Перевод: с русского на английский

с английского на русский

наличие+воды

  • 1 наличие воды

    Military: (запасов) water situation

    Универсальный русско-английский словарь > наличие воды

  • 2 наличие воды в (нефтяной) скважине

    Mining: water in hole

    Универсальный русско-английский словарь > наличие воды в (нефтяной) скважине

  • 3 наличие воды в скважине

    Mining: (нефтяной) water in hole

    Универсальный русско-английский словарь > наличие воды в скважине

  • 4 определять наличие воды в нефти

    Универсальный русско-английский словарь > определять наличие воды в нефти

  • 5 наличие сигнала по уровню воды в парогенераторе на ТЭС или АЭС

    Русско-английский словарь нормативно-технической терминологии > наличие сигнала по уровню воды в парогенераторе на ТЭС или АЭС

  • 6 наличие сигнала парогенератора на АЭС

    1. steam generator available signal

     

    наличие сигнала парогенератора на АЭС
    (по уровню воды)
    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > наличие сигнала парогенератора на АЭС

  • 7 наличие (запасов) воды

    Military: water situation

    Универсальный русско-английский словарь > наличие (запасов) воды

  • 8 наличие нефтяной радужной плёнки на поверхности воды

    Универсальный русско-английский словарь > наличие нефтяной радужной плёнки на поверхности воды

  • 9 нёбо тёмного цвета на горизонте, указывающее на наличие участков открытой воды среди полярного льда

    Geology: water sky

    Универсальный русско-английский словарь > нёбо тёмного цвета на горизонте, указывающее на наличие участков открытой воды среди полярного льда

  • 10 набор препаратов для анализа воды на наличие ядов

    Engineering: poison-testing kit

    Универсальный русско-английский словарь > набор препаратов для анализа воды на наличие ядов

  • 11 Внешние воздействующие факторы (ВВФ) окружающей среды

    1. AS3
    2. AS2
    3. AS1
    4. AR3
    5. AR2
    6. AR1
    7. AQ3
    8. AQ2
    9. AQ1
    10. AN3
    11. AN1
    12. AN 2
    13. AM1
    14. AL2
    15. AL1
    16. AG4
    17. AG3
    18. AG2
    19. AG1
    20. AF3
    21. AF2
    22. AF1
    23. AD8
    24. AD7
    25. AD6
    26. AD5
    27. AD4
    28. AD3
    29. AD2
    30. AD1

    321 Внешние воздействующие факторы (ВВФ) окружающей среды

    Код

    Обозначение класса

    Характеристика

    Примеры применения

    Ссылки на МЭК 721

    Требования, относящиеся к соответствующим пунктам МЭК 364-3-93, установленные для применения в народном хозяйстве согласно государственным стандартам (в части ВВФ)

    321.А Условия эксплуатации электроустановок. Обозначение условий эксплуатации

    Условия эксплуатации электроустановок в части климатических ВВФ устанавливают и обозначают в соответствии с ГОСТ 15150.

    Конкретные условия эксплуатации и значения климатических факторов устанавливают в соответствии со следующими видами климатических исполнений электротехнических изделий по ГОСТ 15543.1:

    01 УХЛ1 У1 ТУ1 Т1 ТС1

    02 УХЛ2 У2 ТУ2 Т2 ТС2

    В3 УХЛ3 У3 ТУ3 Т3

    04 УХЛ4 ТС4

    УХЛ4.2

    05 УХЛТС5

    УХЛ4. 1*

    O1a УХЛ1а У1а O1в

    УХЛ1в У1в

    О2а УХЛ2а У2а О2в

    УХЛ2в У2в

    В3а УХЛ3а У3а

    УХЛ3в У3в

    О4 УХЛ4а О4в УХЛ4в

    УХЛ5а

    _______

    * Значение ВВФ - по ГОСТ 15150

    321.1 Температура окружающей среды

    321.1A Значения температуры окружающей среды - в соответствии с видом климатического исполнения по ГОСТ 15150

    Температура окружающей среды - температура воздуха в месте установки оборудования. Предполагается, что температура учитывает влияние тепловыделений от прочего оборудования, устанавливаемого в том же помещении

    Температуру окружающей среды определяют в месте, где должно быть установлено оборудование. Эту температуру определяют с учетом работы всего остального оборудования, находящегося в этом же месте, но при этом не учитывают тепловыделение рассматриваемого оборудования.

    Нижние и верхние пределы диапазонов температуры окружающей среды, °С:

    АА1

    -60 С

    +5 С

    Включает температурный диапазон МЭК 721-3-3-94, класс 3К8, верхняя температура воздуха в котором ограничена до +5 ºС

    Часть температурного диапазона МЭК 721-3-4-94, класс 4КА, нижняя температура воздуха которого ограничена -60 ºС, а верхняя +5 ºС

    АА2

    -40 ºС

    +5 ºС

    Часть температурного диапазона МЭК 721-3-3-94, класс 3К6, верхняя температура которого ограничена + 5 ºС. Включает температурный диапазон МЭК 721-3-4-94, класс 4К3, верхняя температура которого ограничена +5 °С

    АА3

    -25 ºС

    +5 ºС

    Часть температурного диапазона МЭК 721-3-3-94, класс 3К6, верхняя температура которого ограничена +5 °С. Включает температурный диапазон МЭК 721-3-4-94, класс 4К1, верхняя температура которого ограничена +5 ºС

    АА4

    -5 °С

    +40 °С

    Часть температурного диапазона МЭК 721-3-3-94, класс 3К5, верхняя температура которого ограничена +40 ºС

    АА5

    +5 ºС

    +40 °С

    Идентично температурному диапазону МЭК 721-3-3-94, класс 3К3.

    АА6

    +5 ºС

    +60 °С

    Часть температурного диапазона МЭК 721-3-3-94, класс 3К7, нижняя температура которого ограничена +5 °С, а верхняя температура +60 °С. Включает температурный диапазон МЭК 721-3-4-94, класс 4К4, нижняя температура которого ограничена +5 ºС

    АА7

    -25 °С

    +55 °С

    Идентично температурному диапазону МЭК 721-3-3-94, класс 3К6

    АА8

    -50 ºС

    +40 ºС

    Идентично температурному диапазону МЭК 721-3-4-94, класс 4К3

    Диапазоны температуры окружающей среды применяют, если влажность не оказывает влияния на электроустановку.

    Средняя температура за период 24 ч должна быть ниже на 5 °С верхнего предела.

    Возможна комбинация двух диапазонов для удовлетворения некоторых требований. Для электроустановок, подверженных воздействию температуры за пределами данных диапазонов, требуется специальное соглашение

    Код класса

    Характеристики

    Примеры применения

    Ссылки на МЭК 721

    Требования, относящиеся к соответствующим пунктам МЭК 364-3-93, установленные для применения в народном хозяйстве согласно государственным стандартам (в части ВВФ)

    Нижняя температура воздуха, ºС

    Верхняя температура воздуха, °С

    Нижняя относительная влажность, %

    Верхняя относительная влажность, %

    Нижняя абсолютная влажность, г/м3

    Верхняя абсолютная влажность, г/м3

    321.2. Комбинированное воздействие температуры и влажности окружающей среды

    321.2А Значение сочетания температуры окружающей среды и влажности в соответствии с видом климатического исполнения по п. 321.А

    АВ1

    -60

    +5

    3

    100

    0,003

    7

    Закрытое и открытое размещение с очень низкими температурами окружающей среды

    Включает температурный диапазон МЭК 721-3-3-94, класс 3К8, верхняя температура воздуха в котором ограничена до +5 °С. Часть температурного диапазона МЭК 721-3-4-94, класс 4К4, нижняя температура воздуха которого ограничена -60 °С, верхняя +5 °С

    АВ2

    -40

    +5

    10

    100

    0,1

    7

    Закрытое и открытое размещение с низкими температурами окружающей среды

    Часть температурного диапазона МЭК 721-3-3-94, класс 3К7, верхняя температура которого ограничена +5 °С. Включает температурный диапазон МЭК 721-3-4-94, класс 4К3, верхняя температура которого ограничена +5 °С

    АВ3

    -40

    +5

    10

    100

    0,1

    7

    Закрытое и открытое размещение с низкими температурами окружающей среды

    Часть температурного диапазона МЭК 721-3-3-94, класс 3К6, верхняя температура которого ограничена +5 °С. Включает температурный диапазон МЭК 721-3-4-94, класс 4К1, верхняя температура которого ограничена +5 ºС

    АВ4

    -5

    +40

    5

    95

    1

    29

    Помещения, защищенные от влияния атмосферных воздействий, без контроля температуры и влажности. Для повышения температуры окружающей среды можно использовать нагрев

    Идентично температурному диапазону МЭК 721-3-3-94, класс ЗК6, верхняя температура которого ограничена +40 ºС

    АВ5

    +5

    +40

    5

    85

    1

    25

    Помещения, защищенные от влияния атмосферных воздействий с контролем (регулированием) температуры

    Идентично температурному диапазону МЭК 721-3-3-94, класс 3К3

    АВ6

    +5

    +60

    10

    100

    1

    35

    Закрытое и открытое размещение с очень высокими температурами окружающей среды, где предотвращено влияние низких температур. Возможность солнечного и теплового излучения

    Часть температурного диапазона МЭК 721-3-3-94, класс 3К7, нижняя температура которого ограничена +5 ºС, а верхняя +60 ºС. Включает температурный диапазон МЭК 721-3-4-94, класс 4К4, нижняя температура которого ограничена +5 ºС

    АВ7

    -25

    +55

    10

    100

    0,5

    29

    Закрытые помещения, защищенные от влияния условий на открытом воздухе, без контроля температуры и влажности, которые могут иметь сообщение непосредственно с открытым воздухом и подвергаться солнечному облучению

    Идентично температурному диапазону МЭК 721-3-3-94, класс 3К6

    АВ8

    -50

    +40

    15

    100

    0,04

    36

    Открытое и незащищенное от влияния атмосферных условий размещение на открытом воздухе с низкими и высокими температурами

    Идентично температурному диапазону МЭК 721-3-4-94, класс 4К3

    Примечания

    1 Все нормированные значения являются максимальными или предельными, с низкой вероятностью появления.

    2Низкие и высокие значения относительной влажности ограничены значениями низкой и высокой абсолютной влажности так, что для внешних факторов А и С, или В и D приведенные предельные значения не могут иметь место одновременно. Поэтому в приложении В приведены климато-граммы, которые описывают взаимозависимость между температурой воздуха, относительной влажностью и абсолютной влажностью для нормирования климатических классов.

