Перевод: с русского на английский

с английского на русский

очень+просто

  • 21 Д-138

    ГРЕШНЫМ ДЕЛОМ coll, occas. humor NP instrum Invar sent adv (often parenth) fixed WO
    used by the speaker to admit his own or another's mistake, weakness, oversight etc, or to inquire if another (often the interlocutor) has made a mistake, given in to a weakness, overlooked sth. etc: I'm afraid
    much as I hate to admit (say) it I'm ashamed to say sad to say
    (in refer, to the interlocutor or a third party only) you (he etc) didn't go and (do sth.), did you (he etc)? «Они (два студента) как-то очень просто и хорошо обратились к старику. Он даже прослезился. Грешным делом, и я тоже» (Некрасов 1). "What they (two students) said to the old man was very simple, direct, sincere. He even shed a few tears. I'm afraid I did, too" (1a).
    Когда я поступал в ресторан, у меня грешным делом мелькала мысль, что я... смогу завести какие-то знакомства (Лимонов 1). When I started at the restaurant, I am ashamed to say, I had the fleeting thought that I...could make some contacts (1a).

    Большой русско-английский фразеологический словарь > Д-138

  • 22 С-327

    СЛОВО ЗА СЛОВО coll Invar adv or indep. clause)
    1. \С-327 (разговориться, познакомиться, расспросить и т. п.) (to get to talking) in a gradual, natural manner, with each participant's remarks eliciting a response from the other
    (to get to know s.o., question s.o. etc) in a gradual, natural manner in the course of a conversation: (in past contexts) one word (thing) led to another as the conversation progressed (one got to know s.o. (asked s.o. sth. etc)) little by little (one got to talking with s.o. (convinced s.o. of sth. etc)).
    Да, так встретились (дед и запорожец). Слово за слово, долго ли до знакомства? Пошли калякать, калякать так, что дед совсем уже было позабыл про путь свой (Гоголь 5). So they (Grandad and a Dnieper Cossack) met. One word leads to another, it doesn't take long to make friends. They fell to chatting and chatting, so that Grandad quite forgot about his journey (5a).
    (Кашкина:) Как это вы вдруг... разговорились? (Шаманов (насмешливо):) Да так, очень просто. Я сделал ей комплимент, она... Да, вот так, слово за слово... (Вампилов 2). (К.:) How come you two suddenly started., talking9 (Sh. (Mockingly):) Oh, it was very simple I paid her a compliment, and she.... And then, one thing led to another (2b).
    .Слово за слово, (Пидорка) уговорила старуху идти с собою (Гоголь 5)....Little by little, she (Pidorka) persuaded the old hag to go home with her (5a). (626 J
    2. - (рассориться, разругаться и т. п.) | usu. used with pfv verbs) (to quarrel, have an argument with s.o. etc) with increasing intensity
    one word provoked another
    one hard (harsh) word brought another one thing led to another (the argument became more heated (one became more brash etc)) with every word.
    ...Ребров потерял равновесие. Слово за слово — и все, будто только того и ждали, закрутились в эту воронку (Трифонов 1). Не IRebrov) lost his self-control. One word provoked another, and this seemed to be all that was needed for the volcano to erupt (1a).
    «Разозлившись на то, что мать и сестра не хотят, по его наветам, со мною рассориться, он (Лужин), слово за слово, начал говорить им непростительные дерзости» (Достоевский 3). 'Angry that my mother and sister did not want to quarrel with me over his calumny, he (Luzhin) became more unpardonably rude to them with every word" (3c).

    Большой русско-английский фразеологический словарь > С-327

  • 23 весь

    (= целый, см. также все) all, the whole (of), everything, total, overall
    Все, что необходимо - это заметить, что... - All that is necessary is to observe that...
    Здесь все очень просто, и мы можем... — Here the matter is very simple, and we can...

    Русско-английский словарь научного общения > весь

  • 24 включать

    enclose, insert, include, add, incorporate, embed; switch on, connect
    Более точное описание включает (в себя)... - A more precise description includes...
    Высшие типы умственной активности включают в себя... - The highest types of mental activities involve...
    Глоссарий включает 125 наименований. - The glossary covers 125 items.
    Данный анализ можно расширить, чтобы включить... - The analysis may be extended to include...
    Заметьте, что графики не включают... - Note that the graphs do not include...
    Иррациональные числа включают в себя числа е и 7г. - The irrational numbers include e and n.
    Каждая из этих теорий включает в себя предположения относительно... - Each of these theories involves assumptions about...
    Математика включает в себя многие области, такие как... - Mathematics encompasses many fields, such as...
    Нам очень просто включить сюда все случаи, сказав, что... - We include all cases very simply by saying that...
    Мы также включаем сводку (результатов и т. п.)... - We also include a summary of...
    Остальные факторы, которые могли бы ограничить точность, включают в себя... - Other factors that could limit accuracy include...
    Последнюю теорему можно расширить, чтобы включить... - The last theorem can be extended to include...
    Уравнение (2) включает в себя эффект действия торцевых сил. - Eq. (2) incorporates the effect of lateral forces.
    Эти факторы включают в себя следующие... - These factors include the following:
    Этот результат включает результат Смита как частный случай. - This result includes Smith's result [1] as a special case.

    Русско-английский словарь научного общения > включать

  • 25 грешным делом

    ГРЕШНЫМ ДЕЛОМ coll, occas. humor
    [NPmstrum; Invar; sent adv (often parenth); fixed WO]
    =====
    used by the speaker to admit his own or another's mistake, weakness, oversight etc, or to inquire if another (often the interlocutor) has made a mistake, given in to a weakness, overlooked sth. etc:
    - [in refer, to the interlocutor or a third party only] you (he etc) didn't go and (do sth.), did you (he etc)?
         ♦ "Они [два студента] как-то очень просто и хорошо обратились к старику. Он даже прослезился. Грешным делом, и я тоже" (Некрасов 1). "What they [two students] said to the old man was very simple, direct, sincere. He even shed a few tears. I'm afraid I did, too" (1a).
         ♦ Когда я поступал в ресторан, у меня грешным делом мелькала мысль, что я... смогу завести какие-то знакомства (Лимонов 1). When I started at the restaurant, I am ashamed to say, I had the fleeting thought that I...could make some contacts (1a).

    Большой русско-английский фразеологический словарь > грешным делом

  • 26 слово за слово

    [Invar; adv or indep. clause]
    =====
    1. слово за слово (разговориться, познакомиться, расспросить и т. п.) (to get to talking) in a gradual, natural manner, with each participant's remarks eliciting a response from the other; (to get to know s.o., question s.o. etc) in a gradual, natural manner in the course of a conversation:
    - [in past contexts] one word (thing) led to another;
    - as the conversation progressed (one got to know s.o. <asked s.o. sth. etc >);
    - little by little (one got to talking with s.o. <convinced s.o. of sth. etc>).
         ♦ Да, так встретились [дед и запорожец]. Слово за слово, долго ли до знакомства? Пошли калякать, калякать так, что дед совсем уже было позабыл про путь свой (Гоголь 5). So they [Grandad and a Dnieper Cossack] met. One word leads to another, it doesn't take long to make friends. They fell to chatting and chatting, so that Grandad quite forgot about his journey (5a).
         ♦ [Кашкина:] Как это вы вдруг... разговорились? [Шаманов (насмешливо):) Да так, очень просто. Я сделал ей комплимент, она... Да, вот так, слово за слово... (Вампилов 2). [К.:] How come you two suddenly started., talking? [Sh. (Mockingly):] Oh, it was very simple I paid her a compliment, and she.... And then, one thing led to another (2b).
         ♦...Слово за слово, [Пидорка] уговорила старуху идти с собою (Гоголь 5)....Little by little, she [Pidorka] persuaded the old hag to go home with her (5a).
    2. слово за слово (рассориться, разругаться и т. п.) [usu. used with pfv verbs]
    (to quarrel, have an argument with s.o. etc) with increasing intensity:
    - (the argument became more heated <one became more brash etc>) with every word.
         ♦...Ребров потерял равновесие. Слово за слово - и все, будто только того и ждали, закрутились в эту воронку (Трифонов 1). Не [Rebrov] lost his self-control. One word provoked another, and this seemed to be all that was needed for the volcano to erupt (1a).
         ♦ "Разозлившись на то, что мать и сестра не хотят, по его наветам, со мною рассориться, он [Лужин], слово за слово, начал говорить им непростительные дерзости" (Достоевский 3). "Angry that my mother and sister did not want to quarrel with me over his calumny, he [Luzhin] became more unpardonably rude to them with every word" (3c).

    Большой русско-английский фразеологический словарь > слово за слово

  • 27 это семечки!

    разг ( очень просто) it's a cinch!, a piece of cake!, kid's stuff!

    Американизмы. Русско-английский словарь. > это семечки!

  • 28 доказывай, что ты не верблюд

    доказывай < потом>, что ты не верблюд
    прост., шутл.
    cf. < then> try and prove that dogs don't climb trees; puzzle try and prove you're not four-legged

    - А тут есть возможность пристроиться к ценным трудам Матвея Семёновича. - Очень просто. Пристроится и станет соавтором. Доказывай потом, что ты не верблюд, - ядовито куснул Петушков. (Д. Гранин, Искатели) — 'And here's a chance of associating himself with Matvei Semyonovich's valuable work.' 'Very simple. He'll make himself a co-author. Then it will be up to you to prove that dogs don't climb trees,' Petushkov added venomously.

    - Вот ты слез с поезда, - сказал парень, - и опять на поезд. А мне тут жить... Прищучат - а там доказывай, что ты не верблюд. (Л. Жуховицкий, Остановиться, оглянуться...) — 'Look here, you get off one train and into another,' my companion pointed out. 'But I've got to live here... Once they corner you, puzzle try and prove you're not four-legged...'

    Русско-английский фразеологический словарь > доказывай, что ты не верблюд

  • 29 по старой памяти

    разг.
    for old times' sake; in memory of old days; from force of habit

    Когда-то я даже служил в Пушкинском доме - по старой памяти пользуюсь там полной свободой и по-прежнему имею доступ в рабочие комнаты. (И. Андронников, Портрет) — There was a time when I even worked in Pushkin House - for old times' sake they give me a free run of the place and access to the rooms where the work is done.

    - Как же мне ничего не сказали?.. - А очень просто: я запретил им говорить. Они меня слушаются, по старой памяти. (В. Панова, Кружилиха) — 'Why didn't someone tell me?' 'That's simple. I told them not to. They still obey me, in memory of old days.'

    Русско-английский фразеологический словарь > по старой памяти

  • 30 динамический HTML

    1. Dynamic HTML
    2. DHTML

     

    динамический HTML
    Усовершенствованная версия языка HTML.
    Язык, являющийся расширением HTML и CSS. Основную идею динамического HTML можно сформулировать очень просто: полный контроль языка сценариев над всеми без исключения элементами документа, параметрами их оформления и размещения (как подразумеваемыми в HTML, так и задаваемыми с помощью CSS) и даже над самим текстом страницы. Благодаря этому любой элемент HTML-документа сможет двигаться в произвольном направлении, как угодно изменять свое форматирование и буквально переписываться - как в ответ на действия пользователя, так и по собственной инициативе [http://www.webxpert.ru/slovar.html].
    [ http://www.morepc.ru/dict/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > динамический HTML

  • 31 положение выдвижного ящика

    1. drawer's position.
    2. drawer position

     

    положение выдвижного ящика
    положение выдвижной части
    -

    [Интент]

    Параллельные тексты EN-RU

    Drawer positions
    Drawers operation is very simple. Using the indexing pushbutton, the operator can simply move the drawer in the draw-in, test, draw-out positions.
    Each position are mechanically marked with a mechanical indicator on the drawer sides.

    [Schneider Electric]

    Положения выдвижного ящика
    Изменять положение ящика очень просто.
    Нажав стопорную кнопку, оператор может легко переместить ящик в присоединённое, испытательное или отсоединённое положение. Каждое положение обозначено на боковых сторонах выдвижного ящика и однозначно определяется механическим указателем.

    [Перевод Интент]


    Тематики

    • НКУ (шкафы, пульты,...)

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > положение выдвижного ящика

  • 32 проникание

    1. permeation
    2. penetration

     

    проникание
    Мера того, в какой степени продукция или реклама охватила индивидуумов в данной географической зоне или на данном рынке. Возьмем coca-cola – вот уж глубина так глубина… проникания. Что им нужно? Очень просто, даже элегантно – чтобы как можно больше людей в как можно большем количестве городов и весей на нашей планете пили этот напиток. Заметьте, – когда-то его можно было купить исключительно в аптеках. Правда, это было сто лет назад. Теперь же корпорация всю свою рекламную политику строит таким образом, чтобы достичь и удержать. И никаких больше особенных изысков.
    [ http://www.lexikon.ru/rekl/a_eng.html]

    Тематики

    EN

    2.4 проникание (penetration): Процесс, при котором химическое вещество пропускается через дыры, появившиеся в результате механических повреждений, или конструктивные отверстия в материале.

    Источник: ГОСТ Р ЕН 464-2007: Система стандартов безопасности труда. Одежда специальная для защиты от жидких и газообразных химических веществ, в том числе жидких и твердых аэрозолей. Метод определения герметичности газонепроницаемых костюмов

    3.2 проникание (permeation): Процесс, в котором химическое вещество проходит через материал защитной одежды на молекулярном уровне.

    Примечание - Проникание включает в себя:

    a) сорбцию молекул химического вещества внешней (лицевой) поверхностью материала при приведении их в соприкосновение;

    b) диффузию сорбированных молекул в материале;

    c) десорбцию молекул от противоположной внутренней (изнаночной) стороны материала в окружающую ее среду.

    Источник: ГОСТ Р 12.4.261-2011: Система стандартов безопасности труда. Одежда специальная для защиты от воздействия токсичных химических веществ. Метод определения стойкости к прониканию жидких химикатов, эмульсий и дисперсий с применением пульверизатора оригинал документа

    3.17 проникание (permeation): Процесс, в котором химическое вещество проходит через материал защитной одежды за счет диффузии на молекулярном уровне.

    Примечание - Проникание включает в себя следующие процессы:

    а) сорбция молекул химического вещества внешней (лицевой) поверхностью материала при приведении их в соприкосновение;

    б) диффузия сорбированных молекул в материале;

    в) десорбция молекул от противоположной внутренней (изнаночной) стороны материала в окружающую ее среду.

    Источник: ГОСТ Р 12.4.262-2011: Система стандартов безопасности труда. Одежда специальная для защиты от воздействия токсичных химических веществ. Метод определения проницаемости жидкостями и газами оригинал документа

    3.5 проникание (permeation): Проникновение химического вещества через материал защитных перчаток на молекулярном уровне: межмолекулярное взаимодействие химического вещества с поверхностью материала; набухание материала, диффузия молекул через защитный материал; десорбция молекул с внутренней поверхности материала.

    Источник: ГОСТ Р ЕН 374-2009: Система стандартов безопасности труда. Средства индивидуальной защиты рук. Перчатки, защищающие от химикатов и микроорганизмов. Общие технические требования. Методы испытаний

    Русско-английский словарь нормативно-технической терминологии > проникание

  • 33 колокейшн

    1. colocation
    2. collocation
    3. co-location

     

    колокейшн
    размещение сервера
    Услуга по размещению вашего серверного оборудования на телекоммуникационном узле, имеющем высокоскростное подключение к сети Интернет, обеспечению технических условий функционирования оборудования, таких как стабильное электропитание, оптимальная температура и влажность, круглосуточный мониторинг состояния.
    [ http://your-hosting.ru/terms/c/colloc/]

    размещение физических серверов
    со-размещение

    Размещение оборудования Заказчика на площадях Провайдера, а также предоставление последним сервисных услуг по инсталляции, настройке, управлению и обеспечению безопасности установленного оборудования на базе фиксированной арендной платы.
    [ http://www.outsourcing.ru/content/glossary/A/page-1.asp]

    совместное размещение
    Размещение оборудования электросвязи принадлежащего разным компаниям-операторам в одном помещении или здании (МСЭ-Т K.58).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Что такое "колокейшн"? И чем отличаются друг от друга colocation, co-location и collocation?

    Вообще, все эти слова означают одно — размещение сервера клиента на технической площадке провайдера. Техническая площадка — это специализированное помещение с гарантированным электропитанием, поддержанием достаточно низкого уровня температуры, с охраной, системой пожаротушения и так далее. По сути, это узел связи. Разница в написании слова «colocation» возникла очень давно, причем по вполне естественным причинам. В оригинале, по-английски, верны все три написания этого слова. Поэтому все пишут его так, как привыкли. Вот и все.

    Чем же отличается колокейшн от хостинга?


    Colocation — это размещение своего оборудования (сервера) на технической площадке провайдера. Это действительно похоже на хостинг, когда вы размещаете свой веб-ресурс у провайдера. Однако виртуальный хостинг — это когда на провайдерской машине находятся сотни сайтов его клиентов, а colocation — когда клиент устанавливает своей сервер у провайдера и использует все его ресурсы только для размещения своего собственного сайта.

    Как правило, для colocation применяются специализированные серверы, которые собираются в промышленных корпусах шириной 19 дюймов, предназначенных для монтажа в специальную стойку. Еще одна характеристика габаритов корпуса — высота. Она измеряется в юнитах (unit). Это порядка 45 миллиметров. Сервера бывают размером в 1 юнит (1U), 2 юнита (2U), 4 юнита (4U) и так далее. Как правило, сейчас клиенты размещают серверы в 1U-корпусах, так как с пользователей взимается плата за размер сервера пропорционально количеству юнитов. Например, 1U стоит одно количество денег, а 2U — в два раза большее. На деле, в 1U корпусе можно собрать как очень мощный двухпроцессорный сервер с двумя-тремя дисками, так и "слабенький" недорогой сервер, которого, тем не менее, хватит для размещения большинства проектов.

