Перевод: с русского на английский

с английского на русский

отделяются

  • 1 название нескольких видов растений засушливых р-нов Австралии, которые отделяются от корней и перекатываются ветром

    Australian slang: roly-poly

    Универсальный русско-английский словарь > название нескольких видов растений засушливых р-нов Австралии, которые отделяются от корней и перекатываются ветром

  • 2 развитие Я

    В соответствии с современными теоретическими представлениями психический аппарат при рождении индивида находится в недифференцированном состоянии, а возможности развития Я и Оно детерминируются наследственными и конституциональными факторами. В значительной степени развитие зависит также от взаимодействия ребенка и окружения. Определенные события отражают развитие Я и проявляются не только во внешнем поведении, но и в психических состояниях.
    На ребенка устремляется поток внешних стимулов, которые, если не задерживаются стимульным барьером, могут быть для него невыносимыми. В физиологическом отношении младенец менее чувствителен к боли и другим стимулам, чем взрослый индивид. Примитивное состояние Я также помогает ребенку оградить себя от осознания неприятных стимулов, возникающих как изнутри, так и снаружи. Способность отграничивать приятное от неприятного существует чуть ли не с момента рождения, и этот опыт откладывается в следах памяти. Постепенно на основе соединения этих следов строится образ тела. Источником для этого построения служат отчасти физиологические процессы, отчасти — поддержка со стороны первого эмоционально заряженного объекта, матери. Психические репрезентации других людей поначалу фрагментарны: грудь, лицо, руки и тепло тела репрезентируют мать. Репрезентации Самости и объекта плохо дифференцированы; даже в зрелом возрасте они остаются несколько расплывчатыми и взаимозаменяемыми.
    Удовлетворение матерью физиологических потребностей младенца приводит к появлению соответствующих следов памяти, которые реактивируются в представлении об исполнении желаний, когда мать, как это неизбежно бывает, не способна немедленно удовлетворить потребности. Этот прогресс от восприятия потребности до психического состояния удовлетворения, даже если потребность на самом деле не была удовлетворена (например, при галлюцинаторном исполнении желаний), имеет антиципирующее качество условного рефлекса, но также является первой формой фантазии и мышления. Мать вступает в контакт со своим ребенком, распознавая значение его двигательной активности и эмоций; такое ее понимание и реакции на эти довербальные сигналы создают примитивную аффективно-моторную форму коммуникации между ними. Степень удовлетворения в этом взаимообмене способствует развитию способности к эмпатии в дальнейшей жизни, а также других черт характера. Ребенок улыбается в ответ на улыбку матери, и такая имитация является предшественником последующих процессов идентификации, основой дальнейшего развития Я.
    Ребенок ассоциирует повторяющиеся переживания удовольствия и боли с человеческим существом, прежде всего с матерью. Он начинает воспринимать мать как отдельного индивида в конце первого года жизни. Вначале ее отсутствие вызывает ощущение дискомфорта, сопровождающееся страхом сепарации, а присутствие посторонних людей пугает ребенка (страх незнакомца). Эти феномены знаменуют важные стадии развития Я. Начинают появляться объекты; воспоминания отделяются от текущего восприятия; развиваются предшественники защиты от болезненной стимуляции. В своем примитивном функционировании Я следует модели телесных функций: психика интроецирует (то есть "вбирает в себя", как при кормлении) все, что приятно и удовлетворяет потребности, и стремится избежать или оградить себя от осознания того, что является вредным и неприятным, или отвергает, удаляет или экстернализирует впечатления, которые неизбежно воспринимаются.
    Со второй половины первого года жизни и до трехлетнего возраста ребенок проходит стадию, описанную Малер как сепарация-индивидуация. Вырабатывается психическое понимание Самости, существующей отдельно от объекта. На протяжении второго года жизни у ребенка развивается способность оставаться в одиночестве. С этих пор он не нуждается в постоянном присутствии матери, поскольку она, так сказать, становится частью его личности: константность объекта получает свое представительство в психике ребенка. Константность объекта и взаимные удовлетворительные объектные отношения оказывают значительное влияние на развитие Я, и наоборот. Однако пресыщение по-прежнему приводит к слиянию репрезентантов Самости и объекта и к возврату к психическому состоянию, сходному с ранним единением с матерью. С другой стороны, депривация усиливает ощущение сепарации. Если мать не обеспечивает ребенка оптимальным уровнем удовлетворения влечений и фрустрации потребностей и не подкрепляет развитие его психики, то индивидуация и развитие чувства Самости и идентичности нарушаются. То есть сама идентичность индивида отчасти детерминируется уровнем удовлетворения влечений другими людьми, особенно матерью и отцом. Конфликты, связанные с подобного рода удовлетворением, могут препятствовать или облегчать идентификацию с родителем того же пола. Все люди обладают смешанными мужскими и женскими качествами, проистекающими из идентификации с обоими родителями.
    В ранней жизни ребенок не может знать, насколько он беспомощен; его потребности удовлетворяются словно по волшебству и еще не отделены от него самого; все происходит так, будто ребенок всесилен. Позже, когда появляется осознание собственной обособленности и беспомощности, ребенок наделяет всесилием своих родителей и идеализирует их. Когда же ребенок понимает степень своей зависимости от других, он начинает стремиться к тому, чтобы его любили, и ради этого готов отказаться от удовлетворения некоторых своих желаний — предшественник способности давать и принимать любовь. Это знаменует начало перехода от пассивности к активности, чему способствует развитие моторных навыков, благодаря которым ребенок получает возможность овладевать окружающим миром.
    Развитие речи в середине второго года и ее становление на третьем—пятом годах жизни сопровождается большим прогрессом процессов мышления. Первичный процесс мышления замещается вторичным; последний, однако, еще долгое время остается довольно хрупким. Во многих ситуациях свое влияние по-прежнему оказывает магическое и всемогущее мышление. Благодаря психическим репрезентантам интроецированных объектов достигается определенный контроль над побуждениями. Однако ребенок по-прежнему продолжает действовать скорее из страха перед наказанием и желания заслужить любовь, чем под влиянием чувства вины или исходя из собственного мнения. То и другое возникают лишь постепенно, достигая максимума своего развития тогда, когда происходит отказ от эдиповых желаний и у ребенка развивается идентификация с отцом (у мальчика Сверх-Я формируется в результате разрешения эдипова комплекса).
    После эдипова периода и формирования Сверх-Я возникает стадия ослабления сексуальных проявлений, длящаяся примерно с шестого года жизни до пубертата (латентный период). Реорганизация защитной структуры Я, достигаемая отчасти благодаря развитию Сверх-Я, ставит инстинктивные влечения под более надежный контроль; они становятся менее деструктивными для Я, выполняющего задачу стабилизации аффектов. Психика все более ориентируется вовне; учителя и наставники становятся объектами для эдиповых смещений и идентификаций. Мышление становится менее эгоцентричным, менее персонализированным и более конкретным; рациональное мышление и фантазии все более отделяются друг от друга. Благодаря воздействию культуры и воспитания создается возможность для сублимации и интеллектуального роста, поведение становится более устойчивым, а привычные способы реагирования превращаются в черты характера.
    В процессе развития функций Я дифференциация Самости и мира объектов обеспечивается константностью объектов и, наконец, в подростковом возрасте — способностью к объектной любви. Объектная любовь требует отказа от инфантильных объектов и чрезмерной любви к себе (нарциссизма). Если окружение является достаточно благоприятным, то индивид овладевает реальностью, учится объективно мыслить, становится все более автономным и способным эффективно регулировать влечения. Совершенствование специфических функций Я продолжается и в зрелом возрасте, когда способности индивида любить, работать и адаптироваться к окружающему внешнему миру достигают максимума.

