. Но увеличения производительности данный переход не принес, так как концентраторы используют разделяемую (на всех пользователей в сегменте) полосу пропускания. По сути, изменилась только физическая топология сети - с общей шины на звезду, а логическая топология по-прежнему осталась - общей шиной.

    Дальнейшее развитие сетей шло по нескольким путям:

    • увеличение скорости,
    • внедрение сегментирования на основе коммутации,
    • объединение сетей при помощи маршрутизации.

    Увеличение скорости при прежней логической топологии - общая шина, привело к незначительному росту производительности в случае большого числа портов.

    Большую эффективность в работе сети принесло сегментирование сетей с использованием технология коммутации пакетов. Коммутация наиболее действенна в следующих вариантах:

    Вариант 1, именуемый связью "многие со многими" – это одноранговые сети, когда одновременно существуют потоки данных между парами рабочих станций. При этом предпочтительнее иметь коммутатор, у которого все порты имеют одинаковую скорость, (см. Рисунок 1).

    5001

    Вариант 2, именуемый связью "один со многими" – это сети клиент-сервер, когда все рабочие станции работают с файлами или базой данных сервера. В данном случае предпочтительнее иметь коммутатор, у которого порты для подключения рабочих станций имеют одинаковую небольшую скорость, а порт, к которому подключается сервер, имеет большую скорость,(см. Рисунок 2).

    5002

    Когда компании начали связывать разрозненные системы друг с другом, маршрутизация обеспечивала максимально возможную целостность и надежность передачи трафика из одной сети в другую. Но с ростом размера и сложности сети, а также в связи со все более широким применением коммутаторов в локальных сетях, базовые маршрутизаторы (зачастую они получали все данные, посылаемые коммутаторами) стали с трудом справляться со своими задачами.

    Проблемы с трафиком, связанные с маршрутизацией, проявляются наиболее остро в средних и крупных компаниях, а также в деятельности операторов Internet, так как они вынуждены иметь дело с большими объемами IP-трафика, причем этот трафик должен передаваться своевременно и эффективно.

    С подключением настольных систем непосредственно к коммутаторам на 10/100 Мбит/с между ними и магистралью оказывается все меньше промежуточных устройств. Чем выше скорость подключения настольных систем, тем более скоростной должна быть магистраль. Кроме того, на каждом уровне устройства должны справляться с приходящим трафиком, иначе возникновения заторов не избежать.

    Рассмотрению технологий коммутации и посвящена данная статья.

    Коммутация первого уровня

    Термин "коммутация первого уровня" в современной технической литературе практически не описывается. Для начала дадим определение, с какими характеристиками имеет дело физический или первый уровень модели OSI:

    физический уровень определяет электротехнические, механические, процедурные и функциональные характеристики активации, поддержания и дезактивации физического канала между конечными системами. Спецификации физического уровня определяют такие характеристики, как уровни напряжений, синхронизацию изменения напряжений, скорость передачи физической информации, максимальные расстояния передачи информации, физические соединители и другие аналогичные характеристики.

    Смысл коммутации на первом уровне модели OSI означает физическое (по названию уровня) соединение. Из примеров коммутации первого уровня можно привести релейные коммутаторы некоторых старых телефонных и селекторных систем. В более новых телефонных системах коммутация первого уровня применяется совместно с различными способами сигнализации вызовов и усиления сигналов. В сетях передачи данных данная технология применяется в полностью оптических коммутаторах.

    Коммутация второго уровня

    Рассматривая свойства второго уровня модели OSI и его классическое определение, увидим, что данному уровню принадлежит основная доля коммутирующих свойств.

    Определение. Канальный уровень (формально называемый информационно-канальным уровнем) обеспечивает надежный транзит данных через физический канал. Канальный уровень решает вопросы физической адресации (в противоположность сетевой или логической адресации), топологии сети, линейной дисциплины (каким образом конечной системе использовать сетевой канал), уведомления о неисправностях, упорядоченной доставки блоков данных и управления потоком информации.

    На самом деле, определяемая канальным уровнем модели OSI функциональность служит платформой для некоторых из сегодняшних наиболее эффективных технологий. Большое значение функциональности второго уровня подчеркивает тот факт, что производители оборудования продолжают вкладывать значительные средства в разработку устройств с такими функциями.

    С технологической точки зрения, коммутатор локальных сетей представляет собой устройство, основное назначение которого - максимальное ускорение передачи данных за счет параллельно существующих потоков между узлами сети. В этом - его главное отличие от других традиционных устройств локальных сетей – концентраторов (Hub), предоставляющих всем потокам данных сети всего один канал передачи данных.

    Коммутатор позволяет передавать параллельно несколько потоков данных c максимально возможной для каждого потока скоростью. Эта скорость ограничена физической спецификацией протокола, которую также часто называют "скоростью провода". Это возможно благодаря наличию в коммутаторе большого числа центров обработки и продвижения кадров и шин передачи данных.

    Коммутаторы локальных сетей в своем основном варианте, ставшем классическим уже с начала 90-х годов, работают на втором уровне модели OSI, применяя свою высокопроизводительную параллельную архитектуру для продвижения кадров канальных протоколов. Другими словами, ими выполняются алгоритмы работы моста, описанные в стандартах IEEE 802.1D и 802.1H. Также они имеют и много других дополнительных функций, часть которых вошла в новую редакцию стандарта 802.1D-1998, а часть остается пока не стандартизованной.

    Коммутаторы ЛВС отличаются большим разнообразием возможностей и, следовательно, цен - стоимость 1 порта колеблется в диапазоне от 50 до 1000 долларов. Одной из причин столь больших различий является то, что они предназначены для решения различных классов задач. Коммутаторы высокого класса должны обеспечивать высокую производительность и плотность портов, а также поддерживать широкий спектр функций управления. Простые и дешевые коммутаторы имеют обычно небольшое число портов и не способны поддерживать функции управления. Одним из основных различий является используемая в коммутаторе архитектура. Поскольку большинство современных коммутаторов работают на основе патентованных контроллеров ASIC, устройство этих микросхем и их интеграция с остальными модулями коммутатора (включая буферы ввода-вывода) играет важнейшую роль. Контроллеры ASIC для коммутаторов ЛВС делятся на 2 класса - большие ASIC, способные обслуживать множество коммутируемых портов (один контроллер на устройство) и небольшие ASIC, обслуживающие по несколько портов и объединяемые в матрицы коммутации.

    Существует 3 варианта архитектуры коммутаторов:
     

    На рисунке 3 показана блок-схема коммутатора с архитектурой, используемой для поочередного соединения пар портов. В любой момент такой коммутатор может обеспечить организацию только одного соединения (пара портов). При невысоком уровне трафика не требуется хранение данных в памяти перед отправкой в порт назначения - такой вариант называется коммутацией на лету cut-through. Однако, коммутаторы cross-bar требуют буферизации на входе от каждого порта, поскольку в случае использования единственно возможного соединения коммутатор блокируется (рисунок 4). Несмотря на малую стоимость и высокую скорость продвижения на рынок, коммутаторы класса cross-bar слишком примитивны для эффективной трансляции между низкоскоростными интерфейсами Ethernet или token ring и высокоскоростными портами ATM и FDDI.

    5003

    5004

    Коммутаторы с разделяемой памятью имеют общий входной буфер для всех портов, используемый как внутренняя магистраль устройства (backplane). Буферизагия данных перед их рассылкой (store-and-forward - сохранить и переслать) приводит к возникновению задержки. Однако, коммутаторы с разделяемой памятью, как показано на рисунке 5 не требуют организации специальной внутренней магистрали для передачи данных между портами, что обеспечивает им более низкую цену по сравнению с коммутаторами на базе высокоскоростной внутренней шины.

    5005

    На рисунке 6 показана блок-схема коммутатора с высокоскоростной шиной, связывающей контроллеры ASIC. После того, как данные преобразуются в приемлемый для передачи по шине формат, они помещаются на шину и далее передаются в порт назначения. Поскольку шина может обеспечивать одновременную (паралельную) передачу потока данных от всех портов, такие коммутаторы часто называют "неблокируемыми" (non-blocking) - они не создают пробок на пути передачи данных.

    5006

    Применение аналогичной параллельной архитектуры для продвижения пакетов сетевых протоколов привело к появлению коммутаторов третьего уровня модели OSI.

    Коммутация третьего уровня

    В продолжении темы о технологиях коммутации рассмотренных в предыдущем номера повторим, что применение параллельной архитектуры для продвижения пакетов сетевых протоколов привело к появлению коммутаторов третьего уровня. Это позволило существенно, в 10-100 раз повысить скорость маршрутизации по сравнению с традиционными маршрутизаторами, в которых один центральный универсальный процессор выполняет программное обеспечение маршрутизации.

    По определению Сетевой уровень (третий) - это комплексный уровень, который обеспечивает возможность соединения и выбор маршрута между двумя конечными системами, подключенными к разным "подсетям", которые могут находиться в разных географических пунктах. В данном случае "подсеть" это, по сути, независимый сетевой кабель (иногда называемый сегментом).