    Серверы для colocation отличаются от обычных компьютеров, кроме необычного корпуса, материнской платой. Существуют специальные серверные материнские платы, которые содержат прямо на себе весь необходимый набор комплектующих — сетевые карты, видеокарты, контроллеры жестких дисков SCSI/ATA/SATA и так далее. Кроме того, к производству таких материнских плат предъявляются повышенные требования по качеству.

    Вообще, сервер можно как собрать "руками" самостоятельно, так и купить готовый. Однако нужно помнить о том, что сервер отличается от обычного компьютера тем, что он постоянно работает, причем с серьезной нагрузкой. Работает без перерывов годами. Соответственно, нужно думать о необходимом количестве специальных вентиляторов, продумать прохождение воздушных потоков внутри сервера и так далее. Все эти моменты уже учтены в готовых серверах. Это очень важно.

    Как правило, для colocation применяются специализированные серверы, которые собираются в специальных промышленных корпусах шириной 19 дюймов, и предназначены такие корпуса для монтажа в специальную стойку

    В какой ситуации для клиента имеет смысл переходить на колокейшн?


    Основных причин для перехода с виртуального хостинга на colocation две:

    1. Ваш веб-проект настолько вырос, что потребляет столько ресурсов, сколько ему не могут предоставить на хостинговой машине провайдера. Мы помним, что на каждой хостинговой машине, кроме вас, "живет" еще несколько сотен серверов. Если проект большой, посещаемый, требует много вычислительных ресурсов, рано или поздно он начинает "тормозить" на "общем" хостинге. Да, возможно, что хостинг-провайдер просто поместил на физический сервер слишком много виртуальных веб-серверов, но зачастую это все же не так. Как только сервер начинает "тормозить" на хостинге, нужно заняться оптимизацией скриптов и запросов к базе данных. Если это не помогает, то нужно задумываться о colocation, изучать эту возможность, не пора ли действительно брать отдельный сервер.

    2. Проекту нужно много дискового пространства. Сейчас на хостинге предлагают 500 мегабайт места или даже 1 Гб. Есть провайдеры, которые предлагают и больше. Однако разместить хотя бы 5 Гб на виртуальном хостинге уже просто нереально. Кстати, как правило, проекты, которым нужно много места, сталкиваются и с проблемами производительности, ведь эти данные не просто лежат на диске — с ними работают посетители. Много данных, надо полагать, предполагает наличие большого количества посещений. Ведь эти данные размещаются, чтобы люди их смотрели, а не просто так. На colocation же в вашем распоряжении окажется весь жесткий диск сервера или даже несколько дисков — сколько пожелаете и купите. Диски емкостью 100-150 Гб, выполненные по технологии SATA, стоят чуть более ста долларов. Более быстрые SCSI-диски подороже. Все это делает colocation очевидной возможностью для развития проектов, которые требуют много места. В конце концов, аренда многих гигабайт места на сервере у хостинг-провайдера по затратам делает услугу виртуального хостинга очень похожей на colocation или хотя бы сравнимой.

    Насколько колокейшн дороже обычного хостинга?


    Как правило, за пользование виртуальным хостингом взимается некая фиксированная плата, которая составляет несколько долларов в месяц. Кроме того, пользователь может приобрести дополнительные услуги. Например, больше дискового пространства, больше почтовых ящиков и так далее. Структура платежей в пользу хостинг-провайдера проста и понятна.

    В случае с colocation все несколько сложнее. Пользователи colocation, во-первых, должны приобрести сервер. Как уже говорилось, цены на серверы начинаются от $800-1000. То есть цена "входного билета" значительно выше, чем в случае с виртуальным хостингом. Однако есть варианты — можно не покупать сервер, а недорого взять его в аренду у провайдера — об этом ниже.

    Также пользователи colocation платят за размещение сервера. Как правило, цена этой услуги должна составлять порядка $50 — такова рыночная цена на сегодняшний день, середину лета 2004 года. Стоимость размещения сервера плавно снижалась с годами. Так, пять лет назад размещение colocation сервера стоило не менее $200-300 в месяц. Тогда такая цена обуславливалась крайне скудным предложением и эксклюзивностью услуг, так как клиентов были единицы. Сейчас цены находятся на уровне себестоимости, и снижение цены до $20, скажем, маловероятно. Впрочем, возможны варианты, и время все расставит по местам.

    Пользователь colocation платит за трафик, который генерируется его сервером
    Также пользователь colocation платит за трафик, который генерируется его сервером. В данный момент ситуация на рынке такова, что многие провайдеры предлагают неограниченный трафик за фиксированную сумму, которая, как правило, включена в стоимость размещения оборудования, о которой писалось выше. Однако есть один момент — провайдерам выгодно, чтобы трафик, генерируемый клиентом, был российским. То есть предназначался для пользователей, которые находятся в России. Провайдеры просят, чтобы трафик, создаваемый сервером, был как минимум наполовину российским. Таково предложение компании.masterhost, например. На практике практически все пользователи легко укладываются в такое ограничение, и проблем тут нет.

    Если сравнивать стоимость размещения сайта на виртуальном хостинге и на colocation в цифрах, то хостинг для серьезного сайта в виртуальной среде стоит от $20 в месяц, а размещение собственного сервера — от $50 в месяц. Вполне сравнимые цифры, тем более что во втором случае ваш веб-сервер получает в десятки раз больше ресурсов. То есть colocation — это естественный путь развития для серьезных проектов.

    Какие особые возможности колокейшн предоставляет по сравнению с хостингом?

    Две главные возможности colocation — это несравнимо большее количество ресурсов (диска, памяти, процессорного времени) и гибкость настройки и конфигурации. На виртуальном хостинге ваш сайт находится на одной машине с еще несколькими сотнями похожих сайтов. Конечно, ресурсов вы получаете немного, но вполне достаточно для работы даже довольно серьезного ресурса. Однако, как только на сервер возникает повышенная нагрузка — например в часы пик или при резком увеличении количества посетителей по какой-то причине, — у пользователя возникают риски. Например, риск нехватки каких-то ресурсов. Риски, в общем, небольшие, но если ваш сайт — это, например, интернет-магазин, то каждая ошибка на сайте — это несделанный посетителем заказ. Стоит подумать, нужно ли рисковать в том случае, если за сравнимые деньги можно получить в пользование целый отдельный сервер.

    Гибкость. Очень часто программистам, которые работают над сайтом, нужно поставить какие-нибудь дополнительные модули или использовать нестандартное программное обеспечение. Не всегда есть возможность установить на сервер нужное ПО и настроить его так, как нужно. В случае же с colocation этой проблемы не существует в принципе, так как администратор сервера может устанавливать что угодно и настраивать ПО любым образом.

    Можно сказать, что виртуальный хостинг — это "детство" серьезных проектов, а colocation — их "зрелость". Переход на colocation — это естественный путь развития любого большого проекта, и таким веб-ресурсам однозначно нечего делать на виртуальном хостинге.

    Бывает ли колокейшн на собственных компьютерах клиентов, и есть ли в этом смысл? Как в этом случае эти компьютеры обслуживаются?

    Как правило, colocation — это именно установка собственного компьютера-сервера пользователя на площадку хостинг-провайдера. В этом случае клиент сам занимается администрированием сервера, его настройкой, а также принимает на себя риски, связанные с поломкой комплектующих. Это классический вариант. Однако в последнее время активно развивается направление аренды сервера у провайдера. Клиенту не нужно платить тысячу-полторы-две долларов за сервер. Можно его за небольшую плату арендовать у провайдера. Это интересный вариант для только запускающихся проектов, когда денег на покупку сервера еще нет. Впоследствии, как правило, можно выкупить сервер у провайдера или приобрести свой сервер независимо. Да, при аренде риски, связанные с поломкой сервера, берет на себя провайдер. То есть если провайдер сдает вам в аренду сервер, он отвечает за его работоспособность и за оперативную замену вышедших из строя комплектующих, если, не дай Бог, такое случится. Это интересный вариант, так как ехать в три ночи на другой конец города, чтобы поменять "полетевшую" память — не очень интересное занятие. А если пользователь живет в другом городе...

    Насколько часто сейчас используется колокейшн?

    Услуга многие годы развивалась. Пять лет назад клиентов colocation у провайдеров были единицы. Года три назад — десятки. Сейчас у серьезных провайдеров, занимающихся размещением серверов как отдельным бизнесом, уже сотни клиентов. Colocation используют интернет-магазины, сетевые СМИ, игровые порталы, баннерные сети, различные контент-проекты. Также многие компании выносят на colocation из своих офисов почтовые сервера и другие службы. Есть много вариантов использования colocation, и их становится все больше. Наблюдается четкая тенденция к "переезду" на colocation "выросших" из виртуального хостинга проектов, так как провайдеры предлагают не просто взять и поставить машину, а предоставляют полный комплекс услуг с администрированием клиентского сервера.

    Какие сложности возникают перед клиентом при использовании колокейшн?

    Главная проблема — необходимость наличия системного администратора, который установит и настроит операционную и хостинговую среду, а также будет потом заниматься поддержкой и администрированием системы. С одной стороны — да, это проблема. Но с другой — найти администратора несложно, и стоит это недорого. Нет необходимости, например, брать на работу "выделенного" человека. Вполне можно пользоваться и разовыми услугами по необходимости.

    Однако хостинг-провайдеры предлагают и свои собственные услуги по администрированию. Те же специалисты, которые занимаются администрированием хостинговых серверов провайдера, вполне могут заниматься и сервером клиента. Стоить это будет значительно дешевле, чем привлечение клиентом стороннего специалиста.

    Также есть проблема с "железом", которое потенциально может ломаться. Нужно брать сервер с серьезной гарантией или не покупать его, а брать в аренду у провайдера.

    Какие существуют виды оплаты при колокейшн?


    .masterhost предлагает клиентам colocation платить им за генерируемый исходящий трафик
    Те же самые, как и в случае с оплатой хостинга. По сути, система приема платежей одна и та же — как для клиентов хостинга, так и для colocation. Кстати, тут есть одна интересная возможность. Наша компания, например, предлагает клиентам colocation платить им за генерируемый исходящий трафик. То есть если у проекта много исходящего трафика, мы вполне готовы даже заплатить за него клиенту. Возможно, что и не очень много, однако это вполне позволяет снизить плату за colocation или же вообще избавиться от нее. Проекты с довольно большим трафиком могут даже заработать.

    В заключение хочу добавить несколько слов о неочевидных выгодах использования именно colocation, а не виртуального хостинга. Переходя на использование выделенного сервера для хостинга своих ресурсов, владелец сайта автоматически увеличивает посещаемость своего ресурса — просто потому что его сервер может просто физически принять и обслужить больше посетителей. Больше посетителей — это возможность показать больше рекламы, к примеру.

    Используя colocation, можно значительно наращивать ресурсы сервера. Например, если понадобилось дополнительное дисковое пространство, покупаете за $100 диск на 120 Гб, и проблема решена. Стало больше посетителей, и сервер не справляется с работой скриптов — меняем процессор на более мощный, и проблем тоже нет.

    [ http://hostinfo.ru/articles/358]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > колокейшн

  • 34 трехфазный источник бесперебойного питания (ИБП)

    1. three-phase UPS

     

    трехфазный ИБП
    -
    [Интент]


    Глава 7. Трехфазные ИБП

    ... ИБП большой мощности (начиная примерно с 10 кВА) как правило предназначены для подключения к трехфазной электрической сети. Диапазон мощностей 8-25 кВА – переходный. Для такой мощности делают чисто однофазные ИБП, чисто трехфазные ИБП и ИБП с трехфазным входом и однофазным выходом. Все ИБП, начиная примерно с 30 кВА имеют трехфазный вход и трехфазный выход. Трехфазные ИБП имеют и другое преимущество перед однофазными ИБП. Они эффективно разгружают нейтральный провод от гармоник тока и способствуют более безопасной и надежной работе больших компьютерных систем. Эти вопросы рассмотрены в разделе "Особенности трехфазных источников бесперебойного питания" главы 8. Трехфазные ИБП строятся обычно по схеме с двойным преобразованием энергии. Поэтому в этой главе мы будем рассматривать только эту схему, несмотря на то, что имеются трехфазные ИБП, построенные по схеме, похожей на ИБП, взаимодействующий с сетью.

    Схема трехфазного ИБП с двойным преобразованием энергии приведена на рисунке 18.

    4929
    Рис.18. Трехфазный ИБП с двойным преобразованием энергии

    Как видно, этот ИБП не имеет почти никаких отличий на уровне блок-схемы, за исключением наличия трех фаз. Для того, чтобы увидеть отличия от однофазного ИБП с двойным преобразованием, нам придется (почти впервые в этой книге) несколько подробнее рассмотреть элементы ИБП. Мы будем проводить это рассмотрение, ориентируясь на традиционную технологию. В некоторых случаях будут отмечаться схемные особенности, позволяющие улучшить характеристики.

    Выпрямитель

    Слева на рис 18. – входная электрическая сеть. Она включает пять проводов: три фазных, нейтраль и землю. Между сетью и ИБП – предохранители (плавкие или автоматические). Они позволяют защитить сеть от аварии ИБП. Выпрямитель в этой схеме – регулируемый тиристорный. Управляющая им схема изменяет время (долю периода синусоиды), в течение которого тиристоры открыты, т.е. выпрямляют сетевое напряжение. Чем большая мощность нужна для работы ИБП, тем дольше открыты тиристоры. Если батарея ИБП заряжена, на выходе выпрямителя поддерживается стабилизированное напряжение постоянного тока, независимо от нвеличины напряжения в сети и мощности нагрузки. Если батарея требует зарядки, то выпрямитель регулирует напряжение так, чтобы в батарею тек ток заданной величины.

    Такой выпрямитель называется шести-импульсным, потому, что за полный цикл трехфазной электрической сети он выпрямляет 6 полупериодов сингусоиды (по два в каждой из фаз). Поэтому в цепи постоянного тока возникает 6 импульсов тока (и напряжения) за каждый цикл трехфазной сети. Кроме того, во входной электрической сети также возникают 6 импульсов тока, которые могут вызвать гармонические искажения сетевого напряжения. Конденсатор в цепи постоянного тока служит для уменьшения пульсаций напряжения на аккумуляторах. Это нужно для полной зарядки батареи без протекания через аккумуляторы вредных импульсных токов. Иногда к конденсатору добавляется еще и дроссель, образующий совместно с конденсатором L-C фильтр.

    Коммутационный дроссель ДР уменьшает импульсные токи, возникающие при открытии тиристоров и служит для уменьшения искажений, вносимых выпрямителем в электрическую сеть. Для еще большего снижения искажений, вносимых в сеть, особенно для ИБП большой мощности (более 80-150 кВА) часто применяют 12-импульсные выпрямители. Т.е. за каждый цикл трехфазной сети на входе и выходе выпрямителя возникают 12 импульсов тока. За счет удвоения числа импульсов тока, удается примерно вдвое уменьшить их амплитуду. Это полезно и для аккумуляторов и для электрической сети.

    Двенадцати-импульсный выпрямитель фактически состоит из двух 6-импульсных выпрямителей. На вход второго выпрямителя (он изображен ниже на рис. 18) подается трехфазное напряжение, прошедшее через трансформатор, сдвигающий фазу на 30 градусов.

    В настоящее время применяются также и другие схемы выпрямителей трехфазных ИБП. Например схема с пассивным (диодным) выпрямителем и преобразователем напряжения постоянного тока, применение которого позволяет приблизить потребляемый ток к синусоидальному.

    Наиболее современным считается транзисторный выпрямитель, регулируемый высокочастотной схемой широтно-импульсной модуляции (ШИМ). Применение такого выпрямителя позволяет сделать ток потребления ИБП синусоидальным и совершенно отказаться от 12-импульсных выпрямителей с трансформатором.

    Батарея

    Для формирования батареи трехфазных ИБП (как и в однофазных ИБП) применяются герметичные свинцовые аккумуляторы. Обычно это самые распространенные модели аккумуляторов с расчетным сроком службы 5 лет. Иногда используются и более дорогие аккумуляторы с большими сроками службы. В некоторых трехфазных ИБП пользователю предлагается фиксированный набор батарей или батарейных шкафов, рассчитанных на различное время работы на автономном режиме. Покупая ИБП других фирм, пользователь может более или менее свободно выбирать батарею своего ИБП (включая ее емкость, тип и количество элементов). В некоторых случаях батарея устанавливается в корпус ИБП, но в большинстве случаев, особенно при большой мощности ИБП, она устанавливается в отдельном корпусе, а иногда и в отдельном помещении.

    Инвертор

    Как и в ИБП малой мощности, в трехфазных ИБП применяются транзисторные инверторы, управляемые схемой широтно-импульсной модуляции (ШИМ). Некоторые ИБП с трехфазным выходом имеют два инвертора. Их выходы подключены к трансформаторам, сдвигающим фазу выходных напряжений. Даже в случае применения относительно низкочастоной ШИМ, такая схема совместно с применением фильтра переменного тока, построенного на трансформаторе и конденсаторах, позволяет обеспечить очень малый коэффициент гармонических искажений на выходе ИБП (до 3% на линейной нагрузке). Применение двух инверторов увеличивает надежность ИБП, поскольку даже при выходе из строя силовых транзисторов одного из инверторов, другой инвертор обеспечит работу нагрузки, пусть даже при большем коэффициенте гармонических искажений.