    Словарь психоаналитических терминов и понятий > развитие Я

  • 3 апокринная железа

    Medicine: apocrine gland (железа, у которой при образовании секрета отторгаются ( отделяются) верхушечные части клеток, к апокринным железам относятся молочные и крупные потовые железы)

    Универсальный русско-английский словарь > апокринная железа

  • 4 местная изоляция (псевдоразбавление)

    Chemistry: site isolation (pseudo-dilution) (свойство твердых подложек, благодаря которому функциональные группы отделяются друг от друга полимерной конструкцией.)

    Универсальный русско-английский словарь > местная изоляция (псевдоразбавление)

  • 5 псевдоразбавление (местная изоляция)

    Chemistry: pseudo-dilution (site isolation) (свойство твердых подложек, благодаря которому функциональные группы отделяются друг от друга полимерной конструкцией.)

    Универсальный русско-английский словарь > псевдоразбавление (местная изоляция)

  • 6 старательский лоток

    Australian slang: yandy (деревянное, позже железное плоское блюдо овальной формы; при его раскачивании минералы отделяются от наносных пород)

    Универсальный русско-английский словарь > старательский лоток

  • 7 бактерии

    bacteria, ед. ч. bacterium

    Группа ( тип) микроскопических, преимущественно одноклеточных организмов, обладающих клеточной стенкой, но не имеющих оформленного ядра ( роль его выполняет молекула ДНК), размножающихся делением. Бактерии широко распространены в природе (вызывают гниение, брожение и т. д.); некоторые бактерии используются в сельском хозяйстве (см. также азотобактер), для микробиологического синтеза и др.; болезнетворные ( патогенные) бактерии – возбудители многих болезней человека, животных и растений (см. также палочки и кокки).

    Бактерии, которые могут синтезировать органические вещества из неорганичных в результате фотосинтеза или хемосинтеза (см. также автотрофы).

    Бактерии, обладающие способностью усваивать молекулярный азот воздуха и переводить его в доступные для растений формы. Играют важную роль в круговороте азота в природе (см. также азотфиксация).

    Бактерии, использующие кислород в минимальных количествах для своей жизнедеятельности (см. также анаэробы).

    Бактерии рода Clostridium (например, Clostridium acetobutylicum), у которых основными продуктами сбраживания углеводов являются ацетон и бутанол.

    Бактерии, жизнеспособные в очень кислой среде; получают энергию за счёт окисления железа, серы и других веществ; используются для выщелачивания бедных руд с целью получения меди, цинка, никеля, молибдена, урана и в молочной промышленности.

