Перевод: со всех языков на русский

с русского на все языки

оборудование+для+монтажа

  • 41 moving-field therapy installation

    English-Russian big medical dictionary > moving-field therapy installation

  • 42 component-placement equipment

    Универсальный англо-русский словарь > component-placement equipment

  • 43 equipment for the assembly and repair of power stations and power supply systems

    Универсальный англо-русский словарь > equipment for the assembly and repair of power stations and power supply systems

  • 44 marine riser handling equipment

    Универсальный англо-русский словарь > marine riser handling equipment

  • 45 marine riser-handling equipment

    Нефтегазовая техника оборудование для монтажа и демонтажа водоотделяющей колонны

    Универсальный англо-русский словарь > marine riser-handling equipment

  • 46 marine rising handling equipment

    Универсальный англо-русский словарь > marine rising handling equipment

  • 47 placement equipment

    Универсальный англо-русский словарь > placement equipment

  • 48 riser handling tool

    Универсальный англо-русский словарь > riser handling tool

  • 49 component-insertion equipment

    = component-placement equipment микр. оборудование для монтажа компонентов

    English-Russian electronics dictionary > component-insertion equipment

  • 50 component-insertion equipment

    = component-placement equipment; микр. оборудование для монтажа компонентов

    The New English-Russian Dictionary of Radio-electronics > component-insertion equipment

  • 51 paste-up

    English-Russian base dictionary > paste-up

  • 52 advertisement paste-up

    English-Russian big polytechnic dictionary > advertisement paste-up

  • 53 newspaper paste-up

    English-Russian big polytechnic dictionary > newspaper paste-up

  • 54 equipment

    air equipment — оборудование с пневмодвигателем, пневматическое оборудование

    air handling equipment — вентиляционное оборудование, оборудование для транспортирования и обработки воздуха

    compaction equipment — уплотнительное оборудование, оборудование для уплотнения

    compressed-air equipment — оборудование с пневмодвигателем, пневматическое оборудование

    construction equipment — строительное оборудование, строительные машины

    earthmoving equipment — землеройно-транспортные машины, машины для перевозки грунта

    fire control portable equipment — портативное противопожарное оборудование, портативный противопожарный инвентарь

    fire-protection equipment — противопожарное оборудование; оборудование пожаротушения

    front-end equipment — передненавесное оборудование, передненавесные орудия

    high-pressure equipment — оборудование, работающее под высоким давлением

    hoisting equipment — подъёмное оборудование; подъёмно-транспортное оборудование

    measuring equipment — измерительное оборудование, измерительные приборы

    monitoring equipment — контрольное оборудование; контрольная аппаратура

    office equipment — конторское оборудование; оргтехника

    pile driving equipment — оборудование для погружения свай; сваебойное оборудование

    pneumatic equipment — оборудование с пневмоприводом, пневматическое оборудование

    portable equipment — переносное оборудование; ручные машины

    safety equipment — средства защиты работающих; защитные средства; защитные приспособления

    signaling equipment — сигнальное оборудование, сигнальные устройства

    stressing equipment — оборудование для создания предварительного напряжения, оборудование для натяжения преднапрягаемой арматуры

    vandal-proof equipment — оборудование, защищённое от повреждений при актах вандализма

    vehicle-mounted equipment — оборудование, смонтированное на базовой машине

    water-borne equipment — оборудование для работы на плаву; плавучее оборудование

    English-Russian big polytechnic dictionary > equipment

  • 55 user

    1. потребитель
    2. пользователь системы телеобработки данных (вычислительной сети)
    3. пользователь системы обработки информации
    4. пользователь информации
    5. пользователь (информационной системы)
    6. пользователь
    7. персонал потребителя
    8. меню пользователя
    9. абонент

     

    абонент
    пользователь

    Лицо (группа лиц, организация), имеющее право на пользование услугами вычислительной системы.
    [ http://www.morepc.ru/dict/term14075.php]

    абонент
    пользователь

    user
    1. Физическое лицо, учреждение или компания, пользующиеся услугами, предоставляемыми компьютерными или телекоммуникационными системами. При переводе на русский язык слово user имеет два значения, различие между которыми определяется практикой заказа услуг. Термин “абонент” чаще употребляют, когда речь идет о владельце средств связи и лицах, вносящих абонентскую плату за использование каналов связи. Термин “пользователь” ближе к понятию конечный потребитель услуг и отражает активный характер использования системы: организация сеансов связи, ведение диалога с системой и т.п.
    2. Терминалы, компьютеры или датчики, которые могут обмениваться информацией друг с другом через сеть связи.
    3. Процессы, программы, принадлежащие одной системе, но использующие ресурсы другой системы.
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    абонент
    party
    Участник сеанса связи или сторона, принимающая (передающая) вызов.
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    абонент
    subscriber
    Пользователь, имеющий право доступа к системе связи или передачи информации.
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    абонент
    Устройство, юридическое лицо, физическое лицо, имеющее право на взаимодействие с информационным объектом, предоставляющим услуги - системой, сетью, комплексом [http://www.rol.ru/files/dict/internet/].
    [ http://www.morepc.ru/dict/]

    абонент
    Лицо или учреждение, получившее после авансового платежа право пользования на определенный срок (абонемент) услугами, предоставляемыми выдавшей абонемент организации.
    [ОАО РАО "ЕЭС России" СТО 17330282.27.010.001-2008]

    Тематики

    Синонимы

    EN

     

    меню пользователя

    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

     

    персонал потребителя

     


    Оперативный и оперативно-ремонтный персонал потребителя или объекта даже при наличии аварийного освещения должен быть снабжен переносными электрическими фонарями с автономным питанием.
    Обо всех неисправностях в работе установок рекламного освещения и повреждениях (мигание, частичные разряды и т.п.) оперативный или оперативно-ремонтный персонал потребителя обязан немедленно сообщить об этом своим руководящим работникам и принять меры к их устранению.

    [ПТЭЭП - Правила технической эксплуатации электроустановок потребителей]


    Персонал потребителя, обслуживающий трансформаторы, обязан поддерживать соответствие между напряжением сети и напряжением, установленным на регулировочном ответвлении.
    [ПТЭЭП - Правила технической эксплуатации электроустановок потребителей]


    EN

     

    пользователь
    Пользователями платежной системы являются как участники, так и клиенты, которым они предоставляют платежные услуги. См. также клиент, прямой участник, прямой участник/член, непрямой участник/член, участник/член.
    [Глоссарий терминов, используемых в платежных и расчетных системах. Комитет по платежным и расчетным системам Банка международных расчетов. Базель, Швейцария, март 2003 г.]

    Тематики

    EN

     

    пользователь
    Некто (или нечто), выдающий команды и сообщения информационной системе и получающий сообщения от информационной системы.
    [ ГОСТ 34.320-96]

    Тематики

    EN

     

     

    пользователь информации
    Субъект, пользующийся информацией, полученной от ее собственника, владельца или посредника в соответствии с установленными правами и правилами доступа к информации либо с их нарушением [5].
    [ ГОСТ Р 50922-96]
    [ОСТ 45.127-99]

    пользователь информации
    потребитель информации
    Субъект, обращающийся к информационной системе или к посреднику за получением необходимой ему информации и пользующийся ею.
    [ http://slovar-lopatnikov.ru/]

     

     

    Тематики

    Синонимы

    EN

     

    пользователь системы обработки информации
    Юридическое или фактическое лицо, применяющее систему обработки информации.
    [ ГОСТ 15971-90]

    Тематики

    EN

     

    пользователь системы телеобработки данных (вычислительной сети)
    пользователь

    Юридическое или фактическое лицо, пользующееся услугами, предоставляемыми системой телеобработки данных (вычислительной сетью).
    [ ГОСТ 24402-88]

    Тематики

    Синонимы

    EN

     

    потребитель
    Гражданин, получающий, заказывающий либо имеющий намерение получить или заказать услуги для личных нужд.
    [ ГОСТ Р 50646-94]

    потребитель
    Получатель продукции, предоставляемой поставщиком.
    Примечания
    1 В контактной ситуации потребитель может быть назван покупателем.
    2 Потребителем может быть, например, конечный потребитель, пользователь, льготно обслуживаемый потребитель или покупатель.
    3 Потребитель может быть или внешним, или внутренним.
    [ИСО 8402-94]

    потребитель
    Организация или лицо, получающие продукцию.
    Пример
    Клиент, заказчик, конечный пользователь, розничный торговец, бенефициар и покупатель.
    Примечание
    Потребитель может быть внутренним или внешним по отношению к организации.
    [ ГОСТ Р ИСО 9000-2008]

    потребитель
    Пользователь электрооборудования.
    [ ГОСТ Р МЭК 60050-426-2006]

    потребитель

    Субъект, который использует машину и связанное с ней электрическое оборудование.
    [ ГОСТ Р МЭК 60204-1-2007]

    потребитель
    Сторона, предъявляющая требования к машинам, оборудованию, системам и компонентам и оценивающая соответствие продукции этим требованиям.
    [ГОСТ ИСО / ТО 10949- 2007]

    потребитель
    Лицо (или компания), имеющее намерение заказать или приобрести либо заказывающий, приобретающий или использующий товары (работы, услуги) для собственных нужд.
    [ http://slovar-lopatnikov.ru/]


    Тематики

    EN

    4.53 пользователь (user): Лицо или группа лиц, извлекающих пользу из системы в процессе ее применения.

    Примечание - Роль пользователя и роль оператора могут выполняться одновременно или последовательно одним и тем же человеком или организацией.

    Источник: ГОСТ Р ИСО/МЭК 12207-2010: Информационная технология. Системная и программная инженерия. Процессы жизненного цикла программных средств оригинал документа

    4.22 пользователь (user): Лицо или группа лиц, извлекающих пользу в процессе применения системы.

    Примечание - Роль пользователя и роль оператора может выполняться одновременно или последовательно одним и тем же лицом или организацией.

    Источник: ГОСТ Р ИСО/МЭК 15288-2005: Информационная технология. Системная инженерия. Процессы жизненного цикла систем оригинал документа

    4.52 пользователь (user): Лицо или организация, которые используют действующую систему для выполнения конкретной функции (3.34 ГОСТ Р ИСО/МЭК 12207).

    Примечание - см. также 4.3.

    Источник: ГОСТ Р ИСО/МЭК 15910-2002: Информационная технология. Процесс создания документации пользователя программного средства оригинал документа

    3.34 пользователь (user): Лицо или организация, которое использует действующую систему для выполнения конкретной функции.

    Примечание - Пользователь может также выполнять и другие роли, например, заказчика, разработчика или сопровождающего персонала.

    Источник: ГОСТ Р ИСО/МЭК 12207-99: Информационная технология. Процессы жизненного цикла программных средств оригинал документа

    1.2.13.6 пользователь (user): Любое лицо, не относящееся к обслуживающему персоналу. Термин «пользователь» в настоящем стандарте полностью соответствует термину «оператор», и оба этих термина взаимозаменяемы.

    Источник: ГОСТ Р МЭК 60950-1-2009: Оборудование информационных технологий. Требования безопасности. Часть 1. Общие требования оригинал документа

    1.2.13.6 пользователь (user): Любое лицо, не относящееся к обслуживающему персоналу. Термин «пользователь» в настоящем стандарте полностью соответствует термину «оператор», и оба этих термина взаимозаменяемы.

    Источник: ГОСТ Р МЭК 60950-1-2005: Оборудование информационных технологий. Требования безопасности. Часть 1. Общие требования оригинал документа

    2.50 потребитель (user): Лицо, группа или организация, получающие выгоду от доставки питьевой воды (2.11) и связанных с этим услуг (2.44) или мероприятий по удалению сточных вод (2.51).

    Примечание 1 - Потребители являются одной из категорий заинтересованных сторон (2.47).

    Примечание 2 - Потребители могут относиться к разным экономическим секторам: бытовые потребители, торговля, промышленность, сфера услуг, сельское хозяйство.

    Примечание 3 - Термин consumer (потребитель) тоже может использоваться, но в большинстве стран относительно коммунальных услуг более часто употребляется термин user. Первый термин не подходит для услуг, связанных с удалением сточных вод.

    Источник: ГОСТ Р ИСО 24511-2009: Деятельность, связанная с услугами питьевого водоснабжения и удаления сточных вод. Руководящие указания для менеджмента коммунальных предприятий и оценке услуг удаления сточных вод оригинал документа

    2.50 потребитель (user): Лицо, группа или организация, получающие выгоду от доставки питьевой воды (2.11) и связанных с этим услуг (2.44) или мероприятий по удалению сточных вод (2.51).

    Примечание 1 - Потребители являются одной из категорий заинтересованных сторон (2.47).

    Примечание 2 - Потребители могут относиться к разным экономическим секторам: бытовые потребители, торговля, промышленность, сфера услуг, сельское хозяйство.

    Примечание 3 - Термин consumer (потребитель) тоже может использоваться, но в большинстве стран относительно коммунальных услуг более часто употребляется термин user. Первый термин не подходит для услуг, связанных с удалением сточных вод.

    Источник: ГОСТ Р ИСО 24512-2009: Деятельность, связанная с услугами питьевого водоснабжения и удаления сточных вод. Руководящие указания для менеджмента систем питьевого водоснабжения и оценке услуг питьевого водоснабжения оригинал документа

    7. Пользователь системы телеобработки данных (вычислительной сети)

    Пользователь

    User

    Юридическое или фактическое лицо, пользующееся услугами, предоставляемыми системой телеобработки данных (вычислительной сетью)

    Источник: ГОСТ 24402-88: Телеобработка данных и вычислительные сети. Термины и определения оригинал документа

    3.23 пользователь (user): Организация или лицо, покупающие или приобретающие иным образом крепежные изделия и использующие их для монтажа или ремонта и технического обслуживания.

    Источник: ГОСТ Р ИСО 16426-2009: Изделия крепежные. Система обеспечения качества оригинал документа

    2.50 потребитель (user): Лицо, группа или организация, получающие выгоду от доставки питьевой воды (2.11) и связанных с этим услуг (2.44) или мероприятий по удалению сточных вод (2.51).

    Примечание 1 - Потребители являются одной из категорий заинтересованных сторон (2.47).

    Примечание 2 - Потребители могут относиться к разным экономическим секторам: бытовые потребители, торговля, промышленность, сфера услуг, сельское хозяйство.

    Примечание 3 - Термин consumer (потребитель) тоже может использоваться, но в большинстве стран относительно коммунальных услуг более часто употребляется термин user. Первый термин не подходит для услуг, связанных с удалением сточных вод.

    Источник: ГОСТ Р ИСО 24510-2009: Деятельность, связанная с услугами питьевого водоснабжения и удаления сточных вод. Руководящие указания по оценке и улучшению услуги, оказываемой потребителям оригинал документа

    3.8 пользователь (user): Человек, взаимодействующий с интерактивной системой.

    Примечание - Адаптированный термин ИСО 9241-11:1998, 3.7.

    Источник: ГОСТ Р ИСО 9241-110-2009: Эргономика взаимодействия человек-система. Часть 110. Принципы организации диалога оригинал документа

    3.1.52 пользователь (user): Источник деловых инициатив, которым должен соответствовать профиль СОС организации-пользователя и реализацию которых этот профиль должен обеспечивать. В настоящих рекомендациях понятия пользователь и организация-пользователь взаимозаменяемы.

    Источник: Р 50.1.041-2002: Информационные технологии. Руководство по проектированию профилей среды открытой системы (СОС) организации-пользователя

    3.6 пользователь (user): Лицо, взаимодействующее с продукцией, услугой или средой жизнедеятельности.

    Примечание - Адаптировано из ИСО 9241-11:1998.

    Источник: ГОСТ Р 54937-2012: Руководящие указания для разработчиков стандартов, направленные на удовлетворение потребностей пожилых людей и инвалидов оригинал документа

    48. Пользователь системы обработки информации

    User

    Юридическое или фактическое лицо, применяющее систему обработки информации

    Источник: ГОСТ 15971-90: Системы обработки информации. Термины и определения оригинал документа

    3.4.23 пользователь (user): Физическое или юридическое лицо, которое использует продукцию или процесс.