    В последнее время, по мере развития технологии силовых полупроводников, начали применяться более высокочастотные транзисторы. Частота ШИМ может составлять 4 и более кГц. Это позволяет уменьшить гармонические искажения выходного напряжения и отказаться от применения второго инвертора. В хороших ИБП существуют несколько уровней защиты инвертора от перегрузки. При небольших перегрузках инвертор может уменьшать выходное напряжение (пытаясь снизить ток, проходящий через силовые полупроводники). Если перегрузка очень велика (например нагрузка составляет более 125% номинальной), ИБП начинает отсчет времени работы в условиях перегрузки и через некоторое время (зависящее от степени перегрузки – от долей секунды до минут) переключается на работу через статический байпас. В случае большой перегрузки или короткого замыкания, переключение на статический байпас происходит сразу.

    Некоторые современные высококлассные ИБП (с высокочакстотной ШИМ) имеют две цепи регулирования выходного напряжения. Первая из них осуществляет регулирование среднеквадратичного (действующего) значения напряжения, независимо для каждой из фаз. Вторая цепь измеряет мгновенные значения выходного напряжения и сравнивает их с хранящейся в памяти блока управления ИБП идеальной синусоидой. Если мгновенное значение напряжения отклонилось от соотвествующего "идеального" значения, то вырабатывается корректирующий импульс и форма синусоиды выходного напряжения исправляется. Наличие второй цепи обратной связи позволяет обеспечить малые искажения формы выходного напряжения даже при нелинейных нагрузках.

    Статический байпас

    Блок статического байпаса состоит из двух трехфазных (при трехфазном выходе) тиристорных переключателей: статического выключателя инвертора (на схеме – СВИ) и статического выключателя байпаса (СВБ). При нормальной работе ИБП (от сети или от батареи) статический выключатель инвертора замкнут, а статический выключатель байпаса разомкнут. Во время значительных перегрузок или выхода из строя инвертора замкнут статический переключатель байпаса, переключатель инвертора разомкнут. В момент переключения оба статических переключателя на очень короткое время замкнуты. Это позволяет обеспечить безразрывное питание нагрузки.

    Каждая модель ИБП имеет свою логику управления и, соответственно, свой набор условий срабатывания статических переключателей. При покупке ИБП бывает полезно узнать эту логику и понять, насколько она соответствует вашей технологии работы. В частности хорошие ИБП сконструированы так, чтобы даже если байпас недоступен (т.е. отсутствует синхронизация инвертора и байпаса – см. главу 6) в любом случае постараться обеспечить электроснабжение нагрузки, пусть даже за счет уменьшения напряжения на выходе инвертора.

    Статический байпас ИБП с трехфазным входом и однофазным выходом имеет особенность. Нагрузка, распределенная на входе ИБП по трем фазным проводам, на выходе имеет только два провода: один фазный и нейтральный. Статический байпас тоже конечно однофазный, и синхронизация напряжения инвертора производится относительно одной из фаз трехфазной сети (любой, по выбору пользователя). Вся цепь, подводящая напряжение к входу статического байпаса должна выдерживать втрое больший ток, чем входной кабель выпрямителя ИБП. В ряде случаев это может вызвать трудности с проводкой.

    Сервисный байпас

    Трехфазные ИБП имеют большую мощность и обычно устанавливаются в местах действительно критичных к электропитанию. Поэтому в случае выхода из строя какого-либо элемента ИБП или необходимости проведения регламентных работ (например замены батареи), в большинстве случае нельзя просто выключить ИБП или поставить на его место другой. Нужно в любой ситуации обеспечить электропитание нагрузки. Для этих ситуаций у всех трехфазных ИБП имеется сервисный байпас. Он представляет собой ручной переключатель (иногда как-то заблокированный, чтобы его нельзя было включить по ошибке), позволяющий переключить нагрузку на питание непосредственно от сети. У большинства ИБП для переключения на сервисный байпас существует специальная процедура (определенная последовательность действий), которая позволяет обеспечит непрерывность питания при переключениях.

    Режимы работы трехфазного ИБП с двойным преобразованием

    Трехфазный ИБП может работать на четырех режимах работы.

    • При нормальной работе нагрузка питается по цепи выпрямитель-инвертор стабилизированным напряжением, отфильтрованным от импульсов и шумов за счет двойного преобразования энергии.
    • Работа от батареи. На это режим ИБП переходит в случае, если напряжение на выходе ИБП становится таким маленьким, что выпрямитель оказывается не в состоянии питать инвертор требуемым током, или выпрямитель не может питать инвертор по другой причине, например из-за поломки. Продолжительность работы ИБП от батареи зависит от емкости и заряда батареи, а также от нагрузки ИБП.
    • Когда какой-нибудь инвертор выходит из строя или испытывает перегрузку, ИБП безразрывно переходит на режим работы через статический байпас. Нагрузка питается просто от сети через вход статического байпаса, который может совпадать или не совпадать со входом выпрямителя ИБП.
    • Если требуется обслуживание ИБП, например для замены батареи, то ИБП переключают на сервисный байпас. Нагрузка питается от сети, а все цепи ИБП, кроме входного выключателя сервисного байпаса и выходных выключателей отделены от сети и от нагрузки. Режим работы на сервисном байпасе не является обязательным для небольших однофазных ИБП с двойным преобразованием. Трехфазный ИБП без сервисного байпаса немыслим.

    Надежность

    Трехфазные ИБП обычно предназначаются для непрерывной круглосуточной работы. Работа нагрузки должна обеспечиваться практически при любых сбоях питания. Поэтому к надежности трехфазных ИБП предъявляются очень высокие требования. Вот некоторые приемы, с помощью которых производители трехфазных ИБП могут увеличивать надежность своей продукции. Применение разделительных трансформаторов на входе и/или выходе ИБП увеличивает устойчивость ИБП к скачкам напряжения и нагрузки. Входной дроссель не только обеспечивает "мягкий запуск", но и защищает ИБП (и, в конечном счете, нагрузку) от очень быстрых изменений (скачков) напряжения.

    Обычно фирма выпускает целый ряд ИБП разной мощности. В двух или трех "соседних по мощности" ИБП этого ряда часто используются одни и те же полупроводники. Если это так, то менее мощный из этих двух или трех ИБП имеет запас по предельному току, и поэтому несколько более надежен. Некоторые трехфазные ИБП имеют повышенную надежность за счет резервирования каких-либо своих цепей. Так, например, могут резервироваться: схема управления (микропроцессор + платы "жесткой логики"), цепи управления силовыми полупроводниками и сами силовые полупроводники. Батарея, как часть ИБП тоже вносит свой вклад в надежность прибора. Если у ИБП имеется возможность гибкого выбора батареи, то можно выбрать более надежный вариант (батарея более известного производителя, с меньшим числом соединений).

    Преобразователи частоты

    Частота напряжения переменного тока в электрических сетях разных стран не обязательно одинакова. В большинстве стран (в том числе и в России) распространена частота 50 Гц. В некоторых странах (например в США) частота переменного напряжения равна 60 Гц. Если вы купили оборудование, рассчитанное на работу в американской электрической сети (110 В, 60 Гц), то вы должны каким-то образом приспособить к нему нашу электрическую сеть. Преобразование напряжения не является проблемой, для этого есть трансформаторы. Если оборудование оснащено импульсным блоком питания, то оно не чувствительно к частоте и его можно использовать в сети с частотой 50 Гц. Если же в состав оборудования входят синхронные электродвигатели или иное чувствительное к частоте оборудование, вам нужен преобразователь частоты. ИБП с двойным преобразованием энергии представляет собой почти готовый преобразователь частоты.

    В самом деле, ведь выпрямитель этого ИБП может в принципе работать на одной частоте, а инвертор выдавать на своем выходе другую. Есть только одно принципиальное ограничение: невозможность синхронизации инвертора с линией статического байпаса из-за разных частот на входе и выходе. Это делает преобразователь частоты несколько менее надежным, чем сам по себе ИБП с двойным преобразованием. Другая особенность: преобразователь частоты должен иметь мощность, соответствующую максимальному возможному току нагрузки, включая все стартовые и аварийные забросы, ведь у преобразователя частоты нет статического байпаса, на который система могла бы переключиться при перегрузке.

    Для изготовления преобразователя частоты из трехфазного ИБП нужно разорвать цепь синхронизации, убрать статический байпас (или, вернее, не заказывать его при поставке) и настроить инвертор ИБП на работу на частоте 60 Гц. Для большинства трехфазных ИБП это не представляет проблемы, и преобразователь частоты может быть заказан просто при поставке.

    ИБП с горячим резервированием

    В некоторых случаях надежности даже самых лучших ИБП недостаточно. Так бывает, когда сбои питания просто недопустимы из-за необратимых последствий или очень больших потерь. Обычно в таких случаях в технике применяют дублирование или многократное резервирование блоков, от которых зависит надежность системы. Есть такая возможность и для трехфазных источников бесперебойного питания. Даже если в конструкцию ИБП стандартно не заложено резервирование узлов, большинство трехфазных ИБП допускают резервирование на более высоком уровне. Резервируется целиком ИБП. Простейшим случаем резервирования ИБП является использование двух обычных серийных ИБП в схеме, в которой один ИБП подключен к входу байпаса другого ИБП.

    4930

    Рис. 19а. Последовательное соединение двух трехфазных ИБП

    На рисунке 19а приведена схема двух последовательно соединенным трехфазных ИБП. Для упрощения на рисунке приведена, так называемая, однолинейная схема, на которой трем проводам трехфазной системы переменного тока соответствует одна линия. Однолинейные схемы часто применяются в случаях, когда особенности трехфазной сети не накладывают отпечаток на свойства рассматриваемого прибора. Оба ИБП постоянно работают. Основной ИБП питает нагрузку, а вспомогательный ИБП работает на холостом ходу. В случае выхода из строя основного ИБП, нагрузка питается не от статического байпаса, как в обычном ИБП, а от вспомогательного ИБП. Только при выходе из строя второго ИБП, нагрузка переключается на работу от статического байпаса.

    Система из двух последовательно соединенных ИБП может работать на шести основных режимах.

    А. Нормальная работа. Выпрямители 1 и 2 питают инверторы 1 и 2 и, при необходимости заряжают батареи 1 и 2. Инвертор 1 подключен к нагрузке (статический выключатель инвертора 1 замкнут) и питает ее стабилизированным и защищенным от сбоев напряжением. Инвертор 2 работает на холостом ходу и готов "подхватить" нагрузку, если инвертор 1 выйдет из строя. Оба статических выключателя байпаса разомкнуты.

    Для обычного ИБП с двойным преобразованием на режиме работы от сети допустим (при сохранении гарантированного питания) только один сбой в системе. Этим сбоем может быть либо выход из строя элемента ИБП (например инвертора) или сбой электрической сети.

    Для двух последовательно соединенных ИБП с на этом режиме работы допустимы два сбоя в системе: выход из строя какого-либо элемента основного ИБП и сбой электрической сети. Даже при последовательном или одновременном возникновении двух сбоев питание нагрузки будет продолжаться от источника гарантированного питания.

    Б. Работа от батареи 1. Выпрямитель 1 не может питать инвертор и батарею. Чаще всего это происходит из-за отключения напряжения в электрической сети, но причиной может быть и выход из строя выпрямителя. Состояние инвертора 2 в этом случае зависит от работы выпрямителя 2. Если выпрямитель 2 работает (например он подключен к другой электрической сети или он исправен, в отличие от выпрямителя 1), то инвертор 2 также может работать, но работать на холостом ходу, т.к. он "не знает", что с первым ИБП системы что-то случилось. После исчерпания заряда батареи 1, инвертор 1 отключится и система постарается найти другой источник электроснабжения нагрузки. Им, вероятно, окажется инвертор2. Тогда система перейдет к другому режиму работы.

    Если в основном ИБП возникает еще одна неисправность, или батарея 1 полностью разряжается, то система переключается на работу от вспомогательного ИБП.

    Таким образом даже при двух сбоях: неисправности основного ИБП и сбое сети нагрузка продолжает питаться от источника гарантированного питания.

    В. Работа от инвертора 2. В этом случае инвертор 1 не работает (из-за выхода из строя или полного разряда батареи1). СВИ1 разомкнут, СВБ1 замкнут, СВИ2 замкнут и инвертор 2 питает нагрузку. Выпрямитель 2, если в сети есть напряжение, а сам выпрямитель исправен, питает инвертор и батарею.

    На этом режиме работы допустим один сбой в системе: сбой электрической сети. При возникновении второго сбоя в системе (выходе из строя какого-либо элемента вспомогательного ИБП) электропитание нагрузки не прерывается, но нагрузка питается уже не от источника гарантированного питания, а через статический байпас, т.е. попросту от сети.

    Г. Работа от батареи 2. Наиболее часто такая ситуация может возникнуть после отключения напряжения в сети и полного разряда батареи 1. Можно придумать и более экзотическую последовательность событий. Но в любом случае, инвертор 2 питает нагругку, питаясь, в свою очередь, от батареи. Инвертор 1 в этом случае отключен. Выпрямитель 1, скорее всего, тоже не работает (хотя он может работать, если он исправен и в сети есть напряжение).

    После разряда батареи 2 система переключится на работу от статического байпаса (если в сети есть нормальное напряжение) или обесточит нагрузку.

    Д. Работа через статический байпас. В случае выхода из строя обоих инверторов, статические переключатели СВИ1 и СВИ2 размыкаются, а статические переключатели СВБ1 и СВБ2 замыкаются. Нагрузка начинает питаться от электрической сети.

    Переход системы к работе через статический байпас происходит при перегрузке системы, полном разряде всех батарей или в случае выхода из строя двух инверторов.

    На этом режиме работы выпрямители, если они исправны, подзаряжают батареи. Инверторы не работают. Нагрузка питается через статический байпас.

    Переключение системы на работу через статический байпас происходит без прерывания питания нагрузки: при необходимости переключения сначала замыкается тиристорный переключатель статического байпаса, и только затем размыкается тиристорный переключатель на выходе того инвертора, от которого нагрузка питалась перед переключением.

    Е. Ручной (сервисный) байпас. Если ИБП вышел из строя, а ответственную нагрузку нельзя обесточить, то оба ИБП системы с соблюдением специальной процедуры (которая обеспечивает безразрыное переключение) переключают на ручной байпас. после этого можно производить ремонт ИБП.

    Преимуществом рассмотренной системы с последовательным соединением двух ИБП является простота. Не нужны никакие дополнительные элементы, каждый из ИБП работает в своем штатном режиме. С точки зрения надежности, эта схема совсем не плоха:- в ней нет никакой лишней, (связанной с резервированием) электроники, соответственно и меньше узлов, которые могут выйти из строя.

    Однако у такого соединения ИБП есть и недостатки. Вот некоторые из них.
     

    1. Покупая такую систему, вы покупаете второй байпас (на нашей схеме – он первый – СВБ1), который, вообще говоря, не нужен – ведь все необходимые переключения могут быть произведены и без него.
    2. Весь второй ИБП выполняет только одну функцию – резервирование. Он потребляет электроэнергию, работая на холостом ходу и вообще не делает ничего полезного (разумеется за исключением того времени, когда первый ИБП отказывается питать нагрузку). Некоторые производители предлагают "готовые" системы ИБП с горячим резервированием. Это значит, что вы покупаете систему, специально (еще на заводе) испытанную в режиме с горячим резервированием. Схема такой системы приведена на рис. 19б.

    4931

    Рис.19б. Трехфазный ИБП с горячим резервированием

    Принципиальных отличий от схемы с последовательным соединением ИБП немного.

    1. У второго ИБП отсутствует байпас.
    2. Для синхронизации между инвертором 2 и байпасом появляется специальный информационный кабель между ИБП (на рисунке не показан). Поэтому такой ИБП с горячим резервированием может работать на тех же шести режимах работы, что и система с последовательным подключением двух ИБП. Преимущество "готового" ИБП с резервированием, пожалуй только одно – он испытан на заводе-производителе в той же комплектации, в которой будет эксплуатироваться.

    Для расмотренных схем с резервированием иногда применяют одно важное упрощение системы. Ведь можно отказаться от резервирования аккумуляторной батареи, сохранив резервирование всей силовой электроники. В этом случае оба ИБП будут работать от одной батареи (оба выпрямителя будут ее заряжать, а оба инвертора питаться от нее в случае сбоя электрической сети). Применение схемы с общей бетареей позволяет сэкономить значительную сумму – стоимость батареи.

    Недостатков у схемы с общей батареей много:

    1. Не все ИБП могут работать с общей батареей.
    2. Батарея, как и другие элементы ИБП обладает конечной надежностью. Выход из строя одного аккумулятора или потеря контакта в одном соединении могут сделать всю системы ИБП с горячим резервирование бесполезной.
    3. В случае выхода из строя одного выпрямителя, общая батарея может быть выведена из строя. Этот последний недостаток, на мой взгляд, является решающим для общей рекомендации – не применять схемы с общей батареей.


    Параллельная работа нескольких ИБП

    Как вы могли заметить, в случае горячего резервирования, ИБП резервируется не целиком. Байпас остается общим для обоих ИБП. Существует другая возможность резервирования на уровне ИБП – параллельная работа нескольких ИБП. Входы и выходы нескольких ИБП подключаются к общим входным и выходным шинам. Каждый ИБП сохраняет все свои элементы (иногда кроме сервисного байпаса). Поэтому выход из строя статического байпаса для такой системы просто мелкая неприятность.

    На рисунке 20 приведена схема параллельной работы нескольких ИБП.