    Бактерии, которые требуют кислорода для основного ( элементарного) выживания, роста и процесса воспроизводства. Аэробные бактерии очень распространенны в природе и играют главную роль в самых разных биологических процессах (см. также аэробы).

    водородные бактерии — hydrogenotrophic bacteria, hydrogen-oxidizing bacteria

    Большая группа бактерий, способных к использованию ( окислению) молекулярного водорода. Различают анаэробные водородные бактерии, у которых окисление H2 сопровождается восстановлением сульфата до сульфита или CO2 до метана (например, Desulfovibrio vulgaris, Methanobacterium), и аэробные водородные бактерии, которые используют кислород как конечный акцептор электронов и способны к автотрофной фиксации CO2 (например, Alcaligenes eutrophus, Pseudomonas facilis и другие).

    Бактерии, обладающие способностью при росте на некоторых субстратах образовывать газ (H2, CO2 и другие). Это свойство используется как диагностический признак.

    Бактерии, живущие в средах с высоким содержанием солей; встречаются на кристаллах соли в прибрежной полосе, на солёной рыбе, на засоленных шкурах животных, на рассольных сырах, в капустных и огуречных рассолах (см. также галобактерии).

    Бактерии, использующие в качестве источника энергии и углерода углеродсодержащие ( органические) соединения (см. также гетеротрофы).

    Бактерии, которые при окрашивании по Граму могут окрашиваться как в тёмно-синий, так и в розово-красный цвет.

    Бактерии, которые при использовании окраски по Граму обесцвечиваются при промывке. После обесцвечивания они обычно окрашиваются дополнительным красителем ( фуксином) в розовый цвет. Многие грамотрицательные бактерии патогенны.

    Бактерии, которые окрашиваются по методу Грама основным красителем в тёмно-фиолетовый цвет и не обесцвечиваются при промывке.

    Бактерии, способные восстанавливать нитрат через нитрит до газообразной закиси азота (N2O) и азота (N2) (например, Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas stutzeri и другие). В отсутствие кислорода нитрат служит конечным акцептором водорода.

    Группа бактерий, для которых характерно наличие хлоросом – органелл, содержащих пигмент бактериохлорофилл.

    Бактерии, имеющие форму спирально извитых или дугообразных изогнутых палочек; обитают в водоёмах и кишечнике животных.

    клубеньковые бактерии — nodule bacteria, root nodule bacteria

    Бактерии, вызывающие образование клубеньков у бобовых растений; относятся к родам Rhizobium, Bradyrhizobium, Sinorhizobium, Azorhizobium (см. также бактероиды).

    Группа бактерий, типичными представителями которой являются роды Escherichia, Salmonella и Shigella; обитают в кишечнике животных и человека.

    Бактерии группы кишечной палочки; относятся к классу граммотрицательных бактерий, имеют форму палочек, в основном живут и размножаются в нижнем отделе пищеварительного тракта человека и большинства теплокровных животных.

    Бактерии, инфицированные умеренным фагом и включившие профаг в ДНК.

    люминесцирующие бактерии — luminescent bacteria, luminous bacteria

    Бактерии, культуры которых в присутствии кислорода светятся белым или голубоватым светом; принадлежат к различным систематическим группам. Распространены в поверхностном слое воды морей. Некоторые виды обитают в органах свечения головоногих моллюсков и рыб.

    Гетероферментативные молочнокислые бактерии рода Leuconostoc. Образуют зооглеи – скопления клеток, заключенные в одну общую капсулу. При этом слизистые экзополимеры выделяются бактериальной клеткой в большом количестве, частично отделяются от неё и образуют рыхлый слизистый слой (см. также слизь).

    Бактерии рода Clostridium (Clostridium butyricum, Clostridium pasteurianum, Clostridium pectinovorum), у которых основными продуктами сбраживания являются масляная и уксусная кислоты.

    Бактерии, для которых температурный оптимум для роста лежит в пределах от 20°C до 42°C; к мезофильным бактериям относятся большинство почвенных и водных бактерий.

    метанобразующие бактерии — methanogenic bacteria, methanogens

    Бактерии, способные получать энергию за счёт восстановления CO2 до метана; морфологически разнообразная группа, строгие анаэробы (см. также метаногены).

    метаноокисляющие бактерии — methane oxidizing bacteria, methane oxidizers

    Бактерии, специализирующиеся на использовании C1-соединений. Относятся к метилотрофным организмам.

    Бактерии, окисляющие метан, а также способные использовать метанол, метилированные амины, диметиловый эфир, формальдегид и формиат. Включают роды Methylomonas, Methylococcus, Methylosinus.

    Тривиальное название группы бактерий, образующих молочную кислоту при сбраживании углеводов. К молочнокислым бактериям относятся роды Lactobacillus и Streptococcus.

    бактерии, не образующие газа non-gas-producing bacteria

    бактерии, не способные адсорбировать фаг nonreceptive bacteria

    Бактерии, безопасные для человека, животных и растений.

    Группа бактерий с преимущественно фотогетеротрофным метаболизмом. Бактерии чувствительны к H2S, их рост подавляется низкими концентрациями сульфида.