    Коммутация на третьем уровне - это аппаратная маршрутизация. Традиционные маршрутизаторы реализуют свои функции с помощью программно-управляемых процессоров, что будем называть программной маршрутизацией. Традиционные маршрутизаторы обычно продвигают пакеты со скоростью около 500000 пакетов в секунду. Коммутаторы третьего уровня сегодня работают со скоростью до 50 миллионов пакетов в секунду. Возможно и дальнейшее ее повышение, так как каждый интерфейсный модуль, как и в коммутаторе второго уровня, оснащен собственным процессором продвижения пакетов на основе ASIC. Так что наращивание количества модулей ведет к наращиванию производительности маршрутизации. Использование высокоскоростной технологии больших заказных интегральных схем (ASIC) является главной характеристикой, отличающей коммутаторы третьего уровня от традиционных маршрутизаторов. Коммутаторы 3-го уровня делятся на две категории: пакетные (Packet-by-Packet Layer 3 Switches, PPL3) и сквозные (Cut-Through Layer 3 Switches, CTL3). PPL3 - означает просто быструю маршрутизацию (Рисунок_7). CTL3 – маршрутизацию первого пакета и коммутацию всех остальных (Рисунок 8).

    5007

    5008

    У коммутатора третьего уровня, кроме реализации функций маршрутизации в специализированных интегральных схемах, имеется несколько особенностей, отличающих их от традиционных маршрутизаторов. Эти особенности отражают ориентацию коммутаторов 3-го уровня на работу, в основном, в локальных сетях, а также последствия совмещения в одном устройстве коммутации на 2-м и 3-м уровнях:
     

    • поддержка интерфейсов и протоколов, применяемых в локальных сетях,
    • усеченные функции маршрутизации,
    • обязательная поддержка механизма виртуальных сетей,
    • тесная интеграция функций коммутации и маршрутизации, наличие удобных для администратора операций по заданию маршрутизации между виртуальными сетями.

    Наиболее "коммутаторная" версия высокоскоростной маршрутизации выглядит следующим образом (рисунок 9). Пусть коммутатор третьего уровня построен так, что в нем имеется информация о соответствии сетевых адресов (например, IP-адресов) адресам физического уровня (например, MAC-адресам) Все эти МАС-адреса обычным образом отображены в коммутационной таблице, независимо от того, принадлежат ли они данной сети или другим сетям.

    5009

    Первый коммутатор, на который поступает пакет, частично выполняет функции маршрутизатора, а именно, функции фильтрации, обеспечивающие безопасность. Он решает, пропускать или нет данный пакет в другую сеть Если пакет пропускать нужно, то коммутатор по IP-адресу назначения определяет МАС-адрес узла назначения и формирует новый заголовок второго уровня с найденным МАС-адресом. Затем выполняется обычная процедура коммутации по данному МАС-адресу с просмотром адресной таблицы коммутатора. Все последующие коммутаторы, построенные по этому же принципу, обрабатывают данный кадр как обычные коммутаторы второго уровня, не привлекая функций маршрутизации, что значительно ускоряет его обработку. Однако функции маршрутизации не являются для них избыточными, поскольку и на эти коммутаторы могут поступать первичные пакеты (непосредственно от рабочих станций), для которых необходимо выполнять фильтрацию и подстановку МАС-адресов.

    Это описание носит схематический характер и не раскрывает способов решения возникающих при этом многочисленных проблем, например, проблемы построения таблицы соответствия IP-адресов и МАС-адресов

    Примерами коммутаторов третьего уровня, работающих по этой схеме, являются коммутаторы SmartSwitch компании Cabletron. Компания Cabletron реализовала в них свой протокол ускоренной маршрутизации SecureFast Virtual Network, SFVN.

    Для организации непосредственного взаимодействия рабочих станций без промежуточного маршрутизатора необходимо сконфигурировать каждую из них так, чтобы она считала собственный интерфейс маршрутизатором по умолчанию. При такой конфигурации станция пытается самостоятельно отправить любой пакет конечному узлу, даже если этот узел находится в другой сети. Так как в общем случае (см. рисунок 10) станции неизвестен МАС-адрес узла назначения, то она генерирует соответствующий ARP-запрос, который перехватывает коммутатор, поддерживающий протокол SFVN. В сети предполагается наличие сервера SFVN Server, являющегося полноценным маршрутизатором и поддерживающего общую ARP-таблицу всех узлов SFVN-сети. Сервер возвращает коммутатору МАС-адрес узла назначения, а коммутатор, в свою очередь, передает его исходной станции. Одновременно сервер SFVN передает коммутаторам сети инструкции о разрешении прохождения пакета с МАС-адресом узла назначения через границы виртуальных сетей. Затем исходная станция передает пакет в кадре, содержащем МАС-адрес узла назначения. Этот кадр проходит через коммутаторы, не вызывая обращения к их блокам маршрутизации. Отличие протокола SFVN компании Cabletron от - описанной выше общей схемы в том, что для нахождения МАС-адреса по IP-адресу в сети используется выделенный сервер.

    5010

    Протокол Fast IP компании 3Com является еще одним примером реализации подхода с отображением IP-адреса на МАС-адрес. В этом протоколе основными действующими лицами являются сетевые адаптеры (что не удивительно, так как компания 3Com является признанным лидером в производстве сетевых адаптеров Ethernet) С одной стороны, такой подход требует изменения программного обеспечения драйверов сетевых адаптеров, и это минус Но зато не требуется изменять все остальное сетевое оборудование.

    При необходимости передать пакет узлу назначения другой сети, исходный узел в соответствии с технологией Fast IP должен передать запрос по протоколу NHRP (Next Hop Routing Protocol) маршрутизатору сети. Маршрутизатор переправляет этот запрос узлу назначения, как обычный пакет Узел назначения, который также поддерживает Fast IP и NHRP, получив запрос, отвечает кадром, отсылаемым уже не маршрутизатору, а непосредственно узлу-источнику (по его МАС-адресу, содержащемуся в NHRP-запросе). После этого обмен идет на канальном уровне на основе известных МАС-адресов. Таким образом, снова маршрутизировался только первый пакет потока (как на рисунке 9 кратковременный поток), а все остальные коммутировались (как на рисунке 9 долговременный поток).

    Еще один тип коммутаторов третьего уровня — это коммутаторы, работающие с протоколами локальных сетей типа Ethernet и FDDI. Эти коммутаторы выполняют функции маршрутизации не так, как классические маршрутизаторы. Они маршрутизируют не отдельные пакеты, а потоки пакетов.

    Поток — это последовательность пакетов, имеющих некоторые общие свойства. По меньшей мере, у них должны совпадать адрес отправителя и адрес получателя, и тогда их можно отправлять по одному и тому же маршруту. Если классический способ маршрутизации использовать только для первого пакета потока, а все остальные обрабатывать на основании опыта первого (или нескольких первых) пакетов, то можно значительно ускорить маршрутизацию всего потока.

    Рассмотрим этот подход на примере технологии NetFlow компании Cisco, реализованной в ее маршрутизаторах и коммутаторах. Для каждого пакета, поступающего на порт маршрутизатора, вычисляется хэш-функция от IP-адресов источника, назначения, портов UDP или TCP и поля TOS, характеризующего требуемое качество обслуживания. Во всех маршрутизаторах, поддерживающих данную технологию, через которые проходит данный пакет, в кэш-памяти портов запоминается соответствие значения хэш-функции и адресной информации, необходимой для быстрой передачи пакета следующему маршрутизатору. Таким образом, образуется квазивиртуальный канал (см. Рисунок 11), который позволяет быстро передавать по сети маршрутизаторов все последующие пакеты этого потока. При этом ускорение достигается за счет упрощения процедуры обработки пакета маршрутизатором - не просматриваются таблицы маршрутизации, не выполняются ARP-запросы.

    5011

    Этот прием может использоваться в маршрутизаторах, вообще не поддерживающих коммутацию, а может быть перенесен в коммутаторы. В этом случае такие коммутаторы тоже называют коммутаторами третьего уровня. Примеров маршрутизаторов, использующих данный подход, являются маршрутизаторы Cisco 7500, а коммутаторов третьего уровня — коммутаторы Catalyst 5000 и 5500. Коммутаторы Catalyst выполняют усеченные функции описанной схемы, они не могут обрабатывать первые пакеты потоков и создавать новые записи о хэш-функциях и адресной информации потоков. Они просто получают данную информацию от маршрутизаторов 7500 и обрабатывают пакеты уже распознанных маршрутизаторами потоков.

    Выше был рассмотрен способ ускоренной маршрутизации, основанный на концепции потока. Его сущность заключается в создании квазивиртуальных каналов в сетях, которые не поддерживают виртуальные каналы в обычном понимании этого термина, то есть сетях Ethernet, FDDI, Token Ring и т п. Следует отличать этот способ от способа ускоренной работы маршрутизаторов в сетях, поддерживающих технологию виртуальных каналов — АТМ, frame relay, X 25. В таких сетях создание виртуального канала является штатным режимом работы сетевых устройств. Виртуальные каналы создаются между двумя конечными точками, причем для потоков данных, требующих разного качества обслуживания (например, для данных разных приложений) может создаваться отдельный виртуальный канал. Хотя время создания виртуального канала существенно превышает время маршрутизации одного пакета, выигрыш достигается за счет последующей быстрой передачи потока данных по виртуальному каналу. Но в таких сетях возникает другая проблема — неэффективная передача коротких потоков, то есть потоков, состоящих из небольшого количества пакетов (классический пример — пакеты протокола DNS).