    Источник: ГОСТ Р 54147-2010: Стратегический и инновационный менеджмент. Термины и определения оригинал документа

    Англо-русский словарь нормативно-технической терминологии > user

  • 56 système de conditionnement d'air

    1. система кондиционирования воздуха

     

    система кондиционирования воздуха
    Совокупность воздухотехнического оборудования, предназначенная для кондиционирования воздуха в помещениях
    [ ГОСТ 22270-76]

    система кондиционирования воздуха

    Совокупность технических средств для обработки и распределения воздуха, а также автоматического регулирования его параметров с дистанционным управлением всеми процессами
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    система кондиционирования воздуха

    Комбинация всех компонент, необходимых для обработки воздуха, в процессе которой осуществляется контроль или понижение температуры, возможно, в комбинации с контролем вентиляции, влажности и чистоты воздуха.
    [ДИРЕКТИВА 2002/91/ЕС ЕВРОПЕЙСКОГО ПАРЛАМЕТА И СОВЕТА от 16 декабря 2002 г. по энергетическим характеристикам зданий]


    КЛАССИФИКАЦИЯ



    Классификация систем кондиционирования воздуха

    М. Г. Тарабанов, директор НИЦ «ИНВЕНТ», канд. техн. наук, вице-президент НП «АВОК», лауреат премии НП «АВОК» «Медаль имени И. Ф. Ливчака», «Медаль имени В. Н. Богословского», otvet@abok.ru

    Общие положения

    Краткий, но достаточно полный обзор истории развития кондиционирования воздуха представлен в работе А. И. Липы [1], поэтому отметим только несколько моментов. Родоначальником техники кондиционирования воздуха в ее современном понимании считается американский инженер Виллис Хэвилэнд Кэрриер (Willis Haviland Carrier), который в 1902 году в Нью-Йорке в Бруклинской типографии применил поверхностный водяной воздухоохладитель с вентилятором для получения летом в помещении температуры +26,5 °C и относительной влажности 55 %. Вода охлаждалась в аммиачной холодильной машине. Зимой для увлажнения внутреннего воздуха до 55 % использовался водяной пар от бойлера.
    Термин «кондиционирование воздуха» был предложен в 1906 году Стюартом Уорреном Крамером (Stuart Warren Cramer).
    В отечественной практике некоторые авторы применяют термин «кондиционирование микроклимата». Заметим, что этот термин отличается от «кондиционирования воздуха», так как включает в себя дополнительные факторы, не связанные с состоянием воздушной среды в помещении (шум, инсоляция и др.).
    К сожалению, несмотря на солидный возраст термин «кондиционирование воздуха» не получил четкого определения в современных отечественных нормативных документах. Для устранения этого пробела сформулируем: «Кондиционирование воздуха – это создание и автоматическое поддержание в обслуживаемом помещении или технологическом объеме требуемых параметров и качества воздуха независимо от внутренних возмущений и внешних воздействий». К параметрам воздуха относятся: температура, относительная влажность или влагосодержание и подвижность. Качество воздуха включает в себя газовый состав, запыленность, запахи, аэроионный состав, т. е. более широкий круг показателей, чем термин «чистота», используемый в [2].
    Комплекс оборудования, элементов и устройств, с помощью которых обеспечивается кондиционирование воздуха в обслуживаемых помещениях, называется системой кондиционирования воздуха (СКВ).
    Приведенное выше определение системы кондиционирования воздуха по смыслу полностью совпадает с определением ASHRAE: «”air-conditioning system” – комплекс оборудования для одновременной обработки и регулирования температуры, влажности, чистоты воздуха и распределения последнего в соответствии с заданными требованиями» [3].
    Общепринятого, устоявшегося мнения, что следует включать в состав СКВ, к сожалению, нет.
    Так, например, по мнению О. Я. Кокорина [4] СКВ может включать в себя:

    • установку кондиционирования воздуха (УКВ), обеспечивающую необходимые кондиции воздушной среды по тепловлажностным качествам, чистоте, газовому составу и наличию запахов;
    • средства автоматического регулирования и контроля за приготовлением воздуха нужных кондиций в УКВ, а также для поддержания в обслуживаемом помещении или сооружении постоянства заданных кондиций воздуха;
    • устройства для транспортирования и распределения кондиционированного воздуха;
    • устройства для транспортирования и удаления загрязненного внутреннего воздуха;
    • устройства для глушения шума, вызываемого работой элементов СКВ;
    • устройства для приготовления и транспортирования источников энергии, необходимых для работы аппаратов в СКВ.

    В зависимости от конкретных условий некоторые составные части СКВ могут отсутствовать.
    Однако согласиться с отдельными пунктами предложенного состава СКВ нельзя, так как если следовать логике автора [4], то в состав СКВ должны войти и системы оборотного водоснабжения, водопровода и канализации, ИТП и трансформаторные, которые также необходимы для работы аппаратов в СКВ.
    Достаточно полное представление о структуре СКВ дает разработанная во ВНИИкондиционере «Блок-схема системы кондиционирования воздуха» (рис. 1) [5].

    4804

    Включенные в эту блок-схему подсистемы обработки воздуха по своему функциональному назначению делятся на блоки:

    • основной обработки и перемещения: Б1.1 – приемный, Б1.8 – очистки, Б1.2 – сухого (первого) подогрева, Б1.3 – охлаждения, Б1.6 – тепловлажностной обработки, Б1.9 – перемещения приточного воздуха;
    • дополнительной обработки и перемещения: Б2.1 – утилизации, Б2.2 – предварительного подогрева, Б2.3 – доводки общей (второй подогрев, дополнительное охлаждение), Б2.4 – зональной доводки, Б2.5 – местной доводки (эжекционные доводчики и др.), Б2.7 – шумоглушения, Б2.8 – перемещения рециркуляционного воздуха;
    • специальной обработки: Б5.5 – тонкой очистки;
    • воздушной сети: Б4.2 – воздухораспределительных устройств, Б4.3 – вытяжных устройств, Б4.5 – воздуховодов;
    • автоматизации – арматуры – Б3.1.

    Помимо этих блоков в СКВ может входить система холодоснабжения (снабжение электроэнергией и теплом осуществляется, как правило, централизованно). Ее включение в состав СКВ, видимо, относится к автономным кондиционерам (см. далее).
    Для определения состава оборудования, входящего в СКВ, и границ раздела целесообразно воспользоваться делением на разделы, которое сложилось в практике проектирования.
    В частности, при выполнении проектов кондиционирования воздуха достаточно серьезных объектов обычно выделяют в самостоятельные разделы: теплоснабжение СКВ; холодоснабжение и холодильные центры; электроснабжение; автоматизация; водоснабжение, в том числе оборотное, канализация и дренаж.
    Причем по каждому из разделов составляют свою спецификацию, в которую включено оборудование, материалы и арматура, относящиеся к своему конкретному разделу.
    Таким образом, в состав СКВ следует включить:

    • УКВ, предназначенную для очистки и тепловлажностной обработки и получения необходимого качества воздуха и его транспортировки по сети воздуховодов до обслуживаемого помещения или технического объема;
    • сеть приточных воздуховодов с воздухораспределителями, клапанами и регулирующими устройствами;
    • вытяжной вентилятор и сеть вытяжных и рециркуляционных воздуховодов с сетевым оборудованием;
    • сеть фреоновых трубопроводов для сплит-систем и VRV-систем с кабелями связи наружных блоков с внутренними;
    • фэнкойлы, эжекционные доводчики, моноблоки, холодные и теплые потолки и балки и др. доводчики для охлаждения и (или) нагревания непосредственно внутреннего воздуха;
    • оборудование для утилизации теплоты и холода;
    • дополнительные воздушные фильтры, шумоглушители и другие элементы.

    И даже систему автоматики, входящую в СКВ как бы по определению, целесообразно выделить отдельно, так как ее проектируют инженеры другой специальности, хотя и по заданию так называемых технологов СКВ.
    Границей СКВ и систем теплохолодоснабжения можно считать узлы регулирования, а границей электроснабжения и автоматики – электрические щиты и щиты управления, которые в последнее время очень часто делают совмещенными.

    Классификация систем кондиционирования воздуха

    Проблемам классификации СКВ в большей или меньшей степени уделяли внимание практически все авторы учебников и монографий по кондиционированию воздуха. Вот что написал по этому вопросу известный специалист, доктор техн. наук А. А. Рымкевич [6]: «Анализ иерархической структуры самих СКВ прежде всего требует их классификации и только затем их декомпозиции на подсистемы. …Однако для СКВ, решения которых базируются на учете большого числа данных, разработать такую классификацию всегда сложно. Не случайно в литературе нет единого мнения по данному вопросу, и поэтому многие известные авторы… предложили различные методы классификации».
    Предложенная А. А. Рымкеви-чем концепция выбора признаков классификации СКВ сформулирована очень точно, и с ней нельзя не согласиться. Проблема состоит в том, как этой концепцией воспользоваться и какие признаки считать определяющими, а какие вторичными, и как точно сформулировать эти признаки.
    В начале восьмидесятых годов прошлого века наиболее полная классификация СКВ была предложена в работе Б. В. Баркалова и Е. Е. Карписа [7].
    Основные признаки этой классификации с некоторыми дополнениями использованы и в недавно изданной монографии А. Г. Сотникова [8] и в других работах, однако некоторые формулировки отдельных признаков требуют уточнения и корректировки.
    Например, для опытных специалистов не составит труда разделить СКВ на центральные и местные, посмотрим, как признак такого деления сформулирован разными авторами.
    Б. В. Баркалов, Е. Е. Карпис пишут [7]: «В зависимости от расположения кондиционеров по отношению к обслуживаемым помеще-ниям СКВ делятся на центральные и местные». А. Г. Сотников [8] считает необходимым дополнить: «Деление на местные и центральные СКВ учитывает как место установки кондиционера, так и группировку помещений по системам», а О. Я. Кокорин уточняет: «По характеру связи с обслуживаемым помещением можно подразделить СКВ на три вида: центральные, местные и центрально-местные. Центральные СКВ характеризуются расположением УКВ в удалении от обслуживаемых объектов и наличием приточных воздуховодов значительной протяженности. Местные СКВ характеризуются расположением УКВ в самом обслуживаемом помещении или в непосредственной близости от него, при отсутствии (или наличии весьма коротких) приточных воздуховодов. Центрально-местные СКВ характеризуются как наличием УКВ в удалении от обслуживаемых объектов, так и местных УКВ, располагаемых в самих помещениях или в непосредственной близости от них».
    Трудно понять, что имеется в виду под группировкой помещений по системам и что считается протяженными или весьма короткими воздуховодами. Например, кондиционеры, обслуживающие текстильные цеха на Волжском заводе синтетического волокна, имеют производительность по воздуху до 240 м3/ч и расположены рядом с обслуживаемыми помещениями, то есть непосредственно за стенами, но никто из указанных выше авторов не отнес бы их к местным системам.
    Несколько иной признак клас-сификации предложил Е. В. Стефанов [9]: «… по степени централизации – на системы центральные, обслуживающие из одного центра несколько помещений, и местные, устраиваемые для отдельных помещений и располагающиеся, как правило, в самих обслуживаемых помещениях».
    К сожалению, и эта формулировка является нечеткой, так как одно большое помещение могут обслуживать несколько центральных кондиционеров, а группу небольших помещений – один местный кондиционер.
    Фактически в отечественной практике негласно действовал совсем другой признак классификации: все кондиционеры, выпускавшиеся Харьковским заводом «Кондиционер», кроме шкафных, считались центральными, а все кондиционеры, выпускавшиеся Домодедовским заводом «Кондиционер», кроме горизонтальных производительностью 10 и 20 тыс. м3/ч, – относились к местным.
    Конечно, сегодня такое деление выглядит смешным, а между тем в нем был определенный здравый смысл.
    Известно, что в местных системах используются готовые агрегаты полной заводской сборки обычно шкафного типа со стандартным набором тепломассообменного оборудования с уже готовыми, заданными заранее техническими характеристиками, поэтому местные УКВ не проектируют, а подбирают для конкретного обслуживаемого помещения или группы небольших однотипных помещений.
    Максимальная производительность местных систем по воздуху обычно не превышает 20–30 тыс. м3/ч.
    Центральные кондиционеры могут быть также полной заводской сборки или собираются на месте монтажа, причем технические характеристики всех элементов, включая воздушные фильтры, вентиляторы и тепломассообменное оборудование, задаются производителями в очень широких пределах, поэтому такие кондиционеры не подбирают, а проектируют, а затем изготавливают в соответствии с бланком-заказом для конкретного объекта.
    Обычно центральные кондиционеры собирают в виде горизонтальных блоков, причем производительность таких кондиционеров по воздуху значительно больше, чем у местных и достигает 100–250 тыс. м3/ч у разных фирм-производителей.
    Очевидно, что отмеченные признаки относятся к УКВ, но их можно использовать и для классификации СКВ, например, СКВ с центральной УКВ – центральная СКВ, а с местной УКВ – местная СКВ. Такой подход не исключает полностью признаки, предложенные другими авторами, а дополняет их, исключая некоторые неопределенности, типа протяженности воздуховодов и др.
    Для дальнейшей классификации СКВ рассмотрим схему ее функционирования.
    На параметры внутреннего воздуха в обслуживаемом помещении или технологическом объеме оказывают воздействие внутренние возмущения, то есть изменяющиеся тепло- и влаговыделения, а также внешние факторы, например, изменение температуры и влагосодержания наружного воздуха, воздействие на остекленный фасад прямой солнечной радиации в разное время суток и др.
    Задача СКВ состоит в том, чтобы улавливать и своевременно устранять последствия этих возмущений и воздействий для сохранения параметров внутреннего воздуха в заданных пределах, используя систему автоматического регулирования и необходимый набор оборудования (воздухоохладители, воздухонагреватели, увлажнители и др.), а также источники теплоты и холода.
    Поддерживать требуемые параметры внутреннего воздуха можно изменяя параметры или расход приточного воздуха, подаваемого в помещение извне, или с помощью аппаратов, установленных непосредственно в помещении, так называемых доводчиков.
    Сегодня в качестве доводчиков используют внутренние блоки сплит-систем и VRV-систем, фэнкойлы, моноблоки, охлаждаемые потолки и балки и другие элементы.
    К сожалению, в классификации [7] вместо понятия «доводчики» используется понятие «водовоздушные СКВ», а в классификации [8] дополнительно вводится термин «водо- и фреоновоздушная СКВ». С подобными предложениями нельзя согласиться в принципе, так как их авторы вольно или невольно присваивают сплит-системам или фэнкойлам статус систем кондиционирования воздуха, которыми они не являются и, естественно, не могут входить в классификацию СКВ, поскольку являются всего лишь местными охладителями или нагревателями, то есть не более чем доводчиками.
    Справедливости ради отметим, что Б. В. Баркалов начинает описание центральных водовоздушных систем очень точной фразой: «В каждое помещение вводится наружный воздух, приготовленный в центральном кондиционере. Перед выпуском в помещение он смешивается с воздухом данного помещения, предварительно охлажденным или нагретым в теплообменниках кондиционеров?доводчиков, снабжаемых холодной и горячей водой». Приведенная цитата показывает, что автор хорошо понимает неопределенность предложенного им признака классификации и поэтому сразу поясняет, что он имеет в виду под центральными водовоздушными системами.
    Системы без доводчиков могут быть прямоточными, когда в помещение подается обработанный наружный воздух, и с рециркуляцией, когда к наружному воздуху подмешивают воздух, забираемый из помещения. Кроме того, технологические СКВ, обслуживающие помещения или аппараты без пребывания людей, могут работать без подачи наружного воздуха со 100 % рециркуляцией. В зависимости от алгоритма работы СКВ различают системы с постоянной рециркуляцией, в которых соотношение количества наружного и рециркуляционного воздуха во время работы не изменяется, и СКВ с переменной рециркуляцией, в которых количество наружного воздуха может изменяться от 100 % до некоторого нормируемого минимального уровня.
    Кроме того, системы с рециркуляцией могут быть одновентиляторными и двухвентиляторными. В первых системах подача приточного воздуха в помещение, а также забор наружного и рециркуляционного воздуха осуществляется приточным вентилятором УКВ. Во втором случае для удаления воздуха из помещения и подачи его на рециркуляцию или на выброс применяют дополнительный вытяжной вентилятор.
    Независимо от схемы компоновки и устройства отдельных элементов СКВ подразделяют также по их назначению. Многие авторы делят СКВ на комфортные, технологические и комфортно-технологические. Более удачной и полной представляется классификация СКВ по назначению на эргономической основе, разработанная ВНИИкондиционером [5].
    Определено, что СКВ могут выполнять одну из трех функций обслуживания: машин; машин + людей; людей.
    1-я группа (символ «машина») определена как технологические СКВ. СКВ этой группы обслуживают технологические аппараты, камеры, боксы, машины и т. п., то есть применяются в тех случаях, когда условия воздушной среды диктуются обеспечением работоспособности технологического оборудования. При этом параметры воздушной среды могут отличаться от тех, которые определяются санитарно-гигиеническими нормами.
    1-я группа имеет две модификации:

    • Подгруппа 1–1 включает в себя кондиционируемые объекты, полностью исключающие возможность пребывания в них человека, то есть это системы технологического охлаждения, обдува электронных блоков вычислительных машин, шахты обдува волокна прядильных машин и т. п.
    • Подгруппа 1–2 включает в себя кондиционируемые объекты: технологические аппараты (машины, камеры, боксы) и помещения с особыми параметрами воздушной среды (калориметрического, экологического и другого назначения), в которых человек отсутствует или находится эпизодически (для снятия показаний приборов, изменения режима работы и т. д.).