    нитрифицирующие бактерии — nitrifying bacteria, nitrifiers

    Бактерии, получающие энергию при окислении аммиака в нитрит или нитрита в нитрат. Наиболее известные виды – Nitrosomonas europaea и Nitrobacter winogradskyi, а также виды рода Nitrosolobus (см. также нитрификация).

    Бактерии, растущие в виде длинных нитей, состоящих из цепочки клеток ( раньше их называли охровыми бактериями). Нитчатые бактерии широко распространены в водах, богатых железом, канавах, дренажных трубах и болотах. Наиболее известна Sphaerotilus natans.

    Нитчатые бактерии рода Leptothrix. Естественные места их обитания бедны пригодными для них органическими веществами, но богаты железом, поэтому органические вещества там часто образуют комплексы с железом. Из-за этого чехлы этих бактерий пронизаны и окружены частицами окиси железа.

    палочковидные бактерии — rodlike bacteria, rod-shaped bacteria, bacilli

    Самая распространенная форма бактерий. Палочковидные бактерии различаются по форме, величине в длину и ширину, по форме концов клетки, а также по взаимному расположению. Палочки могут быть правильной и неправильной формы, в том числе ветвящиеся. Общее число палочковидных бактерий значительно больше, чем кокковидных (см. также бациллы).

    Бактерии, вызывающие болезни человека, животных и растений.

    Группа бактерий (например, Mycobacterium tuberculosis, Pseudomonas aeruginosa, Serratia marcescens и другие) с яркой окраской, обусловленной пигментацией самой клетки. Среди пигментов могут встречаться представители различных классов веществ: каротиноиды, феназиновые красители, пирролы, азахиноны, антоцианы и другие.

    Бактерии родов Propionibacterium, Veillonella, Clostridium, Selemonas, Micromonospora и другие, выделяющие пропионовую и уксусную кислоты как основные продукты брожения. Обитают в рубце и кишечнике жвачных животных. В промышленности используются, например, при производстве швейцарского сыра.

    Бактерии, обладающие специальными выростами – простеками. Большинство простековых бактерий обнаружено среди олиготрофных микроорганизмов, обитающих в воде. У фотосинтезирующих зелёных бактерий рода Prosthecochloris в простеках располагаются хлоросомы, содержащие бактериохлорофилл.

    Холодолюбивые бактерии, растущие с максимальной скоростью при температурах ниже 2°C. Психрофильные бактерии составляют большую группу сапрофитических микроорганизмов – обитателей почвы, морей, пресных водоёмов, сточных вод. К ним относятся некоторые железобактерии, псевдомонады, светящиеся бактерии, бациллы и другие. Некоторые психрофильные бактерии могут вызывать порчу продуктов питания, хранящихся при низкой температуре (см. также психрофильные организмы).

    Общим для всех пурпурных бактерий Rhodospirillales является способность использовать в качестве основного источника энергии свет, но многие растут и в темноте за счёт энергии, образуемой при окислительном фосфорилировании. Их фотосинтетический аппарат находится на внутренних мембранах – тилакоидах. По способности использовать в качестве донора электронов элементарную серу в группе пурпурных бактерий выделяют два семейства: пурпурные серные бактерии и пурпурные несерные бактерии.

    Группа бактерий (например, Chromatium, Thiocapsa, Ectothiorhodospira и Thiospirillum jenense), входящая в состав пурпурных бактерий. Отличительной особенностью этой группы является внутриклеточное отложение серы, образующейся при окислении H2S.

    Бактерии, которые могут расти на простых средах, содержащих одно вещество в качестве источника углерода и энергии, а также несколько неорганических солей для обеспечения потребности в других элементах. Для многих бактерий предпочтительным источником углерода служит глюкоза.

    Бактерии, превращающие органические вещества в неорганические, участвуя тем самым в круговороте веществ в природе; к сапрофитным относятся большинство бактерий.

    Хемоорганотрофные бактерии ( роды Photobacterium и Beneckea), в основном обитающие в морях; свечение этих бактерий наблюдается только в присутствии кислорода.

    Бактерии, временно накапливающие или выделяющие серу. Для аэробных серных бактерий (роды Beggiatoa, Thiothrix, Achromatium, Thiovulum) сера служит источником энергии, для анаэробных фототрофных серных бактерий ( род Chromatium) – донором электронов. Включения серы у некоторых бактерий представляют собой продукты обеззараживания сероводорода, часто присутствующего в местах обитания этих организмов.

    Бактерии, образующие капсулу ( более или менее толстые слои сильно обводнённого материала), которая отделяется в окружающую среду в виде слизи. Известный пример слизеобразующей бактерии – Leuconostoc mesenteroides, так называемая бактерия лягушачьей икры.

    Бактерии, обладающие способностью образовывать терморезистентные споры. Аэробные и факультативно анаэробные спорообразующие бактерии сведены в роды Sporolactobacillus, Bacillus и Sporosarcina, а анаэробные – роды Clostridium и Desulfotomaculum.

    Некоторые широко распространённые бактерии, «сидящие» на стебельках из слизи. К стебельковым бактериям, образующим специальные выросты или простеки, относятся Caulobacter и другие.