    Продолжение

    Код

    Обозначение класса

    Характеристики

    Примеры применения

    Ссылки на МЭК 721

    Требования, относящиеся к соответствующим пунктам МЭК 364-3-93, установленные для применения в народном хозяйстве согласно государственным стандартам (в части ВВФ)

    321.3 Высота над уровнем моря

    АС1

    Высота над уровнем моря £ 2000 м

    Высота над уровнем моря - в соответствии с видом

    АС2

    Высота над уровнем моря ³ 2000 м

    климатического исполнения по 321.1 А

    321.4 Наличие воды

    AD1

    Незначительное

    Вероятность появления воды незначительна

    Места размещения, в которых обычно на стенах нет следов влаги, за исключением ее появления на непродолжительное время в виде, например, конденсата паров, который быстро высыхает при хорошем проветривании

    МЭК 721-3-4-94, класс 4Z6

    AD2

    Свободно падающие капли

    Возможность вертикально падающих капель

    Места размещения, в которых пары воды время от времени конденсируются в виде капель, или помещения, в которых периодически появляется водяной пар

    МЭК 721-3-3-94, класс 3Z7

    AD3

    Брызги

    Возможность выпадения воды в виде дождя под углом к вертикали до 60 °

    Место размещения, в котором разбрызгиваемая вода образует постоянную пленку на полу и/или стенах

    МЭК 721-3-3-94, класс 3Z8; МЭК 721-3-4-94, класс 4Z7

    Условия воздействия дождя устанавливают по ГОСТ 15150 для разных климатических исполнений, при угле падения дождя от 90 до 30° к горизонтали

    AD4

    Сплошные брызги

    Возможность обрызгивания со всех направлений

    Место размещения, в котором оборудование может быть подвергнуто действию сплошных брызг воды, например на некоторых наружных светильниках, строительном оборудовании

    МЭК 721-3-3-94, класс 3Z9; МЭК 721-3-4-94, класс 4Z7

    AD5

    Струи

    Возможность наличия струй воды по всем направлениям

    Места размещения, в которых постоянно используют воду из шланга (дворы, мойки автомашин)

    МЭК 721-3-3-94, класс 3Z10; МЭК 721-3-4-94, класс 4Z8

    AD6

    Волны

    Возможность волн воды

    Место размещения на морском берегу, например маяки, причалы, пляжи и т. п.

    МЭК 721-3-4-94, класс 4Z9

    AD7

    Погружение

    Возможность периодического или полного покрытия водой

    Места размещения, которые могут подвергнуться затоплению и/или, где вода может подниматься до максимального уровня 150 мм над верхней точкой оборудования, причем нижняя часть оборудования находится не ниже 1 м от поверхности воды

    -.

    В части характеристики класса места размещения, где оборудование может оказаться под водой (один или несколько раз) при глубине погружения не более 150 мм от верхней точки оборудования в течение не более 30 мин подряд

    AD8

    Нахождение под водой

    Возможность долговременного и полного покрытия водой

    Места размещения, например плавательные бассейны, где электрическое оборудование одновременно и полностью погружено в воду и находится под давлением более 0,1 бар

    В части характеристики класса: места размещения (например, плавательные бассейны), где оборудование находится под водой при условиях более жестких, чем определено для АД7

    321.5 Наличие внешних твердых тел

    АЕ1

    Незначительное

    Количество пыли или внешних твердых тел не учитывают

    МЭК 721-3-3-94, класс 3S1; МЭК 721-3-4-94, класс 4S1

    АЕ2

    Мелкие предметы

    Наличие внешних твердых тел с наименьшим размером не менее 2,5 мм

    Инструменты и мелкие предметы являются примером твердых внешних тел с наименьшим размером не менее 2,5 мм

    МЭК 721-3-3-94, класс 3S2; МЭК 721-3-4-94, класс 4S2

    АЕ3

    Очень мелкие предметы

    То же, не менее 1 мм

    Проволока является примером твердых внешних тел с наименьшим размером не менее 1 мм

    МЭК 721-3-3-94, класс 3S3; МЭК 721-3-4-94, класс 4S3

    АЕ4

    Легкая пыль

    Наличие легких отложений пыли в количестве более 10, но £ 35 мг/(м2×сут)

    МЭК 721-3-3-94, класс 3S2; МЭК 721-3-4-94, класс 4S2

    Требования по воздействию пыли - по ГОСТ 15150

    АЕ5

    Средняя пыль

    Наличие средних отложений пыли в количестве более 35, но  £ 350 мг/(м2×сут)

    МЭК 721-3-3-94, класс 3S3; МЭК 721-3-4-94, класс 4S3

    То же, что и для АЕ4

    АЕ6

    Тяжелая пыль

    Наличие больших отложений пыли в количестве более 350, но £ 1000 мг/(м2×сут)

    МЭК 721-3-3-94, класс 3S4; МЭК 721-3-4-94, класс 4S4

    321.6 Наличие коррозионно-активных и загрязняющих веществ

    321.6А Воздействие специальных сред

    AF1

    Незначительное

    Количество или характер коррозионно активных и загрязняющих веществ не существенно

    МЭК 721-3-3-94, класс 3С1; МЭК 721-3-4-94, класс 4С1

    Условия эксплуатации электроустановок, в части воздействия специальных сред устанавливают такими же, как для электротехнических изделий в соответствии с ГОСТ 24682. При этом условия эксплуатации в части воздействия газо- и парообразных сред групп

    AF2

    Атмосферное

    Наличие значительного количества химически активных и загрязняющих веществ

    Электроустановки, расположенные вблизи моря или у промышленных предприятий

    МЭК 721-3-3-94, класс 3С2; МЭК 721-3-4-94, класс 4С2

    AF3

    Кратковременное или случайное

    Кратковременное или случайное воздействие некоторых коррозионно-активных сред или загрязняющих веществ

    Места размещения, в которых производят работу с химикатами в небольших количествах и где эти химикаты могут лишь случайно попасть на электрооборудование. Такие условия могут иметь место в заводских и прочих лабораториях или помещениях (котельные, гаражи и т.п.)

    МЭК 721-3-3-94, класс 3С3; МЭК 721-3-4-94, класс 4С3

    1-4 по ГОСТ 24682, а также агрессивных сред при эффективных значениях концентрации £ 0,4 (для SO2 H2SO4), СО2 - 0,8 предельно допустимой концентрации рабочей зоны (ПДКр.з.) обозначают буквой Л. Условия эксплуатации электроустановок в части воздействия агрессивных сред устанавливают и обозначают в соответствии с видами химического исполнения электротехнических изделий по ГОСТ 24682. Условия эксплуатации при необходимости дополняют обозначением группы условий эксплуатации металлов, сплавов, металлических и неметаллических неорганических покрытий по ГОСТ 15150 с целью влияния коррозионно-активных агентов атмосферы

    321.7 Механические внешние воздействующие факторы

    321. 7А

    321.7.1 Удары

    AG1

    Малые, низкая жесткость

    См приложение С

    Бытовые и аналогичные условия

    МЭК 721-3-3-94, классы 3М1/3М2/3М3; МЭК 721-3-4-94, классы 4М1/ 4М2/4М3;

    Условия эксплуатации электроустановок в части механических ВВФ (удары, вибрация) устанавливают и обозначают в соответствии со следующими группами механических исполнений электротехнических изделий по ГОСТ 17516.1:

    AG2

    Средняя жесткость

    То же

    Обычные промышленные условия

    МЭК 721-3-3-94, классы 3М4/3М5/3М6; МЭК 721-3-4-94, классы 4М4/ 4М5/4М6

    AG3

    Высокая жесткость

    См. приложение С

    Жесткие промышленные условия

    МЭК 721-3-3-94, классы 3М7/3М8; МЭК 721-3-4-94, классы 4М7/ 4М8

    М13, М38,

    М39, М40

     M1, М3

    М2, М7,

    М6, М42, М43

    AG4

    321.7.2 Вибрация

    АН1

    Низкая интенсивность

    См. приложение С

    Бытовые и аналогичные условия

    МЭК 721-3-3-94, классы 3М1/3М2/3М3, МЭК 721-3-4-94, классы 4М1/ 4М2/4М3

    АН2

    Средняя интенсивность

    То же

    Обычные условия промышленной эксплуатации

    МЭК 721-3-3-94, классы 3М4/3М5/3М6; МЭК 721-3-4-94, классы 4М4/ 4М5/4М6

    АН3

    Высокая интенсивность

    »

    Промышленные установки, подвергающиеся воздействию интенсивных внешних условий эксплуатации

    МЭК 721-3-3-94, классы 3М7/3М8; МЭК 721-3-4-94, классы 4М7/ 4М8

    321.8 Наличие флоры и/или плесени

    АК1

    Неопасное

    Отсутствие опасности из-за растительности и/или плесени

    МЭК 721-3-3-94, класс 3В1; МЭК 721-3-4-94, класс 4В1

    321.8А В части воздействия плесневых грибов условия эксплуатации электроустановок в соответствии с видами климатического исполнения по 321.1А

    АК2

    Опасное

    Опасность от воздействия растительности и/или плесени

    Опасность зависит от местных условий и характера растительности. Следует различать опасный рост растений и условия, благоприятные для роста плесени

    МЭК 721-3-3-94, класс 3В2; МЭК 721-3-4-94, класс 4В2

    321.9 Наличие фауны

    AL1

    Неопасное

    Отсутствие фауноопасности

    -

    МЭК 721-3-3-94, класс 3В; МЭК 721-3-4-94, класс 4В1

    AL2

    Опасное

    Наличие фауноопасности (насекомые, птицы, мелкие животные)

    Опасность зависит от характера фауны. Следует различать:

    - наличие насекомых в опасном количестве или агрессивных по природе;

    - наличие мелких животных и птиц в опасном количестве или агрессивных по природе

    МЭК 721-3-3-94, класс 3В2; МЭК 721-3-4-94, класс 4В2

    *

    321.10 Электромагнитное, электростатическое и ионизирующее воздействие

    AM1

    Незначительное

    Отсутствие вредного воздействия от блуждающих токов, электромагнитного излучения, электростатических полей, ионизирующего

    АМ2

    Блуждающие токи

    излучения или индукции Наличие опасности от блуждающих токов

    АМ3

    Электромагнитное

    Опасное наличие электромагнитного излучения

    АМ4

    Ионизирующее

    Опасное наличие ионизирующего излучения

    АМ5

    Электростатическое

    Опасное наличие электростатических полей

    АМ6

    Индукция

    Опасное наличие индуцированных токов

    321.11 Солнечное излучение

    AN1

    Низкое

    Интенсивность £ 500 Вт/м2

    МЭК 721-3-3-94

    321.11А Воздействие излучения устанавливают в соответствии с видом климатического исполнения по п. 321.1А

    AN 2

    Среднее

    500 < интенсивность £ 700 Вт/м2

    МЭК 721-3-3-94

    AN3

    Высокое

    700 < интенсивность < 1120 Вт/м2

    МЭК 721-3-4-94

    321.12 Воздействие сейсмических факторов

    АР1

    Незначительное

    Ускорение £ 30 Gal*

    Вибрации, способные разрушить здание, не учтены настоящей классификацией.

    321.12А Требования к электроустановкам в части сейсмостойкости устанавливают в баллах интенсивности землетрясений по МЭК 3-64 в соответствии с местностью расположения установки и высотой над нулевой отметкой, выбираемой из ряда 10, 20, 25, 30, 70м.