    4932

    Рис.20. Параллельная работа ИБП

    На рисунке приведена схема параллельной системы с раздельными сервисными байпасами. Схема система с общим байпасом вполне ясна и без чертежа. Ее особенностью является то, что для переключения системы в целом на сервисный байпас нужно управлять одним переключателем вместо нескольких. На рисунке предполагается, что между ИБП 1 и ИБП N Могут располагаться другие ИБП. Разные производителю (и для разных моделей) устанавливают свои максимальные количества параллеьно работающих ИБП. Насколько мне известно, эта величина изменяется от 2 до 8. Все ИБП параллельной системы работают на общую нагрузку. Суммарная мощность параллельной системы равна произведению мощности одного ИБП на количество ИБП в системе. Таким образом параллельная работа нескольких ИБП может применяться (и в основном применяется) не столько для увеличения надежности системы бесперебойного питания, но для увеличения ее мощности.

    Рассмотрим режимы работы параллельной системы

    Нормальная работа (работа от сети). Надежность

    Когда в сети есть напряжение, достаточное для нормальной работы, выпрямители всех ИБП преобразуют переменное напряжение сети в постоянное, заряжая батареи и питая инверторы.

    Инверторы, в свою очередь, преобразуют постоянное напряжение в переменное и питают нагрузку. Специальная управляющая электроника параллельной системы следит за равномерным распределением нагрузки между ИБП. В некоторых ИБП распределение нагрузки между ИБП производится без использования специальной параллельной электроники. Такие приборы выпускаются "готовыми к параллельной работе", и для использования их в параллельной системе достаточно установить плату синхронизации. Есть и ИБП, работающие параллельго без специальной электроники. В таком случае количество параллельно работающих ИБП – не более двух. В рассматриваемом режиме работы в системе допустимо несколько сбоев. Их количество зависит от числа ИБП в системе и действующей нагрузки.

    Пусть в системе 3 ИБП мощностью по 100 кВА, а нагрузка равна 90 кВА. При таком соотношении числа ИБП и их мощностей в системе допустимы следующие сбои.

    Сбой питания (исчезновение напряжения в сети)

    Выход из строя любого из инверторов, скажем для определенности, инвертора 1. Нагрузка распределяется между двумя другими ИБП. Если в сети есть напряжение, все выпрямители системы работают.

    Выход из строя инвертора 2. Нагрузка питается от инвертора 3, поскольку мощность, потребляемая нагрузкой меньше мощности одного ИБП. Если в сети есть напряжение, все выпрямители системы продолжают работать.

    Выход из строя инвертора 3. Система переключается на работу через статический байпас. Нагрузка питается напрямую от сети. При наличии в сети нормального напряжения, все выпрямители работают и продолжают заряжать батареи. При любом последующем сбое (поломке статического байпаса или сбое сети) питание нагрузки прекращается. Для того, чтобы параллельная система допускала большое число сбоев, система должна быть сильно недогружена и должна включать большое число ИБП. Например, если нагрузка в приведенном выше примере будет составлять 250 кВА, то система допускает только один сбой: сбой сети или поломку инвертора. В отношении количества допустимых сбоев такая система эквивалентна одиночному ИБП. Это, кстати, не значит, что надежность такой параллельной системы будет такая же, как у одиночного ИБП. Она будет ниже, поскольку параллельная система намного сложнее одиночного ИБП и (при почти предельной нагрузке) не имеет дополнительного резервирования, компенсирующего эту сложность.

    Вопрос надежности параллельной системы ИБП не может быть решен однозначно. Надежность зависит от большого числа параметров: количества ИБП в системе (причем увеличение количества ИБП до бесконечности снижает надежность – система становится слишком сложной и сложно управляемой – впрочем максимальное количество параллельно работающих модулей для известных мне ИБП не превышает 8), нагрузки системы (т.е. соотношения номинальной суммарной мощности системы и действующей нагрузки), примененной схемы параллельной работы (т.е. есть ли в системе специальная электроника для обеспечения распределения нагрузки по ИБП), технологии работы предприятия. Таким образом, если единственной целью является увеличение надежности системы, то следует серьезно рассмотреть возможность использование ИБП с горячим резервированием – его надежность не зависит от обстоятельств и в силу относительной простоты схемы практически всегда выше надежности параллельной системы.

    Недогруженная система из нескольких параллельно работающих ИБП, которая способна реализвать описанную выше логику управления, часто также называется параллельной системой с резервированием.

    Работа с частичной нагрузкой

    Если нагрузка параллельной системы такова, что с ней может справиться меньшее, чем есть в системе количество ИБП, то инверторы "лишних" ИБП могут быть отключены. В некоторых ИБП такая логика управления подразумевается по умолчанию, а другие модели вообще лишены возможности работы в таком режиме. Инверторы, оставшиеся включенными, питают нагрузку. Коэффициент полезного действия системы при этом несколько возрастает. Обычно в этом режиме работы предусматривается некоторая избыточность, т.е. количестов работающих инверторов больше, чем необходимо для питания нагрузки. Тем самым обеспечивается резервирование. Все выпрямители системы продолжают работать, включая выпрямители тех ИБП, инверторы которых отключены.

    Работа от батареи

    В случае исчезновения напряжения в электрической сети, параллельная система переходит на работу от батареи. Все выпрямители системы не работают, инверторы питают нагрузку, получая энергию от батареи. В этом режиме работы (естественно) отсутствует напряжение в электрической сети, которое при нормальной работе было для ИБП не только источником энергии, но и источником сигнала синхронизации выходного напряжения. Поэтому функцию синхронизации берет на себя специальная параллельная электроника или выходная цепь ИБП, специально ориентированная на поддержание выходной частоты и фазы в соответствии с частотой и фазой выходного напряжения параллельно работающего ИБП.

    Выход из строя выпрямителя

    Это режим, при котором вышли из строя один или несколько выпрямителей. ИБП, выпрямители которых вышли из строя, продолжают питать нагрузку, расходуя заряд своей батареи. Они выдает сигнал "неисправность выпрямителя". Остальные ИБП продолжают работать нормально. После того, как заряд разряжающихся батарей будет полностью исчерпан, все зависит от соотношения мощности нагрузки и суммарной мощности ИБП с исправными выпрямителями. Если нагрузка не превышает перегрузочной способности этих ИБП, то питание нагрузки продолжится (если у системы остался значительный запас мощности, то в этом режиме работы допустимо еще несколько сбоев системы). В случае, если нагрузка ИБП превышает перегрузочную способность оставшихся ИБП, то система переходит к режиму работы через статический байпас.

    Выход из строя инвертора

    Если оставшиеся в работоспособном состоянии инверторы могут питать нагрузку, то нагрузка продолжает работать, питаясь от них. Если мощности работоспособных инверторов недостаточно, система переходит в режим работы от статического байпаса. Выпрямители всех ИБП могут заряжать батареи, или ИБП с неисправными инверторами могут быть полностью отключены для выполнения ремонта.

    Работа от статического байпаса

    Если суммарной мощности всех исправных инверторов параллельной системы не достаточно для поддержания работы нагрузки, система переходит к работе через статический байпас. Статические переключатели всех инверторов разомкнуты (исправные инверторы могут продолжать работать). Если нагрузка уменьшается, например в результате отключения части оборудования, параллельная система автоматически переключается на нормальный режим работы.

    В случае одиночного ИБП с двойным преобразованием работа через статический байпас является практически последней возможностью поддержания работы нагрузки. В самом деле, ведь достаточно выхода из строя статического переключателя, и нагрузка будет обесточена. При работе параллельной системы через статический байпас допустимо некоторое количество сбоев системы. Статический байпас способен выдерживать намного больший ток, чем инвертор. Поэтому даже в случае выхода из строя одного или нескольких статических переключателей, нагрузка возможно не будет обесточена, если суммарный допустимый ток оставшихся работоспособными статических переключателей окажется достаточен для работы. Конкретное количество допустимых сбоев системы в этом режиме работы зависит от числа ИБП в системе, допустимого тока статического переключателя и величины нагрузки.

    Сервисный байпас

    Если нужно провести с параллельной системой ремонтные или регламентные работы, то система может быть отключена от нагрузки с помощью ручного переключателя сервисного байпаса. Нагрузка питается от сети, все элементы параллельной системы ИБП, кроме батарей, обесточены. Как и в случае системы с горячим резервированием, возможен вариант одного общего внешнего сервисного байпаса или нескольких сервисных байпасов, встроенных в отдельные ИБП. В последнем случае при использовании сервисного байпаса нужно иметь в виду соотношение номинального тока сервисного байпаса и действующей мощности нагрузки. Другими словами, нужно включить столько сервисных байпасов, чтобы нагрузка не превышала их суммарный номинальных ток.
    [ http://www.ask-r.ru/info/library/ups_without_secret_7.htm]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > трехфазный источник бесперебойного питания (ИБП)

  • 35 скучный

    прил.
    1. dull; 2. boring; 3. lonely
    Русское прилагательное скучный характеризует как явления, людей, события, вызывающие у других уныние или скуку, так и чувства, характеризующие скуку, у людей пребывающих в унынии. Английские эквиваленты различают эти два аспекта и передают их разными словами.
    1. dull — скучный, мрачный, неприятный, унылый, нудный (описывает события, явления, поступки, которые у других вызывают уныние или скуку): a dull person — скучный человек; a dull book (lecture) — скучная книга (лекция); a dull film — скучный фильм; a dull conversation — скучный разговор/неприятный разговор; dull for smb — скучный для кого-либо/скучно для кого-либо; to be dull — быть скучным/наскучить; to become dull — становиться скучным/наскучить; to get dull — делаться скучным He is always so dull with his advice, he isjust a bore. — Он очень скучный человек, вечно выступает со своими советами, он просто зануда./Он очень нудный человек, вечно выступает со своими советами, он просто зануда. The job is very dull for him. — Для него это слишком скучная работа. It is too dull to repeat one and the same thing so many times. — Очень скучно повторять одно и то же много раз. His parties are so dull! — Его вечеринки такие скучные./У него в гостях всегда так скучно. I don't like him, he is very dull. — Мне он не нравится, он очень скучен. The weather is dull for a picnic. — В такую унылую погоду не стоит устраивать пикник.
    2. boring — скучный, неприятный, нудный, надоедливый (употребляется в ситуациях, описывающих явления, события, людей, вызывающих у кого-либо скуку или раздражение): thoroughly boring evening — удивительно скучный вечер The party was so boring 1 couldn't wait for it to end. — Вечер был такой нудный, я едва дождался, когда он кончится. I can't stand the woman, she is so boring. — Терпеть не могу эту женщину, они такая нудная./Терпеть не могу эту женщину, она такая надоедливая. His attempts to moralize are tedious and boring. — Его попытки читать мораль скучны и надоедливы.
    3. lonely — скучный, тоскливый, одинокий, тоскующий, испытывающий скуку, испытывающий тоску (употребляется в ситуациях, описывающих предметы, вызывающие скуку или тоску, а также внутреннее душевное состояние человека): a lonely sight — тоскливое зрелище; a lonely road — пустынная дорога; to feel lonely — скучать/тосковать I was very lonely there, with very few friends. — Мне было там очень одиноко, у меня там было очень мало друзей. There was nowhere to go in the evening, and he felt very lonely at home. — Тим вечерами было некуда пойти, и ему было одиноко дома.

    Русско-английский объяснительный словарь > скучный

  • 36 положение

    сущ.
    1. situation; 2. position; 3. post; 4. location
    Русское многозначное существительное положение относится как к физическому расположению предмета или человека, так и к социальному, общественному месту, которое человек занимает. Английские соответствия различают эти аспекты и передают эти значения разными словами, для которых типична разная сочетаемость.
    1. situation — (существительное situation многозначно): a) положение, обстановка, положение дел, ситуация: an international situation — международное положение; a financial (strategic) situation — финансовое (стратегическое) положение; ice situation —ледовая обстановка; price situation — уровень/положение цен; the situation at the front — обстановка на фронте Let me know the situation. — Дайте мне знать о положении дел. b) положение, состояние: a happy situation — приятная ситуация; a pleasant situation — удачное положение; to be/to find oneself in a dangerous situation — оказаться в опасном положении; to get into an unpleasant situation — попасть в неприятное положение; to plunge into an awkward situation — вляпаться в неловкое положение; to barge into a dangerous situation — влипнуть в опасную ситуацию/попасть в неловкую ситуацию c) ситуация, момент, эпизод: a dramatic situation — драматический эпизод/драматический момент/ драматическая сцена The play is full of dramatic (strong) situations. — В пьесе много драматических (острых) сцен./В пьесе много драматических (острых) моментов./В пьесе много драматических (острых) эпизодов. d) место, служба, работа: to look for a good situation — искать хорошее место; to find a situation of a governess — найти место гувернантки/найти работу гувернантки; to lose one's situation — потерять место/потерять работу e) расположение: The situation of the house is very convenient — Дом очень удобно расположен. Значение situation состояние, положение — ассоциируется с территорией, физическим местом, обычно вызывающим определенное состояние, чувство, ощущение. Эти ассоциации проявляются в следующих словосочетаниях: a pleasant/happy situation — может быть сравнимо с вашим положением; unpleasant situation — сравнимо с опасным моментом We are in a situation where there is no real winner. — В нашей ситуации реально нет победителя./В наших сложившихся обстоятельствах реально нет победителя. In this work, the author is back on familiar territory. — В этом произведении автор имеет дело со знакомой ему ситуацией. It is time for her to leave the family nest. — Настало время, когда ей пора покинуть родное гнездо. I have felt at home since the moment I started working here. — Я почувствовал себя как дома с первого момента, когда начал здесь работать. This is right up my street/alley. — Это как раз по-моему./Здееь мне все правится. The park is a haven for tired shoppers. — Парк для усталых покупателей — просто рай. This town lias always been a culture desert. — Этот город всегда был пустыней культуры. That part of the city is nothing but a jungle. — Эта часть города просто джунгли. Не spends many years in the political wilderness. — Он мною лет был в самой гуще политической жизни. This is a potential minefield for beginners. —Для новичков это как сплошное минное поле. We have a very rocky road to travel. — Нам предстоит тернистый путь. I have been caught between a rock and a hard place. — Я оказался между двух огней. We were left high and dry when they withdraw our funding. — Мы оказались на мели, когда они прекратили нас финансировать. Не is in a tight spot. — Он в очень трудном положении.
    2. position — (существительное position многозначное): a) положение, место нахождения, расположение: to be in position — быть на месте/занимать обычное положение/занимать правильное положение; to be out of position — быть не на месте The house has a very good position. — Дом удобно расположен. The players were in position. — Игроки были на своих местах. b) положение, поза: to be in an awkward position —лежать в неудобном положении/лежать и неудобной позе c) положение, должность, пост, общественное положение: to hold/to occupy a high position — занимать ведущее положение/занимать высокий пост; to look for a good position — искать хорошую должность; to lose one's position — потерять свое место/свою должность/ свое положение d) положение, возможность: from a position of force/strength — с позиции силы; to be in a position to do smth — иметь возможность что-либо сделать Unfortunately I am not in a position to help you. — К сожалению, у меня нет возможности помочь вам. She put me into a very false position. — Она поставила меня в очень неловкое положение. e) положение, позиция, точка зрения, отношение: We expect you to take a more definite position. — Мы надеемся, что вы займете более определенную позицию. They took up a very firm position. — Они заняли очень твердую позицию.
    3. post — положение, пост (ответственное положение, важная или высокая должность): a diplomatic post — дипломатический пост; to hold high political posts — занимать высокие политические посты
    4. location — положение, местоположение, расположение (на местности): This is a comfortable location for a new school. — Здесь удобное место для новой школы. I like the location of the hotel — at a five minutes' walk from the underground. — Мне нравится, как расположена гостиница — в пяти минутах ходьбы от метро.

    Русско-английский объяснительный словарь > положение

  • 37 система кондиционирования воздуха

    1. air conditioning system

     

    система кондиционирования воздуха
    Совокупность воздухотехнического оборудования, предназначенная для кондиционирования воздуха в помещениях
    [ ГОСТ 22270-76]

    система кондиционирования воздуха

    Совокупность технических средств для обработки и распределения воздуха, а также автоматического регулирования его параметров с дистанционным управлением всеми процессами
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    система кондиционирования воздуха

    Комбинация всех компонент, необходимых для обработки воздуха, в процессе которой осуществляется контроль или понижение температуры, возможно, в комбинации с контролем вентиляции, влажности и чистоты воздуха.
    [ДИРЕКТИВА 2002/91/ЕС ЕВРОПЕЙСКОГО ПАРЛАМЕТА И СОВЕТА от 16 декабря 2002 г. по энергетическим характеристикам зданий]


    КЛАССИФИКАЦИЯ



    Классификация систем кондиционирования воздуха

    М. Г. Тарабанов, директор НИЦ «ИНВЕНТ», канд. техн. наук, вице-президент НП «АВОК», лауреат премии НП «АВОК» «Медаль имени И. Ф. Ливчака», «Медаль имени В. Н. Богословского», otvet@abok.ru

    Общие положения

    Краткий, но достаточно полный обзор истории развития кондиционирования воздуха представлен в работе А. И. Липы [1], поэтому отметим только несколько моментов. Родоначальником техники кондиционирования воздуха в ее современном понимании считается американский инженер Виллис Хэвилэнд Кэрриер (Willis Haviland Carrier), который в 1902 году в Нью-Йорке в Бруклинской типографии применил поверхностный водяной воздухоохладитель с вентилятором для получения летом в помещении температуры +26,5 °C и относительной влажности 55 %. Вода охлаждалась в аммиачной холодильной машине. Зимой для увлажнения внутреннего воздуха до 55 % использовался водяной пар от бойлера.
    Термин «кондиционирование воздуха» был предложен в 1906 году Стюартом Уорреном Крамером (Stuart Warren Cramer).
    В отечественной практике некоторые авторы применяют термин «кондиционирование микроклимата». Заметим, что этот термин отличается от «кондиционирования воздуха», так как включает в себя дополнительные факторы, не связанные с состоянием воздушной среды в помещении (шум, инсоляция и др.).
    К сожалению, несмотря на солидный возраст термин «кондиционирование воздуха» не получил четкого определения в современных отечественных нормативных документах. Для устранения этого пробела сформулируем: «Кондиционирование воздуха – это создание и автоматическое поддержание в обслуживаемом помещении или технологическом объеме требуемых параметров и качества воздуха независимо от внутренних возмущений и внешних воздействий». К параметрам воздуха относятся: температура, относительная влажность или влагосодержание и подвижность. Качество воздуха включает в себя газовый состав, запыленность, запахи, аэроионный состав, т. е. более широкий круг показателей, чем термин «чистота», используемый в [2].
    Комплекс оборудования, элементов и устройств, с помощью которых обеспечивается кондиционирование воздуха в обслуживаемых помещениях, называется системой кондиционирования воздуха (СКВ).
    Приведенное выше определение системы кондиционирования воздуха по смыслу полностью совпадает с определением ASHRAE: «”air-conditioning system” – комплекс оборудования для одновременной обработки и регулирования температуры, влажности, чистоты воздуха и распределения последнего в соответствии с заданными требованиями» [3].
    Общепринятого, устоявшегося мнения, что следует включать в состав СКВ, к сожалению, нет.
    Так, например, по мнению О. Я. Кокорина [4] СКВ может включать в себя:

    • установку кондиционирования воздуха (УКВ), обеспечивающую необходимые кондиции воздушной среды по тепловлажностным качествам, чистоте, газовому составу и наличию запахов;
    • средства автоматического регулирования и контроля за приготовлением воздуха нужных кондиций в УКВ, а также для поддержания в обслуживаемом помещении или сооружении постоянства заданных кондиций воздуха;
    • устройства для транспортирования и распределения кондиционированного воздуха;
    • устройства для транспортирования и удаления загрязненного внутреннего воздуха;
    • устройства для глушения шума, вызываемого работой элементов СКВ;
    • устройства для приготовления и транспортирования источников энергии, необходимых для работы аппаратов в СКВ.