    Если для группы 1–1 отсутствуют какие-либо ограничения по параметрам и составу воздушной среды, то для объектов подгруппы 1–2 газовый состав воздушной среды должен находиться в пределах, установленных ГОСТ.
    2-я группа (символ «машина + человек») определена как технологически комфортные СКВ. СКВ этой группы обслуживают производственные помещения, в которых длительно пребывают люди.
    2-я группа имеет три модификации:

    • Подгруппа 2–1. Технологически комфортные СКВ обеспечивают условия нормального осуществления технологических процессов как для производств, в которых затруднено или практически невозможно получение продукции без поддержания определенных параметров воздушной среды, так и для производств, в которых колебания параметров воздуха существенно влияют на качество продукции и величину брака.
    • Для этих помещений СКВ устраивается в первую (и основную) очередь по требованиям технологии, однако в связи с наличием в этих помещениях людей, параметры КВ устанавливают с учетом требований санитарно-гигиенических норм.
    • Подгруппа 2–2. СКВ создаются для исключения дискомфортных условий труда при тяжелых режимах работы людей (кабины крановщиков мостовых кранов металлургических заводов и ТЭЦ, кабины строительно-дорожных машин и т. д.). Производственные или экономические аспекты для этих установок имеют второстепенное значение.
    • Подгруппа 2–3. СКВ обеспечивают в производственных помещениях комфортные условия труда, способствующие повышению производительности труда, улучшению проведения основных технологических режимов, снижению заболеваемости, уменьшению эксплуатационных затрат и т. п.

    3-я группа (символ «люди») определена как комфортные СКВ, обеспечивающие санитарно-гигиенические условия труда, отдыха или иного пребывания людей в помещениях гражданских зданий, то есть вне промышленного производства.
    Эта группа имеет две модификации:

    • Подгруппа 3–1. СКВ обслуживают помещения общественных зданий, в которых для одной части людей пребывание в них кратковременно (например, покупатели в универмаге), а для другой – длительно (например, продавцы в этом же универмаге).
    • Подгруппа 3–2. СКВ обеспечивают оптимальные условия пребывания людей в жилых помещениях.

    В классификацию ВНИИконди-ционера необходимо ввести еще одну группу – медицинские СКВ. Очевидно, что СКВ, обслуживающие операционные, реанимационные или палаты интенсивной терапии, никак нельзя считать комфортными, а чтобы отнести их к технологическим, надо в качестве «машины» рассматривать самого человека, что просто глупо.
    Медицинские СКВ должны иметь две подгруппы:

    • Подгруппа 4–1. СКВ обслуживают операционные, реанимационные и т. п. помещения.
    • Подгруппа 4–2. СКВ обеспечивают требуемые параметры воздуха в палатах, кабинетах врачей, процедурных и т. п.

     

    4805

    Для завершения классификации СКВ рассмотрим еще несколько признаков.
    По типу системы холодоснабжения различают автономные и неавтономные СКВ. В автономных источник холода встроен в кондиционер, в неавтономных – источником холода является отдельный холодильный центр. Кроме того, в автономных кондиционерах в воздухоохладитель может подаваться кипящий хладон или жидкий промежуточный хладоноситель (холодная вода, растворы). Заметим, что на многих объектах мы использовали схему с подачей хладона в воздухоохладитель центрального кондиционера от расположенной рядом холодильной машины или внешнего блока VRV.
    По способу компенсации изменяющихся тепловых и (или) влажностных возмущений в обслуживаемом помещении различают СКВ с постоянным расходом воздуха (CAV) – системы, в которых внутренние параметры поддерживают изменяя температуру и влажность приточного воздуха (качественное регулирование), и системы с переменным расходом воздуха (VAV) – системы с количественным регулированием.
    По числу воздуховодов для подачи кондиционированного воздуха в помещенияСКВ делятся на одноканальные и двухканальные, при этом приточный воздух в каждом канале имеет разную температуру и влажность, что позволяет, изменяя соотношение приточного воздуха, подаваемого через каждый канал, поддерживать требуемые параметры в обслуживаемом помещении.
    По числу точек стабилизации одноименного параметра (t; φ)в большом помещении или группе небольших помещений различают одно- и многозональные СКВ.
    –это СКВ с местными доводчиками. В этих СКВ центральная или местная УКВ подает в помещение санитарную норму наружного воздуха, даже не обязательно обработанного, а местные доводчики обеспечивают поддержание в помещении требуемых параметров воздуха (температуры, относительной влажности и подвижности).
    Сегодня в качестве местных доводчиков применяют: внутренние блоки сплит-систем или VRV-систем; фэнкойлы (двух- или четырехтрубные); моноблоки (напольные, потолочные или настенные); эжекционные доводчики; местные увлажнители воздуха; охлаждаемые и нагреваемые потолки; охлаждающие балки (пассивные и активированные).
    Все указанные доводчики сами по себе не являются кондиционерами, хотя их и называют так продавцы оборудования.
    Известно, что некоторые фирмы работают над созданием, например, фэнкойлов или сплит-систем, подающих в помещение наружный воздух. Но, если это и произойдет в массовом масштабе, то ничего страшного с классификацией не случится, просто это оборудование получит статус местных кондиционеров.
    Блок-схема рассмотренной классификации СКВ приведена на рис. 2.
    Помимо рассмотренных признаков в схему на рис. 2 включен еще один: наличие утилизаторов теплоты и холода, которые могут быть как в центральных, так и в местных СКВ. Причем необходимо различать системы утилизации типа воздух-воздух, к которым относятся схемы с промежуточным теплоносителем, с пластинчатыми теплообменниками* и с регенеративными вращающимися и переключаемыми теплообменниками, а также системы утилизации теплоты оборотной воды и теплоты обратного теплоносителя систем централизованного теплоснабжения и систем технологического жидкостного охлаждения.

    Литература

    1. Липа А. И. Кондиционирование воздуха. Основы теории. Совре-менные технологии обработки воздуха. – Одесса: Издательство ВМВ, 2010.
    2. СНиП 41–01–2003. Отопление, вентиляция, кондиционирование. М.: Госстрой России. – 2004.
    3. Англо-русский терминологический словарь по отоплению, вентиляции, кондиционированию воздуха и охлаждению. М.: Изд-во «АВОК-ПРЕСС», 2002.
    4. Кокорин О. Я. Энергосберегаю-щие системы кондиционирования воздуха. ООО «ЛЭС». – М., 2007.
    5. Кондиционеры. Каталог-спра-воч-ник ЦНИИТЭстроймаш. – М., 1981.
    6. Рымкевич А. А. Системный анализ оптимизации общеобменной вентиляции и кондиционирования воздуха. Изд. 1. – М.: Стройиздат, 1990.
    7. Баркалов Б. В., Карпис Е. Е. Кондиционирование воздуха в промышленных, общественных и жилых зданиях. Изд. 2. – М.: Стройиздат, 1982.
    8. Сотников А. Г. Процессы, аппараты и системы кондиционирования воздуха и вентиляции. Т. 1. ООО «АТ». – С.-Петербург, 2005.
    9. Стефанов Е. В. Вентиляция и кондиционирование воздуха. – С.-Петербург: Изд-во «АВОК-Северо-Запад», 2005.

    [ http://www.abok.ru/for_spec/articles.php?nid=5029]

    Тематики

    EN

    DE

    FR

    Франко-русский словарь нормативно-технической терминологии > système de conditionnement d'air

  • 57 Klimaanlage

    1. система кондиционирования воздуха
    2. кондиционирование воздуха (в туристических услугах)
    3. кондиционер воздуха в помещении
    4. камера кондиционирования

     

    камера кондиционирования
    Ндп климатизационная камера
    Камера с установленными температурой и влажностью с целью стабилизации физико-механических показателей выдерживаемых в них древесностружечных плит.
    [ ГОСТ 19506-74]

    Недопустимые, нерекомендуемые

    Тематики

    • плиты древесноволокн. и древесностружеч.

    EN

    DE

     

    кондиционер воздуха в помещении
    Ндп. климатизер
    Агрегат для кондиционирования воздуха в помещении.
    Примечание. Кондиционер воздуха, работающий на наружном воздухе, называется прямоточным, на внутреннем воздухе - рециркуляционным, на смеси наружного и внутреннего воздуха - с рециркуляцией.
    [ ГОСТ 22270-76]

    кондиционер
    Агрегат, предназначенный для кондиционирования воздуха в помещении
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    Недопустимые, нерекомендуемые

    Тематики

    Синонимы

    EN

    DE

    FR

     

    кондиционирование воздуха
    Искусственная система индивидуальной или централизованной регулировки температуры воздуха, в последнем случае регулировка температуры недоступна для проживающих.
    Примечание
    В последнем случае в номерах отсутствует термостат для индивидуальной регулировки температуры воздуха.
    [ ГОСТ Р 53423-2009]


    Тематики

    EN

    DE

    FR

     

    система кондиционирования воздуха
    Совокупность воздухотехнического оборудования, предназначенная для кондиционирования воздуха в помещениях
    [ ГОСТ 22270-76]

    система кондиционирования воздуха

    Совокупность технических средств для обработки и распределения воздуха, а также автоматического регулирования его параметров с дистанционным управлением всеми процессами
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    система кондиционирования воздуха

    Комбинация всех компонент, необходимых для обработки воздуха, в процессе которой осуществляется контроль или понижение температуры, возможно, в комбинации с контролем вентиляции, влажности и чистоты воздуха.
    [ДИРЕКТИВА 2002/91/ЕС ЕВРОПЕЙСКОГО ПАРЛАМЕТА И СОВЕТА от 16 декабря 2002 г. по энергетическим характеристикам зданий]


    КЛАССИФИКАЦИЯ



    Классификация систем кондиционирования воздуха

    М. Г. Тарабанов, директор НИЦ «ИНВЕНТ», канд. техн. наук, вице-президент НП «АВОК», лауреат премии НП «АВОК» «Медаль имени И. Ф. Ливчака», «Медаль имени В. Н. Богословского», otvet@abok.ru

    Общие положения

    Краткий, но достаточно полный обзор истории развития кондиционирования воздуха представлен в работе А. И. Липы [1], поэтому отметим только несколько моментов. Родоначальником техники кондиционирования воздуха в ее современном понимании считается американский инженер Виллис Хэвилэнд Кэрриер (Willis Haviland Carrier), который в 1902 году в Нью-Йорке в Бруклинской типографии применил поверхностный водяной воздухоохладитель с вентилятором для получения летом в помещении температуры +26,5 °C и относительной влажности 55 %. Вода охлаждалась в аммиачной холодильной машине. Зимой для увлажнения внутреннего воздуха до 55 % использовался водяной пар от бойлера.
    Термин «кондиционирование воздуха» был предложен в 1906 году Стюартом Уорреном Крамером (Stuart Warren Cramer).
    В отечественной практике некоторые авторы применяют термин «кондиционирование микроклимата». Заметим, что этот термин отличается от «кондиционирования воздуха», так как включает в себя дополнительные факторы, не связанные с состоянием воздушной среды в помещении (шум, инсоляция и др.).
    К сожалению, несмотря на солидный возраст термин «кондиционирование воздуха» не получил четкого определения в современных отечественных нормативных документах. Для устранения этого пробела сформулируем: «Кондиционирование воздуха – это создание и автоматическое поддержание в обслуживаемом помещении или технологическом объеме требуемых параметров и качества воздуха независимо от внутренних возмущений и внешних воздействий». К параметрам воздуха относятся: температура, относительная влажность или влагосодержание и подвижность. Качество воздуха включает в себя газовый состав, запыленность, запахи, аэроионный состав, т. е. более широкий круг показателей, чем термин «чистота», используемый в [2].
    Комплекс оборудования, элементов и устройств, с помощью которых обеспечивается кондиционирование воздуха в обслуживаемых помещениях, называется системой кондиционирования воздуха (СКВ).
    Приведенное выше определение системы кондиционирования воздуха по смыслу полностью совпадает с определением ASHRAE: «”air-conditioning system” – комплекс оборудования для одновременной обработки и регулирования температуры, влажности, чистоты воздуха и распределения последнего в соответствии с заданными требованиями» [3].
    Общепринятого, устоявшегося мнения, что следует включать в состав СКВ, к сожалению, нет.
    Так, например, по мнению О. Я. Кокорина [4] СКВ может включать в себя:

    • установку кондиционирования воздуха (УКВ), обеспечивающую необходимые кондиции воздушной среды по тепловлажностным качествам, чистоте, газовому составу и наличию запахов;
    • средства автоматического регулирования и контроля за приготовлением воздуха нужных кондиций в УКВ, а также для поддержания в обслуживаемом помещении или сооружении постоянства заданных кондиций воздуха;
    • устройства для транспортирования и распределения кондиционированного воздуха;
    • устройства для транспортирования и удаления загрязненного внутреннего воздуха;
    • устройства для глушения шума, вызываемого работой элементов СКВ;
    • устройства для приготовления и транспортирования источников энергии, необходимых для работы аппаратов в СКВ.

    В зависимости от конкретных условий некоторые составные части СКВ могут отсутствовать.
    Однако согласиться с отдельными пунктами предложенного состава СКВ нельзя, так как если следовать логике автора [4], то в состав СКВ должны войти и системы оборотного водоснабжения, водопровода и канализации, ИТП и трансформаторные, которые также необходимы для работы аппаратов в СКВ.
    Достаточно полное представление о структуре СКВ дает разработанная во ВНИИкондиционере «Блок-схема системы кондиционирования воздуха» (рис. 1) [5].

    4804

    Включенные в эту блок-схему подсистемы обработки воздуха по своему функциональному назначению делятся на блоки:

    • основной обработки и перемещения: Б1.1 – приемный, Б1.8 – очистки, Б1.2 – сухого (первого) подогрева, Б1.3 – охлаждения, Б1.6 – тепловлажностной обработки, Б1.9 – перемещения приточного воздуха;
    • дополнительной обработки и перемещения: Б2.1 – утилизации, Б2.2 – предварительного подогрева, Б2.3 – доводки общей (второй подогрев, дополнительное охлаждение), Б2.4 – зональной доводки, Б2.5 – местной доводки (эжекционные доводчики и др.), Б2.7 – шумоглушения, Б2.8 – перемещения рециркуляционного воздуха;
    • специальной обработки: Б5.5 – тонкой очистки;
    • воздушной сети: Б4.2 – воздухораспределительных устройств, Б4.3 – вытяжных устройств, Б4.5 – воздуховодов;
    • автоматизации – арматуры – Б3.1.