    Накладные расходы, связанные с созданием виртуального канала, приходящиеся на один пакет, снижаются при передаче объемных потоков данных. Однако они становятся неприемлемо высокими при передаче коротких потоков. Для того чтобы эффективно передавать короткие потоки, предлагается следующий вариант, при передаче нескольких первых пакетов выполняется обычная маршрутизация. Затем, после того как распознается устойчивый поток, для него строится виртуальный канал, и дальнейшая передача данных происходит с высокой скоростью по этому виртуальному каналу. Таким образом, для коротких потоков виртуальный канал вообще не создается, что и повышает эффективность передачи.

    По такой схеме работает ставшая уже классической технология IP Switching компании Ipsilon. Для того чтобы сети коммутаторов АТМ передавали бы пакеты коротких потоков без установления виртуального канала, компания Ipsilon предложила встроить во все коммутаторы АТМ блоки IP-маршрутизации (рисунок 12), строящие обычные таблицы маршрутизации по обычным протоколам RIP и OSPF.

    5012

    Компания Cisco Systems выдвинула в качестве альтернативы технологии IP Switching свою собственную технологию Tag Switching, но она не стала стандартной. В настоящее время IETF работает над стандартным протоколом обмена метками MPLS (Multi-Protocol Label Switching), который обобщает предложение компаний Ipsilon и Cisco, а также вносит некоторые новые детали и механизмы. Этот протокол ориентирован на поддержку качества обслуживания для виртуальных каналов, образованных метками.

    Коммутация четвертого уровня

    Свойства четвертого или транспортного уровня модели OSI следующие: транспортный уровень обеспечивает услуги по транспортировке данных. В частности, заботой транспортного уровня является решение таких вопросов, как выполнение надежной транспортировки данных через объединенную сеть. Предоставляя надежные услуги, транспортный уровень обеспечивает механизмы для установки, поддержания и упорядоченного завершения действия виртуальных каналов, систем обнаружения и устранения неисправностей транспортировки и управления информационным потоком (с целью предотвращения переполнения данными из другой системы).

    Некоторые производители заявляют, что их системы могут работать на втором, третьем и даже четвертом уровнях. Однако рассмотрение описания стека TCP/IP (рисунок 1), а также структуры пакетов IP и TCP (рисунки 2, 3), показывает, что коммутация четвертого уровня является фикцией, так как все относящиеся к коммутации функции осуществляются на уровне не выше третьего. А именно, термин коммутация четвертого уровня с точки зрения описания стека TCP/IP противоречий не имеет, за исключением того, что при коммутации должны указываться адреса компьютера (маршрутизатора) источника и компьютера (маршрутизатора) получателя. Пакеты TCP имеют поля локальный порт отправителя и локальный порт получателя (рисунок 3), несущие смысл точек входа в приложение (в программу), например Telnet с одной стороны, и точки входа (в данном контексте инкапсуляции) в уровень IP. Кроме того, в стеке TCP/IP именно уровень TCP занимается формированием пакетов из потока данных идущих от приложения. Пакеты IP (рисунок 2) имеют поля адреса компьютера (маршрутизатора) источника и компьютера (маршрутизатора) получателя и следовательно могут наряду с MAC адресами использоваться для коммутации. Тем не менее, название прижилось, к тому же практика показывает, что способность системы анализировать информацию прикладного уровня может оказаться полезной — в частности для управления трафиком. Таким образом, термин "зависимый от приложения" более точно отражает функции так называемых коммутаторов четвертого уровня.

    5013

    5014

    5015

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > switching technology

  • 36 clearance

    1. электрический зазор
    2. устранение короткого замыкания
    3. уровень прозрачности
    4. просвет дорожный
    5. просвет (между двумя колоннами обсадных труб)
    6. просвет
    7. отключение КЗ
    8. освобождение (от контроля)
    9. клирэнс
    10. клиренс
    11. изоляционный промежуток
    12. зазор
    13. задний угол (в обработке резанием)
    14. габаритная высота
    15. выведение (из организма)
    16. выброс шайбы из своей зоны
    17. вредное пространство (в цилиндре)
    18. воздушный зазор
    19. безопасный зазор для авиационной грузовой единицы

     

    безопасный зазор для авиационной грузовой единицы
    Расстояние между обшивкой грузового отсека транспортного самолета и авиационной грузовой единицей, позволяющее разместить ее внутри грузового отсека так, чтобы она не получила и не нанесла каких-либо повреждений.
    [ ГОСТ Р 53428-2009]

    Тематики

    EN

     

     

    воздушный зазор
    Кратчайшее расстояние между двумя токоведущими и/или токоведущей и открытой проводящей частью.
    МЭК 60050(441-17-31).
    [ ГОСТ Р 50030. 1-2000 ( МЭК 60947-1-99)]


    воздушный зазор
    Кратчайшее расстояние в воздухе между двумя токопроводящими1) частями вдоль линии наименьшей протяженности между этими токоведущими1) частями.
    Примечание.  Для определения воздушного зазора относительно доступных частей следует рассматривать доступную поверхность изоляционной оболочки как токопроводящую, как если бы она была покрыта металлической фольгой во всех местах, где ее можно коснуться рукой или стандартным испытательным пальцем в соответствии с рисунком 9.
    (МЭС 441-17-31)
    [ ГОСТ Р 50345-99( МЭК 60898-95)]
    1) Должно быть проводящими
    [Интент]


    изоляционный промежуток
    Расстояние между двумя токопроводящими частями вдоль нити, натянутой по кратчайшему пути между ними.
    [ ГОСТ Р 52726-2007]


    зазор
    Кратчайшее расстояние по воздуху между двумя токопроводящими1) частями оборудования.
    [ ГОСТ Р 52319-2005( МЭК 61010-1: 2001)]
    1) Должно быть проводящими
    [Интент]

    EN

    clearance
    the distance between two conductive parts along a string stretched the shortest way between these conductive parts
    [IEV number 441-17-31]


    clearance
    shortest distance in air between two conductive parts
    NOTE – This distance applies only to parts that are exposed to the atmosphere and not to parts which are insulated parts or covered with casting compound.
    [IEV number 426-04-12]

    FR

    distance d'isolement
    distance entre deux parties conductrices le long d'un fil tendu suivant le plus court trajet possible entre ces deux parties conductrices
    [IEV number 441-17-31]


    distance d’isolement dans l’air
    plus courte distance dans l’air entre deux pièces conductrices
    NOTE – Cette distance s'applique seulement aux parties exposées à l'atmosphère et non aux parties isolées ou recouvertes par un composé de moulage.
    [IEV number 426-04-12]


    Параллельные тексты EN-RU

    Clearance distance
    Shortest distance in air between two conductive parts or between a conductive part and the accessible surface of the relay.

    [Tyco Electronics]

    Воздушный зазор
    Кратчайшее расстояние по воздуху между двумя проводящими частями или между проводящей частью и доступной для прикосновения поверхностью реле.

    [Перевод Интент]


    Наименьшее изоляционное расстояние по воздуху (в свету) от токоведущих до заземленных частей опоры
    [ПУЭ]
    2

     

    воздушный зазор
    -
    [IEV number 151-14-05]

    EN

    air gap
    short gap in the magnetic material forming a magnetic circuit
    Source: 221-04-13 MOD
    [IEV number 151-14-05]

    FR

    entrefer, m
    coupure de faible longueur dans le matériau magnétique constituant un circuit magnétique
    Source: 221-04-13 MOD
    [IEV number 151-14-05]

     

    Тематики

    Синонимы

    EN

    Примечание(1) - воздушный зазор (изоляционное расстояние) между контактами

    DE

    FR

     

    выброс шайбы из своей зоны
    Хоккейный термин, который обозначает выбрасывание шайбы из своей зоны защиты.
    [Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]

    EN

    clearance
    clearing the puck
    clearing attempt

    Ice hockey term that describes the act of getting the puck out of one's own defensive zone.
    [Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]

    Тематики

    EN

     

    выведение (из организма)
    клиренс

    Результирующий эффект биологических процессов, посредством которых радионуклиды выводятся из ткани, органа или участка тела. Скорость выведения (из организма) clearance rate – это скорость, с которой происходит этот процесс.
    [Глоссарий МАГАТЭ по вопросам безопасности]

    Тематики

    Синонимы

    EN

     

    габаритная высота
    просвет
    зазор
    воздушный промежуток
    минимальное допустимое расстояние
    очистка
    гашение
    установка в исходное состояние
    разъединение
    уровень прозрачности


    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    Синонимы

    EN

     

    задний угол (α)
    Угол в секущей плоскости между задней поверхностью лезвия и плоскостью резания.
    163716351632163316361634

    [ ГОСТ 25762-83]

    Тематики

    Обобщающие термины

    EN

    DE

    FR

     

    зазор
    Небольшой промежуток между кромками или поверхностями прилегающих друг к другу элементов
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    EN

    DE

    FR

     

    клиренс
    просвет

    Расстояние по вертикали от статического уровня дна моря до нижней кромки корпуса плавучей буровой платформы
    [ http://slovarionline.ru/anglo_russkiy_slovar_neftegazovoy_promyishlennosti/]

    Тематики

    Синонимы

    EN

     

    клирэнс
    Термин “клирэнс” имеет два значения на рынках ценных бумаг. Он может означать процесс подсчета взаимных обязательств участников рынка, как правило, на нетто-основе, для обмена ценными бумагами и денежными средствами. А также он может означать процесс перевода ценных бумаг в расчетную дату, и в этом смысле термин “клиринговая система” иногда используется по отношению к системам расчета по ценным бумагам.
    [Глоссарий терминов, используемых в платежных и расчетных системах. Комитет по платежным и расчетным системам Банка международных расчетов. Базель, Швейцария, март 2003 г.]