    В зависимости от конкретных условий некоторые составные части СКВ могут отсутствовать.
    Однако согласиться с отдельными пунктами предложенного состава СКВ нельзя, так как если следовать логике автора [4], то в состав СКВ должны войти и системы оборотного водоснабжения, водопровода и канализации, ИТП и трансформаторные, которые также необходимы для работы аппаратов в СКВ.
    Достаточно полное представление о структуре СКВ дает разработанная во ВНИИкондиционере «Блок-схема системы кондиционирования воздуха» (рис. 1) [5].

    4804

    Включенные в эту блок-схему подсистемы обработки воздуха по своему функциональному назначению делятся на блоки:

    • основной обработки и перемещения: Б1.1 – приемный, Б1.8 – очистки, Б1.2 – сухого (первого) подогрева, Б1.3 – охлаждения, Б1.6 – тепловлажностной обработки, Б1.9 – перемещения приточного воздуха;
    • дополнительной обработки и перемещения: Б2.1 – утилизации, Б2.2 – предварительного подогрева, Б2.3 – доводки общей (второй подогрев, дополнительное охлаждение), Б2.4 – зональной доводки, Б2.5 – местной доводки (эжекционные доводчики и др.), Б2.7 – шумоглушения, Б2.8 – перемещения рециркуляционного воздуха;
    • специальной обработки: Б5.5 – тонкой очистки;
    • воздушной сети: Б4.2 – воздухораспределительных устройств, Б4.3 – вытяжных устройств, Б4.5 – воздуховодов;
    • автоматизации – арматуры – Б3.1.

    Помимо этих блоков в СКВ может входить система холодоснабжения (снабжение электроэнергией и теплом осуществляется, как правило, централизованно). Ее включение в состав СКВ, видимо, относится к автономным кондиционерам (см. далее).
    Для определения состава оборудования, входящего в СКВ, и границ раздела целесообразно воспользоваться делением на разделы, которое сложилось в практике проектирования.
    В частности, при выполнении проектов кондиционирования воздуха достаточно серьезных объектов обычно выделяют в самостоятельные разделы: теплоснабжение СКВ; холодоснабжение и холодильные центры; электроснабжение; автоматизация; водоснабжение, в том числе оборотное, канализация и дренаж.
    Причем по каждому из разделов составляют свою спецификацию, в которую включено оборудование, материалы и арматура, относящиеся к своему конкретному разделу.
    Таким образом, в состав СКВ следует включить:

    • УКВ, предназначенную для очистки и тепловлажностной обработки и получения необходимого качества воздуха и его транспортировки по сети воздуховодов до обслуживаемого помещения или технического объема;
    • сеть приточных воздуховодов с воздухораспределителями, клапанами и регулирующими устройствами;
    • вытяжной вентилятор и сеть вытяжных и рециркуляционных воздуховодов с сетевым оборудованием;
    • сеть фреоновых трубопроводов для сплит-систем и VRV-систем с кабелями связи наружных блоков с внутренними;
    • фэнкойлы, эжекционные доводчики, моноблоки, холодные и теплые потолки и балки и др. доводчики для охлаждения и (или) нагревания непосредственно внутреннего воздуха;
    • оборудование для утилизации теплоты и холода;
    • дополнительные воздушные фильтры, шумоглушители и другие элементы.

    И даже систему автоматики, входящую в СКВ как бы по определению, целесообразно выделить отдельно, так как ее проектируют инженеры другой специальности, хотя и по заданию так называемых технологов СКВ.
    Границей СКВ и систем теплохолодоснабжения можно считать узлы регулирования, а границей электроснабжения и автоматики – электрические щиты и щиты управления, которые в последнее время очень часто делают совмещенными.

    Классификация систем кондиционирования воздуха

    Проблемам классификации СКВ в большей или меньшей степени уделяли внимание практически все авторы учебников и монографий по кондиционированию воздуха. Вот что написал по этому вопросу известный специалист, доктор техн. наук А. А. Рымкевич [6]: «Анализ иерархической структуры самих СКВ прежде всего требует их классификации и только затем их декомпозиции на подсистемы. …Однако для СКВ, решения которых базируются на учете большого числа данных, разработать такую классификацию всегда сложно. Не случайно в литературе нет единого мнения по данному вопросу, и поэтому многие известные авторы… предложили различные методы классификации».
    Предложенная А. А. Рымкеви-чем концепция выбора признаков классификации СКВ сформулирована очень точно, и с ней нельзя не согласиться. Проблема состоит в том, как этой концепцией воспользоваться и какие признаки считать определяющими, а какие вторичными, и как точно сформулировать эти признаки.
    В начале восьмидесятых годов прошлого века наиболее полная классификация СКВ была предложена в работе Б. В. Баркалова и Е. Е. Карписа [7].
    Основные признаки этой классификации с некоторыми дополнениями использованы и в недавно изданной монографии А. Г. Сотникова [8] и в других работах, однако некоторые формулировки отдельных признаков требуют уточнения и корректировки.
    Например, для опытных специалистов не составит труда разделить СКВ на центральные и местные, посмотрим, как признак такого деления сформулирован разными авторами.
    Б. В. Баркалов, Е. Е. Карпис пишут [7]: «В зависимости от расположения кондиционеров по отношению к обслуживаемым помеще-ниям СКВ делятся на центральные и местные». А. Г. Сотников [8] считает необходимым дополнить: «Деление на местные и центральные СКВ учитывает как место установки кондиционера, так и группировку помещений по системам», а О. Я. Кокорин уточняет: «По характеру связи с обслуживаемым помещением можно подразделить СКВ на три вида: центральные, местные и центрально-местные. Центральные СКВ характеризуются расположением УКВ в удалении от обслуживаемых объектов и наличием приточных воздуховодов значительной протяженности. Местные СКВ характеризуются расположением УКВ в самом обслуживаемом помещении или в непосредственной близости от него, при отсутствии (или наличии весьма коротких) приточных воздуховодов. Центрально-местные СКВ характеризуются как наличием УКВ в удалении от обслуживаемых объектов, так и местных УКВ, располагаемых в самих помещениях или в непосредственной близости от них».
    Трудно понять, что имеется в виду под группировкой помещений по системам и что считается протяженными или весьма короткими воздуховодами. Например, кондиционеры, обслуживающие текстильные цеха на Волжском заводе синтетического волокна, имеют производительность по воздуху до 240 м3/ч и расположены рядом с обслуживаемыми помещениями, то есть непосредственно за стенами, но никто из указанных выше авторов не отнес бы их к местным системам.
    Несколько иной признак клас-сификации предложил Е. В. Стефанов [9]: «… по степени централизации – на системы центральные, обслуживающие из одного центра несколько помещений, и местные, устраиваемые для отдельных помещений и располагающиеся, как правило, в самих обслуживаемых помещениях».
    К сожалению, и эта формулировка является нечеткой, так как одно большое помещение могут обслуживать несколько центральных кондиционеров, а группу небольших помещений – один местный кондиционер.
    Фактически в отечественной практике негласно действовал совсем другой признак классификации: все кондиционеры, выпускавшиеся Харьковским заводом «Кондиционер», кроме шкафных, считались центральными, а все кондиционеры, выпускавшиеся Домодедовским заводом «Кондиционер», кроме горизонтальных производительностью 10 и 20 тыс. м3/ч, – относились к местным.
    Конечно, сегодня такое деление выглядит смешным, а между тем в нем был определенный здравый смысл.
    Известно, что в местных системах используются готовые агрегаты полной заводской сборки обычно шкафного типа со стандартным набором тепломассообменного оборудования с уже готовыми, заданными заранее техническими характеристиками, поэтому местные УКВ не проектируют, а подбирают для конкретного обслуживаемого помещения или группы небольших однотипных помещений.
    Максимальная производительность местных систем по воздуху обычно не превышает 20–30 тыс. м3/ч.
    Центральные кондиционеры могут быть также полной заводской сборки или собираются на месте монтажа, причем технические характеристики всех элементов, включая воздушные фильтры, вентиляторы и тепломассообменное оборудование, задаются производителями в очень широких пределах, поэтому такие кондиционеры не подбирают, а проектируют, а затем изготавливают в соответствии с бланком-заказом для конкретного объекта.
    Обычно центральные кондиционеры собирают в виде горизонтальных блоков, причем производительность таких кондиционеров по воздуху значительно больше, чем у местных и достигает 100–250 тыс. м3/ч у разных фирм-производителей.
    Очевидно, что отмеченные признаки относятся к УКВ, но их можно использовать и для классификации СКВ, например, СКВ с центральной УКВ – центральная СКВ, а с местной УКВ – местная СКВ. Такой подход не исключает полностью признаки, предложенные другими авторами, а дополняет их, исключая некоторые неопределенности, типа протяженности воздуховодов и др.
    Для дальнейшей классификации СКВ рассмотрим схему ее функционирования.
    На параметры внутреннего воздуха в обслуживаемом помещении или технологическом объеме оказывают воздействие внутренние возмущения, то есть изменяющиеся тепло- и влаговыделения, а также внешние факторы, например, изменение температуры и влагосодержания наружного воздуха, воздействие на остекленный фасад прямой солнечной радиации в разное время суток и др.
    Задача СКВ состоит в том, чтобы улавливать и своевременно устранять последствия этих возмущений и воздействий для сохранения параметров внутреннего воздуха в заданных пределах, используя систему автоматического регулирования и необходимый набор оборудования (воздухоохладители, воздухонагреватели, увлажнители и др.), а также источники теплоты и холода.
    Поддерживать требуемые параметры внутреннего воздуха можно изменяя параметры или расход приточного воздуха, подаваемого в помещение извне, или с помощью аппаратов, установленных непосредственно в помещении, так называемых доводчиков.
    Сегодня в качестве доводчиков используют внутренние блоки сплит-систем и VRV-систем, фэнкойлы, моноблоки, охлаждаемые потолки и балки и другие элементы.
    К сожалению, в классификации [7] вместо понятия «доводчики» используется понятие «водовоздушные СКВ», а в классификации [8] дополнительно вводится термин «водо- и фреоновоздушная СКВ». С подобными предложениями нельзя согласиться в принципе, так как их авторы вольно или невольно присваивают сплит-системам или фэнкойлам статус систем кондиционирования воздуха, которыми они не являются и, естественно, не могут входить в классификацию СКВ, поскольку являются всего лишь местными охладителями или нагревателями, то есть не более чем доводчиками.
    Справедливости ради отметим, что Б. В. Баркалов начинает описание центральных водовоздушных систем очень точной фразой: «В каждое помещение вводится наружный воздух, приготовленный в центральном кондиционере. Перед выпуском в помещение он смешивается с воздухом данного помещения, предварительно охлажденным или нагретым в теплообменниках кондиционеров?доводчиков, снабжаемых холодной и горячей водой». Приведенная цитата показывает, что автор хорошо понимает неопределенность предложенного им признака классификации и поэтому сразу поясняет, что он имеет в виду под центральными водовоздушными системами.
    Системы без доводчиков могут быть прямоточными, когда в помещение подается обработанный наружный воздух, и с рециркуляцией, когда к наружному воздуху подмешивают воздух, забираемый из помещения. Кроме того, технологические СКВ, обслуживающие помещения или аппараты без пребывания людей, могут работать без подачи наружного воздуха со 100 % рециркуляцией. В зависимости от алгоритма работы СКВ различают системы с постоянной рециркуляцией, в которых соотношение количества наружного и рециркуляционного воздуха во время работы не изменяется, и СКВ с переменной рециркуляцией, в которых количество наружного воздуха может изменяться от 100 % до некоторого нормируемого минимального уровня.
    Кроме того, системы с рециркуляцией могут быть одновентиляторными и двухвентиляторными. В первых системах подача приточного воздуха в помещение, а также забор наружного и рециркуляционного воздуха осуществляется приточным вентилятором УКВ. Во втором случае для удаления воздуха из помещения и подачи его на рециркуляцию или на выброс применяют дополнительный вытяжной вентилятор.
    Независимо от схемы компоновки и устройства отдельных элементов СКВ подразделяют также по их назначению. Многие авторы делят СКВ на комфортные, технологические и комфортно-технологические. Более удачной и полной представляется классификация СКВ по назначению на эргономической основе, разработанная ВНИИкондиционером [5].
    Определено, что СКВ могут выполнять одну из трех функций обслуживания: машин; машин + людей; людей.
    1-я группа (символ «машина») определена как технологические СКВ. СКВ этой группы обслуживают технологические аппараты, камеры, боксы, машины и т. п., то есть применяются в тех случаях, когда условия воздушной среды диктуются обеспечением работоспособности технологического оборудования. При этом параметры воздушной среды могут отличаться от тех, которые определяются санитарно-гигиеническими нормами.
    1-я группа имеет две модификации:

    • Подгруппа 1–1 включает в себя кондиционируемые объекты, полностью исключающие возможность пребывания в них человека, то есть это системы технологического охлаждения, обдува электронных блоков вычислительных машин, шахты обдува волокна прядильных машин и т. п.
    • Подгруппа 1–2 включает в себя кондиционируемые объекты: технологические аппараты (машины, камеры, боксы) и помещения с особыми параметрами воздушной среды (калориметрического, экологического и другого назначения), в которых человек отсутствует или находится эпизодически (для снятия показаний приборов, изменения режима работы и т. д.).

    Если для группы 1–1 отсутствуют какие-либо ограничения по параметрам и составу воздушной среды, то для объектов подгруппы 1–2 газовый состав воздушной среды должен находиться в пределах, установленных ГОСТ.
    2-я группа (символ «машина + человек») определена как технологически комфортные СКВ. СКВ этой группы обслуживают производственные помещения, в которых длительно пребывают люди.
    2-я группа имеет три модификации:

    • Подгруппа 2–1. Технологически комфортные СКВ обеспечивают условия нормального осуществления технологических процессов как для производств, в которых затруднено или практически невозможно получение продукции без поддержания определенных параметров воздушной среды, так и для производств, в которых колебания параметров воздуха существенно влияют на качество продукции и величину брака.
    • Для этих помещений СКВ устраивается в первую (и основную) очередь по требованиям технологии, однако в связи с наличием в этих помещениях людей, параметры КВ устанавливают с учетом требований санитарно-гигиенических норм.
    • Подгруппа 2–2. СКВ создаются для исключения дискомфортных условий труда при тяжелых режимах работы людей (кабины крановщиков мостовых кранов металлургических заводов и ТЭЦ, кабины строительно-дорожных машин и т. д.). Производственные или экономические аспекты для этих установок имеют второстепенное значение.
    • Подгруппа 2–3. СКВ обеспечивают в производственных помещениях комфортные условия труда, способствующие повышению производительности труда, улучшению проведения основных технологических режимов, снижению заболеваемости, уменьшению эксплуатационных затрат и т. п.

    3-я группа (символ «люди») определена как комфортные СКВ, обеспечивающие санитарно-гигиенические условия труда, отдыха или иного пребывания людей в помещениях гражданских зданий, то есть вне промышленного производства.
    Эта группа имеет две модификации:

    • Подгруппа 3–1. СКВ обслуживают помещения общественных зданий, в которых для одной части людей пребывание в них кратковременно (например, покупатели в универмаге), а для другой – длительно (например, продавцы в этом же универмаге).
    • Подгруппа 3–2. СКВ обеспечивают оптимальные условия пребывания людей в жилых помещениях.

