Перевод: со всех языков на все языки

со всех языков на все языки

множество+других

  • 101 преимущество

    Преимущество - advantage (of, in), benefit; merit, strength, virtue (достоинство); edge (перевес)
     There were certain conditions where the three-point contact bearing did not show an advantage in power loss.

    Русско-английский научно-технический словарь переводчика > преимущество

  • 102 American Broadcasting Company

    "Американ бродкастинг компани", Эй-би-си
    Самая молодая из трех [ Big Three] крупнейших вещательных корпораций [network]. Создана в 1943 на базе радиовещательной компании "Блу нетуорк" [ Blue Network], отделения Эн-би-си [ NBC]. Свою телесеть создала позже, чем два других лидера ТВ - в 1948. В 1953 в состав корпорации вошла также "Юнайтед парамаунт тиатерз" [United Paramount Theaters]. В 1953 подписала контракт со студией У. Диснея [ Disney, Walt (Walter Elias)], а в 1955 - с "Уорнер бразерс" [ Warner Bros.], что позволило ей выпустить на экраны ТВ множество популярных сериалов [ serial] и других программ. Однако до 1976 "Эй-би-си" не удавалось приблизиться к двум лидерам "тройки". Впервые ее программа - сериал "Счастливые денечки" ["Happy Days"] - вышла на первое место в 1976. Компания поспешила развить этот успех, создав ряд развлекательных телесериалов: "Лаверн и Ширли" ["Laverne and Shirley"], "Третий - не лишний" ["Three's Company"], "Остров Фантазии" ["Fantasy Island"], "Корабль любви" ["Love Boat"], "Ангелы Чарли" [ Charlie's Angels], "Человек ценой в 6 млн" ["The Six Million Dollar Man"] и др. Период 1975-80 в истории ТВ получил название "эры фантазий Эй-би-си". К 1980 интерес к суперлегкому жанру упал, и Эй-би-си уступила первенство Си-би-эс [ CBS]. К числу успехов Эй-би-си относят также программу "Найтлайн" ["Nightline"] и трансляции Олимпийских игр. Первой в США прибегла к финансированию программ с помощью рекламы [ commercial]. В состав компании входят телесеть, 5 телестанций, компания "Эй-би-си рэйдио" [ABC Radio], около 300 кинотеатров, компания видеозвукозаписи, киностудия и издательство. В 1995 слилась с компанией "Кэпитал ситиз коммьюникейшнз", образовав "Кэпитал ситиз/Эй-би-си" [Capital Cities / ABC, Inc.]. Штаб-квартира в г. Нью-Йорке

    English-Russian dictionary of regional studies > American Broadcasting Company

  • 103 FORECASTING

    Прогнозирование
    Оценка будущих тенденций экономического развития. Государственные институты и компании используют следующие методы прогнозирования: 1) Опрос потребителей, производителей, продавцов, экспертов и других участников экономических отношений. 2) Проведение экспериментов, позволяющих прогнозировать, например, спрос на новые товары на основе панельных опросов небольших групп потребителей или большой выборки на пробных рынках (см. Test markets). 3) Методы экстраполяции, использующие анализ временных рядов (см. Time-series analysis). 4) Барометрические методы, основанные на изучении текущей конъюнктуры рынка. Такие опережающие индикаторы (см. Leading indicators), как планы капиталовложений компаний в основные фонды или количество строящихся новых жилых домов, могут использоваться в качестве барометра при составлении прогнозов изменения таких параметров, как уровень экономической активности или спрос на товары. 5) Метод «затраты-выпуск» (см. Input-out put analysis), использующий сравнительные таблицы затрат и объемов производства для демонстрации взаимозависимости между различными отраслями промышленности. Например, производители запасных частей к автомобилям должны оценить спрос на автомобили в будущем и планы производства автомобильной промышленности, которая является их основным потребителем. 6) Эконометрические методы, с помощью которых прогнозируются возможные значения экономических показателей путем исследования других показателей, косвенно связаных с ними. В эконометрических методах используются статистические данные для составления уравнений, решение которых дает значения независимой переменной величины, влияющей на прогнозируемые зависимые величины. Например, для предсказания величины спроса на товар Qd составим уравнение, увязывая это количество с ценой на товар P и чистым доходом Y: Qd = a bP cY Затем используем данные прошлых лет для расчета коэффициентов регрессии a, b и c (см. Regression analysis). В сложных экономических ситуациях может понадобиться не одно, а множество уравнений, которые отражают все возможные зависимости между независимыми переменными. Так, например, модель макроэкономического прогнозирования, используемая Министерством финансов Великобритании, включает в себя свыше 600 уравнений. И все же ни один метод не может дать абсолютно точных прогнозов. Поэтому при прогнозировании необходимо учитывать предел погрешности (margin of error), т.е. делать допущение на то, что существует ряд возможных исходов, каждый из которых может иметь место с большей или меньшей степенью вероятности.