    Тематики

    EN

     

    освобождение (от контроля)
    Освобождение радиоактивных материалов или радиоактивных предметов в рамках разрешенной практической деятельности от любого дальнейшего регулирующего контроля, осуществляемого регулирующим органом. Освобождение от контроля в данном контексте относится к контролю, применяемому в целях радиационной защиты. Концептуально освобождение от контроля, т.е. освобождение некоторых материалов или предметов в разрешенной практической деятельности от дальнейшего контроля, тесно связано с изъятием – определением того, что применение мер контроля не требуется в отношении некоторых источников и видов практической деятельности, но отличается от него, и эти два понятия не следует путать. В разных государствах используются различные термины для выражения этой концепции, например, ‘безусловное разрешение’ {free release}. Ряд вопросов, касающихся концепции освобождения от контроля и ее связи с другими концепциями, разъяснен в [10].
    [Глоссарий МАГАТЭ по вопросам безопасности]

    Тематики

    EN

     

    отключение КЗ

    [В.А.Семенов. Англо-русский словарь по релейной защите]
    [Лугинский Я. Н. и др. Англо-русский словарь по электротехнике и электроэнергетике. 2-е издание - М.: РУССО, 1995 - 616 с.]

    Тематики

    EN

     

    просвет дорожный 
    Один из показателей проходимости дорожно-транспортного средства, определяемый расстоянием от опорной плоскости до наиболее низко расположенного элемента конструкции нагруженного дорожно-транспортного средства
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    Тематики

    Синонимы

    EN

    DE

    FR

     

    уровень прозрачности
    уровень допуска

    1) Максимальный уровень безопасности, разрешенный данному субъекту правилами модели Белла-Лападула.
    2) Иерархическая часть категории доступа пользователя или процесса, которая определяет максимальный уровень доступа пассивного объекта, к которому может получить доступ пользователь или процесс.
    [ http://www.morepc.ru/dict/]

    Тематики

    Синонимы

    EN

     

    устранение короткого замыкания

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    электрический зазор
    Кратчайшее расстояние по воздуху между двумя токопроводящими частями.
    Примечание
    Расстояние измеряется только между неизолированными частями. Определение не распространяется на изолированные или покрытые изоляционным компаундом части.
    [ ГОСТ Р МЭК 60050-426-2006]

    электрический зазор

    Кратчайшее расстояние в окружающей среде между токоведущими частями разного потенциала или между токоведущей и заземленной частями электрооборудования
    [ ГОСТ 22782. 7-81 ( СТ СЭВ 3142-81)]


    Тематики

    EN

    3.23.1 электрический зазор (clearance): Кратчайшее расстояние в окружающей среде между двумя токоведущими частями.

    Примечание - Это расстояние регламентируется только для частей, подверженных воздействию атмосферы, и не распространяется на изолированные или покрытые изоляционным компаундом части.

    Источник: ГОСТ Р 52350.11-2005: Электрооборудование для взрывоопасных газовых сред. Часть 11. Искробезопасная электрическая цепь "I" оригинал документа

    3.2 электрический зазор (clearance): Самое короткое расстояние в воздухе между двумя токопроводящими частями.

    Источник: ГОСТ Р МЭК 60079-15-2010: Взрывоопасные среды. Часть 15. Оборудование с видом взрывозащиты «n» оригинал документа

    3.4.11 воздушный зазор (clearance): Кратчайшее расстояние между двумя токопроводящими частями или между токопроводящей частью и наружной граничной поверхностью машины, измеренное по воздуху.

    Примечание - Примеры воздушных зазоров приведены в приложении А.

    Источник: ГОСТ Р МЭК 60745-1-2005: Машины ручные электрические. Безопасность и методы испытаний. Часть 1. Общие требования оригинал документа

    3.1.16 просвет (clearance) с: Абсолютное минимальное расстояние в свету между любым препятствием и осевой линией (см. рисунок 1), измеренное под углом 90° к осевой линии.

    Источник: ГОСТ Р ИСО 14122-3-2009: Безопасность машин. Средства доступа к машинам стационарные. Часть 3. Лестницы и перила оригинал документа

    1.2.10.1 зазор (clearance): Кратчайшее измеренное по воздуху расстояние между двумя токопроводящими частями или между токопроводящей частью и ограничивающей поверхностью.

    Источник: ГОСТ Р МЭК 60950-1-2009: Оборудование информационных технологий. Требования безопасности. Часть 1. Общие требования оригинал документа

    1.2.10.1 зазор (clearance): Кратчайшее расстояние между двумя токопроводящими частями или между токопроводящей частью и ограничивающей поверхностью оборудования, измеренное по воздуху.

    Источник: ГОСТ Р МЭК 60950-1-2005: Оборудование информационных технологий. Требования безопасности. Часть 1. Общие требования оригинал документа

    3.6.6 изоляционный промежуток (clearance): Кратчайшее расстояние по воздуху между двумя токопроводящими частями.

    [МЭК 60050 (441-17-31), модифицированный]

    Примечание - При определении изоляционного промежутка до доступных частей доступную поверхность изолирующей оболочки следует считать проводящей, как если бы она была покрыта металлической фольгой везде, где ее можно коснуться рукой или стандартным испытательным пальцем в соответствии с МЭК 60529.

    Источник: ГОСТ Р МЭК 60755-2012: Общие требования к защитным устройствам, управляемым дифференциальным (остаточным) током оригинал документа

    3.11 воздушный зазор (clearance): Кратчайшее расстояние, измеренное по воздуху, между двумя токопроводящими частями или между токопроводящей частью и наружной поверхностью, рассматриваемой так, как будто к ней прижата металлическая фольга, контактирующая с доступными поверхностями изоляционного материала.

    Примечание - Примеры воздушных зазоров приведены в приложении А.

    Источник: ГОСТ Р МЭК 60745-1-2009: Машины ручные электрические. Безопасность и методы испытаний. Часть 1. Общие требования оригинал документа

    3.4.11 воздушный зазор (clearance): Кратчайшее расстояние между двумя токопроводящими частями или между токопроводящеи частью и наружной граничной поверхностью машины, измеренное по воздуху.

    Примечание - Примеры воздушных зазоров приведены в приложении А.

    Источник: ГОСТ IEC 60745-1-2011: Машины ручные электрические. Безопасность и методы испытаний. Часть 1. Общие требования

    3.10 клиренс (clearance): Расстояние по вертикали между уровнем спокойной поверхности воды и самой нижней частью конструкции верхнего строения, которая не рассчитывается на воздействие волнения и ледовых образований.

    Источник: ГОСТ Р 54483-2011: Нефтяная и газовая промышленность. Платформы морские для нефтегазодобычи. Общие требования оригинал документа

    3.3.14 воздушный зазор (clearance): Кратчайшее расстояние по воздуху между двумя проводящими частями или между проводящей частью и доступной поверхностью.

    Источник: ГОСТ Р 52161.1-2004: Безопасность бытовых и аналогичных электрических приборов. Часть 1. Общие требования оригинал документа

    3.6.12 воздушный зазор (clearance): Кратчайшее расстояние по воздуху между двумя токопроводящими частями вдоль линии наименьшей протяженности между этими токоведущими частями (см. приложение В).

    [МЭС 441-17-31]


    Источник: ГОСТ Р 50345-2010: Аппаратура малогабаритная электрическая. Автоматические выключатели для защиты от сверхтоков бытового и аналогичного назначения. Часть 1. Автоматические выключатели для переменного тока оригинал документа

    3.5.20 воздушный зазор (clearance): Расстояние между двумя токопроводящими частями по кратчайшей прямой.