    Примечание - Соответствующие значения ускорений вибрации - по ГОСТ 17516.1

    АР2

    Низкая жесткость

    30 < ускорение £ 300 Gal

    АР3

    Средняя жесткость

    300 < ускорение £ 600 Gal

    АР4

    Высокая жесткость

    Ускорение > 600 Gal

    Классификация не учитывает частоту, однако, если сейсмическая волна способна вызвать резонанс здания, то сейсмическое влияние должно быть рассмотрено специально. Как правило, частоты сейсмического ускорения находятся в пределах от 0 до 10 Гц

    ________

    * 1 Gal = 1 см/с2

    321.13 Воздействие молнии

    AQ1

    Незначительное

    Менее 25 сут в году

    Электроустановки, питаемые воздушными линиями

    AQ2

    Непрямое воздействие

    Более 25 сут в году

    Опасности, обусловленные питающими устройствами

    AQ3

    Прямой удар

    Опасность, обусловленная открытой установкой оборудования

    Части электроустановки, расположенные снаружи здания

    AQ2 и AQ3 относятся к регионам с особенно высоким уровнем грозовой активности

    321.14 Движение воздуха

    AR1

    Низкое

    Скорость £ 1 м/с

    -

    -

    321.14А Условия воздействия движения воздуха и ветра устанавливают для различных видов климатических исполнений по ГОСТ 15150

    AR2

    Среднее

    1 м/с < скорость

    £ 5 м/с

    -

    -

    AR3

    Высокое

    5 м/с < скорость £ 10 м/с

    -

    -

    321.15 Ветер

    AS1

    Низкий

    Скорость £ 20 м/с

    -

    -

    321.15А Условия воздействия ветра устанавливают для различных видов климатических исполнений по ГОСТ 15150

    AS2

    Средний

    20 м/с < скорость £ 30 м/с

    -

    -

    AS3

    Высокий

    30 м/с < скорость £ 50 м/с

    -

    -

    Источник: ГОСТ 30331.2-95: Электроустановки зданий. Часть 3. Основные характеристики оригинал документа

    Русско-английский словарь нормативно-технической терминологии > Внешние воздействующие факторы (ВВФ) окружающей среды

  • 12 внешнее воздействие

    1. stress
    2. external influence

     

    внешнее воздействие
    Наличие воды, масла, строительных материалов, высокой или низкой температуры, коррозионных или загрязняющих веществ, солнечной радиации и механических факторов.
    [ ГОСТ Р МЭК 61084-1 2007]

    воздействие
    Явление, вызывающее изменение напряженно-деформированного состояния строительных конструкций и (или) основания здания или сооружения.
    [Технический регламент о безопасности зданий и сооружений]

     

    воздействие внешних факторов

    [ ГОСТ 12.0.002-80]

    <>воздействие производственных факторов (например, вибрации, температуры и т. п.)

    [<> ГОСТ 12.2.062-81]

    <>воздействие механических факторов внешней среды

    [<> ГОСТ Р 51732-2001]

    механическое воздействие

     

    <>воздействие синусоидальных вибраций по ГОСТ 12997

     

    разрушающее воздействие

     

    <>воздействие тока короткого замыкания

    [<> ГОСТ Р 51732-2001]

    <>термическое и электродинамическое воздействие номинальных кратковременно выдерживаемых токов короткого замыкания

    [<> ГОСТ Р 51732-2001]

    <>электромагнитное воздействие

    [<> ГОСТ Р 50571. 2-94
     (МЭК 364-3-93)]

    <>воздействие электромагнитного поля

     

    <>воздействие внешних магнитных полей

     

    <>электростатическое воздействие

    [<> ГОСТ Р 50571. 2-94
     (МЭК 364-3-93)]

    <>ионизирующее воздействие

    [<> ГОСТ Р 50571. 2-94
     (МЭК 364-3-93)]

    <>воздействие молнии

    [<> ГОСТ Р 50571. 2-94
     (МЭК 364-3-93)]

    <>воздействие пламени

    [<> ГОСТ Р МЭК 332-1-96]

    <>воздействие климатических факторов внешней среды

    [<> ГОСТ Р 51732-2001]

    воздействие инея и гололеда

    [ ГОСТ 12.0.002-80]

    воздействие влажности
    воздействие влажности воздуха

    [ ГОСТ 12.0.002-80]

    воздействие солнечного излучения

     

    воздействие плесневых грибов

     

    воздействие соляного тумана

     

    <>комбинированное воздействие температуры и влажности окружающей среды

    [<> ГОСТ Р 50571. 2-94
     (МЭК 364-3-93)]

    <>воздействие коррозионно активных сред или загрязняющих веществ

    [<> ГОСТ Р 50571. 2-94
     (МЭК 364-3-93)]

    <>воздействие твердых тел

     

    <>воздействие пыли

     

    <>воздействие струи воды

     

    <>воздействие при длительном погружении в воду

     

    вредное воздействие

     

    ... воздействие на работающего опасных и вредных производственных факторов

    [ ГОСТ 12.0.002-80]

    <>воздействие на окружающую среду

    [<> ГОСТ Р 12.1.052-97]

    Тематики

    Синонимы

    EN

    3.16 внешнее воздействие (external influence): Воздействие воды, масла, строительных материалов, веществ, вызывающих коррозию или загрязнение, механические воздействия снега, ветра, а также других опасных факторов окружающей среды.

    Источник: ГОСТ Р 52868-2007: Системы кабельных лотков и системы кабельных лестниц для прокладки кабелей. Общие технические требования и методы испытаний оригинал документа

    Русско-английский словарь нормативно-технической терминологии > внешнее воздействие

  • 13 grind out

    Англо-русский словарь промышленной и научной лексики > grind out

  • 14 В третьей области

    1. S

    В третьей области показатель степени равен 8 - 10, а влажность отпускаемого пара более 0,2 %. В этой области процесс носит кризисный характер и действительный уровень воды в барабане приближается к пароотборным трубам.

    Точка перехода из 2-й области в 3-ю называется критической и работа сепарационных устройств в этой области недопустима. Работа котла в 3-й области сильно зависит от нагрузки, при этом влажность отпускаемого пара составляет 0,2 - 1,0 % и более. Ленточные солемеры показывают резкое увеличение солесодержания пара (броски).

    С паровой нагрузкой котла D связаны следующие характеристики сепарационных устройств:

    массовая нагрузка зеркала испарения

    x014.gif

    осевая подъемная скорость пара

    x016.gif

    удельная паровая безразмерная нагрузка k [9[

    x018.gif

    где Fз.и. - площадь зеркала испарения (или площадь пароприемного потолка).

    Следующий параметр, который существенно влияет на величину влажности пара, а значит и на величину критических нагрузок, это высота активного сепарационного объема. Связь между влажностью пара, паропроизводительностью и высотой парового объема hп можно представить следующей формулой [5]

    x020.gif (4)

    где М- размерный коэффициент, определяемый физическими свойствами воды и пара.

    Как видно из этой формулы, существует обратно пропорциональная зависимость между влажностью пара и высотой парового объема. Экспериментально было показано, что при увеличении высоты парового объема более 1000 мм, влажность пара уже практически мало зависит от дальнейшего ее увеличения [4] - [7].

    На работу сепарационных устройств котлов существенное влияние оказывает солесодержание котловой воды (SKB). Проявляется это следующим образом. При работе котла при постоянной паропроизводительности при увеличении солесодержания котловой воды происходит очень плавное увеличение солесодержания пара, при достижении определенного значения солесодержания котловой воды происходит резкое увеличение влажности пара котла (солесодержания), регистрирующие солемеры отмечают резкое увеличение солесодержания пара (бросок). Объяснить это можно следующим образом: по мере увеличения концентрации веществ в котловой воде и прежде всего коллоидных частиц оксидов железа, шлама и др. веществ, поверхностный слой приобретает структурную вязкость. Длительность существования паровых пузырей до их разрушения увеличивается (набухание), пленки паровых пузырей успевают утониться и при разрыве их образуется большое количество мелких капель (трудно сепарируемых), вода приобретает способность к вспениванию. Значение солесодержания котловой воды, при котором происходит резкое увеличение влажности пара, называется критическим (x022.gif). Величина критического солесодержания зависит от давления пара в котле, конструкции сепарационных устройств, солевого состава воды («букета»), паровой нагрузки сепарационных устройств и т.д. Наиболее точно критическое солесодержание котловой воды можно определить только на основании теплохимических испытаний конкретного котла. Ориентировочно для котлов низкого давления величина критического солесодержания составляет около 3000 мг/кг, для котлов среднего давления - 1300 - 1500 мг/кг, а для котлов высокого давления - 300 - 500 мг/кг.

    Одним из вариантов приспособления работы котлов на воде закритического солесодержания при умеренных значениях непрерывной продувки является применение ступенчатого испарения котловой воды. Его сущность состоит в том, что водяной объем барабана и парообразующие циркуляционные контуры разбиваются на два или три независимых отсека с подачей всей питательной воды только в 1-й отсек и отводом воды в продувку из последнего отсека. При такой схеме питания резко возрастает «внутренняя» продувка первого (чистого) отсека, которая будет равна (nп + Р) % (при выполнении котла, например по двухступенчатой схеме испарения), а увеличение продувки будет составлять в x024.gif раза, по сравнению с котлом без ступенчатого испарения. В связи с этим концентрация солей в котловой воде 1-й ступени резко уменьшается и соответственно улучшается качество пара. Для 2-й ступени испарения концентрация солей продувочной воды будет практически такой же, как и у котла без ступенчатого испарения (при одинаковых значениях непрерывных продувок Р = const для обеих схем). Если принять, что коэффициенты выноса (или влажность пара) до и после перевода котла на ступенчатое испарение были одинаковыми, то качество пара (солесодержание) котла при переводе на ступенчатое испарение будет выше, чем у котла с одноступенчатой схемой испарения. Если же качество пара (солесодержание) котла со ступенчатым испарением принять одинаковым, как и у котла без ступеней испарения, то тогда котел со ступенчатым испарением будет работать с меньшей величиной непрерывной продувки (чем котел без ступеней испарения). В отечественном котлостроении в качестве сепараторов пара последних ступеней испарения применяют, как правило, выносные циклоны. Выносные циклоны - это устройства, которые лучше всего приспособлены для работы на воде повышенного солесодержания. (За счет развития соответствующей паровой высоты и использования центробежных сил для подавления вспенивания).

    В котлах высокого давления наряду с капельным уносом имеет место значительный избирательный унос различных солей и прежде всего кремнекислоты (SiO2), за счет непосредственного физико-химического растворения солей в паре. Избирательный вынос кремнекислоты (при рН = 9,0 - 12,0) для котлов с давлением 115 кгс/см2 составляет 2,0 - 1,0 %, а для котлов с давлением 155 кгс/см2 - 4,0 - 2,5 % [9].

    Для снижения кремнесодержания в паре котлов высокого давления в сепарационной схеме предусматривается паропромывочное устройство. Наличие этого устройства приводит к некоторым особенностям работы всей сепарационной схемы котлов высокого давления, по сравнению с котлами среднего давления.

    В котлах высокого давления эффективность паропромывочного устройства характеризуется коэффициентом промывки

    x026.gif                                                          (5)

    где SiO2н.п. - кремнесодержание пара на выходе из барабана;

    SiO2н.п. - кремнесодержание питательной воды.