    Бактерии, встречающиеся главным образом в сероводородном иле, где органические вещества подвергаются анаэробному разложению. Эти бактерии приспособлены к использованию продуктов неполного разложения углеводов. Имеют большое экономическое значение, так как с их помощью можно, например, получать сероводород, а следовательно, и серу путём восстановления сульфатов морской воды за счёт органических отходов. К важнейшим и наиболее распространённым сульфатредуцирующим бактериям относятся Desulfovibrio desulfuricans, Desulfovibrio vulgaris, Desulfotomaculum nigrificans, Desulfotomaculum orientis и другие.

    Теплолюбивые бактерии, хорошо растущие при температурах выше 40°C, для большинства из них верхний предел температуры 70°C (Thermoactinomyces vulgaris, Bacillus stearothermophilus). Некоторые термофильные бактерии способны расти при температурах более 70°C ( отдельные виды Bacillus и Clostridium), более 80°C ( Sulfolobus acidocaldarius) или даже 105°C ( Pyrodictium occultum) (см. также чёрные курильщики).

    уксуснокислые бактерии — acetic-acid bacteria, vinegar bacteria

    Группа бактерий, способных образовывать кислоты путём неполного окисления сахаров или спиртов. Конечными продуктами такого окисления могут быть уксусная, гликолевая, нейлоновая и другие кислоты. Уксусные бактерии делятся на две группы: peroxydans ( типичный представитель Gluconobacter oxydans), т. е. организмы, накапливающие уксусную кислоту в качестве промежуточного продукта, и suboxydans (например, Acetobacter aceti и Acetobacter pasteurianum), у которых уксусная кислота не окисляется дальше. Благодаря своей способности почти в стехиометрических количествах превращать органические соединения в частично окисленные органические продукты, эти бактерии имеют большое промышленное значение, в частности, используются для производства уксуса из продуктов, содержащих спирт.

    Бактерии, способные использовать свет как источник энергии, необходимой для роста. Это свойство присуще нескольким группам бактерий: 1) пурпурным, зёленым и галобактериям ( класс Anoxyphotobacteria), фотосинтез у которых протекает без выделения O2, и 2) цианобактериям ( класс Oxyphotobacteria), выделяющим O2 на свету (см. также фотосинтез).

    Большая группа хемолитотрофных бактерий, у которых CO2 является единственным и главным источником клеточного углерода. Почти все бактерии этого типа ассимилируют углерод CO2 через рибулозо-бисфосфатный цикл. Благодаря своей высокой специализации многие бактерии этой группы занимают монопольное положение в своей экологической нише.

    Бактерии, ассимилирующие органическое вещество в процессе окисления неорганического донора электронов.

    Бактерии, способные использовать неорганические ионы или соединения (ионы аммония, нитрита, сульфида, тиосульфата, сульфита, двухвалентного железа, а также элементарную серу, молекулярный водород и CO) в качестве доноров водорода или электронов, т. е. получать за счёт их окисления энергию для синтетических процессов.

    Бактерии, образующие различные красящие вещества или пигменты, вследствие чего их скопления в природе и на искусственных средах являются окрашенными в различный цвет (см. также хромобактерии).

    целлюлолитические бактерии — cellulose-fermenting bacteria, cellulolytic bacteria

    Бактерии, разлагающие целлюлозу. Целлюлолитические бактерии секретируют, в основном, эндоглюканазы, большинство из которых проявляет низкую активность по отношению к кристаллической целлюлозе; являются важным звеном в круговороте углерода в природе и существенной частью экосистемы (см. также целлюлоза).

    Русско-английский словарь терминов по микробиологии > бактерии

  • 8 ферменты

    Вещества белковой природы, присутствующие во всех живых клетках, направляющие, регулирующие и многократно ускоряющие биохимические процессы в них; играют важнейшую роль в метаболизме (см. также биокатализаторы).

    Механизм повышения активности ферментов непосредственным воздействием на него путём связывания молекулы активатора в аллостерическом сайте на фермент, что приводит к изменению конфигурации фермента и в результате – к изменению формы активного сайта. Фермент может быть активирован химической модификацией, в свою очередь активированной ферментом.

    Способность данного ферментного препарата катализировать специфическую реакцию. Активность может быть выражена числом молей превращаемого субстрата или продукта на единицу времени и единицу массы белка (например, микромоли на милиграмм белка в минуту).

    Ферменты, обнаруживающие необычные кинетические свойства в ответ на изменения в концентрации субстрата и/или в ответ на действие аллостерических эффекторов, которые не являются субстратами.

    Ферменты, участвующие в анаболических реакциях обмена веществ.

    гидролитические ферменты — hydrolytic enzymes, digestive enzymes, hydrolases

    Ферменты, катализирующие реакцию гидролиза.

    Количество фермента, которое катализирует трансформацию одного микромоля субстрата в единицу времени ( например в 1 мин) при определённой температуре, pH и концентрации субстрата.

    Форма ДНК-полимеразы, способная восстанавливать последовательности оснований.

    Механизм инактивации ферментов химическим агентом.