    В классификацию ВНИИконди-ционера необходимо ввести еще одну группу – медицинские СКВ. Очевидно, что СКВ, обслуживающие операционные, реанимационные или палаты интенсивной терапии, никак нельзя считать комфортными, а чтобы отнести их к технологическим, надо в качестве «машины» рассматривать самого человека, что просто глупо.
    Медицинские СКВ должны иметь две подгруппы:

    • Подгруппа 4–1. СКВ обслуживают операционные, реанимационные и т. п. помещения.
    • Подгруппа 4–2. СКВ обеспечивают требуемые параметры воздуха в палатах, кабинетах врачей, процедурных и т. п.

     

    4805

    Для завершения классификации СКВ рассмотрим еще несколько признаков.
    По типу системы холодоснабжения различают автономные и неавтономные СКВ. В автономных источник холода встроен в кондиционер, в неавтономных – источником холода является отдельный холодильный центр. Кроме того, в автономных кондиционерах в воздухоохладитель может подаваться кипящий хладон или жидкий промежуточный хладоноситель (холодная вода, растворы). Заметим, что на многих объектах мы использовали схему с подачей хладона в воздухоохладитель центрального кондиционера от расположенной рядом холодильной машины или внешнего блока VRV.
    По способу компенсации изменяющихся тепловых и (или) влажностных возмущений в обслуживаемом помещении различают СКВ с постоянным расходом воздуха (CAV) – системы, в которых внутренние параметры поддерживают изменяя температуру и влажность приточного воздуха (качественное регулирование), и системы с переменным расходом воздуха (VAV) – системы с количественным регулированием.
    По числу воздуховодов для подачи кондиционированного воздуха в помещенияСКВ делятся на одноканальные и двухканальные, при этом приточный воздух в каждом канале имеет разную температуру и влажность, что позволяет, изменяя соотношение приточного воздуха, подаваемого через каждый канал, поддерживать требуемые параметры в обслуживаемом помещении.
    По числу точек стабилизации одноименного параметра (t; φ)в большом помещении или группе небольших помещений различают одно- и многозональные СКВ.
    –это СКВ с местными доводчиками. В этих СКВ центральная или местная УКВ подает в помещение санитарную норму наружного воздуха, даже не обязательно обработанного, а местные доводчики обеспечивают поддержание в помещении требуемых параметров воздуха (температуры, относительной влажности и подвижности).
    Сегодня в качестве местных доводчиков применяют: внутренние блоки сплит-систем или VRV-систем; фэнкойлы (двух- или четырехтрубные); моноблоки (напольные, потолочные или настенные); эжекционные доводчики; местные увлажнители воздуха; охлаждаемые и нагреваемые потолки; охлаждающие балки (пассивные и активированные).
    Все указанные доводчики сами по себе не являются кондиционерами, хотя их и называют так продавцы оборудования.
    Известно, что некоторые фирмы работают над созданием, например, фэнкойлов или сплит-систем, подающих в помещение наружный воздух. Но, если это и произойдет в массовом масштабе, то ничего страшного с классификацией не случится, просто это оборудование получит статус местных кондиционеров.
    Блок-схема рассмотренной классификации СКВ приведена на рис. 2.
    Помимо рассмотренных признаков в схему на рис. 2 включен еще один: наличие утилизаторов теплоты и холода, которые могут быть как в центральных, так и в местных СКВ. Причем необходимо различать системы утилизации типа воздух-воздух, к которым относятся схемы с промежуточным теплоносителем, с пластинчатыми теплообменниками* и с регенеративными вращающимися и переключаемыми теплообменниками, а также системы утилизации теплоты оборотной воды и теплоты обратного теплоносителя систем централизованного теплоснабжения и систем технологического жидкостного охлаждения.

    Литература

    1. Липа А. И. Кондиционирование воздуха. Основы теории. Совре-менные технологии обработки воздуха. – Одесса: Издательство ВМВ, 2010.
    2. СНиП 41–01–2003. Отопление, вентиляция, кондиционирование. М.: Госстрой России. – 2004.
    3. Англо-русский терминологический словарь по отоплению, вентиляции, кондиционированию воздуха и охлаждению. М.: Изд-во «АВОК-ПРЕСС», 2002.
    4. Кокорин О. Я. Энергосберегаю-щие системы кондиционирования воздуха. ООО «ЛЭС». – М., 2007.
    5. Кондиционеры. Каталог-спра-воч-ник ЦНИИТЭстроймаш. – М., 1981.
    6. Рымкевич А. А. Системный анализ оптимизации общеобменной вентиляции и кондиционирования воздуха. Изд. 1. – М.: Стройиздат, 1990.
    7. Баркалов Б. В., Карпис Е. Е. Кондиционирование воздуха в промышленных, общественных и жилых зданиях. Изд. 2. – М.: Стройиздат, 1982.
    8. Сотников А. Г. Процессы, аппараты и системы кондиционирования воздуха и вентиляции. Т. 1. ООО «АТ». – С.-Петербург, 2005.
    9. Стефанов Е. В. Вентиляция и кондиционирование воздуха. – С.-Петербург: Изд-во «АВОК-Северо-Запад», 2005.

    [ http://www.abok.ru/for_spec/articles.php?nid=5029]

    Тематики

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > система кондиционирования воздуха

  • 38 Предисловие

    В связи с растущим числом всевозможного рода международных конференций, совещаний и форумов роль перевода неизмеримо возросла.
    Вопросы организации труда переводчика, его деловые качества, методы подготовки к работе на совещаниях, охватывающих самую разнообразную тематику, приобрели чрезвычайно большое значение.
    Опыт участия в работе таких конференций показывает, что, несмотря на все многообразие употребляемой на них терминологии, существует определенный круг лексики, которая постоянно используется в работе переводчика-международника. В большинстве случаев эту лексику составляют эквиваленты, т. е. постоянные и равнозначные соответствия, не зависящие от контекста. В процессе передачи сообщения с одного языка на другой переводчик выступает в роли посредника, и успешное выполнение этой функции предполагает умение исключительно быстро сопоставить две языковые системы, оперируя целыми языковыми единицами. Сопоставление двух языковых систем, требующее мгновенного переключения мышления с иностранного языка на родной и наоборот, возможно только на базе хорошего знания и автоматизированного употребления языковых эквивалентов.
    Переводчик не может постоянно помнить языковые эквиваленты из всех областей человеческих знаний. При подготовке к той или иной конференции ему приходится освежать в памяти или заучивать заново соответствующие языковые единицы. Настоящий справочник включает языковые эквиваленты первой необходимости, с которыми может встретиться переводчик-международник, независимо от своей узкой специальности и, в первую очередь, при организации и проведении международных совещаний, переговоров и встреч. Помимо знания эквивалентов переводчик-международник должен представлять себе условия, в которых ему придется работать, а также в общих чертах знать особенности видов перевода, наиболее часто встречающихся в практике.
    В каких условиях протекает работа переводчика и как лучше себя к ней подготовить?
    Работа письменного переводчика на международных конференциях отличается, прежде всего, тем, что он не связан очень сжатыми сроками. Часто до начала мероприятия, в течение подготовительного периода, ему приходится принимать участие в переводе переписки, связанной с созывом совещания и иными организационными моментами, приглашением участников и наблюдателей, выработкой повестки дня и т. д.
    На этом этапе переводчику предоставляется возможность ознакомиться с уставами и иными программными материалами организации, со структурой ее руководящих и рабочих органов, с основными этапами ее деятельности, с официальными документами, выступлениями и заявлениями, протоколами и т. д. Очень важно, чтобы переводчик ознакомился со всем этим материалом на двух языках, с которыми он работает: таким образом, он сможет получить полное представление о применяемой данной организацией или на данного рода мероприятиях терминологии и фразеологии. Переводчик должен самым строгим образом следовать принятой традиции, ни в коем случае не допуская никакой вольной, неапробированной интерпретации. Работая с документами (почерпнутыми в справочниках, бюллетенях и архивах) он должен составить себе двуязычный словарь-картотеку, который послужит ему основным пособием в работе.
    Разумеется, переводчик не всегда будет иметь достаточно времени для такой углубленной работы - в этом случае ему придется довольствоваться ознакомлением только с самыми важными и новыми материалами, либо воспользоваться такими общедоступными источниками информации как справочно-энциклопедическая литература.
    Помимо трудностей, связанных со спецификой деятельности и структуры обслуживаемой организации, переводчик может встретить также затруднения, вызванные недостатком специальных и терминологических знаний обсуждаемого предмета. Это касается прежде всего научно-технических конгрессов, семинаров и симпозиумов. Переводчик, естественно, не может быть универсалом, "ходячей энциклопедией", и лучше всего, если он в течение определенного времени специализируется в одной области науки или техники. Но дело в том, что переводчик-международник, в отличие от так называемого "технического переводчика", как правило, лишен такой возможности. Поэтому он должен стремиться к постоянному расширению своих знаний во всех важнейших областях: ему необходимо систематически читать научно-популярную литературу, преимущественно на своих рабочих языках, и по возможности больше запоминать (или записывать в блокноты, на карточки и т. п.). Важно не только "знать", т. е. помнить термины и их соответствия на другом языке, но и понимать их, с тем чтобы быть в состоянии общедоступно разъяснить их. Последнее особенно важно и ценно для переводчика по следующей причине. В ходе перевода могут встретиться термины, понятные ему по значению, соответствия которых он, однако, не знает. В этом случае ему поможет умение описательно передавать значения терминов. Особенно это важно, конечно, для устного переводчика.
    Работая над материалом предстоящей конференции или готовясь к участию в ее заседаниях в качестве устного переводчика, переводчик, несомненно, должен стремиться пополнить свои знания в области обсуждаемой тематики. Устный переводчик в отличие от письменного переводчика, который мог бы просто воспользоваться соответствующими отраслевыми словарями в ходе самого перевода, естественно, не имеет этих возможностей, и качество его работы целиком зависит от степени его предварительной подготовки. Такая подготовка должна слагаться из двух элементов: во-первых, необходимо по тематическим справочникам, энциклопедиям, общедоступным учебникам и пособиям (на двух языках) ознакомиться с предметом, и во-вторых, изучить все имеющиеся материалы (тезисы докладов, проекты документов) и на основе имеющихся переводов или вспомогательных пособий постараться решить все терминологические проблемы. Результаты этих усилий должны войти в "архив памяти" переводчика.
    Устный переводчик (interpreter) в отличие от письменного (translator) работает в ходе конференции, совещания, переговоров и т. п. в совершенно специфических условиях. В соответствии с этим различают несколько видов устной переводческой работы, обычно обозначаемых терминами: двусторонний перевод (two-way interpretation), последовательный перевод (consecutive interpretation) и синхронный перевод (simultaneous interpretation).
    При двустороннем переводе переводчик является посредником между двумя собеседниками (или сторонами).
    Подобная ситуация является естественной для устной речевой деятельности вообще, и поэтому переводчик без специальных психологических усилий "втягивается" в свою работу. Вопрос и ответ взаимосвязаны, развитие беседы, переход от одной темы к другой происходит как бы "на глазах" переводчика, поэтому он всегда "в курсе", что, естественно, облегчает его задачу. Однако в то же время именно двусторонний перевод требует особой точности в передаче вопросов и высказываний, так как при малейшем отклонении от истины перевод из средства общения превращается в препятствие для общения, и беседа может "зайти в тупик". Большое значение имеет в двустороннем переводе постоянство соответствий, передающих одни и те же формулировки собеседников, а также соблюдение различий, намеренно акцентируемых участниками беседы. Не приходится, конечно, говорить, что и сохранение стилистической (эмоциональной) окраски речи, передача таких нюансов, как недоумение, удивление, недовольство, сомнение, недоверие и прочее играют огромную роль при переводе диалога, в котором часто, как гласит французская пословица, "тон делает музыку". Ясно, что помимо самого полного знания предмета, от переводчика требуется безукоризненное владение языком: его словарным составом, фразеологией и, конечно, всеми его фонетическими, интонационными и выразительными средствами. Следует, однако, предупредить, что не только чрезмерная скованность, но и слишком большая свобода отрицательно сказываются на работе переводчика. Слишком свободно чувствующий себя переводчик подчас "выпадает из роли": он перестает ощущать себя переводчиком и, сам того не сознавая, превращается в активного участника беседы.
    Под последовательным переводом принято понимать такой перевод, при котором переводчик, переводящий выступление, речь, доклад, лекцию (т. е. вообще монологическую речь), делает перевод после того, как закончилось выступление или его часть, то есть он говорит после оратора. Здесь возможны различные случаи. Порой оратор произносит заранее подготовленный текст, письменный перевод которого затем зачитывается переводчиком. Это, собственно говоря, не перевод, а чтение, и никаких специфических переводческих трудностей здесь нет. Иная ситуация создается, когда оратор читает текст, который он лишь после окончания речи передает переводчику. В этом случае переводчик переводит "с листа". Перевод с листа предполагает умение молниеносно схватывать глазами целые куски текста, незамедлительно находить нужные эквиваленты и передавать их в соответствующем обстановке оформлении, т. е. с громкостью, артикуляцией, интонацией и темпом, характерными для ораторской речи.
    В огромном большинстве случаев последовательный перевод - это ничто иное, как перевод на слух, при котором переводчик сначала фиксирует услышанное в памяти, а затем передает его содержание на другом языке. Нередко оратор прерывает свою речь после каждой фразы, а то и на середине фразы, чтобы дать возможность переводчику тут же перевести сказанное. Но в более ответственных случаях переводчик, как правило, находится в менее благоприятном положении, так как оратор, которому необходимо высказать нечто важное и сложное, не может каждые несколько секунд прерывать ход своих мыслей - это просто неестественно. Кроме того, как правило, некоторая часть аудитории слушает выступление в оригинале, а отрывочная речь не способна создать у слушателя цельного впечатления о предмете выступления и точке зрения говорящего. Оратор может говорить долго - до нескольких десятков минут - без перерыва. Переводчику же представляется запомнить, точнее зафиксировать все услышанное с максимальной точностью и притом так, чтобы "без запинки" передать все сказанное на другом языке. Кроме тренированной памяти для этого требуется особый навык, так называемая переводческая скоропись.
    На мероприятиях с большим числом рабочих языков (от трех и выше) использование последовательного перевода потребовало бы огромной траты времени, так как каждое выступление пришлось бы переводить по несколько раз подряд. Поэтому прибегают к помощи синхронного перевода. Как показывает название, этот перевод происходит одновременно с речью оратора. Элементарной формой синхронного перевода является так называемое "нашептывание". Переводчик, сидя в зале или за круглым столом около "своей" делегации и слушая оратора, вполголоса, чтобы, не мешать другим, передает содержание услышанного. Такой перевод, естественно, весьма несовершенен и применяется только там, где можно ограничиться общей информацией.
    Полное развитие синхронный перевод получил только после создания соответствующих технических средств. В настоящее время международные мероприятия проводятся в специально оборудованных помещениях, обеспечивающих каждому участнику возможность по своему выбору слушать перевод на любой из рабочих языков через наушники, которые подключены к системе синхронного перевода зала или к миниатюрным приемникам, настроенным на волну специального передатчика малой мощности, транслирующего перевод по нескольким каналам.
    Переводчик находится в звуконепроницаемой кабине и слушает речи с трибуны через наушники. Перед ним находится микрофон, через который его перевод поступает в систему усиления. В ходе подготовки к работе переводчик должен опробовать оборудование, ознакомиться с правилами его обслуживания (научиться пользоваться регуляторами громкости, переключателями языков, кнопками сигнализации и т. д.). Синхронный перевод, как и последовательный, может производиться и с текстом и без текста, но во всех случаях переводчику необходимо внимательно следить за речью оратора, поскольку всегда возможны отклонения от заранее подготовленного текста.
    Синхронный переводчик должен полагаться только на себя, никакой помощи он в ходе работы ни от кого получить не может, поэтому очень важно, чтобы перед началом работы он основательно подготовился по обсуждаемой тематике и проделал достаточное количество "тренировок-репетиций". Такие "репетиции", проводимые в помещении предстоящей конференции при участии представителей подготовительного органа, дают переводчику возможность не только освоить оборудование и обрести своего рода "спортивную форму", но также помогают ему "мобилизовать" свой запас языковых знаний и отобрать в "оперативный резерв" именно то, что потребуется при работе на данном мероприятии. В ходе "репетиций" переводчики контролируют, "подстраховывают" друг друга и совместно обсуждают возникающие трудности. На этом этапе рекомендуется широко применять всевозможные виды вспомогательных пособий и в том числе и настоящий справочник.
    В разработке русской части предлагаемого вниманию читателя Справочника принимали участие X. К. Баранов, С. А. Гонионский, Ю. А. Добровольская, Б. С. Исаенко, Р. К. Миньяр-Белоручев, В. И. Тархов и М. Я. Цвиллинг. Общая редакция осуществлена проф. С. А. Гонионским.
    Все критические замечания и предложения о данном справочнике следует направлять по адресу: Москва, И-90, 4-я Мещанская ул., д. 7, Издательство "Международные отношения".

    Русско-английский справочник переводчика-международника > Предисловие

  • 39 модульный центр обработки данных (ЦОД)

    1. modular data center

     

    модульный центр обработки данных (ЦОД)
    -
    [Интент]

    Параллельные тексты EN-RU

    [ http://loosebolts.wordpress.com/2008/12/02/our-vision-for-generation-4-modular-data-centers-one-way-of-getting-it-just-right/]

    [ http://dcnt.ru/?p=9299#more-9299]

    Data Centers are a hot topic these days. No matter where you look, this once obscure aspect of infrastructure is getting a lot of attention. For years, there have been cost pressures on IT operations and this, when the need for modern capacity is greater than ever, has thrust data centers into the spotlight. Server and rack density continues to rise, placing DC professionals and businesses in tighter and tougher situations while they struggle to manage their IT environments. And now hyper-scale cloud infrastructure is taking traditional technologies to limits never explored before and focusing the imagination of the IT industry on new possibilities.