    [МЭК 60050(441-17-31)]

    Источник: ГОСТ Р 51731-2010: Контакторы электромеханические бытового и аналогичного назначения оригинал документа

    Англо-русский словарь нормативно-технической терминологии > clearance

  • 37 creepage distance

    1. расстояние утечки
    2. путь утечки
    3. пути утечки по поверхности электроизоляционных материалов
    4. пути утечки
    5. длина пути утечки изолятора

     

    длина пути утечки изолятора
    Кратчайшее расстояние или сумма кратчайших расстояний по контуру наружной изоляционной поверхности между частями, находящимися под разными электрическими потенциалами.
    Примечание. Кратчайшее расстояние, измеренное по поверхности цементного шва или токопроводящего соединительного материала, не является составной частью длины пути утечки.
    Если на часть изоляционной поверхности наносят полупроводящую глазурь, то эту часть следует рассматривать как эффективную изоляционную поверхность, а кратчайшее расстояние по ней включать в длину пути утечки.
    [ ГОСТ 27744-88]

    Тематики

    EN

    DE

    FR

     

    путь утечки
    Кратчайшее расстояние между токоведущими частями по поверхности электроизоляционного материала.
    [ ГОСТ Р МЭК 60050-426-2006]

    путь утечки
    Кратчайшее расстояние по поверхности электроизоляционого материала между токоведущими частями разного потенциала или между токоведущей и заземленной частями электрооборудования
    [ ГОСТ 22782. 7-81 ( СТ СЭВ 3142-81)]


    Тематики

    EN

     

    расстояние утечки
    Кратчайшее расстояние по поверхности изоляционного материала между двумя токопроводящими1) частями.
    Примечание. Стык между двумя элементами из изоляционного материала считают частью поверхности.
    [ ГОСТ Р 50030. 1-2000 ( МЭК 60947-1-99)]

    расстояние утечки (см. приложение В)
    Кратчайшее расстояние по поверхности изоляционного материала между двумя токопроводящими1) частями.
    Примечание — При определении расстояния утечки относительно доступных частей следует рассматривать доступную поверхность изоляционной оболочки как токопроводящую, как если бы она была покрыта металлической фольгой во всех местах, где ее можно коснуться рукой или стандартным испытательным пальцем в соответствии с рисунком 9
    [ ГОСТ Р 50345-99( МЭК 60898-95)]

    расстояние утечки по поверхности
    -
    [IEV number 151-15-50]

    путь утечки
    Кратчайшее расстояние вдоль поверхности изоляции между двумя проводящими частями или между проводящей частью и доступной поверхностью.
    [ ГОСТ Р 52161. 1-2004 ( МЭК 60335-1: 2001)]

    EN

    creepage distance
    shortest distance along the surface of an insulating material between two conductive parts
    NOTE  - A joint between two pieces of insulating material is considered part of the surface.
    [IEC 60947-1, ed. 5.0 (2007-06)]


    creepage distance
    shortest distance along the surface of an insulating material between two conductive parts
    NOTE  - For the purpose of determining a creepage distance to accessible parts, the accessible surface of an insulating enclosure is considered conductive as if it was covered by a metal foil wherever it can be touched by a hand or a standard test finger according to figure 9.
    [IEC 60898-1, ed. 1.0 (2002-01)]


    creepage distance
    shortest distance along the surface of insulation between two conductive parts or between a conductive part and the accessible surface
    [IEC 60335-1, ed. 4.0 (2001-05)]


    creepage distance
    shortest distance along the surface of a solid insulating material between two conductive parts
    [IEV number 151-15-50]

    FR

    ligne de fuite
    distance la plus courte le long de la surface d'une matière isolante entre deux parties conductrices
    NOTE - Un joint entre deux portions de matière isolante est considéré comme faisant partie de la surface.
    [IEC 60947-1, ed. 5.0 (2007-06)]


    ligne de fuite
    distance la plus courte le long de la surface d'une matière isolante entre deux parties conductrices
    NOTE - Pour la détermination d'une ligne de fuite pour des parties accessibles, la surface accessible d'une enveloppe isolante est considérée comme conductrice comme si elle était recouverte d'une feuille métallique à tout endroit où elle peut être touchée par la main ou par le doigt d'essai normalisé conforme à la figure 9.
    [IEC 60898-1, ed. 1.0 (2002-01)]


    ligne de fuite
    plus petite distance le long de la surface de l’isolation entre deux parties conductrices ou entre une partie conductrice et la surface accessible
    [IEC 60335-1, ed. 4.0 (2001-05)]


    ligne de fuite, f
    distance la plus courte, le long de la surface d'un isolant solide, entre deux parties conductrices
    [IEV number 151-15-50]

     1) Должно быть проводящими
    [Интент]

    Недопустимые, нерекомендуемые

    Тематики

    • электротехника, основные понятия

    EN

    DE

    FR

    3.23.4 пути утечки по поверхности электроизоляционных материалов (creepage distance): Кратчайшее расстояние между двумя токоведущими частями по поверхности электроизоляционного материала, находящейся в контакте с воздухом.

    Источник: ГОСТ Р 52350.11-2005: Электрооборудование для взрывоопасных газовых сред. Часть 11. Искробезопасная электрическая цепь "I" оригинал документа

    3.3 путь утечки (creepage distance): Самое короткое расстояние по поверхности изоляционного материала между двумя токопроводящими частями.


    Источник: ГОСТ Р МЭК 60079-15-2010: Взрывоопасные среды. Часть 15. Оборудование с видом взрывозащиты «n» оригинал документа

    3.4.10 пути утечки (creepage distance): Кратчайшее расстояние между двумя токопроводящими частями или между токопроводящей частью и граничной поверхностью машины, измеренное по поверхности изоляционного материала.

    Примечания

    1 Граничной поверхностью машины является внешняя поверхность корпуса, которая определяется металлической фольгой, прижимаемой к доступным изоляционным поверхностям.

    2 Примеры путей утечки приведены в приложении А.

    Источник: ГОСТ Р МЭК 60745-1-2005: Машины ручные электрические. Безопасность и методы испытаний. Часть 1. Общие требования оригинал документа

    1.2.10.2 путь утечки (creepage distance): Кратчайший путь, измеренный по поверхности изоляции между двумя токопроводящими частями или между токопроводящей частью и ограничивающей поверхностью оборудования.

    Источник: ГОСТ Р МЭК 60950-1-2009: Оборудование информационных технологий. Требования безопасности. Часть 1. Общие требования оригинал документа

    1.2.10.2 путь утечки (creepage distance): Кратчайший путь между двумя токопроводящими частями или между токопроводящей частью и ограничивающей поверхностью оборудования, измеренный по поверхности изоляции.

    Источник: ГОСТ Р МЭК 60950-1-2005: Оборудование информационных технологий. Требования безопасности. Часть 1. Общие требования оригинал документа

    3.6.7 расстояние утечки (creepage distance): Кратчайшее расстояние по поверхности изоляционного материала между двумя токопроводящими частями.

    [МЭК 60050 (471-01-04), модифицированный]

    Примечание - При определении расстояния утечки до доступных частей доступную поверхность изолирующей оболочки следует считать проводящей, как если бы она была покрыта металлической фольгой везде, где ее можно коснуться рукой или стандартным испытательным пальцем в соответствии с МЭК 60529.

    Источник: ГОСТ Р МЭК 60755-2012: Общие требования к защитным устройствам, управляемым дифференциальным (остаточным) током оригинал документа

    3.12 пути утечки (creepage distance): Кратчайший путь, измеренный по поверхности изоляционного материала между двумя токопроводящими путями или между токопроводящей частью и наружной поверхностью, рассматриваемой так, как будто к ней прижата металлическая фольга, контактирующая с доступными поверхностями изоляционного материала.

    Примечание - Примеры путей утечки приведены в приложении А.

    Источник: ГОСТ Р МЭК 60745-1-2009: Машины ручные электрические. Безопасность и методы испытаний. Часть 1. Общие требования оригинал документа

    3.4.10 пути утечки (creepage distance): Кратчайшее расстояние между двумя токопроводящими частями или между токопроводящей частью и граничной поверхностью машины, измеренное по поверхности изоляционного материала.

    Примечания

    1 Граничной поверхностью машины является внешняя поверхность корпуса, которая определяется металлической фольгой, прижимаемой к доступным изоляционным поверхностям.

    2 Примеры путей утечки приведены в приложении А.

    Источник: ГОСТ IEC 60745-1-2011: Машины ручные электрические. Безопасность и методы испытаний. Часть 1. Общие требования

    3.3.15 путь утечки (creepage distance): Кратчайшее расстояние вдоль поверхности изоляции между двумя проводящими частями или между проводящей частью и доступной поверхностью.

    Источник: ГОСТ Р 52161.1-2004: Безопасность бытовых и аналогичных электрических приборов. Часть 1. Общие требования оригинал документа

    3.6.13 расстояние утечки (creepage distance): Кратчайшее расстояние по поверхности изоляционного материала между двумя токопроводящими частями (см. приложение В).

    [МЭС 151-03-37]

    Примечание - При определении расстояния утечки до доступных частей доступную поверхность изолирующей оболочки следует считать проводящей, как если бы она была покрыта металлической фольгой везде, где ее можно коснуться рукой или стандартным испытательным пальцем, представленным на рисунке 9.