    Коэффициент уноса с паропромывочного устройства Кпромопределяется по формуле

    x028.gif                                                          (6)

    где SiO2пром - кремнесодержание воды на паропромывочном устройстве.

    Для котлов высокого давления по данным испытаний Кпром составляет 8 - 10 %.

    Кремнесодержание промывочной воды определяется по формуле

    x030.gif                                                (7)

    где SiO2сл - кремнесодержание воды на сливе с паропромывочного устройства.

    Степень очистки пара на паропромывочном устройстве определяется по формуле

    x032.gif                                                            (8)

    где SiO2н.п.(до) - кремнесодержание насыщенного пара до паропромывочного устройства.

    Кремнесодержание пара до паропромывочного устройства определяется из следующей формулы

    SiO2н.п.(до) = К · SiO2к.в,                                                    (9)

    где SiO2к.в. - кремнесодержание котловой воды;

    К - коэффициент уноса кремниевой кислоты из котловой воды в пар до промывки.

    Из приведенных формул следует, что кремнесодержание пара после промывки (пар котла SiO2н.п.) зависит как от кремнесодержания питательной воды, так и от кремнесодержания пара до промывки.

    В конечном итоге чем ниже будет кремнесодержание промывочной воды (SiO2пром), тем чище будет пар котла. Концентрация кремнекислоты в промывочном слое зависит, как от качества питательной воды, так и от количества кремнекислоты, поступающей из парового объема до промывки. При неналаженной работе сепарационных устройств до промывки, наряду с избирательным уносом [формула (9)] возможен вынос значительного количества капель котловой воды, где кремнесодержание в 5 - 8 раз выше, чем в питательной воде. Попадание капель котловой воды на промывку (капельный унос) приводит к увеличению кремнесодержания промывочной воды и, как следует из формулы (6), приводит к увеличению кремнесодержания пара котла.

    Качество пара котла зависит от следующих основных факторов:

    Источник: СО 34.26.729: Рекомендации по наладке внутрикотловых сепарационных устройств барабанных котлов

    Русско-английский словарь нормативно-технической терминологии > В третьей области

  • 15 проба

    ж.
    test, trial ( см. тж пробы)

    специализированная проба на сифилис — VDRL [Venereal Disease Research Laboratory] test

    - аккомодационная проба
    - акролеиновая проба
    - аллергическая проба
    - алоиновая проба на кровь
    - аноксемическая проба
    - антиглобулиновая проба
    - антиинсулиновая проба
    - ассоциативная проба
    - ацетонитрильная проба
    - ацетоновая проба
    - баночная эндотелиальная проба
    - бензидиновая проба
    - биологическая проба
    - биуретовая проба
    - блокирующая проба
    - бродильная проба
    - бромсульфалеиновая проба
    - бромфеноловая проба
    - бруцеллиновая проба
    - буферно-преципитационная проба
    - вестибулярная проба
    - внутрикожная проба
    - водная проба
    - водно-сифонная проба
    - волдырная проба
    - вращательная проба
    - гальваническая проба
    - глицериновая проба
    - Д-ксилозная проба
    - Зимницкого проба
    - кадмиевая проба
    - калорическая проба Барани
    - калорическая проба
    - коагуляционная проба
    - кожная проба
    - кожная туберкулиновая проба
    - кокцидиоидиновая проба
    - коленно-пяточная проба
    - креатининовая проба
    - ксантопротеиновая проба
    - масляная проба
    - миастеническая проба
    - монетная проба
    - нагрузочная проба
    - непрямая проба Кумбса
    - окситоциновая проба
    - ортостатическая проба
    - пальценосовая проба
    - пальцепальцевая проба
    - перфузионная проба
    - печёночная проба
    - потовая проба
    - почечная проба
    - прессорная проба
    - проба Абдергальдена
    - проба Абурела
    - проба Бенс-Джонса
    - проба Вальсальвы
    - проба Вассермана
    - проба Вебера
    - проба Видаля
    - проба воды
    - проба воздуха
    - проба Желле
    - проба Квеккенштедта
    - проба Квика
    - проба крови
    - проба Кумбса
    - проба Мастера
    - проба Матаса
    - проба Мингаццини-Барре
    - проба Минора
    - проба на алкалоиды
    - проба на ацетоуксусную кислоту
    - проба на белок
    - проба на выживание
    - проба на жёлчные кислоты
    - проба на жёлчные пигменты
    - проба на жёлчь в моче
    - проба на запах
    - проба на иприт
    - проба на канцерогенность
    - проба на карболовую кислоту
    - проба на коагуляцию
    - проба на кровь
    - проба на лейшманиоз
    - проба на ломкость капилляров
    - проба на молочную кислоту
    - проба на мутагенность
    - проба на мышьяк
    - проба на наличие астигматизма
    - проба на наличие беременности
    - проба на оксид углерода
    - проба на определение группы крови
    - проба на сахар
    - проба на скрытую кровь
    - проба на содержание жира в молоке
    - проба на соляную кислоту
    - проба на спирт в моче
    - проба на устойчивость капилляров
    - проба на эстрогенную активность
    - проба Нестерова
    - проба Нонне
    - проба Пауля-Буннелля
    - проба Пирке
    - проба Ринне
    - проба Ромберга
    - проба с азотной кислотой
    - проба с атропином
    - проба с задержкой дыхания
    - проба с накалыванием
    - проба с сахарной нагрузкой
    - проба с физической нагрузкой
    - проба Сабразе
    - проба тимолового помутнения
    - проба Тойнби
    - проба Торна
    - проба Федеричи
    - проба фланговой походки
    - проба функции печени
    - проба функции почек
    - проба царапанья
    - проба Шиллинга
    - проба Штанге-Генча
    - провокационная проба
    - протромбиновая проба
    - прямая проба Кумбса
    - пяточно-коленная проба
    - санитарная проба
    - секретиновая проба
    - скарификационная проба
    - стандартная проба
    - сухая проба
    - тимоловая проба
    - туберкулиновая кожная проба
    - туляриновая проба
    - формоловая проба
    - функциональная проба печени
    - функциональная проба
    - эндотелиальная проба

    Большой русско-английский медицинский словарь > проба

  • 16 водопроводная насосная станция

    1. waterworks
    2. water supply plant
    3. water station
    4. water pumping station

     

    водопроводная насосная станция
    Сооружение водопровода, оборудованное насосно-силовой установкой для подъема и подачи воды в водоводы и водопроводную сеть.
    [ ГОСТ 25151-82]


    По своему назначению и расположению в общей схеме водоснабжения водопроводные насосные станции подразделяются:
     
    • на станции первого подъема, второго и последующих подъемов;
    • повысительные;
    • циркуляционные.
    Насосные станции первого подъема забирают воду из источника и подают ее на очистные сооружения или, если не требуется очистка воды, в аккумулирующие емкости (резервуары чистой воды, водонапорные башни, гидропневматические баки), а в некоторых случаях непосредственно в распределительную сеть.
    Насосные станции второго подъема подают воду потребителям из резервуаров чистой воды, которые позволяют регулировать подачу.
    Повысительные насосные станции предназначены для повышения напора на участке сети или в водоводе.
    Циркуляционные насосные станции входят в замкнутые системы технического водоснабжения промышленных предприятий и тепловых электростанций.   По степени обеспеченности подачи воды насосные станции подразделяются на три категории:
    • Первая категория допускает перерыв в подаче только на время (не более 10 мин), необходимое для выключения поврежденного и включения резервных элементов (оборудования, арматуры, трубопроводов), и снижение подачи на хозяйственно-питьевые нужды не более 30 % расчетного расхода и на производственные нужды до предела, установленного аварийным графиком работы предприятий.
    • Вторая категория допускает перерыв в подаче для проведения ремонта не более чем на 6 ч.
    • Третья категория допускает перерыв в подаче не более чем на 24 ч и соответствующее снижение подачи не более чем на 15 сут.
    К первой категории относятся насосные станции, обслуживающие технический водопровод; системы водоснабжения населенных пунктов с числом жителей свыше 50 000 чел, подающие воду непосредственно в сеть противопожарного и объединенного хозяйственно-противопожарного водопровода.
    Ко второй категории относятся насосные станции, обслуживающие водопровод населенных пунктов с числом жителей от 5000 до 50 000 чел., если подача воды на пожаротушение возможна и при временной остановке этих станций; насосные станции водопроводов населенных пунктов с числом жителей до 500 чел. и других объектов, указанных в нормах.
    К третьей категории относятся насосные станции поливочных водопроводов.   При проектировании режим работы насосных станций первого подъема увязывают с работой водозаборных сооружений и камер переключений, а насосных станций второго подъема - с резервуарами чистой воды и системой их обслуживания.   Насосные станции первого подъема бывают раздельного типа, когда водозаборное сооружение отделено от здания насосной станции, и совмещенного типа, когда машинный зал насосной станции объединяется в одну конструкцию с водоприемником.   В зависимости от типа насосного оборудования различают насосные станции с горизонтальными и вертикальными центробежными и осевыми насосами.   По расположению насосов относительно уровня воды в водоеме, приемном резервуаре или резервуаре чистой воды различают станции: с насосами, установленными с положительной высотой всасывания; с насосами, установленными под напором (под залив).   По расположению машинного зала относительно поверхности земли насосные станции бывают:
    В наземных насосных станциях отметка пола машинного зала определяется планировочными отметками окружающей земли
    В полузаглубленных насосных станциях пол машинного зала заглублен по отношению к поверхности окружающей земли. Особенностью таких станций является отсутствие перекрытия между первым этажом и машинным залом.
    Особенностью заглубленных насосных станций является наличие перекрытия между машинным залом и первым этажом. При большом заглублении насосных станций (шахтный тип) между машинным залом и поверхностью земли могут устраиваться дополнительные подземные этажи, на которых располагается вспомогательное оборудование.
    Подземные насосные станции расположены полностью под землей и, как правило, не имеют надземной части (верхнего строения).
    По форме подземной части в плане насосные станции могут быть:прямоугольными, круглыми, эллиптическими.
      По характеру управления насосные станции могут быть: с ручным управлением, автоматические, полуавтоматические, с дистанционным управлением.

    [Журба М. Г., Соколов Л. И., Говорова Ж. М. Водоснабжение: Проектирование систем и сооружений. Учебник. - М.: АСВ, 2003.]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > водопроводная насосная станция

  • 17 характеристики

    1. specifications
    2. III

     

    характеристики

    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

    5.2 Характеристики

    5.2.1 Краны должны обеспечивать подачу воды на смыв при минимальном рабочем давлении 0,1 МПа в количествах и с расходами, указанными в таблице 1.

    Таблица 1

    Условный проход крана Dy, мм

    Расход воды, л/с

    Количество воды, поступающей на смыв за один цикл, л

    мин.

    макс.

    мин.

    макс.

    10, 15

    0,2

    1,0

    0,6

    4,0

    20

    1,0

    1,7

    4,0

    7,0

    25

    1,5

    2,0

    6,0

    8,0

    5.2.2 Краны должны иметь устройство для регулирования количества воды, подаваемой на смыв.