    Синтез фермента в ответ на действие индуцируемого агента, который стимулирует экспрессию генов, кодирующих белок со специфичной ферментной функцией.

    Ферменты, образующиеся в ответ на индуцирующий агент. Механизм индукции зависит от действия индуктора на транскрипцию и трансляцию, а не на сам фермент.

    Ферменты, участвующие в катаболических реакциях обмена веществ.

    Систематизация ферментов по субстрату, с которым они вступают в реакцию, и типу катализируемой ими реакции.

    Ферменты, образующиеся непрерывно вне зависимости от условий среды.

    Ферменты, проявляющие активность только при изменении условий.

    Ферменты, катализирующие реакцию гидролиза.

    Ферменты, локализация которых известна. Проба на эти ферменты может использоваться при выделении или очистке субклеточных фракций.

    Методы отделения и очистки ферментов, включающие отделение твёрдых веществ, мембранную фильтрацию, абсорбционную хроматографию, гель-фильтрацию и т. д.

    Ферменты, расщепляющие пектины; образуются бактериями и грибами. В промышленности для получения пектолитических ферментов используются Aspergillus niger и Sclerotinia libertiana; применяются в технических целях, например для осветления фруктовых соков (см. также пектинэстеразы).

    Ферменты, присутствующие в свободной или связанной форме в периплазматическом пространстве.

    Ферменты, гидролизующие белки с образованием аминокислот.

    Белок, связывающийся с цепочками ДНК в растущей точке вилки репликации в процессе репликации двухцепочечной ДНК.

    Фермент, сохраняющий или восстанавливающий спиральную структуру двунитевой ДНК в процессе репликации кольцеобразной молекулы ДНК.

    Ферменты с регуляторной функцией в метаболизме.

    Оптимизация процессов метаболизма, осуществляемая с помощью регуляции ферментов на двух уровнях:

    1) экспрессии генов и синтеза белка путем индукции и репрессии;

    2) на ферментном уровне путём ингибирования или активации фермента в результате связывания молекулы эффектора в аллостерическом сайте на ферменте.

    Ферменты, катализирующие замещение дефектных участков цепей двойной спирали ДНК (см. также полимераза и эндонуклеазы).

    Механизм, предотвращающий синтез ферментов путём образования репрессоров, которые связываются с ДНК, препятствуя транскрипции.

    ферменты рестрикции — restriction enzymes, restriction endonucleases

    Ферменты, катализирующие расщепление инфицирующей фаговой ДНК; благодаря своему нуклеазному действию они препятствуют проникновению чужеродной ДНК в бактериальную клетку (см. также рестриктазы и эндонуклеазы).

    Способность ферментов отличать свой истинный субстрат от других родственных молекул, обусловленная высокой специфичностью фермент-субстратных взаимодействий.

    Фермент, содержащийся в желудке млекопитающих; препарат химозин, получаемый из этого фермента, используется для свертывания молока в сыроварении.

    Активность ферментов, выраженная как количество или число молей субстрата, превращаемого в единицу времени на единицу веса белка.

    Отделение ферментов от загрязняющих материалов с целью повышения их удельной активности. Используются два способа: отделение фермента от твёрдой субстратной культуры; выделение фермента из микробных клеток. Экстрацеллюлярные ферменты отделяются простым отмыванием. Для выделения внутриклеточных ферментов клетки должны быть разрушены химическими, биохимическими или механическими методами (см. также дезинтеграция).

    Русско-английский словарь терминов по микробиологии > ферменты

  • 9 местная изоляция

    Chemistry: (псевдоразбавление) site isolation (pseudo-dilution) (свойство твердых подложек, благодаря которому функциональные группы отделяются друг от друга полимерной конструкцией.)

    Универсальный русско-английский словарь > местная изоляция

  • 10 псевдоразбавление

    Chemistry: (местная изоляция) pseudo-dilution (site isolation) (свойство твердых подложек, благодаря которому функциональные группы отделяются друг от друга полимерной конструкцией.)

    Универсальный русско-английский словарь > псевдоразбавление

  • 11 агрессины

    [лат. agressioнападение и - in(e) — суффикс, обозначающий "подобный"]
    поверхностные вещества микроорганизмов, интерферирующие с защитными факторами организма хозяина и тем самым резко усиливающие вирулентность микроба. А. неспецифически связывают антитела, не проявляя при этом прямого токсического действия. Они имеют полисахаридную или белковую природу, хорошо растворяются в жидкостях организма, легко отделяются от бактериальной клетки и способны к диффузии по организму. Термин "A." предложил О. Байль в 1905 г.