    Источник: ГОСТ Р 50345-2010: Аппаратура малогабаритная электрическая. Автоматические выключатели для защиты от сверхтоков бытового и аналогичного назначения. Часть 1. Автоматические выключатели для переменного тока оригинал документа

    3.5.8 ПУТЬ УТЕЧКИ (CREEPAGE DISTANCE): Кратчайшее расстояние по поверхности изоляционного материала между двумя токопроводящими частями (см. [1], позиция 151-03-37).

    x002.jpg

    1 - части соединителей (разъемов); 2 - НАКОНЕЧНИК; 3 - КОЖУХ щупа;

    Рисунок 1 - Щупы типов А и С

    x003.jpg

    1 - НАКОНЕЧНИК; 2 - к контрольно-измерительному или испытательному оборудованию;

    Рисунок 2 - Щупы типа В

    Источник: ГОСТ IEC 61010-031-2011: Безопасность электрических контрольно-измерительных приборов и лабораторного оборудования. Часть 031. Требования безопасности к щупам электрическим ручным для электрических измерений и испытаний

    3.5.21 расстояние утечки (creepage distance): Кратчайшее расстояние по поверхности изоляционного материала между двумя токопроводящими частями.

    Примечание - Стык между двумя частями из изоляционного материала считают частью поверхности.

    Источник: ГОСТ Р 51731-2010: Контакторы электромеханические бытового и аналогичного назначения оригинал документа

    Англо-русский словарь нормативно-технической терминологии > creepage distance

  • 38 system

    1. Система обработки
    2. система (геохронология)
    3. система (в электроэнергетике)
    4. система (в экологическом менеджменте)
    5. система (в теории управления)
    6. система (в информационных технологиях)
    7. система
    8. операция MS DOS копирует системные файлы
    9. механическая система
    10. вычислительная система
    11. вселенная

     

    вселенная

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    вычислительная система
    ЭВМ


    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    Синонимы

    EN

     

    механическая система
    система
    Любая совокупность материальных точек.
    Примечание. В механике материальное тело рассматривается как механическая система, образованная непрерывной совокупностью материальных точек.
    [Сборник рекомендуемых терминов. Выпуск 102. Теоретическая механика. Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    Тематики

    Синонимы

    EN

    DE

    FR

     

    операция MS DOS копирует системные файлы

    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN



     

    система
    Группа взаимодействующих объектов, выполняющих общую функциональную задачу. В ее основе лежит некоторый механизм связи.
    [ ГОСТ Р МЭК 61850-5-2011]

    система

    Набор элементов, которые взаимодействуют в соответствии с проектом, в котором элементом системы может быть другая система, называемая подсистемой; система может быть управляющей системой или управляемой системой и включать аппаратные средства, программное обеспечение и взаимодействие с человеком.
    Примечания
    1 Человек может быть частью системы. Например, человек может получать информацию от программируемого электронного устройства и выполнять действие, связанное с безопасностью, основываясь на этой информации, либо выполнять действие с помощью программируемого электронного устройства.
    2 Это определение отличается от приведенного в МЭС 351-01-01.
    [ ГОСТ Р МЭК 61508-4-2007]

    система
    Множество (совокупность) материальных объектов (элементов) любой, в том числе различной физической природы, а также информационных объектов, взаимосвязанных и взаимодействующих между собой для достижения общей цели.
    [ ГОСТ Р 43.0.2-2006]

    система
    Совокупность элементов, объединенная связями между ними и обладающая определенной целостностью.
    [ ГОСТ 34.003-90]

    система
    Совокупность взаимосвязанных и взаимодействующих элементов.
    [ ГОСТ Р ИСО 9000-2008]

    система

    -
    [IEV number 151-11-27]

    система
    Набор связанных элементов, работающих совместно для достижения общей Цели. Например: • Компьютерная система, состоящая из аппаратного обеспечения, программного обеспечения и приложений. • Система управления, состоящая из множества процессов, которые планируются и управляются совместно. Например, система менеджмента качества. • Система управления базами данных или операционная система, состоящая из множества программных модулей, разработанных для выполнения набора связанных функций.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    система
    Множество элементов, находящихся в отношениях и связях друг с другом, которое образует определенную целостность, единство. Следует отметить, что это определение (взятое нами из Большой Советской Энциклопедии) не является ни единственным, ни общепризнанным. Есть десятки определений понятия “С.”, которые с некоторой условностью можно поделить на три группы. Определения, принадлежащие к первой группе, рассматривают С. как комплекс процессов и явлений, а также связей между ними, существующий объективно, независимо от наблюдателя. Его задача состоит в том, чтобы выделить эту С. из окружающей среды, т.е. как минимум определить ее входы и выходы (тогда она рассматривается как “черный ящик”), а как максимум — подвергнуть анализу ее структуру (произвести структуризацию), выяснить механизм функционирования и, исходя из этого, воздействовать на нее в нужном направлении. Здесь С. — объект исследования и управления. Определения второй группы рассматривают С. как инструмент, способ исследования процессов и явлений. Наблюдатель, имея перед собой некоторую цель, конструирует (синтезирует) С. как некоторое абстрактное отображение реальных объектов. При этом С. (“абстрактная система”) понимается как совокупность взаимосвязанных переменных, представляющих те или иные свойства, характеристики объектов, которые рассматриваются в данной С. В этой трактовке понятие С. практически смыкается с понятием модели, и в некоторых работах эти два термина вообще употребляются как взаимозаменяемые. Говоря о синтезе С., в таких случаях имеют в виду формирование макромодели, анализ же С. совпадает в этой трактовке с микромоделированием отдельных элементов и процессов. Третья группа определений представляет собой некий компромисс между двумя первыми. С. здесь — искусственно создаваемый комплекс элементов (например, коллективов людей, технических средств, научных теорий и т.д.), предназначенный для решения сложной организационной, экономической, технической задачи. Следовательно, здесь наблюдатель не только выделяет из среды С. (и ее отдельные части), но и создает, синтезирует ее. С. является реальным объектом и одновременно — абстрактным отображением связей действительности. Именно в этом смысле понимает С. наука системотехника. Между этими группами определений нет непроходимых границ. Во всех случаях термин “С.” включает понятие о целом, состоящем из взаимосвязанных, взаимодействующих, взаимозависимых частей, причем свойства этих частей зависят от С. в целом, свойства С. — от свойств ее частей. Во всех случаях имеется в виду наличие среды, в которой С. существует и функционирует. Для исследуемой С. среда может рассматриваться как надсистема, соответственно, ее части — как подсистемы, а также элементы С., если их внутренняя структура не является предметом рассмотрения. С. делятся на материальные и нематериальные. К первым относятся, например, железная дорога, народное хозяйство, ко вторым — С. уравнений в математике, математика как наука, далее — С. наук. Автоматизированная система управления включает как материальные элементы (ЭВМ, документация, люди), так и нематериальные — математические модели, знания людей. Разделение это тоже неоднозначно: железную дорогу можно рассматривать не только как материальную С., но и как нематериальную С. взаимосвязей, соотношений, потоков информации и т.д. Закономерности функционирования систем изучаются общей теорией систем, оперирующей понятием абстрактной С. Наибольшее значение среди абстрактных С. имеют кибернетические С. Есть два понятия, близкие понятию С.: комплекс, совокупность (множество объектов). Они, однако, не тождественны ему, как нередко утверждают. Их можно рассматривать как усеченные, неполные понятия по отношению к С.: комплекс включает части, не обязательно обладающие системными свойствами (в том смысле, как это указано выше), но эти части сами могут быть системами, и элементы последних такими свойствами по отношению к ним способны обладать. Совокупность же есть множество элементов, не обязательно находящихся в системных отношениях и связях друг с другом. В данном словаре мы стремимся по возможности последовательно различать понятия С. и модели, рассматривая С. как некий объект (реальной действительности или воображаемый — безразлично), который подвергается наблюдению и изучению, а модель — как средство этого наблюдения и изучения. Разумеется, и модель, если она сама оказывается объектом наблюдения и изучения, в свою очередь рассматривается как С. (в частности, как моделируемая С.) — и так до бесконечности. Все это означает, что такие, например, понятия, как переменная или параметр, мы (в отличие от многих авторов) относим не к С., а к ее описанию, т.е. к модели (см. Параметры модели, Переменная модели), численные же их значения, характеризующие С., — к С. (например, координаты С.). • Системы математически описываются различными способами. Каждая переменная модели, выражающая определенную характеристику С., может быть задана множеством конкретных значений, которые эта переменная может принимать. Состояние С. описывается вектором (или кортежем, если учитываются также величины, не имеющие численных значений), каждая компонента которого соответствует конкретному значению определенной переменной. С. в целом может быть описана соответственно множеством ее состояний. Например, если x = (1, 2, … m) — вектор существенных переменных модели, каждая из которых может принять y значений (y = 1, 2, …, n), то матрица S = [ Sxy ] размерностью m ? n представляет собой описание данной С. Широко применяется описание динамической С. с помощью понятий, связанных с ее функционированием в среде. При этом С. определяется как три множества: входов X, выходов Y и отношений между ними R. Полученный “портрет системы” может записываться так: XRY или Y = ®X. Аналитическое описание С. представляет собой систему уравнений, характеризующих преобразования, выполняемые ее элементами и С. в целом в процессе ее функционирования: в непрерывном случае применяется аппарат дифференциальных уравнений, в дискретном — аппарат разностных уравнений. Графическое описание С. чаще всего состоит в построении графа, вершины которого соответствуют элементам С., а дуги — их связям. Существует ряд классификаций систем. Наиболее известны три: 1) Ст. Бир делит все С. (в природе и обществе), с одной стороны, на простые, сложные и очень сложные, с другой — на детерминированные и вероятностные; 2) Н.Винер исходит из особенностей поведения С. (бихевиористский подход) и строит дихотомическую схему: С., характеризующиеся пассивным и активным поведением; среди последних — нецеленаправленным (случайным) и целенаправленным; в свою очередь последние подразделяются на С. без обратной связи и с обратной связью и т.д.; 3) К.Боулдинг выделяет восемь уровней иерархии С., начиная с простых статических (например, карта земли) и простых кибернетических (механизм часов), продолжая разного уровня сложности кибернетическими С., вплоть до самых сложных — социальных организаций. Предложены также классификации по другим основаниям, в том числе более частные, например, ряд классификаций С. управления. См. также: Абстрактная система, Адаптирующиеся, адаптивные системы, Большая система, Вероятностная система, Выделение системы, Входы и выходы системы, Детерминированная система, Динамическая система, Дискретная система, Диффузная система, Замкнутая (закрытая) система, Иерархическая структура, Имитационная система, Информационная система, Информационно-развивающаяся система, Кибернетическая система, Координаты системы, Надсистема, Нелинейная система, Непрерывная система, Открытая система, Относительно обособленная система, Память системы, Подсистема, Портрет системы, Разомкнутая система, Рефлексная система, Решающая система, Самонастраивающаяся система, Самообучающаяся система, Самоорганизующаяся система, Сложная система, Состояние системы, Статическая система, Стохастическая система, Структура системы, Структуризация системы, Управляющая система, Устойчивость системы, Целенаправленная система, Экономическая система, Функционирование экономической системы..
    [ http://slovar-lopatnikov.ru/]