    5.2.3 Краны должны быть герметичны и выдерживать пробное давление воды не менее 1,6 МПа для кранов I группы и не менее 0,9 МПа - для кранов II группы.

    5.2.4 Краны должны обеспечивать плотное закрытие при рабочих давлениях до 1,0 МПа для кранов I группы и до 0,6 МПа - для кранов II группы.

    5.2.5 Конструкция крана должна исключать возможность обратного всасывания загрязненной воды в водопроводную сеть из промываемых приборов при возникновении разрежения в системе водопровода до 0,08 МПа. При этом высота подъема воды в смывной трубе не должна превышать 250 мм.

    5.2.6 Конструкция крана должна обеспечивать такое его закрытие, при котором давление воды в водопроводной сети перед ним не должно увеличиваться более чем на 50% по сравнению со статическим давлением.

    5.2.7 Усилие на пусковое устройство (ручка, кнопка) крана, необходимое для его открытия, не должно быть более 35 Н, а открывание и закрывание вентиля должно происходить при крутящем моменте не более 2Н × м при давлениях, указанных в п. 5.2.4.

    5.2.8 Технический ресурс кранов с учетом замены резино-технических изделий должен составлять не менее 100000 рабочих циклов, наработка до отказа - не менее 50000 циклов.

    5.2.9 Краны должны классифицироваться по трем акустическим группам I, II, III в зависимости от значения La - уровня шума арматуры в дБА или Ds - приведенной разности уровней в дБА в соответствии с таблицей 2 для вновь разрабатываемой водоразборной арматуры.

    Таблица 2                                                                                                 Уровень шума в дБА

    Акустическая группа

    Ds

    La

    I

    ³ 25

    £ 20

    II

    ³ 25

    £ 30

    III

    < 15

    < 50

    5.2.10 Параметр шероховатости видимых в условиях эксплуатации поверхности деталей с защитно-декоративным гальваническим покрытием должен быть Ra £ 0,63 по ГОСТ 2789.

    5.2.11 Наружная видимая после монтажа поверхность крана из цветных металлов должна иметь защитно-декоративное гальваническое покрытие вида Н9.б.Х.б по ГОСТ 9.303.

    Допускается применение других видов защитно-декоративных покрытий, обеспечивающих качество защиты и декоративность в течение установленного ресурса.

    5.2.12 Защитно-декоративное покрытие должно быть сплошным, не иметь отслаивания покрытия и др. дефектов и должно удовлетворять ГОСТ 9.301.

    5.2.13 Детали, изготовленные из пластмасс, не должны иметь трещин, вздутий, наплывов, раковин, следов холодного спая и посторонних включений, видимых без применения увеличительных приборов. Выступы или углубления в местах удаления литников не должны превышать 1 мм, а следы от разъема пресс-форм - не более 0,5 мм.

    Не допускаются отклонения формы деталей, влияющие не качество их сопряжений.

    5.2.14 Детали крана, изготовленные из металла, не должны иметь видимых дефектов (вмятин, гофр, царапин и др.).

    5.2.15 Основные размеры метрической резьбы должны соответствовать требованиям ГОСТ 24705 с допусками по ГОСТ 16093, степень точности 7Н - для внутренней и 8g - для наружной резьбы.

    Резьба должна быть чистой и не иметь поврежденных витков. Сбеги резьб, недорезы проточки и фаски должны выполняться по ГОСТ 10549. Не допускается наличие сорванных витков, а также заусенцы на поверхности резьбы, препятствующие соединению деталей.

    Источник: ГОСТ 11614-94: Краны смывные полуавтоматические. Технические условия оригинал документа

    1.2. Характеристики

    1.2.1. Качественные показатели зол различных видов должны соответствовать требованиям, указанным в таблице.

    Наименование показателя

    Вид сжигаемого угля

    Значение показателя в зависимости от вида золы

    I

    II

    III

    IV

    1. Содержание оксида кальция (СаО), % по массе:

    для кислой золы, не более

    Любой

    10

    10

    10

    10

    для основной золы, св.

    Бурый

    10

    10

    10

    10

    в том числе:

    свободного оксида кальция (СаОсв) не более:

    для кислой золы

    Любой

    Не нормируется

    для основной золы

    Бурый

    5

    5

    Не нормируется

    2

    2. Содержание оксида магния (MgO), % по массе, не более

    Любой

    5

    5

    Не нормируется

    5

    3. Содержание сернистых и сернокислых соединений в пересчете на SO3, % по массе, не более:

    для кислой золы

    Любой

    3

    5

    3

    3

    для основной золы

    Бурый

    5

    5

    6

    3

    4. Содержание щелочных оксидов в пересчете на Na2O, % по массе, не более:

    для кислой золы

    Любой

    3

    3

    3

    3

    для основной золы

    Бурый

    1,5

    1,5

    3,5

    1,5

    5. Потеря массы при прокаливании (п.п.п.), % по массе, не более:

    для кислой золы

    Антрацитовый

    20

    25

    10

    10

    Каменный

    10

    15

    7

    5

    Бурый

    3

    5

    5

    2

    для основной золы

    Бурый

    3

    5

    3

    3

    6. Удельная поверхность, м2/кг, не менее:

    для кислой золы

    Любой

    250

    150

    250

    300

    для основной золы

    Бурый

    250

    200

    150

    300

    7. Остаток на сите № 008, % по массе, не более:

    для кислой золы

    Любой

    20

    30

    20

    15

    для основной золы

    Бурый

    20

    20

    30

    15

    Примечания:

    1. Допускается в основных золах содержание свободного оксида кальция СаОсв и оксида магния MgO выше указанного в таблице, если обеспечивается равномерность изменения объема образцов при испытании их в автоклаве или применение этих зол обосновано специальными исследованиями бетона по долговечности с учетом конкретных условий эксплуатации.

    2. Допускается в золах содержание сернистых и сернокислых соединений и потеря массы при прокаливании выше указанных в таблице, если применение этих зол обосновано специальными исследованиями по долговечности бетонов и коррозионной стойкости арматуры.

    3. Допускается в золах I - III видов больший остаток на сите № 008 и меньшая величина удельной поверхности, чем указано в таблице, если при применении этих зол обеспечиваются заданные показатели качества бетона.

    1.2.2. Золы в смеси с портландцементом должны обеспечивать равномерность изменения объема при испытании образцов кипячением в воде, а основные золы III вида - в автоклаве.

    1.2.3. Влажность золы должна быть не более 1 % по массе.

    1.2.4. Золы-уноса в зависимости от величины суммарной удельной эффективной активности естественных радионуклидов Аэфф применяют:

    для производства материалов, изделий и конструкций, применяемых для строительства и реконструкции жилых и общественных зданий при Аэфф до 370 Бк/кг;

    для производства материалов, изделий и конструкций, применяемых для строительства производственных зданий и сооружений, а также строительства дорог в пределах территорий населенных пунктов и зон перспективной застройки при Аэфф свыше 370 Бк/кг до 740 Бк/кг.

    При необходимости в национальных нормах, действующих на территории государства, величина удельной эффективной активности естественных радионуклидов может быть изменена в пределах норм, указанных выше.

    Источник: ГОСТ 25818-91**: Золы-уноса тепловых электростанций для бетонов. Технические условия

    Русско-английский словарь нормативно-технической терминологии > характеристики

  • 18 organoleptic properties of water

    органолептические свойства воды (воспринимаемая рецепторами человека совокупность показателей качества воды: запах, привкус, окраска, мутность, наличие плёнок или пены на поверхности воды)

    Англо-русский словарь промышленной и научной лексики > organoleptic properties of water

  • 19 услуга

    1. service

    2.61 услуга (service): Предоставление функциональных возможностей одним процессором другим процессорам или одним процессом другим процессам.

    Источник: ГОСТ Р ИСО/МЭК ТО 10032-2007: Эталонная модель управления данными

    3.4 услуга (service): Результат по меньшей мере одного действия, непременно осуществляемого во взаимодействии между поставщиком и потребителем, причем такой результат носит, как правило, нематериальный характер.

    Примечания

    1 Предоставление услуги может включать, к примеру, следующее:

    - деятельность, осуществляемую на поставляемой потребителем материальной продукции (например, нуждающийся в ремонте автомобиль);

    - деятельность, осуществляемую на поставляемой потребителем нематериальной продукции (например, заявление о доходах, необходимое для определения размера налога);

    - предоставление нематериальной продукции (например, информации в смысле передачи знаний);

    - создание благоприятных условий для потребителей (например, в гостиницах и ресторанах).

    2 Определение заимствовано из стандарта ИСО 9000:2005 (3.4.2, примечание 2).

    Источник: ГОСТ Р ИСО/МЭК 17020-2012: Оценка соответствия. Требования к работе различных типов органов инспекции оригинал документа

    2.44 услуга (service): Результат процесса (2.31).

    Примечание 1 - Определение адаптировано из определения термина «продукт» в стандарте ИСО 9000:2005.

    Примечание 2 - Услуги являются одной из четырех видовых категорий продуктов вместе с программным обеспечением, аппаратными средствами и технологическими материалами. Многие продукты включают элементы, принадлежащие к различным видовым категориям. От доминирующего элемента зависит, может ли продукт называться услугой.

    Примечание 3 - Услуга является результатом по крайней мере одного действия, которое в обязательном порядке выполняется на стыке взаимодействия поставщика услуги и, во-первых, ее потребителя (2.50), а во-вторых, заинтересованной стороны (2.47). Услуга обычно нематериальна. Предоставление услуги может включать, например, следующее:

    - деятельность в отношении материального продукта, поставляемого потребителем, например сточных вод (2.51);

    - деятельность в отношении нематериального продукта, исходящего от потребителя, например обработка заказов на новое подсоединение (2.9);

    - поставка нематериального продукта, например поставка информации;

    - создание окружения для потребителя, например обслуживающих офисов.

    Примечание 4 - Слово service (услуга; служба) в английском языке может также относиться к юридическому лицу, осуществляющему действия, относящиеся к рассматриваемому вопросу, как, например, подразумевается в выражениях bus service (автобусное сообщение), police service (полицейская служба), fire service (пожарная служба), water or wastewater service (водоснабжение или удаление сточных вод). В этом контексте слово service подразумевает юридическое лицо, оказывающее услугу (например, «перевозка пассажиров», «обеспечение общественной безопасности», «пожарная защита и пожаротушение» и «доставка питьевой воды или сбор сточных вод»). Если слово service может пониматься таким образом, water service (водоснабжение) является синонимом water utility (система коммунального водоснабжения) (2.53); поэтому в настоящем стандарте во избежание путаницы применяется только определение в пункте 2.44.

    Источник: ГОСТ Р ИСО 24511-2009: Деятельность, связанная с услугами питьевого водоснабжения и удаления сточных вод. Руководящие указания для менеджмента коммунальных предприятий и оценке услуг удаления сточных вод оригинал документа

    2.44 услуга (service): Результат процесса (2.31).

    Примечание 1 - Определение адаптировано из определения термина «продукт» в стандарте ИСО 9000:2005.