    Новый англо-русский словарь-справочник. Экономика. > FORECASTING

  • 104 QUANTITY THEORY OF MONEY

    Количественная теория денег
    Концепция, основанная на предположении, что существует прямая зависимость между денежной массой и общим уровнем цен, т.е. чем больше денег в обращении, тем выше уровень цен и наоборот. Тождество,лежащеевосноветеории,быловыведено Ирвингом Фишером в 1911 г. Уравнение Фишера (Fisher equation) выглядит следующим образом: MV = PT, где М - денежная масса, V - скорость обращения денег, P - общий уровень цен и Т - количество сделок или общее количество предлагаемых товаров и услуг. В представлении Фишера величина М определяется независимо от трех других переменных, Т принимается как данное, V имеет постоянное равновесное значение. В этом случае P определяется в зависимости от изменения этих трех величин. Такая точка зрения указывает на то, что экономика всегда стремится к состоянию полной занятости, а стабильность равновесия V обусловливается технологическими и институциональными факторами. Другой  подход  предложили  экономисты  из  Кембриджского университета (Кембриджская школа). Он обычно ассоциируется с именами двух ученых - Маршалла и Пигу. Отталкиваясь от того же уравнения, они пошли по иному пути. Фишера интересовало главным образом количество денег, которое необходимо для осуществления данного объема сделок. Кембриджские ученые сосредоточили свое внимание на том, сколько денег человек считает нужным хранить для реализации этих сделок. Подход Фишера, таким образом, был макроэкономическим, в то время как модель кембриджских ученых (Marshall-Pigou model) является микроэкономической. В ней делается упор на удобство хранения денег - чем большее количество сделок предстоит осуществить человеку, тем большее количество денежных остатков он захочет хранить. Фишер полагал, что человек не станет хранить деньги ради денег, они имеют лишь текущую чистую стоимость. Если  предположить, что  реальный  доход  человека,  количество совершаемых им сделок и его богатство - взаимозависимые величины в краткосрочном периоде, тогда номинальный спрос на деньги  Md  будет  составлять  постоянную  часть  k  номинального дохода человека Y. Это так называемое кембриджское уравнение (Cambridge equation): Идеи Кэмбриджской школы получили свое развитие в работах М. Кейнса (см. Liquidity preference, Speculative demand for money). Современные  сторонники  количественной  теории  денег - представители чикагской школы монетаризма: Фридман, Бруннер и др. (см. Chicago school). Деньги, по утверждению Фридмана, есть актив, на который можно купить множество товаров. Ученый допускает, что между деньгами и товарами существует убывающая предельная норма замещения: чем больше у человека денег относительно некого набора товаров, тем больше вероятность того, что он потратит деньги на дополнительное количество товаров для уравновешивания их предельных полезностей. Эта гипотеза имеет важное  значение,  т.к. предполагает  возможность  взаимозамещения между деньгами и товарами и, таким образом, возможность прямого воздействия на совокупный спрос на денежные остатки. Функцию спроса на деньги можно представить в следующем виде: где W - совокупное богатство общества, WH - богатство отдельного человека, r - процентная ставка, P - уровень цен, Md - спрос на номинальные денежные остатки, е - ожидания. Фридман фактически учитывает три процентные ставки: ожидаемую норму дохода на деньги, ожидаемую норму дохода на акции и ожидаемую норму дохода на фиксированную стоимость ценных бумаг. Изменение денежной массы (особенно ее увеличение), как правило, вызывает дисбаланс на денежных рынках, что в свою очередь приводит к нарушению равновесия спроса и цен на всех других рынках (см. Monetarism).  