    Помимо этих блоков в СКВ может входить система холодоснабжения (снабжение электроэнергией и теплом осуществляется, как правило, централизованно). Ее включение в состав СКВ, видимо, относится к автономным кондиционерам (см. далее).
    Для определения состава оборудования, входящего в СКВ, и границ раздела целесообразно воспользоваться делением на разделы, которое сложилось в практике проектирования.
    В частности, при выполнении проектов кондиционирования воздуха достаточно серьезных объектов обычно выделяют в самостоятельные разделы: теплоснабжение СКВ; холодоснабжение и холодильные центры; электроснабжение; автоматизация; водоснабжение, в том числе оборотное, канализация и дренаж.
    Причем по каждому из разделов составляют свою спецификацию, в которую включено оборудование, материалы и арматура, относящиеся к своему конкретному разделу.
    Таким образом, в состав СКВ следует включить:

    • УКВ, предназначенную для очистки и тепловлажностной обработки и получения необходимого качества воздуха и его транспортировки по сети воздуховодов до обслуживаемого помещения или технического объема;
    • сеть приточных воздуховодов с воздухораспределителями, клапанами и регулирующими устройствами;
    • вытяжной вентилятор и сеть вытяжных и рециркуляционных воздуховодов с сетевым оборудованием;
    • сеть фреоновых трубопроводов для сплит-систем и VRV-систем с кабелями связи наружных блоков с внутренними;
    • фэнкойлы, эжекционные доводчики, моноблоки, холодные и теплые потолки и балки и др. доводчики для охлаждения и (или) нагревания непосредственно внутреннего воздуха;
    • оборудование для утилизации теплоты и холода;
    • дополнительные воздушные фильтры, шумоглушители и другие элементы.

    И даже систему автоматики, входящую в СКВ как бы по определению, целесообразно выделить отдельно, так как ее проектируют инженеры другой специальности, хотя и по заданию так называемых технологов СКВ.
    Границей СКВ и систем теплохолодоснабжения можно считать узлы регулирования, а границей электроснабжения и автоматики – электрические щиты и щиты управления, которые в последнее время очень часто делают совмещенными.

    Классификация систем кондиционирования воздуха

    Проблемам классификации СКВ в большей или меньшей степени уделяли внимание практически все авторы учебников и монографий по кондиционированию воздуха. Вот что написал по этому вопросу известный специалист, доктор техн. наук А. А. Рымкевич [6]: «Анализ иерархической структуры самих СКВ прежде всего требует их классификации и только затем их декомпозиции на подсистемы. …Однако для СКВ, решения которых базируются на учете большого числа данных, разработать такую классификацию всегда сложно. Не случайно в литературе нет единого мнения по данному вопросу, и поэтому многие известные авторы… предложили различные методы классификации».
    Предложенная А. А. Рымкеви-чем концепция выбора признаков классификации СКВ сформулирована очень точно, и с ней нельзя не согласиться. Проблема состоит в том, как этой концепцией воспользоваться и какие признаки считать определяющими, а какие вторичными, и как точно сформулировать эти признаки.
    В начале восьмидесятых годов прошлого века наиболее полная классификация СКВ была предложена в работе Б. В. Баркалова и Е. Е. Карписа [7].
    Основные признаки этой классификации с некоторыми дополнениями использованы и в недавно изданной монографии А. Г. Сотникова [8] и в других работах, однако некоторые формулировки отдельных признаков требуют уточнения и корректировки.
    Например, для опытных специалистов не составит труда разделить СКВ на центральные и местные, посмотрим, как признак такого деления сформулирован разными авторами.
    Б. В. Баркалов, Е. Е. Карпис пишут [7]: «В зависимости от расположения кондиционеров по отношению к обслуживаемым помеще-ниям СКВ делятся на центральные и местные». А. Г. Сотников [8] считает необходимым дополнить: «Деление на местные и центральные СКВ учитывает как место установки кондиционера, так и группировку помещений по системам», а О. Я. Кокорин уточняет: «По характеру связи с обслуживаемым помещением можно подразделить СКВ на три вида: центральные, местные и центрально-местные. Центральные СКВ характеризуются расположением УКВ в удалении от обслуживаемых объектов и наличием приточных воздуховодов значительной протяженности. Местные СКВ характеризуются расположением УКВ в самом обслуживаемом помещении или в непосредственной близости от него, при отсутствии (или наличии весьма коротких) приточных воздуховодов. Центрально-местные СКВ характеризуются как наличием УКВ в удалении от обслуживаемых объектов, так и местных УКВ, располагаемых в самих помещениях или в непосредственной близости от них».
    Трудно понять, что имеется в виду под группировкой помещений по системам и что считается протяженными или весьма короткими воздуховодами. Например, кондиционеры, обслуживающие текстильные цеха на Волжском заводе синтетического волокна, имеют производительность по воздуху до 240 м3/ч и расположены рядом с обслуживаемыми помещениями, то есть непосредственно за стенами, но никто из указанных выше авторов не отнес бы их к местным системам.
    Несколько иной признак клас-сификации предложил Е. В. Стефанов [9]: «… по степени централизации – на системы центральные, обслуживающие из одного центра несколько помещений, и местные, устраиваемые для отдельных помещений и располагающиеся, как правило, в самих обслуживаемых помещениях».
    К сожалению, и эта формулировка является нечеткой, так как одно большое помещение могут обслуживать несколько центральных кондиционеров, а группу небольших помещений – один местный кондиционер.
    Фактически в отечественной практике негласно действовал совсем другой признак классификации: все кондиционеры, выпускавшиеся Харьковским заводом «Кондиционер», кроме шкафных, считались центральными, а все кондиционеры, выпускавшиеся Домодедовским заводом «Кондиционер», кроме горизонтальных производительностью 10 и 20 тыс. м3/ч, – относились к местным.
    Конечно, сегодня такое деление выглядит смешным, а между тем в нем был определенный здравый смысл.
    Известно, что в местных системах используются готовые агрегаты полной заводской сборки обычно шкафного типа со стандартным набором тепломассообменного оборудования с уже готовыми, заданными заранее техническими характеристиками, поэтому местные УКВ не проектируют, а подбирают для конкретного обслуживаемого помещения или группы небольших однотипных помещений.
    Максимальная производительность местных систем по воздуху обычно не превышает 20–30 тыс. м3/ч.
    Центральные кондиционеры могут быть также полной заводской сборки или собираются на месте монтажа, причем технические характеристики всех элементов, включая воздушные фильтры, вентиляторы и тепломассообменное оборудование, задаются производителями в очень широких пределах, поэтому такие кондиционеры не подбирают, а проектируют, а затем изготавливают в соответствии с бланком-заказом для конкретного объекта.
    Обычно центральные кондиционеры собирают в виде горизонтальных блоков, причем производительность таких кондиционеров по воздуху значительно больше, чем у местных и достигает 100–250 тыс. м3/ч у разных фирм-производителей.
    Очевидно, что отмеченные признаки относятся к УКВ, но их можно использовать и для классификации СКВ, например, СКВ с центральной УКВ – центральная СКВ, а с местной УКВ – местная СКВ. Такой подход не исключает полностью признаки, предложенные другими авторами, а дополняет их, исключая некоторые неопределенности, типа протяженности воздуховодов и др.
    Для дальнейшей классификации СКВ рассмотрим схему ее функционирования.
    На параметры внутреннего воздуха в обслуживаемом помещении или технологическом объеме оказывают воздействие внутренние возмущения, то есть изменяющиеся тепло- и влаговыделения, а также внешние факторы, например, изменение температуры и влагосодержания наружного воздуха, воздействие на остекленный фасад прямой солнечной радиации в разное время суток и др.
    Задача СКВ состоит в том, чтобы улавливать и своевременно устранять последствия этих возмущений и воздействий для сохранения параметров внутреннего воздуха в заданных пределах, используя систему автоматического регулирования и необходимый набор оборудования (воздухоохладители, воздухонагреватели, увлажнители и др.), а также источники теплоты и холода.
    Поддерживать требуемые параметры внутреннего воздуха можно изменяя параметры или расход приточного воздуха, подаваемого в помещение извне, или с помощью аппаратов, установленных непосредственно в помещении, так называемых доводчиков.
    Сегодня в качестве доводчиков используют внутренние блоки сплит-систем и VRV-систем, фэнкойлы, моноблоки, охлаждаемые потолки и балки и другие элементы.
    К сожалению, в классификации [7] вместо понятия «доводчики» используется понятие «водовоздушные СКВ», а в классификации [8] дополнительно вводится термин «водо- и фреоновоздушная СКВ». С подобными предложениями нельзя согласиться в принципе, так как их авторы вольно или невольно присваивают сплит-системам или фэнкойлам статус систем кондиционирования воздуха, которыми они не являются и, естественно, не могут входить в классификацию СКВ, поскольку являются всего лишь местными охладителями или нагревателями, то есть не более чем доводчиками.
    Справедливости ради отметим, что Б. В. Баркалов начинает описание центральных водовоздушных систем очень точной фразой: «В каждое помещение вводится наружный воздух, приготовленный в центральном кондиционере. Перед выпуском в помещение он смешивается с воздухом данного помещения, предварительно охлажденным или нагретым в теплообменниках кондиционеров?доводчиков, снабжаемых холодной и горячей водой». Приведенная цитата показывает, что автор хорошо понимает неопределенность предложенного им признака классификации и поэтому сразу поясняет, что он имеет в виду под центральными водовоздушными системами.
    Системы без доводчиков могут быть прямоточными, когда в помещение подается обработанный наружный воздух, и с рециркуляцией, когда к наружному воздуху подмешивают воздух, забираемый из помещения. Кроме того, технологические СКВ, обслуживающие помещения или аппараты без пребывания людей, могут работать без подачи наружного воздуха со 100 % рециркуляцией. В зависимости от алгоритма работы СКВ различают системы с постоянной рециркуляцией, в которых соотношение количества наружного и рециркуляционного воздуха во время работы не изменяется, и СКВ с переменной рециркуляцией, в которых количество наружного воздуха может изменяться от 100 % до некоторого нормируемого минимального уровня.
    Кроме того, системы с рециркуляцией могут быть одновентиляторными и двухвентиляторными. В первых системах подача приточного воздуха в помещение, а также забор наружного и рециркуляционного воздуха осуществляется приточным вентилятором УКВ. Во втором случае для удаления воздуха из помещения и подачи его на рециркуляцию или на выброс применяют дополнительный вытяжной вентилятор.
    Независимо от схемы компоновки и устройства отдельных элементов СКВ подразделяют также по их назначению. Многие авторы делят СКВ на комфортные, технологические и комфортно-технологические. Более удачной и полной представляется классификация СКВ по назначению на эргономической основе, разработанная ВНИИкондиционером [5].
    Определено, что СКВ могут выполнять одну из трех функций обслуживания: машин; машин + людей; людей.
    1-я группа (символ «машина») определена как технологические СКВ. СКВ этой группы обслуживают технологические аппараты, камеры, боксы, машины и т. п., то есть применяются в тех случаях, когда условия воздушной среды диктуются обеспечением работоспособности технологического оборудования. При этом параметры воздушной среды могут отличаться от тех, которые определяются санитарно-гигиеническими нормами.
    1-я группа имеет две модификации:

    • Подгруппа 1–1 включает в себя кондиционируемые объекты, полностью исключающие возможность пребывания в них человека, то есть это системы технологического охлаждения, обдува электронных блоков вычислительных машин, шахты обдува волокна прядильных машин и т. п.
    • Подгруппа 1–2 включает в себя кондиционируемые объекты: технологические аппараты (машины, камеры, боксы) и помещения с особыми параметрами воздушной среды (калориметрического, экологического и другого назначения), в которых человек отсутствует или находится эпизодически (для снятия показаний приборов, изменения режима работы и т. д.).

    Если для группы 1–1 отсутствуют какие-либо ограничения по параметрам и составу воздушной среды, то для объектов подгруппы 1–2 газовый состав воздушной среды должен находиться в пределах, установленных ГОСТ.
    2-я группа (символ «машина + человек») определена как технологически комфортные СКВ. СКВ этой группы обслуживают производственные помещения, в которых длительно пребывают люди.
    2-я группа имеет три модификации:

    • Подгруппа 2–1. Технологически комфортные СКВ обеспечивают условия нормального осуществления технологических процессов как для производств, в которых затруднено или практически невозможно получение продукции без поддержания определенных параметров воздушной среды, так и для производств, в которых колебания параметров воздуха существенно влияют на качество продукции и величину брака.
    • Для этих помещений СКВ устраивается в первую (и основную) очередь по требованиям технологии, однако в связи с наличием в этих помещениях людей, параметры КВ устанавливают с учетом требований санитарно-гигиенических норм.
    • Подгруппа 2–2. СКВ создаются для исключения дискомфортных условий труда при тяжелых режимах работы людей (кабины крановщиков мостовых кранов металлургических заводов и ТЭЦ, кабины строительно-дорожных машин и т. д.). Производственные или экономические аспекты для этих установок имеют второстепенное значение.
    • Подгруппа 2–3. СКВ обеспечивают в производственных помещениях комфортные условия труда, способствующие повышению производительности труда, улучшению проведения основных технологических режимов, снижению заболеваемости, уменьшению эксплуатационных затрат и т. п.

    3-я группа (символ «люди») определена как комфортные СКВ, обеспечивающие санитарно-гигиенические условия труда, отдыха или иного пребывания людей в помещениях гражданских зданий, то есть вне промышленного производства.
    Эта группа имеет две модификации:

    • Подгруппа 3–1. СКВ обслуживают помещения общественных зданий, в которых для одной части людей пребывание в них кратковременно (например, покупатели в универмаге), а для другой – длительно (например, продавцы в этом же универмаге).
    • Подгруппа 3–2. СКВ обеспечивают оптимальные условия пребывания людей в жилых помещениях.

    В классификацию ВНИИконди-ционера необходимо ввести еще одну группу – медицинские СКВ. Очевидно, что СКВ, обслуживающие операционные, реанимационные или палаты интенсивной терапии, никак нельзя считать комфортными, а чтобы отнести их к технологическим, надо в качестве «машины» рассматривать самого человека, что просто глупо.
    Медицинские СКВ должны иметь две подгруппы:

    • Подгруппа 4–1. СКВ обслуживают операционные, реанимационные и т. п. помещения.
    • Подгруппа 4–2. СКВ обеспечивают требуемые параметры воздуха в палатах, кабинетах врачей, процедурных и т. п.