    EN

    system
    set of interrelated elements considered in a defined context as a whole and separated from their environment
    NOTE 1 – A system is generally defined with the view of achieving a given objective, e.g. by performing a definite function.
    NOTE 2 – Elements of a system may be natural or man-made material objects, as well as modes of thinking and the results thereof (e.g. forms of organisation, mathematical methods, programming languages).
    NOTE 3 – The system is considered to be separated from the environment and the other external systems by an imaginary surface, which cuts the links between them and the system.
    NOTE 4 – The term "system" should be qualified when it is not clear from the context to what it refers, e.g. control system, colorimetric system, system of units, transmission system.
    Source: 351-01-01 MOD
    [IEV number 151-11-27]

    system
    A number of related things that work together to achieve an overall objective. For example: • A computer system including hardware, software and applications • A management system, including the framework of policy, processes, functions, standards, guidelines and tools that are planned and managed together – for example, a quality management system • A database management system or operating system that includes many software modules which are designed to perform a set of related functions.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    FR

    système, m
    ensemble d'éléments reliés entre eux, considéré comme un tout dans un contexte défini et séparé de son environnement
    NOTE 1 – Un système est en général défini en vue d'atteindre un objectif déterminé, par exemple en réalisant une certaine fonction.
    NOTE 2 – Les éléments d'un système peuvent être aussi bien des objets matériels, naturels ou artificiels, que des modes de pensée et les résultats de ceux-ci (par exemple des formes d'organisation, des méthodes mathématiques, des langages de programmation).
    NOTE 3 – Le système est considéré comme séparé de l'environnement et des autres systèmes extérieurs par une surface imaginaire qui coupe les liaisons entre eux et le système.
    NOTE 4 – Il convient de qualifier le terme "système" lorsque le concept ne résulte pas clairement du contexte, par exemple système de commande, système colorimétrique, système d'unités, système de transmission.
    Source: 351-01-01 MOD
    [IEV number 151-11-27]

    Тематики

    EN

    DE

    FR

     

    система
    Любой объект, который одновременно рассматривается и как единое целое, и как совокупность разнородных объектов, объединенных для достижения определенного результата. [http://www.rol.ru/files/dict/internet/#P].
    [ http://www.morepc.ru/dict/]

    Тематики

    EN

     

    система
    Объект, представляющий собой совокупность элементов, обладающую свойством целостности при данном рассмотрении.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    Тематики

    • автоматизация, основные понятия

    EN

     

    система (в экологическом менеджменте)
    Совокупность взаимосвязанных или взаимодействующих элементов.
    [ http://www.14000.ru/glossary/main.php?PHPSESSID=25e3708243746ef7c85d0a8408d768af]

    EN

    system
    Set of interrelated or interacting elements.
    [ISO 9000:2000]

    Тематики

    EN

     

    система (в электроэнергетике)
    Означает любые транспортные сети, распределительные сети, комплексы СПГ и/или хранилища, принадлежащие и/или эксплуатируемые предприятием природного газа, включая хранилища в трубопроводе и объекты, поставляющие вспомогательные услуги, а также подобные же подразделения связанных предприятий, необходимые для обеспечения доступа к транспортировке, распределению и СПГ (Директива 2003/55/ЕС).
    [Англо-русский глосcарий энергетических терминов ERRA]

    EN

    system
    Means any transmission networks, distribution networks, LNG facilities and/or storage facilities owned and/or operated by a natural gas undertaking, including linepack and its facilities supplying ancillary services and those of related undertakings necessary for providing access to transmission, distribution and LNG (Directive 2003/55/EC).
    [Англо-русский глосcарий энергетических терминов ERRA]

    Тематики

    EN

     

    система
    Отложения, образовавшиеся в течение геологического периода.
    [ Словарь геологических терминов и понятий. Томский Государственный Университет]

    Тематики

    • геология, геофизика

    Обобщающие термины

    EN

    4.48 система (system): Комбинация взаимодействующих элементов, организованных для достижения одной или нескольких поставленных целей.

    Примечание 1 - Система может рассматриваться как продукт или предоставляемые им услуги.

    Примечание 2 - На практике интерпретация данного термина зачастую уточняется с помощью ассоциативного существительного, например, «система самолета». В некоторых случаях слово «система» может заменяться контекстно-зависимым синонимом, например, «самолет», хотя это может впоследствии затруднить восприятие системных принципов.

    Источник: ГОСТ Р ИСО/МЭК 12207-2010: Информационная технология. Системная и программная инженерия. Процессы жизненного цикла программных средств оригинал документа

    4.17 система (system): Комбинация взаимодействующих элементов, организованных для достижения одной или нескольких поставленных целей.

    Примечания

    1. Система может рассматриваться как продукт или как совокупность услуг, которые она обеспечивает.

    2. На практике интерпретация данного термина зачастую уточняется с помощью ассоциативного существительного, например, система самолета. В некоторых случаях слово «система» может заменяться контекстным синонимом, например, самолет, хотя это может впоследствии затруднять восприятие системных принципов.

    Источник: ГОСТ Р ИСО/МЭК 15288-2005: Информационная технология. Системная инженерия. Процессы жизненного цикла систем оригинал документа

    4.44 система (system): Комплекс процессов, технических и программных средств, устройств, обслуживаемый персоналом и обладающий возможностью удовлетворять установленным потребностям и целям (3.31 ГОСТ Р ИСО/МЭК 12207).

    Источник: ГОСТ Р ИСО/МЭК 15910-2002: Информационная технология. Процесс создания документации пользователя программного средства оригинал документа

    3.31 система (system): Комплекс, состоящий из процессов, технических и программных средств, устройств и персонала, обладающий возможностью удовлетворять установленным потребностям или целям.

    Источник: ГОСТ Р ИСО/МЭК 12207-99: Информационная технология. Процессы жизненного цикла программных средств оригинал документа

    3.36 система (system): Совокупность взаимосвязанных и взаимодействующих объектов. [ ГОСТ Р ИСО 9000, статья 3.2.1]

    Источник: ГОСТ Р 51901.6-2005: Менеджмент риска. Программа повышения надежности оригинал документа

    3.2 система (system): Совокупность взаимосвязанных и взаимодействующих элементов. [ ГОСТ Р ИСО 9000 - 2001]

    Примечания

    1 С точки зрения надежности система должна иметь:

    a) определенную цель, выраженную в виде требований к функционированию системы;

    b) заданные условия эксплуатации.

    2 Система имеет иерархическую структуру.

    Источник: ГОСТ Р 51901.5-2005: Менеджмент риска. Руководство по применению методов анализа надежности оригинал документа

    3.2.1 система (system): Совокупность взаимосвязанных и взаимодействующих элементов.

    Источник: ГОСТ Р ИСО 9000-2008: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3. Система обработки

    информации

    СОИ

    Information processing

    system

    Совокупность технических средств и программного обеспечения, а также методов обработки информации и действий персонала, обеспечивающая выполнение автоматизированной обработки информации

    Источник: ГОСТ 15971-90: Системы обработки информации. Термины и определения оригинал документа

    3.7 система (system): Совокупность взаимосвязанных или взаимодействующих элементов.