    Примечание 2 - Услуги являются одной из четырех видовых категорий продуктов вместе с программным обеспечением, аппаратными средствами и технологическими материалами. Многие продукты включают элементы, принадлежащие к различным видовым категориям. От доминирующего элемента зависит, может ли продукт называться услугой.

    Примечание 3 - Услуга является результатом по крайней мере одного действия, которое в обязательном порядке выполняется на стыке взаимодействия поставщика услуги и, во-первых, ее потребителя (2.50), а во-вторых, заинтересованной стороны (2.47). Услуга обычно нематериальна. Предоставление услуги может включать, например, следующее:

    - деятельность в отношении материального продукта, поставляемого потребителем, например сточных вод (2.51);

    - деятельность в отношении нематериального продукта, исходящего от потребителя, например обработка заказов на новое подсоединение (2.9);

    - поставка нематериального продукта, например поставка информации;

    - создание окружения для потребителя, например обслуживающих офисов.

    Примечание 4 - Слово service (услуга; служба) в английском языке может также относиться к юридическому лицу, осуществляющему действия, относящиеся к рассматриваемому вопросу, как, например, подразумевается в выражениях bus service (автобусное сообщение), police service (полицейская служба), fire service (пожарная служба), water or wastewater service (водоснабжение или удаление сточных вод). В этом контексте слово service подразумевает юридическое лицо, оказывающее услугу (например, «перевозка пассажиров», «обеспечение общественной безопасности», «пожарная защита и пожаротушение» и «доставка питьевой воды или сбор сточных вод»). Если слово service понимается таким образом, water service (водоснабжение) является синонимом water utility (система коммунального водоснабжения) (2.53); поэтому в настоящем стандарте во избежание путаницы применяется только определение по пункту 2.44.

    Источник: ГОСТ Р ИСО 24512-2009: Деятельность, связанная с услугами питьевого водоснабжения и удаления сточных вод. Руководящие указания для менеджмента систем питьевого водоснабжения и оценке услуг питьевого водоснабжения оригинал документа

    2.23 услуга (service): Определенный неосязаемый (нематериальный) выход из технической энергетической системы или польза от использования продукта.

    Источник: ГОСТ Р ИСО 13600-2011: Системы технические энергетические. Основные положения оригинал документа

    2.44 услуга (service): Результат процесса (2.31).

    Примечание 1 - Определение адаптировано из определения термина «продукт» в стандарте ИСО 9000:2005.

    Примечание 2 - Услуги являются одной из четырех видовых категорий продуктов вместе с программным обеспечением, аппаратными средствами и технологическими материалами. Многие продукты включают элементы, принадлежащие к различным видовым категориям. От доминирующего элемента зависит, может ли продукт называться услугой.

    Примечание 3 - Услуга является результатом по крайней мере одного действия, которое в обязательном порядке выполняется на стыке взаимодействия поставщика услуги и, во-первых, ее потребителя (2.50), а во-вторых, заинтересованной стороны (2.47). Услуга обычно нематериальна. Предоставление услуги может включать, например, следующее:

    - деятельность в отношении материального продукта, поставляемого потребителем, например сточных вод (2.51);

    - деятельность в отношении нематериального продукта, исходящего от потребителя, например обработка заказов на новое подсоединение (2.9);

    - поставка нематериального продукта, например поставка информации;

    - создание окружения для потребителя, например обслуживающих офисов.

    Примечание 4 - Слово service (услуга; служба) в английском языке может также относиться к юридическому лицу, осуществляющему действия, относящиеся к рассматриваемому вопросу, как, например, подразумевается в выражениях bus service (автобусное сообщение), police service (полицейская служба), fire service (пожарная служба), water or wastewater service (водоснабжение или удаление сточных вод). В этом контексте слово service подразумевает юридическое лицо, оказывающее услугу (например, «перевозка пассажиров», «обеспечение общественной безопасности», «пожарная защита и пожаротушение» и «доставка питьевой воды или сбор сточных вод»). Если слово service понимается таким образом, water service (водоснабжение) является синонимом water utility (система коммунального водоснабжения) (2.53); поэтому в настоящем стандарте во избежание путаницы применяется только определение в пункте 2.44.

    Источник: ГОСТ Р ИСО 24510-2009: Деятельность, связанная с услугами питьевого водоснабжения и удаления сточных вод. Руководящие указания по оценке и улучшению услуги, оказываемой потребителям оригинал документа

    2.32 услуга (service): Связанные с обеспечением безопасности процесс или задача, выполняемый или решаемая оцениваемым объектом, организацией или конкретным лицом.

    Источник: ГОСТ Р 54581-2011: Информационная технология. Методы и средства обеспечения безопасности. Основы доверия к безопасности ИТ. Часть 1. Обзор и основы оригинал документа

    3.6 услуга (service): Результат одного или нескольких процессов, выполненных органом местного самоуправления (3.4).

    Примечания

    1 Термин «услуга» обычно указывает на материальную продукцию. Везде, где в ИСО 9001 встречается термин «продукция» организации, это означает и продукцию и услугу, поставляемые и предоставляемые органом местного самоуправления. Несмотря на преобладание нематериального характера, услуга может включать в себя некоторые материальные компоненты (например, консультативные брошюры, наличие канализации, убежищ и др.).

    2 Примеры услуг могут касаться состояния питьевой воды, сточных вод, дренажа, освещения, канализации, гражданской обороны и др.

    3 Одной из основных услуг, часто предоставляемых органом местного самоуправления, является услуга по разработке проектов, для которых может быть необходима разработка планов по качеству (см. ИСО 10005 и ИСО 10006 для разработки планов по качеству и менеджменту проектов соответственно).

    Источник: ГОСТ Р 52614.4-2007: Руководящие указания по применению ГОСТ Р ИСО 9001-2001 в органах местного самоуправления оригинал документа

    Русско-английский словарь нормативно-технической терминологии > услуга

  • 20 система кондиционирования воздуха

    1. air conditioning system

     

    система кондиционирования воздуха
    Совокупность воздухотехнического оборудования, предназначенная для кондиционирования воздуха в помещениях
    [ ГОСТ 22270-76]

    система кондиционирования воздуха

    Совокупность технических средств для обработки и распределения воздуха, а также автоматического регулирования его параметров с дистанционным управлением всеми процессами
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    система кондиционирования воздуха

    Комбинация всех компонент, необходимых для обработки воздуха, в процессе которой осуществляется контроль или понижение температуры, возможно, в комбинации с контролем вентиляции, влажности и чистоты воздуха.
    [ДИРЕКТИВА 2002/91/ЕС ЕВРОПЕЙСКОГО ПАРЛАМЕТА И СОВЕТА от 16 декабря 2002 г. по энергетическим характеристикам зданий]


    КЛАССИФИКАЦИЯ



    Классификация систем кондиционирования воздуха

    М. Г. Тарабанов, директор НИЦ «ИНВЕНТ», канд. техн. наук, вице-президент НП «АВОК», лауреат премии НП «АВОК» «Медаль имени И. Ф. Ливчака», «Медаль имени В. Н. Богословского», otvet@abok.ru

    Общие положения

    Краткий, но достаточно полный обзор истории развития кондиционирования воздуха представлен в работе А. И. Липы [1], поэтому отметим только несколько моментов. Родоначальником техники кондиционирования воздуха в ее современном понимании считается американский инженер Виллис Хэвилэнд Кэрриер (Willis Haviland Carrier), который в 1902 году в Нью-Йорке в Бруклинской типографии применил поверхностный водяной воздухоохладитель с вентилятором для получения летом в помещении температуры +26,5 °C и относительной влажности 55 %. Вода охлаждалась в аммиачной холодильной машине. Зимой для увлажнения внутреннего воздуха до 55 % использовался водяной пар от бойлера.
    Термин «кондиционирование воздуха» был предложен в 1906 году Стюартом Уорреном Крамером (Stuart Warren Cramer).
    В отечественной практике некоторые авторы применяют термин «кондиционирование микроклимата». Заметим, что этот термин отличается от «кондиционирования воздуха», так как включает в себя дополнительные факторы, не связанные с состоянием воздушной среды в помещении (шум, инсоляция и др.).
    К сожалению, несмотря на солидный возраст термин «кондиционирование воздуха» не получил четкого определения в современных отечественных нормативных документах. Для устранения этого пробела сформулируем: «Кондиционирование воздуха – это создание и автоматическое поддержание в обслуживаемом помещении или технологическом объеме требуемых параметров и качества воздуха независимо от внутренних возмущений и внешних воздействий». К параметрам воздуха относятся: температура, относительная влажность или влагосодержание и подвижность. Качество воздуха включает в себя газовый состав, запыленность, запахи, аэроионный состав, т. е. более широкий круг показателей, чем термин «чистота», используемый в [2].
    Комплекс оборудования, элементов и устройств, с помощью которых обеспечивается кондиционирование воздуха в обслуживаемых помещениях, называется системой кондиционирования воздуха (СКВ).
    Приведенное выше определение системы кондиционирования воздуха по смыслу полностью совпадает с определением ASHRAE: «”air-conditioning system” – комплекс оборудования для одновременной обработки и регулирования температуры, влажности, чистоты воздуха и распределения последнего в соответствии с заданными требованиями» [3].
    Общепринятого, устоявшегося мнения, что следует включать в состав СКВ, к сожалению, нет.
    Так, например, по мнению О. Я. Кокорина [4] СКВ может включать в себя:

    • установку кондиционирования воздуха (УКВ), обеспечивающую необходимые кондиции воздушной среды по тепловлажностным качествам, чистоте, газовому составу и наличию запахов;
    • средства автоматического регулирования и контроля за приготовлением воздуха нужных кондиций в УКВ, а также для поддержания в обслуживаемом помещении или сооружении постоянства заданных кондиций воздуха;
    • устройства для транспортирования и распределения кондиционированного воздуха;
    • устройства для транспортирования и удаления загрязненного внутреннего воздуха;
    • устройства для глушения шума, вызываемого работой элементов СКВ;
    • устройства для приготовления и транспортирования источников энергии, необходимых для работы аппаратов в СКВ.

    В зависимости от конкретных условий некоторые составные части СКВ могут отсутствовать.
    Однако согласиться с отдельными пунктами предложенного состава СКВ нельзя, так как если следовать логике автора [4], то в состав СКВ должны войти и системы оборотного водоснабжения, водопровода и канализации, ИТП и трансформаторные, которые также необходимы для работы аппаратов в СКВ.
    Достаточно полное представление о структуре СКВ дает разработанная во ВНИИкондиционере «Блок-схема системы кондиционирования воздуха» (рис. 1) [5].

    4804

    Включенные в эту блок-схему подсистемы обработки воздуха по своему функциональному назначению делятся на блоки:

    • основной обработки и перемещения: Б1.1 – приемный, Б1.8 – очистки, Б1.2 – сухого (первого) подогрева, Б1.3 – охлаждения, Б1.6 – тепловлажностной обработки, Б1.9 – перемещения приточного воздуха;
    • дополнительной обработки и перемещения: Б2.1 – утилизации, Б2.2 – предварительного подогрева, Б2.3 – доводки общей (второй подогрев, дополнительное охлаждение), Б2.4 – зональной доводки, Б2.5 – местной доводки (эжекционные доводчики и др.), Б2.7 – шумоглушения, Б2.8 – перемещения рециркуляционного воздуха;
    • специальной обработки: Б5.5 – тонкой очистки;
    • воздушной сети: Б4.2 – воздухораспределительных устройств, Б4.3 – вытяжных устройств, Б4.5 – воздуховодов;
    • автоматизации – арматуры – Б3.1.