     

    4805

    Для завершения классификации СКВ рассмотрим еще несколько признаков.
    По типу системы холодоснабжения различают автономные и неавтономные СКВ. В автономных источник холода встроен в кондиционер, в неавтономных – источником холода является отдельный холодильный центр. Кроме того, в автономных кондиционерах в воздухоохладитель может подаваться кипящий хладон или жидкий промежуточный хладоноситель (холодная вода, растворы). Заметим, что на многих объектах мы использовали схему с подачей хладона в воздухоохладитель центрального кондиционера от расположенной рядом холодильной машины или внешнего блока VRV.
    По способу компенсации изменяющихся тепловых и (или) влажностных возмущений в обслуживаемом помещении различают СКВ с постоянным расходом воздуха (CAV) – системы, в которых внутренние параметры поддерживают изменяя температуру и влажность приточного воздуха (качественное регулирование), и системы с переменным расходом воздуха (VAV) – системы с количественным регулированием.
    По числу воздуховодов для подачи кондиционированного воздуха в помещенияСКВ делятся на одноканальные и двухканальные, при этом приточный воздух в каждом канале имеет разную температуру и влажность, что позволяет, изменяя соотношение приточного воздуха, подаваемого через каждый канал, поддерживать требуемые параметры в обслуживаемом помещении.
    По числу точек стабилизации одноименного параметра (t; φ)в большом помещении или группе небольших помещений различают одно- и многозональные СКВ.
    –это СКВ с местными доводчиками. В этих СКВ центральная или местная УКВ подает в помещение санитарную норму наружного воздуха, даже не обязательно обработанного, а местные доводчики обеспечивают поддержание в помещении требуемых параметров воздуха (температуры, относительной влажности и подвижности).
    Сегодня в качестве местных доводчиков применяют: внутренние блоки сплит-систем или VRV-систем; фэнкойлы (двух- или четырехтрубные); моноблоки (напольные, потолочные или настенные); эжекционные доводчики; местные увлажнители воздуха; охлаждаемые и нагреваемые потолки; охлаждающие балки (пассивные и активированные).
    Все указанные доводчики сами по себе не являются кондиционерами, хотя их и называют так продавцы оборудования.
    Известно, что некоторые фирмы работают над созданием, например, фэнкойлов или сплит-систем, подающих в помещение наружный воздух. Но, если это и произойдет в массовом масштабе, то ничего страшного с классификацией не случится, просто это оборудование получит статус местных кондиционеров.
    Блок-схема рассмотренной классификации СКВ приведена на рис. 2.
    Помимо рассмотренных признаков в схему на рис. 2 включен еще один: наличие утилизаторов теплоты и холода, которые могут быть как в центральных, так и в местных СКВ. Причем необходимо различать системы утилизации типа воздух-воздух, к которым относятся схемы с промежуточным теплоносителем, с пластинчатыми теплообменниками* и с регенеративными вращающимися и переключаемыми теплообменниками, а также системы утилизации теплоты оборотной воды и теплоты обратного теплоносителя систем централизованного теплоснабжения и систем технологического жидкостного охлаждения.

    Литература

    1. Липа А. И. Кондиционирование воздуха. Основы теории. Совре-менные технологии обработки воздуха. – Одесса: Издательство ВМВ, 2010.
    2. СНиП 41–01–2003. Отопление, вентиляция, кондиционирование. М.: Госстрой России. – 2004.
    3. Англо-русский терминологический словарь по отоплению, вентиляции, кондиционированию воздуха и охлаждению. М.: Изд-во «АВОК-ПРЕСС», 2002.
    4. Кокорин О. Я. Энергосберегаю-щие системы кондиционирования воздуха. ООО «ЛЭС». – М., 2007.
    5. Кондиционеры. Каталог-спра-воч-ник ЦНИИТЭстроймаш. – М., 1981.
    6. Рымкевич А. А. Системный анализ оптимизации общеобменной вентиляции и кондиционирования воздуха. Изд. 1. – М.: Стройиздат, 1990.
    7. Баркалов Б. В., Карпис Е. Е. Кондиционирование воздуха в промышленных, общественных и жилых зданиях. Изд. 2. – М.: Стройиздат, 1982.
    8. Сотников А. Г. Процессы, аппараты и системы кондиционирования воздуха и вентиляции. Т. 1. ООО «АТ». – С.-Петербург, 2005.
    9. Стефанов Е. В. Вентиляция и кондиционирование воздуха. – С.-Петербург: Изд-во «АВОК-Северо-Запад», 2005.

    [ http://www.abok.ru/for_spec/articles.php?nid=5029]

    Тематики

    EN

    DE

    FR

    Немецко-русский словарь нормативно-технической терминологии > Klimaanlage

  • 58 air conditioning system

    1. система кондиционирования воздуха (спорт)
    2. система кондиционирования воздуха

     

    система кондиционирования воздуха
    Совокупность воздухотехнического оборудования, предназначенная для кондиционирования воздуха в помещениях
    [ ГОСТ 22270-76]

    система кондиционирования воздуха

    Совокупность технических средств для обработки и распределения воздуха, а также автоматического регулирования его параметров с дистанционным управлением всеми процессами
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    система кондиционирования воздуха

    Комбинация всех компонент, необходимых для обработки воздуха, в процессе которой осуществляется контроль или понижение температуры, возможно, в комбинации с контролем вентиляции, влажности и чистоты воздуха.
    [ДИРЕКТИВА 2002/91/ЕС ЕВРОПЕЙСКОГО ПАРЛАМЕТА И СОВЕТА от 16 декабря 2002 г. по энергетическим характеристикам зданий]


    КЛАССИФИКАЦИЯ



    Классификация систем кондиционирования воздуха

    М. Г. Тарабанов, директор НИЦ «ИНВЕНТ», канд. техн. наук, вице-президент НП «АВОК», лауреат премии НП «АВОК» «Медаль имени И. Ф. Ливчака», «Медаль имени В. Н. Богословского», otvet@abok.ru

    Общие положения

    Краткий, но достаточно полный обзор истории развития кондиционирования воздуха представлен в работе А. И. Липы [1], поэтому отметим только несколько моментов. Родоначальником техники кондиционирования воздуха в ее современном понимании считается американский инженер Виллис Хэвилэнд Кэрриер (Willis Haviland Carrier), который в 1902 году в Нью-Йорке в Бруклинской типографии применил поверхностный водяной воздухоохладитель с вентилятором для получения летом в помещении температуры +26,5 °C и относительной влажности 55 %. Вода охлаждалась в аммиачной холодильной машине. Зимой для увлажнения внутреннего воздуха до 55 % использовался водяной пар от бойлера.
    Термин «кондиционирование воздуха» был предложен в 1906 году Стюартом Уорреном Крамером (Stuart Warren Cramer).
    В отечественной практике некоторые авторы применяют термин «кондиционирование микроклимата». Заметим, что этот термин отличается от «кондиционирования воздуха», так как включает в себя дополнительные факторы, не связанные с состоянием воздушной среды в помещении (шум, инсоляция и др.).
    К сожалению, несмотря на солидный возраст термин «кондиционирование воздуха» не получил четкого определения в современных отечественных нормативных документах. Для устранения этого пробела сформулируем: «Кондиционирование воздуха – это создание и автоматическое поддержание в обслуживаемом помещении или технологическом объеме требуемых параметров и качества воздуха независимо от внутренних возмущений и внешних воздействий». К параметрам воздуха относятся: температура, относительная влажность или влагосодержание и подвижность. Качество воздуха включает в себя газовый состав, запыленность, запахи, аэроионный состав, т. е. более широкий круг показателей, чем термин «чистота», используемый в [2].
    Комплекс оборудования, элементов и устройств, с помощью которых обеспечивается кондиционирование воздуха в обслуживаемых помещениях, называется системой кондиционирования воздуха (СКВ).
    Приведенное выше определение системы кондиционирования воздуха по смыслу полностью совпадает с определением ASHRAE: «”air-conditioning system” – комплекс оборудования для одновременной обработки и регулирования температуры, влажности, чистоты воздуха и распределения последнего в соответствии с заданными требованиями» [3].
    Общепринятого, устоявшегося мнения, что следует включать в состав СКВ, к сожалению, нет.
    Так, например, по мнению О. Я. Кокорина [4] СКВ может включать в себя:

    • установку кондиционирования воздуха (УКВ), обеспечивающую необходимые кондиции воздушной среды по тепловлажностным качествам, чистоте, газовому составу и наличию запахов;
    • средства автоматического регулирования и контроля за приготовлением воздуха нужных кондиций в УКВ, а также для поддержания в обслуживаемом помещении или сооружении постоянства заданных кондиций воздуха;
    • устройства для транспортирования и распределения кондиционированного воздуха;
    • устройства для транспортирования и удаления загрязненного внутреннего воздуха;
    • устройства для глушения шума, вызываемого работой элементов СКВ;
    • устройства для приготовления и транспортирования источников энергии, необходимых для работы аппаратов в СКВ.

    В зависимости от конкретных условий некоторые составные части СКВ могут отсутствовать.
    Однако согласиться с отдельными пунктами предложенного состава СКВ нельзя, так как если следовать логике автора [4], то в состав СКВ должны войти и системы оборотного водоснабжения, водопровода и канализации, ИТП и трансформаторные, которые также необходимы для работы аппаратов в СКВ.
    Достаточно полное представление о структуре СКВ дает разработанная во ВНИИкондиционере «Блок-схема системы кондиционирования воздуха» (рис. 1) [5].

    4804

    Включенные в эту блок-схему подсистемы обработки воздуха по своему функциональному назначению делятся на блоки:

    • основной обработки и перемещения: Б1.1 – приемный, Б1.8 – очистки, Б1.2 – сухого (первого) подогрева, Б1.3 – охлаждения, Б1.6 – тепловлажностной обработки, Б1.9 – перемещения приточного воздуха;
    • дополнительной обработки и перемещения: Б2.1 – утилизации, Б2.2 – предварительного подогрева, Б2.3 – доводки общей (второй подогрев, дополнительное охлаждение), Б2.4 – зональной доводки, Б2.5 – местной доводки (эжекционные доводчики и др.), Б2.7 – шумоглушения, Б2.8 – перемещения рециркуляционного воздуха;
    • специальной обработки: Б5.5 – тонкой очистки;
    • воздушной сети: Б4.2 – воздухораспределительных устройств, Б4.3 – вытяжных устройств, Б4.5 – воздуховодов;
    • автоматизации – арматуры – Б3.1.

    Помимо этих блоков в СКВ может входить система холодоснабжения (снабжение электроэнергией и теплом осуществляется, как правило, централизованно). Ее включение в состав СКВ, видимо, относится к автономным кондиционерам (см. далее).
    Для определения состава оборудования, входящего в СКВ, и границ раздела целесообразно воспользоваться делением на разделы, которое сложилось в практике проектирования.
    В частности, при выполнении проектов кондиционирования воздуха достаточно серьезных объектов обычно выделяют в самостоятельные разделы: теплоснабжение СКВ; холодоснабжение и холодильные центры; электроснабжение; автоматизация; водоснабжение, в том числе оборотное, канализация и дренаж.
    Причем по каждому из разделов составляют свою спецификацию, в которую включено оборудование, материалы и арматура, относящиеся к своему конкретному разделу.
    Таким образом, в состав СКВ следует включить:

    • УКВ, предназначенную для очистки и тепловлажностной обработки и получения необходимого качества воздуха и его транспортировки по сети воздуховодов до обслуживаемого помещения или технического объема;
    • сеть приточных воздуховодов с воздухораспределителями, клапанами и регулирующими устройствами;
    • вытяжной вентилятор и сеть вытяжных и рециркуляционных воздуховодов с сетевым оборудованием;
    • сеть фреоновых трубопроводов для сплит-систем и VRV-систем с кабелями связи наружных блоков с внутренними;
    • фэнкойлы, эжекционные доводчики, моноблоки, холодные и теплые потолки и балки и др. доводчики для охлаждения и (или) нагревания непосредственно внутреннего воздуха;
    • оборудование для утилизации теплоты и холода;
    • дополнительные воздушные фильтры, шумоглушители и другие элементы.

    И даже систему автоматики, входящую в СКВ как бы по определению, целесообразно выделить отдельно, так как ее проектируют инженеры другой специальности, хотя и по заданию так называемых технологов СКВ.
    Границей СКВ и систем теплохолодоснабжения можно считать узлы регулирования, а границей электроснабжения и автоматики – электрические щиты и щиты управления, которые в последнее время очень часто делают совмещенными.

    Классификация систем кондиционирования воздуха

    Проблемам классификации СКВ в большей или меньшей степени уделяли внимание практически все авторы учебников и монографий по кондиционированию воздуха. Вот что написал по этому вопросу известный специалист, доктор техн. наук А. А. Рымкевич [6]: «Анализ иерархической структуры самих СКВ прежде всего требует их классификации и только затем их декомпозиции на подсистемы. …Однако для СКВ, решения которых базируются на учете большого числа данных, разработать такую классификацию всегда сложно. Не случайно в литературе нет единого мнения по данному вопросу, и поэтому многие известные авторы… предложили различные методы классификации».
    Предложенная А. А. Рымкеви-чем концепция выбора признаков классификации СКВ сформулирована очень точно, и с ней нельзя не согласиться. Проблема состоит в том, как этой концепцией воспользоваться и какие признаки считать определяющими, а какие вторичными, и как точно сформулировать эти признаки.
    В начале восьмидесятых годов прошлого века наиболее полная классификация СКВ была предложена в работе Б. В. Баркалова и Е. Е. Карписа [7].
    Основные признаки этой классификации с некоторыми дополнениями использованы и в недавно изданной монографии А. Г. Сотникова [8] и в других работах, однако некоторые формулировки отдельных признаков требуют уточнения и корректировки.
    Например, для опытных специалистов не составит труда разделить СКВ на центральные и местные, посмотрим, как признак такого деления сформулирован разными авторами.
    Б. В. Баркалов, Е. Е. Карпис пишут [7]: «В зависимости от расположения кондиционеров по отношению к обслуживаемым помеще-ниям СКВ делятся на центральные и местные». А. Г. Сотников [8] считает необходимым дополнить: «Деление на местные и центральные СКВ учитывает как место установки кондиционера, так и группировку помещений по системам», а О. Я. Кокорин уточняет: «По характеру связи с обслуживаемым помещением можно подразделить СКВ на три вида: центральные, местные и центрально-местные. Центральные СКВ характеризуются расположением УКВ в удалении от обслуживаемых объектов и наличием приточных воздуховодов значительной протяженности. Местные СКВ характеризуются расположением УКВ в самом обслуживаемом помещении или в непосредственной близости от него, при отсутствии (или наличии весьма коротких) приточных воздуховодов. Центрально-местные СКВ характеризуются как наличием УКВ в удалении от обслуживаемых объектов, так и местных УКВ, располагаемых в самих помещениях или в непосредственной близости от них».
    Трудно понять, что имеется в виду под группировкой помещений по системам и что считается протяженными или весьма короткими воздуховодами. Например, кондиционеры, обслуживающие текстильные цеха на Волжском заводе синтетического волокна, имеют производительность по воздуху до 240 м3/ч и расположены рядом с обслуживаемыми помещениями, то есть непосредственно за стенами, но никто из указанных выше авторов не отнес бы их к местным системам.
    Несколько иной признак клас-сификации предложил Е. В. Стефанов [9]: «… по степени централизации – на системы центральные, обслуживающие из одного центра несколько помещений, и местные, устраиваемые для отдельных помещений и располагающиеся, как правило, в самих обслуживаемых помещениях».
    К сожалению, и эта формулировка является нечеткой, так как одно большое помещение могут обслуживать несколько центральных кондиционеров, а группу небольших помещений – один местный кондиционер.
    Фактически в отечественной практике негласно действовал совсем другой признак классификации: все кондиционеры, выпускавшиеся Харьковским заводом «Кондиционер», кроме шкафных, считались центральными, а все кондиционеры, выпускавшиеся Домодедовским заводом «Кондиционер», кроме горизонтальных производительностью 10 и 20 тыс. м3/ч, – относились к местным.
    Конечно, сегодня такое деление выглядит смешным, а между тем в нем был определенный здравый смысл.
    Известно, что в местных системах используются готовые агрегаты полной заводской сборки обычно шкафного типа со стандартным набором тепломассообменного оборудования с уже готовыми, заданными заранее техническими характеристиками, поэтому местные УКВ не проектируют, а подбирают для конкретного обслуживаемого помещения или группы небольших однотипных помещений.
    Максимальная производительность местных систем по воздуху обычно не превышает 20–30 тыс. м3/ч.
    Центральные кондиционеры могут быть также полной заводской сборки или собираются на месте монтажа, причем технические характеристики всех элементов, включая воздушные фильтры, вентиляторы и тепломассообменное оборудование, задаются производителями в очень широких пределах, поэтому такие кондиционеры не подбирают, а проектируют, а затем изготавливают в соответствии с бланком-заказом для конкретного объекта.
    Обычно центральные кондиционеры собирают в виде горизонтальных блоков, причем производительность таких кондиционеров по воздуху значительно больше, чем у местных и достигает 100–250 тыс. м3/ч у разных фирм-производителей.
    Очевидно, что отмеченные признаки относятся к УКВ, но их можно использовать и для классификации СКВ, например, СКВ с центральной УКВ – центральная СКВ, а с местной УКВ – местная СКВ. Такой подход не исключает полностью признаки, предложенные другими авторами, а дополняет их, исключая некоторые неопределенности, типа протяженности воздуховодов и др.
    Для дальнейшей классификации СКВ рассмотрим схему ее функционирования.
    На параметры внутреннего воздуха в обслуживаемом помещении или технологическом объеме оказывают воздействие внутренние возмущения, то есть изменяющиеся тепло- и влаговыделения, а также внешние факторы, например, изменение температуры и влагосодержания наружного воздуха, воздействие на остекленный фасад прямой солнечной радиации в разное время суток и др.
    Задача СКВ состоит в том, чтобы улавливать и своевременно устранять последствия этих возмущений и воздействий для сохранения параметров внутреннего воздуха в заданных пределах, используя систему автоматического регулирования и необходимый набор оборудования (воздухоохладители, воздухонагреватели, увлажнители и др.), а также источники теплоты и холода.
    Поддерживать требуемые параметры внутреннего воздуха можно изменяя параметры или расход приточного воздуха, подаваемого в помещение извне, или с помощью аппаратов, установленных непосредственно в помещении, так называемых доводчиков.
    Сегодня в качестве доводчиков используют внутренние блоки сплит-систем и VRV-систем, фэнкойлы, моноблоки, охлаждаемые потолки и балки и другие элементы.
    К сожалению, в классификации [7] вместо понятия «доводчики» используется понятие «водовоздушные СКВ», а в классификации [8] дополнительно вводится термин «водо- и фреоновоздушная СКВ». С подобными предложениями нельзя согласиться в принципе, так как их авторы вольно или невольно присваивают сплит-системам или фэнкойлам статус систем кондиционирования воздуха, которыми они не являются и, естественно, не могут входить в классификацию СКВ, поскольку являются всего лишь местными охладителями или нагревателями, то есть не более чем доводчиками.
    Справедливости ради отметим, что Б. В. Баркалов начинает описание центральных водовоздушных систем очень точной фразой: «В каждое помещение вводится наружный воздух, приготовленный в центральном кондиционере. Перед выпуском в помещение он смешивается с воздухом данного помещения, предварительно охлажденным или нагретым в теплообменниках кондиционеров?доводчиков, снабжаемых холодной и горячей водой». Приведенная цитата показывает, что автор хорошо понимает неопределенность предложенного им признака классификации и поэтому сразу поясняет, что он имеет в виду под центральными водовоздушными системами.
    Системы без доводчиков могут быть прямоточными, когда в помещение подается обработанный наружный воздух, и с рециркуляцией, когда к наружному воздуху подмешивают воздух, забираемый из помещения. Кроме того, технологические СКВ, обслуживающие помещения или аппараты без пребывания людей, могут работать без подачи наружного воздуха со 100 % рециркуляцией. В зависимости от алгоритма работы СКВ различают системы с постоянной рециркуляцией, в которых соотношение количества наружного и рециркуляционного воздуха во время работы не изменяется, и СКВ с переменной рециркуляцией, в которых количество наружного воздуха может изменяться от 100 % до некоторого нормируемого минимального уровня.
    Кроме того, системы с рециркуляцией могут быть одновентиляторными и двухвентиляторными. В первых системах подача приточного воздуха в помещение, а также забор наружного и рециркуляционного воздуха осуществляется приточным вентилятором УКВ. Во втором случае для удаления воздуха из помещения и подачи его на рециркуляцию или на выброс применяют дополнительный вытяжной вентилятор.
    Независимо от схемы компоновки и устройства отдельных элементов СКВ подразделяют также по их назначению. Многие авторы делят СКВ на комфортные, технологические и комфортно-технологические. Более удачной и полной представляется классификация СКВ по назначению на эргономической основе, разработанная ВНИИкондиционером [5].
    Определено, что СКВ могут выполнять одну из трех функций обслуживания: машин; машин + людей; людей.
    1-я группа (символ «машина») определена как технологические СКВ. СКВ этой группы обслуживают технологические аппараты, камеры, боксы, машины и т. п., то есть применяются в тех случаях, когда условия воздушной среды диктуются обеспечением работоспособности технологического оборудования. При этом параметры воздушной среды могут отличаться от тех, которые определяются санитарно-гигиеническими нормами.
    1-я группа имеет две модификации:

    • Подгруппа 1–1 включает в себя кондиционируемые объекты, полностью исключающие возможность пребывания в них человека, то есть это системы технологического охлаждения, обдува электронных блоков вычислительных машин, шахты обдува волокна прядильных машин и т. п.
    • Подгруппа 1–2 включает в себя кондиционируемые объекты: технологические аппараты (машины, камеры, боксы) и помещения с особыми параметрами воздушной среды (калориметрического, экологического и другого назначения), в которых человек отсутствует или находится эпизодически (для снятия показаний приборов, изменения режима работы и т. д.).

    Если для группы 1–1 отсутствуют какие-либо ограничения по параметрам и составу воздушной среды, то для объектов подгруппы 1–2 газовый состав воздушной среды должен находиться в пределах, установленных ГОСТ.
    2-я группа (символ «машина + человек») определена как технологически комфортные СКВ. СКВ этой группы обслуживают производственные помещения, в которых длительно пребывают люди.
    2-я группа имеет три модификации:

    • Подгруппа 2–1. Технологически комфортные СКВ обеспечивают условия нормального осуществления технологических процессов как для производств, в которых затруднено или практически невозможно получение продукции без поддержания определенных параметров воздушной среды, так и для производств, в которых колебания параметров воздуха существенно влияют на качество продукции и величину брака.
    • Для этих помещений СКВ устраивается в первую (и основную) очередь по требованиям технологии, однако в связи с наличием в этих помещениях людей, параметры КВ устанавливают с учетом требований санитарно-гигиенических норм.
    • Подгруппа 2–2. СКВ создаются для исключения дискомфортных условий труда при тяжелых режимах работы людей (кабины крановщиков мостовых кранов металлургических заводов и ТЭЦ, кабины строительно-дорожных машин и т. д.). Производственные или экономические аспекты для этих установок имеют второстепенное значение.
    • Подгруппа 2–3. СКВ обеспечивают в производственных помещениях комфортные условия труда, способствующие повышению производительности труда, улучшению проведения основных технологических режимов, снижению заболеваемости, уменьшению эксплуатационных затрат и т. п.

    3-я группа (символ «люди») определена как комфортные СКВ, обеспечивающие санитарно-гигиенические условия труда, отдыха или иного пребывания людей в помещениях гражданских зданий, то есть вне промышленного производства.
    Эта группа имеет две модификации:

    • Подгруппа 3–1. СКВ обслуживают помещения общественных зданий, в которых для одной части людей пребывание в них кратковременно (например, покупатели в универмаге), а для другой – длительно (например, продавцы в этом же универмаге).
    • Подгруппа 3–2. СКВ обеспечивают оптимальные условия пребывания людей в жилых помещениях.

    В классификацию ВНИИконди-ционера необходимо ввести еще одну группу – медицинские СКВ. Очевидно, что СКВ, обслуживающие операционные, реанимационные или палаты интенсивной терапии, никак нельзя считать комфортными, а чтобы отнести их к технологическим, надо в качестве «машины» рассматривать самого человека, что просто глупо.
    Медицинские СКВ должны иметь две подгруппы:

    • Подгруппа 4–1. СКВ обслуживают операционные, реанимационные и т. п. помещения.
    • Подгруппа 4–2. СКВ обеспечивают требуемые параметры воздуха в палатах, кабинетах врачей, процедурных и т. п.

     

    4805

    Для завершения классификации СКВ рассмотрим еще несколько признаков.
    По типу системы холодоснабжения различают автономные и неавтономные СКВ. В автономных источник холода встроен в кондиционер, в неавтономных – источником холода является отдельный холодильный центр. Кроме того, в автономных кондиционерах в воздухоохладитель может подаваться кипящий хладон или жидкий промежуточный хладоноситель (холодная вода, растворы). Заметим, что на многих объектах мы использовали схему с подачей хладона в воздухоохладитель центрального кондиционера от расположенной рядом холодильной машины или внешнего блока VRV.
    По способу компенсации изменяющихся тепловых и (или) влажностных возмущений в обслуживаемом помещении различают СКВ с постоянным расходом воздуха (CAV) – системы, в которых внутренние параметры поддерживают изменяя температуру и влажность приточного воздуха (качественное регулирование), и системы с переменным расходом воздуха (VAV) – системы с количественным регулированием.
    По числу воздуховодов для подачи кондиционированного воздуха в помещенияСКВ делятся на одноканальные и двухканальные, при этом приточный воздух в каждом канале имеет разную температуру и влажность, что позволяет, изменяя соотношение приточного воздуха, подаваемого через каждый канал, поддерживать требуемые параметры в обслуживаемом помещении.
    По числу точек стабилизации одноименного параметра (t; φ)в большом помещении или группе небольших помещений различают одно- и многозональные СКВ.
    –это СКВ с местными доводчиками. В этих СКВ центральная или местная УКВ подает в помещение санитарную норму наружного воздуха, даже не обязательно обработанного, а местные доводчики обеспечивают поддержание в помещении требуемых параметров воздуха (температуры, относительной влажности и подвижности).
    Сегодня в качестве местных доводчиков применяют: внутренние блоки сплит-систем или VRV-систем; фэнкойлы (двух- или четырехтрубные); моноблоки (напольные, потолочные или настенные); эжекционные доводчики; местные увлажнители воздуха; охлаждаемые и нагреваемые потолки; охлаждающие балки (пассивные и активированные).
    Все указанные доводчики сами по себе не являются кондиционерами, хотя их и называют так продавцы оборудования.
    Известно, что некоторые фирмы работают над созданием, например, фэнкойлов или сплит-систем, подающих в помещение наружный воздух. Но, если это и произойдет в массовом масштабе, то ничего страшного с классификацией не случится, просто это оборудование получит статус местных кондиционеров.
    Блок-схема рассмотренной классификации СКВ приведена на рис. 2.
    Помимо рассмотренных признаков в схему на рис. 2 включен еще один: наличие утилизаторов теплоты и холода, которые могут быть как в центральных, так и в местных СКВ. Причем необходимо различать системы утилизации типа воздух-воздух, к которым относятся схемы с промежуточным теплоносителем, с пластинчатыми теплообменниками* и с регенеративными вращающимися и переключаемыми теплообменниками, а также системы утилизации теплоты оборотной воды и теплоты обратного теплоносителя систем централизованного теплоснабжения и систем технологического жидкостного охлаждения.

    Литература

    1. Липа А. И. Кондиционирование воздуха. Основы теории. Совре-менные технологии обработки воздуха. – Одесса: Издательство ВМВ, 2010.
    2. СНиП 41–01–2003. Отопление, вентиляция, кондиционирование. М.: Госстрой России. – 2004.
    3. Англо-русский терминологический словарь по отоплению, вентиляции, кондиционированию воздуха и охлаждению. М.: Изд-во «АВОК-ПРЕСС», 2002.
    4. Кокорин О. Я. Энергосберегаю-щие системы кондиционирования воздуха. ООО «ЛЭС». – М., 2007.
    5. Кондиционеры. Каталог-спра-воч-ник ЦНИИТЭстроймаш. – М., 1981.
    6. Рымкевич А. А. Системный анализ оптимизации общеобменной вентиляции и кондиционирования воздуха. Изд. 1. – М.: Стройиздат, 1990.
    7. Баркалов Б. В., Карпис Е. Е. Кондиционирование воздуха в промышленных, общественных и жилых зданиях. Изд. 2. – М.: Стройиздат, 1982.
    8. Сотников А. Г. Процессы, аппараты и системы кондиционирования воздуха и вентиляции. Т. 1. ООО «АТ». – С.-Петербург, 2005.
    9. Стефанов Е. В. Вентиляция и кондиционирование воздуха. – С.-Петербург: Изд-во «АВОК-Северо-Запад», 2005.

    [ http://www.abok.ru/for_spec/articles.php?nid=5029]

    Тематики

    EN

    DE

    FR

     

    система кондиционирования воздуха
    СКВ

    Система, позволяющая контролировать температуру, а иногда влажность и чистоту воздуха в помещении или транспортном средстве.
    [Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]

    EN

    air conditioning system
    ACS
    System for controlling temperature and sometimes humidity and purity of the air indoor or in a vehicle.
    [Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > air conditioning system

  • 59 II)

    1. Общее

    F.1. Общее

    В настоящем стандарте приводится большое число общих требований, которые могут или не могут быть применены в отношении отдельной машины. Поэтому простое, без квалифицированной оценки утверждение о соответствии оборудования всем требованиям настоящего стандарта является недостоверным. Прежде чем приступить к выполнению требований настоящего стандарта, его необходимо тщательно изучить. Техническими комитетами разрабатываются стандарты на отдельные виды продукции или на отдельные продукты (тип С в СЕН) и для конкретных производителей продукции. До выхода этих стандартов следует руководствоваться настоящим стандартом посредством:

    a) установления соответствия и

    b) выбора наиболее близких понятий к требованиям соответствующих разделов, и

    c) изменения требований разделов, если необходимо там, где специфические требования на машину перекрываются другими стандартами, относящимися к данному вопросу.

    В этом случае необходимо обеспечить правильный подбор модификаций и опций без снижения уровня защиты, необходимой для машины в соответствии с оценкой рисков.

    При использовании всех трех вышеприведенных принципов рекомендуется:

    - руководствоваться соответствующими разделами и пунктами настоящего стандарта:

    1) если указано соответствие применяемой опции,

    2) если требования могут быть конкретизированы для отдельной машины или оборудования;

    - руководствоваться напрямую соответствующими стандартами, в которых требования к электрооборудованию аналогичны настоящему стандарту.

    Во всех случаях экспертизой устанавливается:

    - завершенность оценки рисков для машины;

    - прочтение и понимание всех требований настоящего стандарта;

    - правильность выбора варианта реализации требований настоящего стандарта при наличии альтернативы;

    - понимание альтернативы или специфических требований, определяемых для машины или ее эксплуатации, при отсутствии или отличии от соответствующих требований настоящего стандарта;

    - точность определения таких специфических требований.

    Приведенная на рисунке 1 блок-схема типичной машины должна быть использована в качестве отправной точки при решении данной задачи. Это определяется пунктами и разделами, имеющими отношение к специфическим требованиям к оборудованию.

    Настоящий стандарт является комплексным документом, и таблица F.1 призвана помочь в понимании применения требований настоящего стандарта к специальным машинам и установлении связей с другими стандартами по данной тематике.

    Таблица F.1 - Выбор вариантов применения требований стандарта

    Наименование раздела, пункта или подпункта

    Номер раздела, пункта или подпункта

    I)

    II)

    III)

    IV)

    Область применения

    1

    X

    ИСО 121 00 (все части) ИСО 14121 [28]

    Общие требования

    4

    X

    X

    X

    МЭК 60439

    Электрооборудование, соответствующее требованиям МЭК 60439

    4.2.2

    X

    X

    Устройство отключения питания (изолирующий распределитель)

    5.3

    X

    Цепи, на которые не распространяются общие правила по подключению к источнику питания

    5.3.5

    X

    X

    ИСО 12100 (все части)

    Предотвращение непреднамеренных пусков, изоляция

    5.4, 5.5, 5.6

    X

    X

    X

    ИСО 14118 [13]

    Защита от поражения электрическим током

    6

    X

    МЭК 60364-4-41

    Аварийное управление

    9.2.5.4

    X

    X

    ИСО 13850

    Двуручное управление

    9.2.6.2

    X

    X

    ИСО 13851 [14]

    Дистанционное управление

    9.2.7

    X

    X

    X

    Функции управления в случае отказа

    9.4

    X

    X

    X

    ИСО 14121 [28]

    Датчики положения

    10.1.4

    X

    X

    X

    ИСО 14119 [29]

    Цвета и маркировка операционного интерфейса

    10.2, 10.3, 10.4

    X

    X

    МЭК 60073

    Устройства аварийной остановки

    10.7

    X

    X

    ИСО 13850

    Устройства аварийного отключения

    10.8

    X

    Аппаратура управления, защита от внешних воздействий

    10.1.3, 11.3

    X

    X

    X

    МЭК 60529

    Идентификация проводов

    13.2

    X

    Подтверждение соответствия (испытания и проверка)

    18

    X

    X

    X

    Дополнительные требования (опросный лист)

    приложение В

    X

    X

    «X» обозначены разделы, пункты и подпункты настоящего стандарта, которые могут быть применены при следующих условиях:

    I) применение приведенных в разделе, пункте или подпункте материалов;

    II) использование дополнительных специфических требований;

    III) использование других требований;

    IV) использование других стандартов, в которых требования к электрооборудованию аналогичны настоящему стандарту.