    Примечания

    1 Применительно к надежности система должна иметь:

    a) определенные цели, представленные в виде требований к ее функциям;

    b) установленные условия функционирования;

    c) определенные границы.

    2 Структура системы является иерархической.

    Источник: ГОСТ Р 51901.12-2007: Менеджмент риска. Метод анализа видов и последствий отказов оригинал документа

    2.39 система (system): Совокупность взаимосвязанных и взаимодействующих элементов.

    Источник: ГОСТ Р 53647.2-2009: Менеджмент непрерывности бизнеса. Часть 2. Требования оригинал документа

    3.20 система (system): Конфигурация взаимодействующих в соответствии с проектом составляющих, в которой элемент системы может сам представлять собой систему, называемую в этом случае подсистемой.

    (МЭК 61513, статья 3.61)

    Источник: ГОСТ Р МЭК 61226-2011: Атомные станции. Системы контроля и управления, важные для безопасности. Классификация функций контроля и управления оригинал документа

    3.61 система (system): Конфигурация взаимодействующих в соответствии с проектом составляющих, в которой элемент системы может сам представлять собой систему, называемую в этом случае подсистемой.

    [МЭК 61508-4, пункт 3.3.1, модифицировано]

    Примечание 1 - См. также «система контроля и управления».

    Примечание 2 - Системы контроля и управления следует отличать от механических систем и электрических систем АС.

    Источник: ГОСТ Р МЭК 61513-2011: Атомные станции. Системы контроля и управления, важные для безопасности. Общие требования оригинал документа

    3.2.1 система (system): Совокупность взаимосвязанных и взаимодействующих элементов.

    Источник: ГОСТ ISO 9000-2011: Системы менеджмента качества. Основные положения и словарь

    2.34 система (system): Специфическое воплощение ИТ с конкретным назначением и условиями эксплуатации.

    [ИСО/МЭК 15408-1]

    а) комбинация взаимодействующих компонентов, организованных для достижения одной или нескольких поставленных целей.

    [ИСО/МЭК 15288]

    Примечания

    1 Система может рассматриваться как продукт или совокупность услуг, которые она обеспечивает.

    [ИСО/МЭК 15288]

    2 На практике интерпретация данного зачастую уточняется с помощью ассоциативного существительного, например, «система самолета». В некоторых случаях слово «система» допускается заменять, например, контекстным синонимом «самолет», хотя это может впоследствии затруднить восприятие системных принципов.

    [ИСО/МЭК 15288]

    Источник: ГОСТ Р 54581-2011: Информационная технология. Методы и средства обеспечения безопасности. Основы доверия к безопасности ИТ. Часть 1. Обзор и основы оригинал документа

    3.34 система (system):

    Совокупность связанных друг с другом подсистем и сборок компонентов и/или отдельных компонентов, функционирующих совместно для выполнения установленной задачи или

    совокупность оборудования, подсистем, обученного персонала и технических приемов, обеспечивающих выполнение или поддержку установленных функциональных задач. Полная система включает в себя относящиеся к ней сооружения, оборудование, подсистемы, материалы, обслуживание и персонал, необходимые для ее функционирования в той степени, которая считается достаточной для выполнения установленных задач в окружающей обстановке.

    Источник: ГОСТ Р 51317.1.5-2009: Совместимость технических средств электромагнитная. Воздействия электромагнитные большой мощности на системы гражданского назначения. Основные положения оригинал документа

    3.2.6 система (system): Совокупность взаимосвязанных или взаимодействующих элементов.

    Источник: ГОСТ Р 54147-2010: Стратегический и инновационный менеджмент. Термины и определения оригинал документа

    3.12 система (system): Совокупность взаимосвязанных и взаимодействующих элементов

    [ ГОСТ Р ИСО 9000-2008, ст. 3.2.1]

    Источник: Р 50.1.069-2009: Менеджмент риска. Рекомендации по внедрению. Часть 2. Определение процесса менеджмента риска

    Англо-русский словарь нормативно-технической терминологии > system

  • 39 price discrimination

    1. ценовая дискриминация

     

    ценовая дискриминация
    Когда различные группы потребителей сталкиваются с различными ценами
    [Англо-русский глосcарий энергетических терминов ERRA]

    ценовая дискриминация
    Обычная при несовершенной конкуренции практика назначения разных цен для разных потребителей на основе различий в эластичности спроса. То же: ценовая диверсификация, диверсификация цен. Существуют разные ее виды: во-первых, по доходам покупателей. Максимальная цена, которую может заплатить покупатель за каждое приобретаемое изделие — резервированная цена (reservation price); практика назначения для каждого покупателя резервированной цены называется идеальной диверсификацией цен (perfect first-degree price discriminftion). Во-вторых, в зависимости от объема потребления: например, неодинаковые тарифы за электроэнергию для крупных и мелких потребителей; в-третьих по категориям товаров, например, авиабилеты туристского и первого классов; в четвертых, разного рода скидки для тех или иных категорий покупателей (например, распространенная на Западе традиция скидок при продаже книг для преподавателей или железнодорожных билетов для пенсионеров). В идеале фирма предпочитала бы осуществлять полную диверификацию цен, т.е. назначить для каждого покупателя резервированную цену товара и получить таким образом максимальный сбыт. На практике это почти невозможно. И все же различные формы ценовой дискриминации, в том числе перечисленные, эффективно используются для увеличения прибыли, а также для решения долгосрочных задач фирмы — таких как создание устойчивой ее репутации среди потребителей и в обществе в целом. См. также Матричное ценообразование
    [ http://slovar-lopatnikov.ru/]

    EN

    price discrimination
    When different consumer groups face different prices.
    [Англо-русский глосcарий энергетических терминов ERRA]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > price discrimination

  • 40 design file

    общее название для файлов разных уровней иерархии, разного вида и назначения, формируемых и используемых при автоматизированном проектировании. Перевод может зависеть от конкретного приложения
    см. тж. CAD

    Англо-русский толковый словарь терминов и сокращений по ВТ, Интернету и программированию. > design file

См. также в других словарях:

  • Жесть — У этого термина существуют и другие значения, см. Жесть (значения). Гофрированная жесть …   Википедия

  • Институт кибернетики имени В. М. Глушкова — НАН Украины Расположение Украина, Киев Юридический адрес проспект Академика Глушкова, 40, Киев, Украина …   Википедия

  • Лесоматериалы — материалы из древесины, сохранившие её природную физическую структуру и химический состав, получаемые из поваленных деревьев, хлыстов и (или из их частей) путём поперечного и (или) продольного деления. Под этими видами деления подразумеваются:… …   Википедия

  • АРХИТЕКТУРА — учебно воспитательных учреждений, здания, сооружения и их комплексы, формирующие пространств, среду для жизни и деятельности детей и юношесша в соответствии с задачами их образования и воспитания. Эстетич. функциональные и техн. начала в А.… …   Российская педагогическая энциклопедия

  • АРХИТЕКТУРА учебно-воспитательных учреждений — здания, сооружения и их комплексы, формирующие пространств. среду для жизни и деятельности детей и юношесша в соответствии с задачами их образования и воспитания. Эстетич. функциональные и техн. начала в А. должны соответствовать возрастным… …   Российская педагогическая энциклопедия

  • СССР. Технические науки —         Авиационная наука и техника          В дореволюционной России был построен ряд самолётов оригинальной конструкции. Свои самолёты создали (1909 1914) Я. М. Гаккель, Д. П. Григорович, В. А. Слесарев и др. Был построен 4 моторный самолёт… …   Большая советская энциклопедия

  • Военно-Морской Флот Российской Федерации — Военно Морской Флот Российской Федерации …   Википедия

  • БАРТИНИ Роберто Людовигович — (1897 1974) Бартини Роберто Людовигович (Роберто Орос ди Бартини) — советский авиаконструктор, ученый. Родился в Фиуме (Риека, Югославия). Окончил офицерскую (1916) и летную (1921) школы, Миланский политехнический институт (1922). С 1921… …   Военная энциклопедия

  • источники ресурсов малой гидроэнергетики — 83 источники ресурсов малой гидроэнергетики: Естественные и искусственные водотоки, водохранилища, озера и пруды, водохозяйственные или гидравлические системы разного назначения, а также другие малые водные потоки, потенциал которых может быть… …   Словарь-справочник терминов нормативно-технической документации

  • ТСН 30-303-2000: Планировка и застройка городских и сельских поселений. Московская область — Терминология ТСН 30 303 2000: Планировка и застройка городских и сельских поселений. Московская область: 7.10. Коммунально складские зоны предназначены для размещения групп предприятий и отдельных объектов, обеспечивающих потребности городского… …   Словарь-справочник терминов нормативно-технической документации

  • ГРУЗИНСКАЯ ПРАВОСЛАВНАЯ ЦЕРКОВЬ. ЧАСТЬ III — Народные обычаи, связанные с церковным календарем Мн. груз. сказания и обычаи были зафиксированы лишь в XIX XX вв. Трудно определить время возникновения. В наст. время большая часть обычаев, не связанных с церковной традицией, не сохранилась.… …   Православная энциклопедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»