    В настоящее время центры обработки данных являются широко обсуждаемой темой. Куда ни посмотришь, этот некогда малоизвестный аспект инфраструктуры привлекает все больше внимания. Годами ИТ-отделы испытывали нехватку средств и это выдвинуло ЦОДы в центр внимания, в то время, когда необходимость в современных ЦОДах стала как никогда высокой. Плотность серверов и стоек продолжают расти, все больше усложняя ситуацию для специалистов в области охлаждения и организаций в их попытках управлять своими ИТ-средами. И теперь гипермасштабируемая облачная инфраструктура подвергает традиционные технологии невиданным ранее нагрузкам, и заставляет ИТ-индустрию искать новые возможности.

    At Microsoft, we have focused a lot of thought and research around how to best operate and maintain our global infrastructure and we want to share those learnings. While obviously there are some aspects that we keep to ourselves, we have shared how we operate facilities daily, our technologies and methodologies, and, most importantly, how we monitor and manage our facilities. Whether it’s speaking at industry events, inviting customers to our “Microsoft data center conferences” held in our data centers, or through other media like blogging and white papers, we believe sharing best practices is paramount and will drive the industry forward. So in that vein, we have some interesting news to share.

    В компании MicroSoft уделяют большое внимание изучению наилучших методов эксплуатации и технического обслуживания своей глобальной инфраструктуры и делятся результатами своих исследований. И хотя мы, конечно, не раскрываем некоторые аспекты своих исследований, мы делимся повседневным опытом эксплуатации дата-центров, своими технологиями и методологиями и, что важнее всего, методами контроля и управления своими объектами. Будь то доклады на отраслевых событиях, приглашение клиентов на наши конференции, которые посвящены центрам обработки данных MicroSoft, и проводятся в этих самых дата-центрах, или использование других средств, например, блоги и спецификации, мы уверены, что обмен передовым опытом имеет первостепенное значение и будет продвигать отрасль вперед.

    Today we are sharing our Generation 4 Modular Data Center plan. This is our vision and will be the foundation of our cloud data center infrastructure in the next five years. We believe it is one of the most revolutionary changes to happen to data centers in the last 30 years. Joining me, in writing this blog are Daniel Costello, my director of Data Center Research and Engineering and Christian Belady, principal power and cooling architect. I feel their voices will add significant value to driving understanding around the many benefits included in this new design paradigm.

    Сейчас мы хотим поделиться своим планом модульного дата-центра четвертого поколения. Это наше видение и оно будет основанием для инфраструктуры наших облачных дата-центров в ближайшие пять лет. Мы считаем, что это одно из самых революционных изменений в дата-центрах за последние 30 лет. Вместе со мной в написании этого блога участвовали Дэниел Костелло, директор по исследованиям и инжинирингу дата-центров, и Кристиан Белади, главный архитектор систем энергоснабжения и охлаждения. Мне кажется, что их авторитет придаст больше веса большому количеству преимуществ, включенных в эту новую парадигму проектирования.

    Our “Gen 4” modular data centers will take the flexibility of containerized servers—like those in our Chicago data center—and apply it across the entire facility. So what do we mean by modular? Think of it like “building blocks”, where the data center will be composed of modular units of prefabricated mechanical, electrical, security components, etc., in addition to containerized servers.

    Was there a key driver for the Generation 4 Data Center?

    Наши модульные дата-центры “Gen 4” будут гибкими с контейнерами серверов – как серверы в нашем чикагском дата-центре. И гибкость будет применяться ко всему ЦОД. Итак, что мы подразумеваем под модульностью? Мы думаем о ней как о “строительных блоках”, где дата-центр будет состоять из модульных блоков изготовленных в заводских условиях электрических систем и систем охлаждения, а также систем безопасности и т.п., в дополнение к контейнеризованным серверам.
    Был ли ключевой стимул для разработки дата-центра четвертого поколения?


    If we were to summarize the promise of our Gen 4 design into a single sentence it would be something like this: “A highly modular, scalable, efficient, just-in-time data center capacity program that can be delivered anywhere in the world very quickly and cheaply, while allowing for continued growth as required.” Sounds too good to be true, doesn’t it? Well, keep in mind that these concepts have been in initial development and prototyping for over a year and are based on cumulative knowledge of previous facility generations and the advances we have made since we began our investments in earnest on this new design.

    Если бы нам нужно было обобщить достоинства нашего проекта Gen 4 в одном предложении, это выглядело бы следующим образом: “Центр обработки данных с высоким уровнем модульности, расширяемости, и энергетической эффективности, а также возможностью постоянного расширения, в случае необходимости, который можно очень быстро и дешево развертывать в любом месте мира”. Звучит слишком хорошо для того чтобы быть правдой, не так ли? Ну, не забывайте, что эти концепции находились в процессе начальной разработки и создания опытного образца в течение более одного года и основываются на опыте, накопленном в ходе развития предыдущих поколений ЦОД, а также успехах, сделанных нами со времени, когда мы начали вкладывать серьезные средства в этот новый проект.

    One of the biggest challenges we’ve had at Microsoft is something Mike likes to call the ‘Goldilock’s Problem’. In a nutshell, the problem can be stated as:

    The worst thing we can do in delivering facilities for the business is not have enough capacity online, thus limiting the growth of our products and services.

    Одну из самых больших проблем, с которыми приходилось сталкиваться Майкрософт, Майк любит называть ‘Проблемой Лютика’. Вкратце, эту проблему можно выразить следующим образом:

    Самое худшее, что может быть при строительстве ЦОД для бизнеса, это не располагать достаточными производственными мощностями, и тем самым ограничивать рост наших продуктов и сервисов.

    The second worst thing we can do in delivering facilities for the business is to have too much capacity online.

    А вторым самым худшим моментом в этой сфере может слишком большое количество производственных мощностей.

    This has led to a focus on smart, intelligent growth for the business — refining our overall demand picture. It can’t be too hot. It can’t be too cold. It has to be ‘Just Right!’ The capital dollars of investment are too large to make without long term planning. As we struggled to master these interesting challenges, we had to ensure that our technological plan also included solutions for the business and operational challenges we faced as well.
    So let’s take a high level look at our Generation 4 design

    Это заставило нас сосредоточиваться на интеллектуальном росте для бизнеса — refining our overall demand picture. Это не должно быть слишком горячим. И это не должно быть слишком холодным. Это должно быть ‘как раз, таким как надо!’ Нельзя делать такие большие капиталовложения без долгосрочного планирования. Пока мы старались решить эти интересные проблемы, мы должны были гарантировать, что наш технологический план будет также включать решения для коммерческих и эксплуатационных проблем, с которыми нам также приходилось сталкиваться.
    Давайте рассмотрим наш проект дата-центра четвертого поколения

    Are you ready for some great visuals? Check out this video at Soapbox. Click here for the Microsoft 4th Gen Video.

    It’s a concept video that came out of my Data Center Research and Engineering team, under Daniel Costello, that will give you a view into what we think is the future.

    From a configuration, construct-ability and time to market perspective, our primary goals and objectives are to modularize the whole data center. Not just the server side (like the Chicago facility), but the mechanical and electrical space as well. This means using the same kind of parts in pre-manufactured modules, the ability to use containers, skids, or rack-based deployments and the ability to tailor the Redundancy and Reliability requirements to the application at a very specific level.


    Посмотрите это видео, перейдите по ссылке для просмотра видео о Microsoft 4th Gen:

    Это концептуальное видео, созданное командой отдела Data Center Research and Engineering, возглавляемого Дэниелом Костелло, которое даст вам наше представление о будущем.

    С точки зрения конфигурации, строительной технологичности и времени вывода на рынок, нашими главными целями и задачами агрегатирование всего дата-центра. Не только серверную часть, как дата-центр в Чикаго, но также системы охлаждения и электрические системы. Это означает применение деталей одного типа в сборных модулях, возможность использования контейнеров, салазок, или стоечных систем, а также возможность подстраивать требования избыточности и надежности для данного приложения на очень специфичном уровне.

    Our goals from a cost perspective were simple in concept but tough to deliver. First and foremost, we had to reduce the capital cost per critical Mega Watt by the class of use. Some applications can run with N-level redundancy in the infrastructure, others require a little more infrastructure for support. These different classes of infrastructure requirements meant that optimizing for all cost classes was paramount. At Microsoft, we are not a one trick pony and have many Online products and services (240+) that require different levels of operational support. We understand that and ensured that we addressed it in our design which will allow us to reduce capital costs by 20%-40% or greater depending upon class.


    Нашими целями в области затрат были концептуально простыми, но трудно реализуемыми. В первую очередь мы должны были снизить капитальные затраты в пересчете на один мегаватт, в зависимости от класса резервирования. Некоторые приложения могут вполне работать на базе инфраструктуры с резервированием на уровне N, то есть без резервирования, а для работы других приложений требуется больше инфраструктуры. Эти разные классы требований инфраструктуры подразумевали, что оптимизация всех классов затрат имеет преобладающее значение. В Майкрософт мы не ограничиваемся одним решением и располагаем большим количеством интерактивных продуктов и сервисов (240+), которым требуются разные уровни эксплуатационной поддержки. Мы понимаем это, и учитываем это в своем проекте, который позволит нам сокращать капитальные затраты на 20%-40% или более в зависимости от класса.

    For example, non-critical or geo redundant applications have low hardware reliability requirements on a location basis. As a result, Gen 4 can be configured to provide stripped down, low-cost infrastructure with little or no redundancy and/or temperature control. Let’s say an Online service team decides that due to the dramatically lower cost, they will simply use uncontrolled outside air with temperatures ranging 10-35 C and 20-80% RH. The reality is we are already spec-ing this for all of our servers today and working with server vendors to broaden that range even further as Gen 4 becomes a reality. For this class of infrastructure, we eliminate generators, chillers, UPSs, and possibly lower costs relative to traditional infrastructure.

    Например, некритичные или гео-избыточные системы имеют низкие требования к аппаратной надежности на основе местоположения. В результате этого, Gen 4 можно конфигурировать для упрощенной, недорогой инфраструктуры с низким уровнем (или вообще без резервирования) резервирования и / или температурного контроля. Скажем, команда интерактивного сервиса решает, что, в связи с намного меньшими затратами, они будут просто использовать некондиционированный наружный воздух с температурой 10-35°C и влажностью 20-80% RH. В реальности мы уже сегодня предъявляем эти требования к своим серверам и работаем с поставщиками серверов над еще большим расширением диапазона температур, так как наш модуль и подход Gen 4 становится реальностью. Для подобного класса инфраструктуры мы удаляем генераторы, чиллеры, ИБП, и, возможно, будем предлагать более низкие затраты, по сравнению с традиционной инфраструктурой.

    Applications that demand higher level of redundancy or temperature control will use configurations of Gen 4 to meet those needs, however, they will also cost more (but still less than traditional data centers). We see this cost difference driving engineering behavioral change in that we predict more applications will drive towards Geo redundancy to lower costs.

    Системы, которым требуется более высокий уровень резервирования или температурного контроля, будут использовать конфигурации Gen 4, отвечающие этим требованиям, однако, они будут также стоить больше. Но все равно они будут стоить меньше, чем традиционные дата-центры. Мы предвидим, что эти различия в затратах будут вызывать изменения в методах инжиниринга, и по нашим прогнозам, это будет выражаться в переходе все большего числа систем на гео-избыточность и меньшие затраты.

    Another cool thing about Gen 4 is that it allows us to deploy capacity when our demand dictates it. Once finalized, we will no longer need to make large upfront investments. Imagine driving capital costs more closely in-line with actual demand, thus greatly reducing time-to-market and adding the capacity Online inherent in the design. Also reduced is the amount of construction labor required to put these “building blocks” together. Since the entire platform requires pre-manufacture of its core components, on-site construction costs are lowered. This allows us to maximize our return on invested capital.

    Еще одно достоинство Gen 4 состоит в том, что он позволяет нам разворачивать дополнительные мощности, когда нам это необходимо. Как только мы закончим проект, нам больше не нужно будет делать большие начальные капиталовложения. Представьте себе возможность более точного согласования капитальных затрат с реальными требованиями, и тем самым значительного снижения времени вывода на рынок и интерактивного добавления мощностей, предусматриваемого проектом. Также снижен объем строительных работ, требуемых для сборки этих “строительных блоков”. Поскольку вся платформа требует предварительного изготовления ее базовых компонентов, затраты на сборку также снижены. Это позволит нам увеличить до максимума окупаемость своих капиталовложений.
    Мы все подвергаем сомнению

    In our design process, we questioned everything. You may notice there is no roof and some might be uncomfortable with this. We explored the need of one and throughout our research we got some surprising (positive) results that showed one wasn’t needed.

    В своем процессе проектирования мы все подвергаем сомнению. Вы, наверное, обратили внимание на отсутствие крыши, и некоторым специалистам это могло не понравиться. Мы изучили необходимость в крыше и в ходе своих исследований получили удивительные результаты, которые показали, что крыша не нужна.
    Серийное производство дата центров


    In short, we are striving to bring Henry Ford’s Model T factory to the data center. http://en.wikipedia.org/wiki/Henry_Ford#Model_T. Gen 4 will move data centers from a custom design and build model to a commoditized manufacturing approach. We intend to have our components built in factories and then assemble them in one location (the data center site) very quickly. Think about how a computer, car or plane is built today. Components are manufactured by different companies all over the world to a predefined spec and then integrated in one location based on demands and feature requirements. And just like Henry Ford’s assembly line drove the cost of building and the time-to-market down dramatically for the automobile industry, we expect Gen 4 to do the same for data centers. Everything will be pre-manufactured and assembled on the pad.

    Мы хотим применить модель автомобильной фабрики Генри Форда к дата-центру. Проект Gen 4 будет способствовать переходу от модели специализированного проектирования и строительства к товарно-производственному, серийному подходу. Мы намерены изготавливать свои компоненты на заводах, а затем очень быстро собирать их в одном месте, в месте строительства дата-центра. Подумайте о том, как сегодня изготавливается компьютер, автомобиль или самолет. Компоненты изготавливаются по заранее определенным спецификациям разными компаниями во всем мире, затем собираются в одном месте на основе спроса и требуемых характеристик. И точно так же как сборочный конвейер Генри Форда привел к значительному уменьшению затрат на производство и времени вывода на рынок в автомобильной промышленности, мы надеемся, что Gen 4 сделает то же самое для дата-центров. Все будет предварительно изготавливаться и собираться на месте.
    Невероятно энергоэффективный ЦОД


    And did we mention that this platform will be, overall, incredibly energy efficient? From a total energy perspective not only will we have remarkable PUE values, but the total cost of energy going into the facility will be greatly reduced as well. How much energy goes into making concrete? Will we need as much of it? How much energy goes into the fuel of the construction vehicles? This will also be greatly reduced! A key driver is our goal to achieve an average PUE at or below 1.125 by 2012 across our data centers. More than that, we are on a mission to reduce the overall amount of copper and water used in these facilities. We believe these will be the next areas of industry attention when and if the energy problem is solved. So we are asking today…“how can we build a data center with less building”?

    А мы упоминали, что эта платформа будет, в общем, невероятно энергоэффективной? С точки зрения общей энергии, мы получим не только поразительные значения PUE, но общая стоимость энергии, затраченной на объект будет также значительно снижена. Сколько энергии идет на производство бетона? Нам нужно будет столько энергии? Сколько энергии идет на питание инженерных строительных машин? Это тоже будет значительно снижено! Главным стимулом является достижение среднего PUE не больше 1.125 для всех наших дата-центров к 2012 году. Более того, у нас есть задача сокращения общего количества меди и воды в дата-центрах. Мы думаем, что эти задачи станут следующей заботой отрасли после того как будет решена энергетическая проблема. Итак, сегодня мы спрашиваем себя…“как можно построить дата-центр с меньшим объемом строительных работ”?
    Строительство дата центров без чиллеров

    We have talked openly and publicly about building chiller-less data centers and running our facilities using aggressive outside economization. Our sincerest hope is that Gen 4 will completely eliminate the use of water. Today’s data centers use massive amounts of water and we see water as the next scarce resource and have decided to take a proactive stance on making water conservation part of our plan.

    Мы открыто и публично говорили о строительстве дата-центров без чиллеров и активном использовании в наших центрах обработки данных технологий свободного охлаждения или фрикулинга. Мы искренне надеемся, что Gen 4 позволит полностью отказаться от использования воды. Современные дата-центры расходуют большие объемы воды и так как мы считаем воду следующим редким ресурсом, мы решили принять упреждающие меры и включить экономию воды в свой план.

    By sharing this with the industry, we believe everyone can benefit from our methodology. While this concept and approach may be intimidating (or downright frightening) to some in the industry, disclosure ultimately is better for all of us.

    Делясь этим опытом с отраслью, мы считаем, что каждый сможет извлечь выгоду из нашей методологией. Хотя эта концепция и подход могут показаться пугающими (или откровенно страшными) для некоторых отраслевых специалистов, раскрывая свои планы мы, в конечном счете, делаем лучше для всех нас.

    Gen 4 design (even more than just containers), could reduce the ‘religious’ debates in our industry. With the central spine infrastructure in place, containers or pre-manufactured server halls can be either AC or DC, air-side economized or water-side economized, or not economized at all (though the sanity of that might be questioned). Gen 4 will allow us to decommission, repair and upgrade quickly because everything is modular. No longer will we be governed by the initial decisions made when constructing the facility. We will have almost unlimited use and re-use of the facility and site. We will also be able to use power in an ultra-fluid fashion moving load from critical to non-critical as use and capacity requirements dictate.