    Помимо этих блоков в СКВ может входить система холодоснабжения (снабжение электроэнергией и теплом осуществляется, как правило, централизованно). Ее включение в состав СКВ, видимо, относится к автономным кондиционерам (см. далее).
    Для определения состава оборудования, входящего в СКВ, и границ раздела целесообразно воспользоваться делением на разделы, которое сложилось в практике проектирования.
    В частности, при выполнении проектов кондиционирования воздуха достаточно серьезных объектов обычно выделяют в самостоятельные разделы: теплоснабжение СКВ; холодоснабжение и холодильные центры; электроснабжение; автоматизация; водоснабжение, в том числе оборотное, канализация и дренаж.
    Причем по каждому из разделов составляют свою спецификацию, в которую включено оборудование, материалы и арматура, относящиеся к своему конкретному разделу.
    Таким образом, в состав СКВ следует включить:

    • УКВ, предназначенную для очистки и тепловлажностной обработки и получения необходимого качества воздуха и его транспортировки по сети воздуховодов до обслуживаемого помещения или технического объема;
    • сеть приточных воздуховодов с воздухораспределителями, клапанами и регулирующими устройствами;
    • вытяжной вентилятор и сеть вытяжных и рециркуляционных воздуховодов с сетевым оборудованием;
    • сеть фреоновых трубопроводов для сплит-систем и VRV-систем с кабелями связи наружных блоков с внутренними;
    • фэнкойлы, эжекционные доводчики, моноблоки, холодные и теплые потолки и балки и др. доводчики для охлаждения и (или) нагревания непосредственно внутреннего воздуха;
    • оборудование для утилизации теплоты и холода;
    • дополнительные воздушные фильтры, шумоглушители и другие элементы.

    И даже систему автоматики, входящую в СКВ как бы по определению, целесообразно выделить отдельно, так как ее проектируют инженеры другой специальности, хотя и по заданию так называемых технологов СКВ.
    Границей СКВ и систем теплохолодоснабжения можно считать узлы регулирования, а границей электроснабжения и автоматики – электрические щиты и щиты управления, которые в последнее время очень часто делают совмещенными.

    Классификация систем кондиционирования воздуха

    Проблемам классификации СКВ в большей или меньшей степени уделяли внимание практически все авторы учебников и монографий по кондиционированию воздуха. Вот что написал по этому вопросу известный специалист, доктор техн. наук А. А. Рымкевич [6]: «Анализ иерархической структуры самих СКВ прежде всего требует их классификации и только затем их декомпозиции на подсистемы. …Однако для СКВ, решения которых базируются на учете большого числа данных, разработать такую классификацию всегда сложно. Не случайно в литературе нет единого мнения по данному вопросу, и поэтому многие известные авторы… предложили различные методы классификации».
    Предложенная А. А. Рымкеви-чем концепция выбора признаков классификации СКВ сформулирована очень точно, и с ней нельзя не согласиться. Проблема состоит в том, как этой концепцией воспользоваться и какие признаки считать определяющими, а какие вторичными, и как точно сформулировать эти признаки.
    В начале восьмидесятых годов прошлого века наиболее полная классификация СКВ была предложена в работе Б. В. Баркалова и Е. Е. Карписа [7].
    Основные признаки этой классификации с некоторыми дополнениями использованы и в недавно изданной монографии А. Г. Сотникова [8] и в других работах, однако некоторые формулировки отдельных признаков требуют уточнения и корректировки.
    Например, для опытных специалистов не составит труда разделить СКВ на центральные и местные, посмотрим, как признак такого деления сформулирован разными авторами.
    Б. В. Баркалов, Е. Е. Карпис пишут [7]: «В зависимости от расположения кондиционеров по отношению к обслуживаемым помеще-ниям СКВ делятся на центральные и местные». А. Г. Сотников [8] считает необходимым дополнить: «Деление на местные и центральные СКВ учитывает как место установки кондиционера, так и группировку помещений по системам», а О. Я. Кокорин уточняет: «По характеру связи с обслуживаемым помещением можно подразделить СКВ на три вида: центральные, местные и центрально-местные. Центральные СКВ характеризуются расположением УКВ в удалении от обслуживаемых объектов и наличием приточных воздуховодов значительной протяженности. Местные СКВ характеризуются расположением УКВ в самом обслуживаемом помещении или в непосредственной близости от него, при отсутствии (или наличии весьма коротких) приточных воздуховодов. Центрально-местные СКВ характеризуются как наличием УКВ в удалении от обслуживаемых объектов, так и местных УКВ, располагаемых в самих помещениях или в непосредственной близости от них».
    Трудно понять, что имеется в виду под группировкой помещений по системам и что считается протяженными или весьма короткими воздуховодами. Например, кондиционеры, обслуживающие текстильные цеха на Волжском заводе синтетического волокна, имеют производительность по воздуху до 240 м3/ч и расположены рядом с обслуживаемыми помещениями, то есть непосредственно за стенами, но никто из указанных выше авторов не отнес бы их к местным системам.
    Несколько иной признак клас-сификации предложил Е. В. Стефанов [9]: «… по степени централизации – на системы центральные, обслуживающие из одного центра несколько помещений, и местные, устраиваемые для отдельных помещений и располагающиеся, как правило, в самих обслуживаемых помещениях».
    К сожалению, и эта формулировка является нечеткой, так как одно большое помещение могут обслуживать несколько центральных кондиционеров, а группу небольших помещений – один местный кондиционер.
    Фактически в отечественной практике негласно действовал совсем другой признак классификации: все кондиционеры, выпускавшиеся Харьковским заводом «Кондиционер», кроме шкафных, считались центральными, а все кондиционеры, выпускавшиеся Домодедовским заводом «Кондиционер», кроме горизонтальных производительностью 10 и 20 тыс. м3/ч, – относились к местным.
    Конечно, сегодня такое деление выглядит смешным, а между тем в нем был определенный здравый смысл.
    Известно, что в местных системах используются готовые агрегаты полной заводской сборки обычно шкафного типа со стандартным набором тепломассообменного оборудования с уже готовыми, заданными заранее техническими характеристиками, поэтому местные УКВ не проектируют, а подбирают для конкретного обслуживаемого помещения или группы небольших однотипных помещений.
    Максимальная производительность местных систем по воздуху обычно не превышает 20–30 тыс. м3/ч.
    Центральные кондиционеры могут быть также полной заводской сборки или собираются на месте монтажа, причем технические характеристики всех элементов, включая воздушные фильтры, вентиляторы и тепломассообменное оборудование, задаются производителями в очень широких пределах, поэтому такие кондиционеры не подбирают, а проектируют, а затем изготавливают в соответствии с бланком-заказом для конкретного объекта.
    Обычно центральные кондиционеры собирают в виде горизонтальных блоков, причем производительность таких кондиционеров по воздуху значительно больше, чем у местных и достигает 100–250 тыс. м3/ч у разных фирм-производителей.
    Очевидно, что отмеченные признаки относятся к УКВ, но их можно использовать и для классификации СКВ, например, СКВ с центральной УКВ – центральная СКВ, а с местной УКВ – местная СКВ. Такой подход не исключает полностью признаки, предложенные другими авторами, а дополняет их, исключая некоторые неопределенности, типа протяженности воздуховодов и др.
    Для дальнейшей классификации СКВ рассмотрим схему ее функционирования.
    На параметры внутреннего воздуха в обслуживаемом помещении или технологическом объеме оказывают воздействие внутренние возмущения, то есть изменяющиеся тепло- и влаговыделения, а также внешние факторы, например, изменение температуры и влагосодержания наружного воздуха, воздействие на остекленный фасад прямой солнечной радиации в разное время суток и др.
    Задача СКВ состоит в том, чтобы улавливать и своевременно устранять последствия этих возмущений и воздействий для сохранения параметров внутреннего воздуха в заданных пределах, используя систему автоматического регулирования и необходимый набор оборудования (воздухоохладители, воздухонагреватели, увлажнители и др.), а также источники теплоты и холода.
    Поддерживать требуемые параметры внутреннего воздуха можно изменяя параметры или расход приточного воздуха, подаваемого в помещение извне, или с помощью аппаратов, установленных непосредственно в помещении, так называемых доводчиков.
    Сегодня в качестве доводчиков используют внутренние блоки сплит-систем и VRV-систем, фэнкойлы, моноблоки, охлаждаемые потолки и балки и другие элементы.
    К сожалению, в классификации [7] вместо понятия «доводчики» используется понятие «водовоздушные СКВ», а в классификации [8] дополнительно вводится термин «водо- и фреоновоздушная СКВ». С подобными предложениями нельзя согласиться в принципе, так как их авторы вольно или невольно присваивают сплит-системам или фэнкойлам статус систем кондиционирования воздуха, которыми они не являются и, естественно, не могут входить в классификацию СКВ, поскольку являются всего лишь местными охладителями или нагревателями, то есть не более чем доводчиками.
    Справедливости ради отметим, что Б. В. Баркалов начинает описание центральных водовоздушных систем очень точной фразой: «В каждое помещение вводится наружный воздух, приготовленный в центральном кондиционере. Перед выпуском в помещение он смешивается с воздухом данного помещения, предварительно охлажденным или нагретым в теплообменниках кондиционеров?доводчиков, снабжаемых холодной и горячей водой». Приведенная цитата показывает, что автор хорошо понимает неопределенность предложенного им признака классификации и поэтому сразу поясняет, что он имеет в виду под центральными водовоздушными системами.
    Системы без доводчиков могут быть прямоточными, когда в помещение подается обработанный наружный воздух, и с рециркуляцией, когда к наружному воздуху подмешивают воздух, забираемый из помещения. Кроме того, технологические СКВ, обслуживающие помещения или аппараты без пребывания людей, могут работать без подачи наружного воздуха со 100 % рециркуляцией. В зависимости от алгоритма работы СКВ различают системы с постоянной рециркуляцией, в которых соотношение количества наружного и рециркуляционного воздуха во время работы не изменяется, и СКВ с переменной рециркуляцией, в которых количество наружного воздуха может изменяться от 100 % до некоторого нормируемого минимального уровня.
    Кроме того, системы с рециркуляцией могут быть одновентиляторными и двухвентиляторными. В первых системах подача приточного воздуха в помещение, а также забор наружного и рециркуляционного воздуха осуществляется приточным вентилятором УКВ. Во втором случае для удаления воздуха из помещения и подачи его на рециркуляцию или на выброс применяют дополнительный вытяжной вентилятор.
    Независимо от схемы компоновки и устройства отдельных элементов СКВ подразделяют также по их назначению. Многие авторы делят СКВ на комфортные, технологические и комфортно-технологические. Более удачной и полной представляется классификация СКВ по назначению на эргономической основе, разработанная ВНИИкондиционером [5].
    Определено, что СКВ могут выполнять одну из трех функций обслуживания: машин; машин + людей; людей.
    1-я группа (символ «машина») определена как технологические СКВ. СКВ этой группы обслуживают технологические аппараты, камеры, боксы, машины и т. п., то есть применяются в тех случаях, когда условия воздушной среды диктуются обеспечением работоспособности технологического оборудования. При этом параметры воздушной среды могут отличаться от тех, которые определяются санитарно-гигиеническими нормами.
    1-я группа имеет две модификации:

    • Подгруппа 1–1 включает в себя кондиционируемые объекты, полностью исключающие возможность пребывания в них человека, то есть это системы технологического охлаждения, обдува электронных блоков вычислительных машин, шахты обдува волокна прядильных машин и т. п.
    • Подгруппа 1–2 включает в себя кондиционируемые объекты: технологические аппараты (машины, камеры, боксы) и помещения с особыми параметрами воздушной среды (калориметрического, экологического и другого назначения), в которых человек отсутствует или находится эпизодически (для снятия показаний приборов, изменения режима работы и т. д.).