    <2>Приложение G

    Таблица G.1 иллюстрирует сравнение поперечных сечений проводников в Американском сортаменте проволоки (AWG) с квадратными миллиметрами, квадратными дюймами и круговыми милами.

    Таблица G.1 - Сравнение размеров проводников

    Номерной размер,

    Номер диаметра

    Площадь поперечного сечения

    Сопротивление медного провода при постоянном токе при 20°С,

    Круговой мил

    мм2

    дюйм2

    0,2

    0,196

    0,000304

    91,62

    387

    24

    0,205

    0,000317

    87,60

    404

    0,3

    0,283

    0,000438

    63,46

    558

    22

    0,324

    0,000504

    55,44

    640

    0,5

    0,500

    0,000775

    36,70

    987

    20

    0,519

    0,000802

    34,45

    1020

    0,75

    0,750

    0,001162

    24,80

    1480

    18

    0,823

    0,001272

    20,95

    1620

    1,0

    1,000

    0,001550

    18,20

    1973

    16

    1,31

    0,002026

    13,19

    2580

    1,5

    1,500

    0,002325

    12,20

    2960

    14

    2,08

    0,003228

    8,442

    4110

    2,5

    2,500

    0,003875

    7,56

    4934

    12

    3,31

    0,005129

    5,315

    6530

    4

    4,000

    0,006200

    4,700

    7894

    10

    5,26

    0,008152

    3,335

    10380

    6

    6,000

    0,009300

    3,110

    11841

    8

    8,37

    0,012967

    2,093

    16510

    10

    10,000

    0,001550

    1,840

    19735

    6

    13,3

    0,020610

    1,320

    26240

    16

    16,000

    0,024800

    1,160

    31576

    4

    21,1

    0,032780

    0,8295

    41740

    25

    25,000

    0,038800

    0,7340

    49339

    2

    33,6

    0,052100

    0,5211

    66360

    35

    35,000

    0,054200

    0,5290

    69073

    1

    42,4

    0,065700

    0,4139

    83690

    50

    47,000

    0,072800

    0,3910

    92756

    Сопротивление при температурах, отличных от 20 °С, вычисляют по формуле:

    R = RI[1 + 0,00393(t - 20)],

    где RI - сопротивление при 20°С;

    R - сопротивление при температуре t°C.

    <2>Приложение Н

    Таблица Н.1

    Обозначение ссылочного международного стандарта

    Обозначение и наименование соответствующего национального стандарта

    МЭК 60034-1

    ГОСТ 28330-89 Машины электрические асинхронные мощностью от 1 до 400 кВт включительно. Общие технические требования

    МЭК 60034-5

    *

    МЭК 60034-11

    *

    МЭК 60072-1

    *

    МЭК 60072-2

    *

    МЭК 60073:2002

    ГОСТ 29149-91 Цвета световой сигнализации и кнопок

    МЭК 60309-1:1999

    ГОСТ 29146.1-91 Соединители электрические промышленного назначения. Часть 1. Общие требования

    МЭК 60364-4-41:2001

    ГОСТ Р 50571.3-94( МЭК 60364-4-41-92) Электроустановки зданий. Часть 4. Требования по обеспечению безопасности. Защита от поражения электрическим током

    МЭК 60364-4-43:2001

    ГОСТ Р 50571.5-95 (МЭК 60364-4-43-77) Электроустановки зданий. Часть 4. Требования по обеспечению безопасности. Защита от сверхтока

    МЭК 60364-5-52:2001

    ГОСТ Р 50571.15-97( МЭК 60364-5-52-93) Электроустановки зданий. Часть 5. Выбор и монтаж электрооборудования. Глава 52. Электропроводки

    МЭК 60364-5-53:2002

    *

    МЭК 60364-5-54:2002

    ГОСТ Р 50571.10-96( МЭК 60364-5-54-80) Электроустановки зданий. Часть 5. Выбор и монтаж электрооборудования. Глава 54. Заземляющие устройства и защитные проводники

    МЭК 60364-6-61:2001

    ГОСТ Р 50571.16-99 Электроустановки зданий. Часть 6. Испытания. Глава 61. Приемо-сдаточные испытания

    МЭК 604 17-DB 2002

    *

    МЭК 60439-1:1999

    ГОСТ Р 51321.1-2000 Устройства комплектные низковольтные распределения и управления. Часть 1.Устройства, испытанные полностью или частично. Общие технические требования и методы испытаний

    МЭК 60446:1 999

    *

    МЭК 60447:2004

    ГОСТ Р МЭК 60447-2000 Интерфейс человеко-машинный. Принципы приведения в действие

    МЭК 60529:1999

    ГОСТ 14254-96( МЭК 529-89) Степени защиты, обеспечиваемые оболочками (Код IP)

    МЭК 60617-06:2001

    *

    МЭК 60621-3:1979

    *

    МЭК 60664-1:1992

    *

    МЭК 60947-1:2004

    ГОСТ Р 50030.1-2007( МЭК 60947-1: 2004) Аппаратура распределения и управления низковольтная. Часть 1. Общие требования

    МЭК 60947-2:2003

    ГОСТ Р 50030.2-99( МЭК 60947-2-98) Аппаратура распределения и управления низковольтная. Часть 2. Автоматические выключатели

    МЭК 60947-5-1:2003

    ГОСТ Р 50030.5.1-2005 (МЭК 60947-5-1:2003) Аппаратура распределения и управления низковольтная. Часть 5. Аппараты и коммутационные элементы цепей управления. Глава 1. Электромеханические аппараты для цепей управления

    МЭК 60947-7-1:2002

    ГОСТ Р 50030.7.1-2000 (МЭК 60947-7-1-89) Аппаратура распределения и управления низковольтная. Часть 7. Электрооборудование вспомогательное. Раздел 1. Клеммные колодки для медных проводников

    МЭК 61082-1:1991

    *

    МЭК 61082-2:1993

    *

    МЭК 61082-3:1993

    *

    МЭК 61082-4:1996

    *

    МЭК 61140:2001

    ГОСТ Р МЭК 61140-2000 Защита от поражения электрическим током. Общие положения по безопасности, обеспечиваемой электрооборудованием и электроустановками в их взаимосвязи

    МЭК 61310 -2

    ГОСТ 28690-90 Знак соответствия технических средств требованиям электромагнитной совместимости. Форма, размеры, технические требования

    МЭК 61 310 (все части за исключением части 2)

    *

    МЭК 61 346 (все части)

    *

    МЭК 61557-3:1997

    ГОСТ Р МЭК 61557-3 2006 Сети электрические распределительные низковольтные напряжением до 1000 В переменного 1500 В постоянного тока. Электробезопасность. Аппаратура для испытаний, измерения и контроля средств защиты. Часть 3. Полное сопротивление контура

    МЭК 61 558-1: 1997

    *

    МЭК 61558-2-6

    *

    МЭК 61984:2001

    *

    МЭК 62023:2000

    *

    МЭК 62027:2000

    *

    МЭК 62061:2005

    *

    МЭК 62079:2001

    *

    ИСО 7000:2004

    *

    ИСО 12100-1:2003

    *

    ИСО 12100-2:2003

    *

    ИСО 13849-1:1999

    *

    ИСО 13849-2:2003

    *

    ИСО 13850:1996

    *

    *Соответствующий национальный стандарт отсутствует. До его утверждения рекомендуется использовать перевод на русский язык данного международного стандарта. Перевод данного международного стандарта находится в Федеральном информационном фонде технических регламентов и стандартов

    <2>Библиография

    [1] МЭК 60038:2002

    Стандартные напряжения

    [2] МЭК 60204-11:2000

    Безопасность машин. Электрическое оборудование машин. Часть 11. Требования к высоковольтному оборудованию на напряжения свыше 1000 В переменного тока или 1500 В постоянного тока, но не свыше 36 кВ

    [3] МЭК 60204-31:1996

    Электрооборудование промышленных машин. Частные требования к швейным машинам, установкам и системам

    [4] МЭК 60204-32:1998

    Безопасность оборудования. Электрооборудование промышленных  машин. Часть 32. Требования к грузоподъемным машинам

    [5] МЭК 61000-6-1:1997

    Совместимость технических средств электромагнитная. Часть 6. Общие требования. Секция 1. Устойчивость к электромагнитным помехам в жилой, коммерческой и среде легкой индустрии

    [6] МЭК 61000-6-2:2005

    Совместимость технических средств электромагнитная. Часть 6-2. Общие требования. Устойчивость к электромагнитным помехам в промышленных зонах

    [7] СИСПР 61000-6-3:1996

    Совместимость технических средств электромагнитная. Часть 6. Общие требования. Секция 3. Нормы эмиссии для жилых, коммерческих и среды легкой индустрии

    [8] МЭК 61000-6-4:1997

    Совместимость технических средств электромагнитная. Часть 6. Общие требования. Секция 4. Эмиссия помех в промышленных зонах

    [9] МЭК 61000-5-2:1997

    Электромагнитная совместимость. Часть 5. Монтаж и снижение помех в проводке. Раздел 2. Заземление и скрутка

    [10] МЭК 61496-1:2004

    Безопасность машин. Электрочувствительное защитное оборудование. Часть 1. Общие требования и испытания

    [11] МЭК 61800-3:2004

    Электроприводы регулируемые. Часть 3. Требования по электромагнитной совместимости и методы испытаний

    [12] МЭК 60947-5-2:1997

    Аппараты коммутационные и управления низковольтные. Часть 5-2. Устройства управления и переключатели. Выключатели конечные Дополнение 1 (1999) Дополнение 2 (2003)

    [13] ИСО 14118:2000

    Безопасность машин. Предотвращение непредусмотренного пуска

    [14] ИСО 13851:2002

    Безопасность машин. Средства управления обоими руками. Функциональные аспекты и принципы проектирования

    [15] ИСО 14122 серия

    Безопасность машин. Средства постоянного доступа к машине

    [16]СЕНЕЛЕК НD 516 S2

    Руководство по применению гармонизированных кабелей

    [17] МЭК 60287 (все части)

    Кабели. Расчет номинальных токов нагрузок в условиях установившегося режима

    [18] МЭК 60757:1983

    Коды для обозначения цветов

    [19] МЭК 60332 (все части)

    Испытания на огнестойкость электрических и оптических кабелей

    [20] МЭК 61084-1: 1991

    Кабельные проводящие и канализирующие системы для электрического монтажа. Часть 1. Основные требования

    [21] МЭК 60364 (все части)

    Электроустановки зданий

    [22] МЭК 61557 (все части)

    Безопасность в низковольтных  системах  электроснабжения   напряжением до 1000 В переменного тока и до 1500 В постоянного тока. Оборудование для проведения испытаний, измерений и контроля исполнения защитных функций

    [23] МЭК 60228:2004

    Жилы токопроводящие изолированных кабелей

    [24] МЭК 61200-53:1994

    Устройства электрические. Часть 53. Выбор и монтаж электрооборудования. Аппаратура коммутационная и управления

    [25] МЭК 61180-2:1994

    Техника для проведения высоковольтных испытаний низковольтного электрооборудования. Часть 2. Испытательное оборудование

    [26] МЭК 60335 (все части)

    Бытовое и аналогичное ему применение электричества. Безопасность

    [27] МЭК 60269-1:1998

    Предохранители низковольтные. Часть 1. Общие требования

    [28] ИСО 14121:1999

    Безопасность машин. Принципы оценки риска

    [29] ИСО 14119:1998

    Безопасность машин. Блокировочные устройства для ограждений. Принципы конструкции и выбора

    <2>

    Источник: ГОСТ Р МЭК 60204-1-2007: Безопасность машин. Электрооборудование машин и механизмов. Часть 1. Общие требования оригинал документа

    Англо-русский словарь нормативно-технической терминологии > II)

  • 60 III)

    1. Общее

    F.1. Общее

    В настоящем стандарте приводится большое число общих требований, которые могут или не могут быть применены в отношении отдельной машины. Поэтому простое, без квалифицированной оценки утверждение о соответствии оборудования всем требованиям настоящего стандарта является недостоверным. Прежде чем приступить к выполнению требований настоящего стандарта, его необходимо тщательно изучить. Техническими комитетами разрабатываются стандарты на отдельные виды продукции или на отдельные продукты (тип С в СЕН) и для конкретных производителей продукции. До выхода этих стандартов следует руководствоваться настоящим стандартом посредством:

    a) установления соответствия и

    b) выбора наиболее близких понятий к требованиям соответствующих разделов, и

    c) изменения требований разделов, если необходимо там, где специфические требования на машину перекрываются другими стандартами, относящимися к данному вопросу.

    В этом случае необходимо обеспечить правильный подбор модификаций и опций без снижения уровня защиты, необходимой для машины в соответствии с оценкой рисков.

    При использовании всех трех вышеприведенных принципов рекомендуется:

    - руководствоваться соответствующими разделами и пунктами настоящего стандарта:

    1) если указано соответствие применяемой опции,

    2) если требования могут быть конкретизированы для отдельной машины или оборудования;

    - руководствоваться напрямую соответствующими стандартами, в которых требования к электрооборудованию аналогичны настоящему стандарту.

    Во всех случаях экспертизой устанавливается:

    - завершенность оценки рисков для машины;

    - прочтение и понимание всех требований настоящего стандарта;

    - правильность выбора варианта реализации требований настоящего стандарта при наличии альтернативы;

    - понимание альтернативы или специфических требований, определяемых для машины или ее эксплуатации, при отсутствии или отличии от соответствующих требований настоящего стандарта;

    - точность определения таких специфических требований.

    Приведенная на рисунке 1 блок-схема типичной машины должна быть использована в качестве отправной точки при решении данной задачи. Это определяется пунктами и разделами, имеющими отношение к специфическим требованиям к оборудованию.

    Настоящий стандарт является комплексным документом, и таблица F.1 призвана помочь в понимании применения требований настоящего стандарта к специальным машинам и установлении связей с другими стандартами по данной тематике.

    Таблица F.1 - Выбор вариантов применения требований стандарта

    Наименование раздела, пункта или подпункта

    Номер раздела, пункта или подпункта

    I)

    II)

    III)

    IV)

    Область применения

    1

    X

    ИСО 121 00 (все части) ИСО 14121 [28]

    Общие требования

    4

    X

    X

    X

    МЭК 60439

    Электрооборудование, соответствующее требованиям МЭК 60439

    4.2.2

    X

    X

    Устройство отключения питания (изолирующий распределитель)

    5.3

    X

    Цепи, на которые не распространяются общие правила по подключению к источнику питания

    5.3.5

    X

    X

    ИСО 12100 (все части)

    Предотвращение непреднамеренных пусков, изоляция

    5.4, 5.5, 5.6

    X

    X

    X

    ИСО 14118 [13]

    Защита от поражения электрическим током

    6

    X

    МЭК 60364-4-41

    Аварийное управление

    9.2.5.4

    X

    X

    ИСО 13850

    Двуручное управление

    9.2.6.2

    X

    X

    ИСО 13851 [14]

    Дистанционное управление

    9.2.7

    X

    X

    X

    Функции управления в случае отказа

    9.4

    X

    X

    X

    ИСО 14121 [28]

    Датчики положения

    10.1.4

    X

    X

    X

    ИСО 14119 [29]

    Цвета и маркировка операционного интерфейса

    10.2, 10.3, 10.4

    X

    X

    МЭК 60073

    Устройства аварийной остановки

    10.7

    X

    X

    ИСО 13850

    Устройства аварийного отключения

    10.8

    X

    Аппаратура управления, защита от внешних воздействий

    10.1.3, 11.3

    X

    X

    X

    МЭК 60529

    Идентификация проводов

    13.2

    X

    Подтверждение соответствия (испытания и проверка)

    18

    X

    X

    X

    Дополнительные требования (опросный лист)

    приложение В

    X

    X

    «X» обозначены разделы, пункты и подпункты настоящего стандарта, которые могут быть применены при следующих условиях:

    I) применение приведенных в разделе, пункте или подпункте материалов;

    II) использование дополнительных специфических требований;

    III) использование других требований;

    IV) использование других стандартов, в которых требования к электрооборудованию аналогичны настоящему стандарту.