    Проект Gen 4 позволит уменьшить ‘религиозные’ споры в нашей отрасли. Располагая базовой инфраструктурой, контейнеры или сборные серверные могут оборудоваться системами переменного или постоянного тока, воздушными или водяными экономайзерами, или вообще не использовать экономайзеры. Хотя можно подвергать сомнению разумность такого решения. Gen 4 позволит нам быстро выполнять работы по выводу из эксплуатации, ремонту и модернизации, поскольку все будет модульным. Мы больше не будем руководствоваться начальными решениями, принятыми во время строительства дата-центра. Мы сможем использовать этот дата-центр и инфраструктуру в течение почти неограниченного периода времени. Мы также сможем применять сверхгибкие методы использования электрической энергии, переводя оборудование в режимы критической или некритической нагрузки в соответствии с требуемой мощностью.
    Gen 4 – это стандартная платформа

    Finally, we believe this is a big game changer. Gen 4 will provide a standard platform that our industry can innovate around. For example, all modules in our Gen 4 will have common interfaces clearly defined by our specs and any vendor that meets these specifications will be able to plug into our infrastructure. Whether you are a computer vendor, UPS vendor, generator vendor, etc., you will be able to plug and play into our infrastructure. This means we can also source anyone, anywhere on the globe to minimize costs and maximize performance. We want to help motivate the industry to further innovate—with innovations from which everyone can reap the benefits.

    Наконец, мы уверены, что это будет фактором, который значительно изменит ситуацию. Gen 4 будет представлять собой стандартную платформу, которую отрасль сможет обновлять. Например, все модули в нашем Gen 4 будут иметь общепринятые интерфейсы, четко определяемые нашими спецификациями, и оборудование любого поставщика, которое отвечает этим спецификациям можно будет включать в нашу инфраструктуру. Независимо от того производите вы компьютеры, ИБП, генераторы и т.п., вы сможете включать свое оборудование нашу инфраструктуру. Это означает, что мы также сможем обеспечивать всех, в любом месте земного шара, тем самым сводя до минимума затраты и максимальной увеличивая производительность. Мы хотим создать в отрасли мотивацию для дальнейших инноваций – инноваций, от которых каждый сможет получать выгоду.
    Главные характеристики дата-центров четвертого поколения Gen4

    To summarize, the key characteristics of our Generation 4 data centers are:

    Scalable
    Plug-and-play spine infrastructure
    Factory pre-assembled: Pre-Assembled Containers (PACs) & Pre-Manufactured Buildings (PMBs)
    Rapid deployment
    De-mountable
    Reduce TTM
    Reduced construction
    Sustainable measures

    Ниже приведены главные характеристики дата-центров четвертого поколения Gen 4:

    Расширяемость;
    Готовая к использованию базовая инфраструктура;
    Изготовление в заводских условиях: сборные контейнеры (PAC) и сборные здания (PMB);
    Быстрота развертывания;
    Возможность демонтажа;
    Снижение времени вывода на рынок (TTM);
    Сокращение сроков строительства;
    Экологичность;

    Map applications to DC Class

    We hope you join us on this incredible journey of change and innovation!

    Long hours of research and engineering time are invested into this process. There are still some long days and nights ahead, but the vision is clear. Rest assured however, that we as refine Generation 4, the team will soon be looking to Generation 5 (even if it is a bit farther out). There is always room to get better.


    Использование систем электропитания постоянного тока.

    Мы надеемся, что вы присоединитесь к нам в этом невероятном путешествии по миру изменений и инноваций!

    На этот проект уже потрачены долгие часы исследований и проектирования. И еще предстоит потратить много дней и ночей, но мы имеем четкое представление о конечной цели. Однако будьте уверены, что как только мы доведем до конца проект модульного дата-центра четвертого поколения, мы вскоре начнем думать о проекте дата-центра пятого поколения. Всегда есть возможность для улучшений.

    So if you happen to come across Goldilocks in the forest, and you are curious as to why she is smiling you will know that she feels very good about getting very close to ‘JUST RIGHT’.

    Generations of Evolution – some background on our data center designs

    Так что, если вы встретите в лесу девочку по имени Лютик, и вам станет любопытно, почему она улыбается, вы будете знать, что она очень довольна тем, что очень близко подошла к ‘ОПИМАЛЬНОМУ РЕШЕНИЮ’.
    Поколения эволюции – история развития наших дата-центров

    We thought you might be interested in understanding what happened in the first three generations of our data center designs. When Ray Ozzie wrote his Software plus Services memo it posed a very interesting challenge to us. The winds of change were at ‘tornado’ proportions. That “plus Services” tag had some significant (and unstated) challenges inherent to it. The first was that Microsoft was going to evolve even further into an operations company. While we had been running large scale Internet services since 1995, this development lead us to an entirely new level. Additionally, these “services” would span across both Internet and Enterprise businesses. To those of you who have to operate “stuff”, you know that these are two very different worlds in operational models and challenges. It also meant that, to achieve the same level of reliability and performance required our infrastructure was going to have to scale globally and in a significant way.

    Мы подумали, что может быть вам будет интересно узнать историю первых трех поколений наших центров обработки данных. Когда Рэй Оззи написал свою памятную записку Software plus Services, он поставил перед нами очень интересную задачу. Ветра перемен двигались с ураганной скоростью. Это окончание “plus Services” скрывало в себе какие-то значительные и неопределенные задачи. Первая заключалась в том, что Майкрософт собиралась в еще большей степени стать операционной компанией. Несмотря на то, что мы управляли большими интернет-сервисами, начиная с 1995 г., эта разработка подняла нас на абсолютно новый уровень. Кроме того, эти “сервисы” охватывали интернет-компании и корпорации. Тем, кому приходится всем этим управлять, известно, что есть два очень разных мира в области операционных моделей и задач. Это также означало, что для достижения такого же уровня надежности и производительности требовалось, чтобы наша инфраструктура располагала значительными возможностями расширения в глобальных масштабах.

    It was that intense atmosphere of change that we first started re-evaluating data center technology and processes in general and our ideas began to reach farther than what was accepted by the industry at large. This was the era of Generation 1. As we look at where most of the world’s data centers are today (and where our facilities were), it represented all the known learning and design requirements that had been in place since IBM built the first purpose-built computer room. These facilities focused more around uptime, reliability and redundancy. Big infrastructure was held accountable to solve all potential environmental shortfalls. This is where the majority of infrastructure in the industry still is today.

    Именно в этой атмосфере серьезных изменений мы впервые начали переоценку ЦОД-технологий и технологий вообще, и наши идеи начали выходить за пределы общепринятых в отрасли представлений. Это была эпоха ЦОД первого поколения. Когда мы узнали, где сегодня располагается большинство мировых дата-центров и где находятся наши предприятия, это представляло весь опыт и навыки проектирования, накопленные со времени, когда IBM построила первую серверную. В этих ЦОД больше внимания уделялось бесперебойной работе, надежности и резервированию. Большая инфраструктура была призвана решать все потенциальные экологические проблемы. Сегодня большая часть инфраструктуры все еще находится на этом этапе своего развития.

    We soon realized that traditional data centers were quickly becoming outdated. They were not keeping up with the demands of what was happening technologically and environmentally. That’s when we kicked off our Generation 2 design. Gen 2 facilities started taking into account sustainability, energy efficiency, and really looking at the total cost of energy and operations.

    Очень быстро мы поняли, что стандартные дата-центры очень быстро становятся устаревшими. Они не поспевали за темпами изменений технологических и экологических требований. Именно тогда мы стали разрабатывать ЦОД второго поколения. В этих дата-центрах Gen 2 стали принимать во внимание такие факторы как устойчивое развитие, энергетическая эффективность, а также общие энергетические и эксплуатационные.

    No longer did we view data centers just for the upfront capital costs, but we took a hard look at the facility over the course of its life. Our Quincy, Washington and San Antonio, Texas facilities are examples of our Gen 2 data centers where we explored and implemented new ways to lessen the impact on the environment. These facilities are considered two leading industry examples, based on their energy efficiency and ability to run and operate at new levels of scale and performance by leveraging clean hydro power (Quincy) and recycled waste water (San Antonio) to cool the facility during peak cooling months.

    Мы больше не рассматривали дата-центры только с точки зрения начальных капитальных затрат, а внимательно следили за работой ЦОД на протяжении его срока службы. Наши объекты в Куинси, Вашингтоне, и Сан-Антонио, Техас, являются образцами наших ЦОД второго поколения, в которых мы изучали и применяли на практике новые способы снижения воздействия на окружающую среду. Эти объекты считаются двумя ведущими отраслевыми примерами, исходя из их энергетической эффективности и способности работать на новых уровнях производительности, основанных на использовании чистой энергии воды (Куинси) и рециклирования отработанной воды (Сан-Антонио) для охлаждения объекта в самых жарких месяцах.

    As we were delivering our Gen 2 facilities into steel and concrete, our Generation 3 facilities were rapidly driving the evolution of the program. The key concepts for our Gen 3 design are increased modularity and greater concentration around energy efficiency and scale. The Gen 3 facility will be best represented by the Chicago, Illinois facility currently under construction. This facility will seem very foreign compared to the traditional data center concepts most of the industry is comfortable with. In fact, if you ever sit around in our container hanger in Chicago it will look incredibly different from a traditional raised-floor data center. We anticipate this modularization will drive huge efficiencies in terms of cost and operations for our business. We will also introduce significant changes in the environmental systems used to run our facilities. These concepts and processes (where applicable) will help us gain even greater efficiencies in our existing footprint, allowing us to further maximize infrastructure investments.

    Так как наши ЦОД второго поколения строились из стали и бетона, наши центры обработки данных третьего поколения начали их быстро вытеснять. Главными концептуальными особенностями ЦОД третьего поколения Gen 3 являются повышенная модульность и большее внимание к энергетической эффективности и масштабированию. Дата-центры третьего поколения лучше всего представлены объектом, который в настоящее время строится в Чикаго, Иллинойс. Этот ЦОД будет выглядеть очень необычно, по сравнению с общепринятыми в отрасли представлениями о дата-центре. Действительно, если вам когда-либо удастся побывать в нашем контейнерном ангаре в Чикаго, он покажется вам совершенно непохожим на обычный дата-центр с фальшполом. Мы предполагаем, что этот модульный подход будет способствовать значительному повышению эффективности нашего бизнеса в отношении затрат и операций. Мы также внесем существенные изменения в климатические системы, используемые в наших ЦОД. Эти концепции и технологии, если применимо, позволят нам добиться еще большей эффективности наших существующих дата-центров, и тем самым еще больше увеличивать капиталовложения в инфраструктуру.

    This is definitely a journey, not a destination industry. In fact, our Generation 4 design has been under heavy engineering for viability and cost for over a year. While the demand of our commercial growth required us to make investments as we grew, we treated each step in the learning as a process for further innovation in data centers. The design for our future Gen 4 facilities enabled us to make visionary advances that addressed the challenges of building, running, and operating facilities all in one concerted effort.

    Это определенно путешествие, а не конечный пункт назначения. На самом деле, наш проект ЦОД четвертого поколения подвергался серьезным испытаниям на жизнеспособность и затраты на протяжении целого года. Хотя необходимость в коммерческом росте требовала от нас постоянных капиталовложений, мы рассматривали каждый этап своего развития как шаг к будущим инновациям в области дата-центров. Проект наших будущих ЦОД четвертого поколения Gen 4 позволил нам делать фантастические предположения, которые касались задач строительства, управления и эксплуатации объектов как единого упорядоченного процесса.


    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > модульный центр обработки данных (ЦОД)

  • 40 возникать

    (= возникнуть, появляться) arise, come into existence, emerge, appear, spring up, there occur, originate, come about from
    В зависимости от... возникают три случая. - Three cases arise depending on whether...
    В основном, эти вариации возникают вследствие... - Basically, these variations result from...
    Возникает вопрос, действительно ли... - The question arises whether...
    Возникает вопрос, действительно ли... - The question now arises of whether...
    Возникает вопрос, действительно ли обратное (утверждение и т. п.) выполняется необходимо. - A question arises as to whether the converse necessarily holds.
    Возникает еще одна возможность... - A further possibility arises that...
    Все это возникает как частные случаи (чего-л). - All of these arise as particular cases of...
    Данная книга возникла в результате чтения курса в... - This book grew out of a course taught at...
    Данная концепция возникла очень давно. - The concept goes back a long way.
    Данное затруднение не возникает, когда (= если)... - This difficulty does not arise when...
    Данный вопрос возник, поскольку... - This issue is raised here because...
    Другая проблема возникает, когда... - Another problem arises when...
    Затруднение, которое мы обсуждали, не возникнет, если... - The difficulty we have been discussing will not arise if...
    Знак минус возникает, потому что... - The minus sign appears because...; The minus sign arises from the fact that...
    Из физических соображений это возникает вследствие... - Physically this arises because of...
    Из этого вытекает следующий вопрос:... - This brings up the question:...
    Имеются три важных затруднения, которые возникают при анализе... - There are three important complications which arise in the analysis of...
    Иногда у нас возникает ситуация, что... - Sometimes we have the situation that...
    Интересный случай возникает, когда... - An interesting case occurs when...
    Как указывалось выше, данный эффект возникает вследствие... - As indicated above this effect is due to...
    На самом деле, такая ситуация возникает, потому что... - Effectively, the situation arises because...
    Некоторые из этих трудностей возникают из-за того, что..., - Some of the problems arise from the fact that...
    Новое свойство возникает, когда мы рассматриваем... - A new feature appears when we consider...
    Очевидно, что эта ситуация возникает просто потому, что... - It is obvious that this situation arises simply because...
    Подобная ситуация возникнет (каждый раз), когда мы рассматриваем... - A similar situation will arise when we discuss...
    Подобные процессы просто не возникают. - Such processes simply do not occur.
    Подобный эффект возникает очень часто. - Such phenomena are of very frequent occurrence.
    Работа, представленная в данной статье, возникла путем сотрудничества между отделением... и... - The work presented in this paper came about through a collaboration between the Department of... and...
    Серьезная проблема в большинстве лабораторных измерений возникает из-за того, что... - A severe complication in most laboratory measurements arises from...
    Следовательно, в связи с..., не возникает никаких трудностей. - Therefore, no difficulties arise in connection with...
    Сложности возникают, как только мы пытаемся... - Difficulties occur as soon as we try to...
    Случай такого рода возникает, когда... - This kind of case arises when...
    Случай, вызывающий особый интерес, возникает, когда... - A case of special interest arises when...
    Существенно более серьезный недостаток (= дефект) возникает при/ когда... - A much more serious defect is encountered with...
    Теперь возникает вопрос, а действительно ли... - The question now arises as to whether...
    Теперь возникает вопрос, как могут птицы ориентироваться после захода солнца. - The question now arises as to how birds can navigate after sunset.
    Теперь мы разовьем некоторые из более простых концепций, которые возникают в/ при... - We now develop a few of the simpler concepts that arise in...
    Трудно увидеть, как эти различия возникают из
    (
    чего-л). - It is difficult to see how these differences could arise from...
    Трудность возникает, когда... - A difficulty arises when...
    Уравнение такого типа также возникает при изучении... - An equation of this type also arises in the study of...
    Эта проблема не возникает при/ когда... - This problem does not arise with...
    Эта ситуация может также возникнуть, если... - This situation may also arise if...
    Эта терминология возникла на ранних этапах становления физики элементарных частиц. - This terminology dates from the early days of particle physics.
    Эта трудность возникает вследствие использования... - This difficulty arises from the use of...
    Это возникает исключительно из... - This arises entirely from...
    Этот эффект обычно возникает, например, в окрестности... - The phenomenon commonly occurs, for example, near...

    Русско-английский словарь научного общения > возникать

См. также в других словарях:

  • Дела? Очень просто: это деньги ближних — Из комедии «Денежный вопрос» (действ. 2, сцена 7) Александра Дюма сына (1824 1895). Это традиционный в русской литературе перевод фразы, хотя, учитывая ее смысл, другая его версия была бы точнее: Бизнес? Очень просто: это деньги ближних. Смысл… …   Словарь крылатых слов и выражений

  • Просто ужас — Жанр комедия Режиссёр Александр Полынников Автор сценария Ярослав Хоречко Юрий Сотник …   Википедия

  • просто́й — 1) ая, ое; прост, проста, просто; проще, простейший. 1. Не сложный, не трудный, легко доступный для понимания, выполнения, управления и т. п. Простая задача. Простое дело. Простой чертеж. Простой механизм. □ Доводы его были сжаты, просты и ясны.… …   Малый академический словарь

  • Очень страшное кино 3 (фильм) — Очень страшное кино 3 Scary movie 3 Жанр комедия фильм ужасов Режиссёр Дэвид Цукер Продюсер …   Википедия

  • Очень страшное кино — 3 — Scary movie 3 Жанр комедия фильм ужасов Режиссёр Дэвид Цукер Продюсер …   Википедия

  • очень — Весьма, безгранично, бесконечно, крайне, невыносимо, необыкновенно, непомерно, разительно, сильно, страшно, ужасно, в высшей степени, адски, донельзя, дюже, вконец, колоссально, неимоверно, непроходимо, несказанно, чрезвычайно, больно, далеко,… …   Словарь синонимов

  • Очень страшное кино 3 — Scary movie 3 …   Википедия

  • Очень страшное кино 2 — Scary movie 2 Жанр комедия …   Википедия

  • Очень страшное кино 4 (фильм) — Очень страшное кино 4 Scary movie 4 Жанр комедия фильм ужасов Режиссёр Дэвид Цукер Продюсер …   Википедия

  • Очень страшное кино — 4 — Scary movie 4 Жанр комедия фильм ужасов Режиссёр Дэвид Цукер Продюсер …   Википедия

  • Просто неотразима — (Устоять невозможно) Simply Irresistible …   Википедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»