    Если для группы 1–1 отсутствуют какие-либо ограничения по параметрам и составу воздушной среды, то для объектов подгруппы 1–2 газовый состав воздушной среды должен находиться в пределах, установленных ГОСТ.
    2-я группа (символ «машина + человек») определена как технологически комфортные СКВ. СКВ этой группы обслуживают производственные помещения, в которых длительно пребывают люди.
    2-я группа имеет три модификации:

    • Подгруппа 2–1. Технологически комфортные СКВ обеспечивают условия нормального осуществления технологических процессов как для производств, в которых затруднено или практически невозможно получение продукции без поддержания определенных параметров воздушной среды, так и для производств, в которых колебания параметров воздуха существенно влияют на качество продукции и величину брака.
    • Для этих помещений СКВ устраивается в первую (и основную) очередь по требованиям технологии, однако в связи с наличием в этих помещениях людей, параметры КВ устанавливают с учетом требований санитарно-гигиенических норм.
    • Подгруппа 2–2. СКВ создаются для исключения дискомфортных условий труда при тяжелых режимах работы людей (кабины крановщиков мостовых кранов металлургических заводов и ТЭЦ, кабины строительно-дорожных машин и т. д.). Производственные или экономические аспекты для этих установок имеют второстепенное значение.
    • Подгруппа 2–3. СКВ обеспечивают в производственных помещениях комфортные условия труда, способствующие повышению производительности труда, улучшению проведения основных технологических режимов, снижению заболеваемости, уменьшению эксплуатационных затрат и т. п.

    3-я группа (символ «люди») определена как комфортные СКВ, обеспечивающие санитарно-гигиенические условия труда, отдыха или иного пребывания людей в помещениях гражданских зданий, то есть вне промышленного производства.
    Эта группа имеет две модификации:

    • Подгруппа 3–1. СКВ обслуживают помещения общественных зданий, в которых для одной части людей пребывание в них кратковременно (например, покупатели в универмаге), а для другой – длительно (например, продавцы в этом же универмаге).
    • Подгруппа 3–2. СКВ обеспечивают оптимальные условия пребывания людей в жилых помещениях.

    В классификацию ВНИИконди-ционера необходимо ввести еще одну группу – медицинские СКВ. Очевидно, что СКВ, обслуживающие операционные, реанимационные или палаты интенсивной терапии, никак нельзя считать комфортными, а чтобы отнести их к технологическим, надо в качестве «машины» рассматривать самого человека, что просто глупо.
    Медицинские СКВ должны иметь две подгруппы:

    • Подгруппа 4–1. СКВ обслуживают операционные, реанимационные и т. п. помещения.
    • Подгруппа 4–2. СКВ обеспечивают требуемые параметры воздуха в палатах, кабинетах врачей, процедурных и т. п.

     

    4805

    Для завершения классификации СКВ рассмотрим еще несколько признаков.
    По типу системы холодоснабжения различают автономные и неавтономные СКВ. В автономных источник холода встроен в кондиционер, в неавтономных – источником холода является отдельный холодильный центр. Кроме того, в автономных кондиционерах в воздухоохладитель может подаваться кипящий хладон или жидкий промежуточный хладоноситель (холодная вода, растворы). Заметим, что на многих объектах мы использовали схему с подачей хладона в воздухоохладитель центрального кондиционера от расположенной рядом холодильной машины или внешнего блока VRV.
    По способу компенсации изменяющихся тепловых и (или) влажностных возмущений в обслуживаемом помещении различают СКВ с постоянным расходом воздуха (CAV) – системы, в которых внутренние параметры поддерживают изменяя температуру и влажность приточного воздуха (качественное регулирование), и системы с переменным расходом воздуха (VAV) – системы с количественным регулированием.
    По числу воздуховодов для подачи кондиционированного воздуха в помещенияСКВ делятся на одноканальные и двухканальные, при этом приточный воздух в каждом канале имеет разную температуру и влажность, что позволяет, изменяя соотношение приточного воздуха, подаваемого через каждый канал, поддерживать требуемые параметры в обслуживаемом помещении.
    По числу точек стабилизации одноименного параметра (t; φ)в большом помещении или группе небольших помещений различают одно- и многозональные СКВ.
    –это СКВ с местными доводчиками. В этих СКВ центральная или местная УКВ подает в помещение санитарную норму наружного воздуха, даже не обязательно обработанного, а местные доводчики обеспечивают поддержание в помещении требуемых параметров воздуха (температуры, относительной влажности и подвижности).
    Сегодня в качестве местных доводчиков применяют: внутренние блоки сплит-систем или VRV-систем; фэнкойлы (двух- или четырехтрубные); моноблоки (напольные, потолочные или настенные); эжекционные доводчики; местные увлажнители воздуха; охлаждаемые и нагреваемые потолки; охлаждающие балки (пассивные и активированные).
    Все указанные доводчики сами по себе не являются кондиционерами, хотя их и называют так продавцы оборудования.
    Известно, что некоторые фирмы работают над созданием, например, фэнкойлов или сплит-систем, подающих в помещение наружный воздух. Но, если это и произойдет в массовом масштабе, то ничего страшного с классификацией не случится, просто это оборудование получит статус местных кондиционеров.
    Блок-схема рассмотренной классификации СКВ приведена на рис. 2.
    Помимо рассмотренных признаков в схему на рис. 2 включен еще один: наличие утилизаторов теплоты и холода, которые могут быть как в центральных, так и в местных СКВ. Причем необходимо различать системы утилизации типа воздух-воздух, к которым относятся схемы с промежуточным теплоносителем, с пластинчатыми теплообменниками* и с регенеративными вращающимися и переключаемыми теплообменниками, а также системы утилизации теплоты оборотной воды и теплоты обратного теплоносителя систем централизованного теплоснабжения и систем технологического жидкостного охлаждения.

    Литература

    1. Липа А. И. Кондиционирование воздуха. Основы теории. Совре-менные технологии обработки воздуха. – Одесса: Издательство ВМВ, 2010.
    2. СНиП 41–01–2003. Отопление, вентиляция, кондиционирование. М.: Госстрой России. – 2004.
    3. Англо-русский терминологический словарь по отоплению, вентиляции, кондиционированию воздуха и охлаждению. М.: Изд-во «АВОК-ПРЕСС», 2002.
    4. Кокорин О. Я. Энергосберегаю-щие системы кондиционирования воздуха. ООО «ЛЭС». – М., 2007.
    5. Кондиционеры. Каталог-спра-воч-ник ЦНИИТЭстроймаш. – М., 1981.
    6. Рымкевич А. А. Системный анализ оптимизации общеобменной вентиляции и кондиционирования воздуха. Изд. 1. – М.: Стройиздат, 1990.
    7. Баркалов Б. В., Карпис Е. Е. Кондиционирование воздуха в промышленных, общественных и жилых зданиях. Изд. 2. – М.: Стройиздат, 1982.
    8. Сотников А. Г. Процессы, аппараты и системы кондиционирования воздуха и вентиляции. Т. 1. ООО «АТ». – С.-Петербург, 2005.
    9. Стефанов Е. В. Вентиляция и кондиционирование воздуха. – С.-Петербург: Изд-во «АВОК-Северо-Запад», 2005.

    [ http://www.abok.ru/for_spec/articles.php?nid=5029]

    Тематики

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > система кондиционирования воздуха

См. также в других словарях:

  • ВОДЫ СТОЧНЫЕ — ВОДЫ СТОЧНЫЕ, или «сточная жидкость», в сан. технике обозначает удаляемую посредством сплавной канализации (см.) воду, загрязненную разного рода отбросами. В гидрологии термин «сточные воды» иногда применяется для… …   Большая медицинская энциклопедия

  • наличие сигнала по уровню воды в парогенераторе на ТЭС или АЭС — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN steam generator available signalSGAS …   Справочник технического переводчика

  • наличие сигнала парогенератора на АЭС — (по уровню воды) [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN steam generator available signal …   Справочник технического переводчика

  • ОКРАСКА ВОДЫ — показатель, характеризующий наличие веществ, вызывающих окрашивание воды ( ГОСТ 27065 86. ) EdwART. Термины и определения по охране окружающей среды, природопользованию и экологической безопасности. Словарь, 2010 Окраска воды …   Экологический словарь

  • Минеральные воды (курорты) — У этого термина существуют и другие значения, см. Минеральные воды. Минеральные воды   сложные растворы, в которых вещества содержатся в виде ионов, недиссоциированных молекул, газов, коллоидных частиц. Критерии для отнесения вод к… …   Википедия

  • Кавказские Минеральные Воды — Герб региона …   Википедия

  • Фторирование воды — Фторирование не влияет на внешний вид, вкус и запах воды.[1] Фто …   Википедия

  • Минеральные Воды (станция) — У этого термина существуют и другие значения, см. Минеральные воды. Координаты: 44°12′48.4″ с. ш. 43°08′29.5″ в. д. / 44.213444° с …   Википедия

  • АРТЕЗИАНСКИЕ ВОДЫ — АРТЕЗИАНСКИЕ ВОДЫ. А. в., в отличие от грунтовых, называются такие глубокие подземные воды, к рые, скопляясь между двумя водонепроницаемыми пластами, находятся под постоянным напором всей массы воды, наполняющей данный водный горизонт. При… …   Большая медицинская энциклопедия

  • МУ 2.1.4.682-97: Методические указания по внедрению и применению Санитарных правил и норм СанПиН 2.1.4.559-96 "Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества" — Терминология МУ 2.1.4.682 97: Методические указания по внедрению и применению Санитарных правил и норм СанПиН 2.1.4.559 96 "Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль… …   Словарь-справочник терминов нормативно-технической документации

  • Подземные воды —         (a. underground waters; н. Grundwasser; ф. eaux souterraines, eaux de sous sol; и. aguas subterraneas) воды, находящиеся в толщах горн. пород верхней части земной коры в жидком, твёрдом и парообразном состоянии. П. в. являются частью… …   Геологическая энциклопедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»