    Толковый биотехнологический словарь. Русско-английский. > агрессины

  • 12 мини-клетки

    [англ. mini — составная часть сложных слов, обозначающая "малого размера", "малой части"]
    1) небольшая часть протоплазмы целой клетки, которая содержит меньше, чем гаплоидное число хромосом;
    2) мелкие клетки сферической формы, которые постоянно образуются в период роста некоторых мутантных штаммов бактерий и легко отделяются от нормальных по размеру клеток при центрифугировании в градиенте плотности. М.-к. содержат только плазмиды и в отличие от макси-клеток (см. макси-клетки) полностью лишены хромосомной ДНК; используются для обнаружения экспрессии плазмидных генов и характеристики белков, кодируемых этими генами;

    Толковый биотехнологический словарь. Русско-английский. > мини-клетки

  • 13 селекция in vitro

    = эволюция in vitro, систематическая эволюция лигандов при экспоненциальном обогащении
    [лат. selectio — выбор, отбор; лат. in vitro — в пробирке]
    метод, основанный на использовании комбинаторной библиотеки, состоящей из огромного числа отличающихся по нуклеотидной последовательности дезокси- или рибоолигонуклеотидов (10 12 —10 15 видов молекул), для селекции (см. селекция) в ней единичных олигонуклеотидов — аптамеров (см. аптамеры), которые способны специфически взаимодействовать с определенными молекулами лиганда (низкомолекулярные вещества, высокомолекулярные соединения, включая белки и нуклеиновые кислоты, вирусные частицы и даже клетки) с высоким сродством и специфичностью. Отбор аптамеров осуществляется с помощью нескольких раундов, каждый из которых состоит из трех стадий: а) библиотека олигонуклеотидов инкубируется с молекулой-мишенью; б) комплексы олигонуклеотидов с мишенью отделяются от несвязавшихся олигонуклеотидов и в) производится амплификация связавшихся с мишенью олигонуклеотидов. В результате происходит постепенное обогащение библиотеки олигонуклеотидов отдельными олигонуклеотидами, обладающими повышенным сродством к молекуле-мишени. Метод предложен в 1990 г. независимо Г. Джоисом, Дж. Шостаком и Л. Голдом.

    Толковый биотехнологический словарь. Русско-английский. > селекция in vitro

  • 14 компромиссное образование

    Идеационные, аффективные и поведенческие результирующие попыток разрешения конфликта между психическими силами или между психикой и внешним миром. Компромиссное образование возникает в результате того, что проявления-дериваты инстинктивных влечений (желания и фантазии) сталкиваются с ограничениями со стороны Я или запретами со стороны Сверх-Я; конфликт завершается тем, что они отделяются от сознания. Разрешение такого конфликта предполагает реорганизацию внутренних сил, при которой возникает возможность приемлемого выражения и проявления каждого из соперничающих интересов в соответствии с принципом множественного функционирования (Waelder, 1930). Компромиссные образования включают динамически активные составляющие, которые проистекают как из психических сил (Оно, Я, Сверх-Я), так и из внешней реальности. Например, фантазия отражает не только желание, но и вызывающую страх опасность, защитные действия и наказание; таким образом, сознание становится толерантным по отношению к фантазии. Компромиссные образования могут принимать различные формы: черт характера, идентичности, самооценки, сублимированного поведения, символов, фантазий, симптомов или симптоматических действий, сновидений, ошибочных действий, переноса или некоторых интрапсихических паттернов, которые могут иметь структурное значение в качестве компонентов Сверх-Я (см. Brenner, 1982). Компромиссные образования могут сохранять свое значение продолжительное время или же представлять собой лишь неустойчивые комбинации, наблюдаемые во время аналитического процесса. Поскольку компромиссные образования участвуют в формировании сопротивления анализу, необходимо выявлять компоненты защиты против возникающих специфических дериватов влечений.
    Не всякое поведение является результатом компромиссных образований. В 1939 году Гартманн сформулировал положение о существовании свободной от конфликтов сферы Я с относительно независимыми функциями; соответствующая активность не рассматривается как компромиссное образование.
    \
    Лит.: [30, 131, 151, 303, 312, 408, 850]

    Словарь психоаналитических терминов и понятий > компромиссное образование

  • 15 double ring-tail function

    функция двойного обрамления (функция, отображающая заданное двоичное число в двоичное число той же длины и с той же средней частью, но с начальной и конечной частями, образуемыми последовательностями единиц, которые отделяются от средней части одним нулём; параметрами такого отображения -20- являются длина слова т, длина начальной части m-g-1 и длина средней части g-h-i; пример: при m=8, g=6 и h=2 исходное слово x=01101100 отображается в слово 1010111

    Англо-русский словарь промышленной и научной лексики > double ring-tail function

  • 16 пакеты заготовок

    Укладываемые вплотную друг к другу графитируемые блоки в печи графитации. В общем керне печи эти пакеты отделяются друг от друга пересыпочным материалом.

    Углеродные материалы > пакеты заготовок

  • 17 амальгамация

    1. amalgamation

     

    амальгамация
    Способ извлеч. металлов, преимущ. благородных, при к-ром металлы руд, смачиваясь ртутью, образуют амальгамы и отделяются от пустой породы и песка. А. наз. внутр., когда произвел одноврем. с измельчением руды (в мельницах, бегунных чашах и др.), и внеш. — на обогатительных шлюзах. При продвижении смеси измельч. руды с водой по шлюзу металлы улавливаются ртутью, нанес. на медные (иногда посеребр.) листы. Кроме извлечения благородных металлов а. применяют для переработки отходов легких металлов, электролитич. получения редких элементов и др.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > амальгамация

  • 18 минералогия

    1. mineralogy

     