    <2>Приложение G

    Таблица G.1 иллюстрирует сравнение поперечных сечений проводников в Американском сортаменте проволоки (AWG) с квадратными миллиметрами, квадратными дюймами и круговыми милами.

    Таблица G.1 - Сравнение размеров проводников

    Номерной размер,

    Номер диаметра

    Площадь поперечного сечения

    Сопротивление медного провода при постоянном токе при 20°С,

    Круговой мил

    мм2

    дюйм2

    0,2

    0,196

    0,000304

    91,62

    387

    24

    0,205

    0,000317

    87,60

    404

    0,3

    0,283

    0,000438

    63,46

    558

    22

    0,324

    0,000504

    55,44

    640

    0,5

    0,500

    0,000775

    36,70

    987

    20

    0,519

    0,000802

    34,45

    1020

    0,75

    0,750

    0,001162

    24,80

    1480

    18

    0,823

    0,001272

    20,95

    1620

    1,0

    1,000

    0,001550

    18,20

    1973

    16

    1,31

    0,002026

    13,19

    2580

    1,5

    1,500

    0,002325

    12,20

    2960

    14

    2,08

    0,003228

    8,442

    4110

    2,5

    2,500

    0,003875

    7,56

    4934

    12

    3,31

    0,005129

    5,315

    6530

    4

    4,000

    0,006200

    4,700

    7894

    10

    5,26

    0,008152

    3,335

    10380

    6

    6,000

    0,009300

    3,110

    11841

    8

    8,37

    0,012967

    2,093

    16510

    10

    10,000

    0,001550

    1,840

    19735

    6

    13,3

    0,020610

    1,320

    26240

    16

    16,000

    0,024800

    1,160

    31576

    4

    21,1

    0,032780

    0,8295

    41740

    25

    25,000

    0,038800

    0,7340

    49339

    2

    33,6

    0,052100

    0,5211

    66360

    35

    35,000

    0,054200

    0,5290

    69073

    1

    42,4

    0,065700

    0,4139

    83690

    50

    47,000

    0,072800

    0,3910

    92756

    Сопротивление при температурах, отличных от 20 °С, вычисляют по формуле:

    R = RI[1 + 0,00393(t - 20)],

    где RI - сопротивление при 20°С;

    R - сопротивление при температуре t°C.

    <2>Приложение Н

    Таблица Н.1

    Обозначение ссылочного международного стандарта

    Обозначение и наименование соответствующего национального стандарта

    МЭК 60034-1

    ГОСТ 28330-89 Машины электрические асинхронные мощностью от 1 до 400 кВт включительно. Общие технические требования

    МЭК 60034-5

    *

    МЭК 60034-11

    *

    МЭК 60072-1

    *

    МЭК 60072-2

    *

    МЭК 60073:2002

    ГОСТ 29149-91 Цвета световой сигнализации и кнопок

    МЭК 60309-1:1999

    ГОСТ 29146.1-91 Соединители электрические промышленного назначения. Часть 1. Общие требования

    МЭК 60364-4-41:2001

    ГОСТ Р 50571.3-94( МЭК 60364-4-41-92) Электроустановки зданий. Часть 4. Требования по обеспечению безопасности. Защита от поражения электрическим током

    МЭК 60364-4-43:2001

    ГОСТ Р 50571.5-95 (МЭК 60364-4-43-77) Электроустановки зданий. Часть 4. Требования по обеспечению безопасности. Защита от сверхтока

    МЭК 60364-5-52:2001

    ГОСТ Р 50571.15-97( МЭК 60364-5-52-93) Электроустановки зданий. Часть 5. Выбор и монтаж электрооборудования. Глава 52. Электропроводки

    МЭК 60364-5-53:2002

    *

    МЭК 60364-5-54:2002

    ГОСТ Р 50571.10-96( МЭК 60364-5-54-80) Электроустановки зданий. Часть 5. Выбор и монтаж электрооборудования. Глава 54. Заземляющие устройства и защитные проводники

    МЭК 60364-6-61:2001

    ГОСТ Р 50571.16-99 Электроустановки зданий. Часть 6. Испытания. Глава 61. Приемо-сдаточные испытания

    МЭК 604 17-DB 2002

    *

    МЭК 60439-1:1999

    ГОСТ Р 51321.1-2000 Устройства комплектные низковольтные распределения и управления. Часть 1.Устройства, испытанные полностью или частично. Общие технические требования и методы испытаний

    МЭК 60446:1 999

    *

    МЭК 60447:2004

    ГОСТ Р МЭК 60447-2000 Интерфейс человеко-машинный. Принципы приведения в действие

    МЭК 60529:1999

    ГОСТ 14254-96( МЭК 529-89) Степени защиты, обеспечиваемые оболочками (Код IP)

    МЭК 60617-06:2001

    *

    МЭК 60621-3:1979

    *

    МЭК 60664-1:1992

    *

    МЭК 60947-1:2004

    ГОСТ Р 50030.1-2007( МЭК 60947-1: 2004) Аппаратура распределения и управления низковольтная. Часть 1. Общие требования

    МЭК 60947-2:2003

    ГОСТ Р 50030.2-99( МЭК 60947-2-98) Аппаратура распределения и управления низковольтная. Часть 2. Автоматические выключатели

    МЭК 60947-5-1:2003

    ГОСТ Р 50030.5.1-2005 (МЭК 60947-5-1:2003) Аппаратура распределения и управления низковольтная. Часть 5. Аппараты и коммутационные элементы цепей управления. Глава 1. Электромеханические аппараты для цепей управления

    МЭК 60947-7-1:2002

    ГОСТ Р 50030.7.1-2000 (МЭК 60947-7-1-89) Аппаратура распределения и управления низковольтная. Часть 7. Электрооборудование вспомогательное. Раздел 1. Клеммные колодки для медных проводников

    МЭК 61082-1:1991

    *

    МЭК 61082-2:1993

    *

    МЭК 61082-3:1993

    *

    МЭК 61082-4:1996

    *

    МЭК 61140:2001

    ГОСТ Р МЭК 61140-2000 Защита от поражения электрическим током. Общие положения по безопасности, обеспечиваемой электрооборудованием и электроустановками в их взаимосвязи

    МЭК 61310 -2

    ГОСТ 28690-90 Знак соответствия технических средств требованиям электромагнитной совместимости. Форма, размеры, технические требования

    МЭК 61 310 (все части за исключением части 2)

    *

    МЭК 61 346 (все части)

    *

    МЭК 61557-3:1997

    ГОСТ Р МЭК 61557-3 2006 Сети электрические распределительные низковольтные напряжением до 1000 В переменного 1500 В постоянного тока. Электробезопасность. Аппаратура для испытаний, измерения и контроля средств защиты. Часть 3. Полное сопротивление контура

    МЭК 61 558-1: 1997

    *

    МЭК 61558-2-6

    *

    МЭК 61984:2001

    *

    МЭК 62023:2000

    *

    МЭК 62027:2000

    *

    МЭК 62061:2005

    *

    МЭК 62079:2001

    *

    ИСО 7000:2004

    *

    ИСО 12100-1:2003

    *

    ИСО 12100-2:2003

    *

    ИСО 13849-1:1999

    *

    ИСО 13849-2:2003

    *

    ИСО 13850:1996

    *

    *Соответствующий национальный стандарт отсутствует. До его утверждения рекомендуется использовать перевод на русский язык данного международного стандарта. Перевод данного международного стандарта находится в Федеральном информационном фонде технических регламентов и стандартов

    <2>Библиография

    [1] МЭК 60038:2002

    Стандартные напряжения

    [2] МЭК 60204-11:2000

    Безопасность машин. Электрическое оборудование машин. Часть 11. Требования к высоковольтному оборудованию на напряжения свыше 1000 В переменного тока или 1500 В постоянного тока, но не свыше 36 кВ

    [3] МЭК 60204-31:1996

    Электрооборудование промышленных машин. Частные требования к швейным машинам, установкам и системам

    [4] МЭК 60204-32:1998

    Безопасность оборудования. Электрооборудование промышленных  машин. Часть 32. Требования к грузоподъемным машинам

    [5] МЭК 61000-6-1:1997

    Совместимость технических средств электромагнитная. Часть 6. Общие требования. Секция 1. Устойчивость к электромагнитным помехам в жилой, коммерческой и среде легкой индустрии

    [6] МЭК 61000-6-2:2005

    Совместимость технических средств электромагнитная. Часть 6-2. Общие требования. Устойчивость к электромагнитным помехам в промышленных зонах

    [7] СИСПР 61000-6-3:1996

    Совместимость технических средств электромагнитная. Часть 6. Общие требования. Секция 3. Нормы эмиссии для жилых, коммерческих и среды легкой индустрии

    [8] МЭК 61000-6-4:1997

    Совместимость технических средств электромагнитная. Часть 6. Общие требования. Секция 4. Эмиссия помех в промышленных зонах

    [9] МЭК 61000-5-2:1997

    Электромагнитная совместимость. Часть 5. Монтаж и снижение помех в проводке. Раздел 2. Заземление и скрутка

    [10] МЭК 61496-1:2004

    Безопасность машин. Электрочувствительное защитное оборудование. Часть 1. Общие требования и испытания

    [11] МЭК 61800-3:2004

    Электроприводы регулируемые. Часть 3. Требования по электромагнитной совместимости и методы испытаний

    [12] МЭК 60947-5-2:1997

    Аппараты коммутационные и управления низковольтные. Часть 5-2. Устройства управления и переключатели. Выключатели конечные Дополнение 1 (1999) Дополнение 2 (2003)

    [13] ИСО 14118:2000

    Безопасность машин. Предотвращение непредусмотренного пуска

    [14] ИСО 13851:2002

    Безопасность машин. Средства управления обоими руками. Функциональные аспекты и принципы проектирования

    [15] ИСО 14122 серия

    Безопасность машин. Средства постоянного доступа к машине

    [16]СЕНЕЛЕК НD 516 S2

    Руководство по применению гармонизированных кабелей

    [17] МЭК 60287 (все части)

    Кабели. Расчет номинальных токов нагрузок в условиях установившегося режима

    [18] МЭК 60757:1983

    Коды для обозначения цветов

    [19] МЭК 60332 (все части)

    Испытания на огнестойкость электрических и оптических кабелей

    [20] МЭК 61084-1: 1991

    Кабельные проводящие и канализирующие системы для электрического монтажа. Часть 1. Основные требования

    [21] МЭК 60364 (все части)

    Электроустановки зданий

    [22] МЭК 61557 (все части)

    Безопасность в низковольтных  системах  электроснабжения   напряжением до 1000 В переменного тока и до 1500 В постоянного тока. Оборудование для проведения испытаний, измерений и контроля исполнения защитных функций

    [23] МЭК 60228:2004

    Жилы токопроводящие изолированных кабелей

    [24] МЭК 61200-53:1994

    Устройства электрические. Часть 53. Выбор и монтаж электрооборудования. Аппаратура коммутационная и управления

    [25] МЭК 61180-2:1994

    Техника для проведения высоковольтных испытаний низковольтного электрооборудования. Часть 2. Испытательное оборудование

    [26] МЭК 60335 (все части)

    Бытовое и аналогичное ему применение электричества. Безопасность

    [27] МЭК 60269-1:1998

    Предохранители низковольтные. Часть 1. Общие требования

    [28] ИСО 14121:1999

    Безопасность машин. Принципы оценки риска

    [29] ИСО 14119:1998

    Безопасность машин. Блокировочные устройства для ограждений. Принципы конструкции и выбора

    <2>

    Источник: ГОСТ Р МЭК 60204-1-2007: Безопасность машин. Электрооборудование машин и механизмов. Часть 1. Общие требования оригинал документа

    Англо-русский словарь нормативно-технической терминологии > III)

См. также в других словарях:

  • оборудование для монтажа и демонтажа водоотделяющей колонны — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN marine riser handling equipmentriser handling tool …   Справочник технического переводчика

  • Оборудование, требующее монтажа — К оборудованию, требующему монтажа, относится оборудование, вводимое в действие только после сборки его частей прикрепления к фундаменту или опорам, к полу, междуэтажным перекрытиям и прочим несущим конструкциям зданий и сооружений; комплекты… …   Официальная терминология

  • Вертлюг (оборудование для монтажа ЛЭП и КЛ) — Компенсатор вращения «Вертлюг»   Устройство, компенсирующее скручивание провода при монтаже Линий Электропередач методом монтажа «под тяжением». Компенсатор вращения «Вертлюг» OMAC F250.R Верт …   Википедия

  • ОБОРУДОВАНИЕ, ТРЕБУЮЩЕЕ МОНТАЖА — оборудование, которое может быть введено в действие только после сборки его отдельных частей или установки на фундаменты и опоры. К этому оборудованию относятся также и электронно вычислительные машины, для сдачи в эксплуатацию которых требуется… …   Большой бухгалтерский словарь

  • "ОБОРУДОВАНИЕ, ПРИНЯТОЕ ДЛЯ МОНТАЖА" — забалансовый счет бухгалтерского учета, предназначенный для обобщения информации о наличии и движении всех видов оборудования, полученного подрядной организацией от заказчика для монтажа. Этот счет используется предприятиями подрядчиками …   Большой бухгалтерский словарь

  • Счет Бухгалтерского Учета 005 Оборудование, Принятое Для Монтажа — счет, предназначенный для обобщения информации о наличии и движении всех видов оборудования, полученного подрядной организацией от заказчика для монтажа. Словарь бизнес терминов. Академик.ру. 2001 …   Словарь бизнес-терминов

  • СЧЕТ БУХГАЛТЕРСКОГО УЧЕТА 005 "ОБОРУДОВАНИЕ, ПРИНЯТОЕ ДЛЯ МОНТАЖА" — счет, предназначенный для обобщения информации о наличии и движении всех видов оборудования, полученного подрядной организацией от заказчика для монтажа. Словарь бизнес терминов. Академик.ру. 2001 …   Словарь бизнес-терминов

  • СЧЕТ БУХГАЛТЕРСКОГО УЧЕТА 005 ОБОРУДОВАНИЕ, ПРИНЯТОЕ ДЛЯ МОНТАЖА, ЗАБАЛАНСОВЫЙ — счет, предназначенный для обобщения информации о наличии и движении всех видов оборудования, полученного подрядной организацией от заказчика для монтажа. Этот счет используется предприятиями подрядчиками …   Большой экономический словарь

  • Оборудование, требующее и не требующее монтажа — ОБОРУДОВАНИЕ, ТРЕБУЮЩЕЕ И НЕ ТРЕБУЮЩЕЕ МОНТАЖА: к оборудованию, требующему монтажа, относится оборудование, которое может быть введено в действие только после сборки его отдельных частей или установки на фундаменты и опоры. К этому оборудованию… …   Энциклопедический словарь-справочник руководителя предприятия

  • Оборудование монтируемое (требующее монтажа) — – оборудование, которое может быть введено в действие только после сборки его отдельных узлов и частей, установки на фундаменты или опоры, прикрепления к полу, междуэтажным перекрытиям и другим несущим конструкциям зданий и сооружений. [МДС …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Оборудование, поступающее в разобранном виде — – оборудование, поставляемое максимально укрупненными узлами, упакованными в несколько мест, сборка которого ведется в процессе монтажа на месте его установки. [МДС 81 29.2001] Рубрика термина: Прочие, оборудование Рубрики энциклопедии:… …   Энциклопедия терминов, определений и пояснений строительных материалов

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»