    минералогия
    Наука о прир. химич. соединениях — минералах, особенностях и закономерностях физич. строения (структуры), а тж. об условиях образования и изменения в природе. Гл. задача м. — создание науч. основ для поисков и оценки месторождений полезных ископаемых, их обогащения для практич. использования в народном хозяйстве, м. — одна из старейших гелог. наук, по мере развития к-рой от нее отделяются и развиваются новые самостоят, науки. Так, в XIX в. из м. выделились кристалло- и петрография, в нач. XX в. — гео-, а затем кристаллохимия. М. наиб. широко использует законы и методы соврем. физики и химии, во многих отношениях она находится на стыке геолог. и физ.-хим. циклов. Круг вопросов, охватываемых м., сложность и разнообразие минералов, а тж. методов их изучения, все расширяющаяся сфера исследований, потребности практики геологоразвед. работ определили направления м.: описат. м., генетич. м., экперимент. м., прикл. и технико-экономич. м., регион, м., м. космич. тел.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > минералогия

  • 19 типовое окончание

    1. final digits

    3.4.11 типовое окончание (final digits): Особый специальный определитель, который при индексировании присоединяется справа к индексу УДК без опознавательных знаков.

    Примечание - В таблицах специальных определителей типовые окончания отделяются от индекса раздела многоточием.

    Источник: ГОСТ 7.90-2007: Система стандартов по информации, библиотечному и издательскому делу. Универсальная десятичная классификация. Структура, правила ведения и индексирования оригинал документа

    Русско-английский словарь нормативно-технической терминологии > типовое окончание

  • 20 листоотделяющие устройства

    1. Vereinzelungselemente
    2. Separating elements

    3.9 листоотделяющие устройства (Separating elements; Vereinzelungselemente): Элементы самонаклада листов, заготовок или других подобных материалов, с помощью которых отдельные листы, заготовки и т.д. отделяются от стапеля и подаются в машину.

    Источник: ГОСТ Р ЕН 1010-1-2009: Оборудование полиграфическое. Требования безопасности для конструирования и изготовления. Часть 1. Общие требования

    Русско-английский словарь нормативно-технической терминологии > листоотделяющие устройства

См. также в других словарях:

  • Ткани животные* — I. Эпителиальная Т. Плоский и призматический эпителий. Питание эпителиальной Т. Развитие эпителия. Железистый эпителий. II. Соединительная Т. 1) собственно соединительная Т.: а) эмбриональная, b) ретикулярная, с) волокнистая, d) эластическая, е)… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Ткани животные — I. Эпителиальная Т. Плоский и призматический эпителий. Питание эпителиальной Т. Развитие эпителия. Железистый эпителий. II. Соединительная Т. 1) собственно соединительная Т.: а) эмбриональная, b) ретикулярная, с) волокнистая, d) эластическая, е)… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Пшеница — (Wheat) Пшеница это широко распространенная зерновая культура Понятие, классификация, ценность и питательные свойства сортов пшеницы Содержание >>>>>>>>>>>>>>> …   Энциклопедия инвестора

  • Альпы горная система Европы — самая обширная горная система Европы, составляющая собственно ядро этой части света, занимает площадь приблизительно в 300 тыс. кв. км (без предгорий 200 тыс.), лежит посередине между экватором и северным полюсом, между 43° и 48° с. ш. и 37° в. д …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Альпы — самая обширная горная система Европы, составляющая собственно ядро этой части света, занимает площадь приблизительно в 300 т. кв. км (без предгорий 200 т.), лежит посередине между экватором и сев. полюсом, между 43° и 48° с. ш. и 37° в. д., и… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Подсемейство Газели (Antilopinae) —          Со словом «газель» у нас ассоциируется представление о стройном, изящном и грациозном животном. Действительно, все антилопы, входящие в это подсемейство, необычайно стройного и легкого сложения, с красиво поднятой головой, украшенной… …   Биологическая энциклопедия

  • Семейство бриопсидовые (Bryopsidaceae) —         Это семейство охватывает четыре рода, тесно связанные между собой.         Род дербезия (Derbesia) включает нитчатые водоросли, распространенные не только в тропических, но и в умеренных морях. Слоевище их состоит из стелющихся и… …   Биологическая энциклопедия

  • Запятая — в русской системе интерпункции имеет следующее употребление. Главные и второстепенные члены простого предложения не отделяются друг от друга никакими знаками препинания. Когда простое предложение начинает осложняться в своем составе и… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Запятая — в русской системе интерпункции имеет следующее употребление. Главные и второстепенные члены простого предложения не отделяются друг от друга никакими знаками препинания. Когда простое предложение начинает осложняться в своем составе и… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Лен растение из семейства льновых — (Linum L.) род растений из семейства льновых (см.). Однолетние и многолетние травы с цельными листьями, расположенными поочередно или изредка противоположно. Цветы строго пятерные. Кроме 5 развитых тычинок, имеется 5 недоразвитых в виде зубчиков… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Огородничество — представляет собой интенсивную культуру различных съедобных растений, по большей части, на огороженных (см. Огород) участках земли, лежащих вблизи усадьбы. В прежнее время О. в России служило лишь для удовлетворения домашних потребностей и резко… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»