    Новый англо-русский словарь-справочник. Экономика. > QUANTITY THEORY OF MONEY

  • 105 manage

    •• manage, management

    •• Manage 1. to have under effective control. 2. to be the manager (of a business, etc.) 3. to succeed in doing or producing something, to be able to cope. 4. to contrive to persuade (a person) to do what one wants (Oxford American Dictionary).
    •• Один из «вечных спутников» англо-русского переводчика – слово, казалось бы, понятное, но доставляющее массу хлопот. Хотя и у глагола, и у существительного есть несколько простых, сразу приходящих в голову русских переводов – управлять, руководить, справляться, соответственно – управление, руководство, дирекция и т.п., можно привести множество примеров, когда эти русские слова не способны выручить переводчика. Вот несколько предложений из текущей периодики:
    •• 1. [British companies] undertook to phase out the use and sale of wood and wood products that did not come from well-managed forests (International Herald Tribune);
    •• 2. They may provide a model for better management of many other commercially exploited wild species, such as fish;
    •• 3. The political process for managing more dispersed power is very ad hoc [ in China] (World Link);
    •• 4. It was a sign of maturity and skillful diplomatic management of nationalism that both Japan and China kept the lid on the process (World Link);
    •• 5. China’s behavior regarding Hong Kong... is a guide to how China will manage domestic change (World Link).
    •• Примеров, когда слова manage, management не так просто перевести «с ходу», очень много. Иногда, «чтобы не мучиться», договариваются об условном переводе, который превращается в термин (а термин – всегда своего рода условное обозначение, понимание которого зависит от полноты знания предмета). Так появилось управление рыбными запасами ( management of fish stocks). Приходилось встречать и такой перевод словосочетания crisis management управление кризисом (иногда регулирование кризиса). И все же пока многие такие переводы не приобрели терминологического характера, а если это и произойдет, то понимание их будет доступно главным образом специалистам. Не слишком большую помощь оказывают и двуязычные словари. Как часто бывает, предлагаемые переводы неплохи в конкретном случае, но мало что дают в других контекстах, а их у таких «многовалентных» слов может быть несчетное количество.
    •• Рекомендую заглянуть в словари синонимов английского языка. Их полезно иметь под рукой не только переводчику на английский, пытающемуся поймать ускользающее слово, но и при переводе с английского, когда другие средства (включая крепкие, например, кофе) не помогают. Неплохой советчик – словарь Родейла (The Synonym Finder by J.I. Rodale). На слово manage он дает пять значений и в общей сложности 61 синоним! Не буду лишать читателя удовольствия самому достать этот словарь (это может оказаться нелегко) и прочитать эту словарную статью. (Кстати, не менее интересна и статья management.) Приведу лишь некоторые синонимы, помогающие «ощутить» значение этого слова и найти удачный перевод: arrange; direct, order; regulate, administer, control; influence; mastermind; operate, handle, manipulate; cope, function; conduct. Последние синонимы особенно интересны. Действительно, слова manage, management часто подразумевают определенные действия или поведение в каких-то конкретных условиях: crisis management действия в условиях кризиса. Нередко в переводе на русский выручают такие слова, как регулирование (но не урегулирование!), контроль, система мер (the management of contagious disease – система мер по борьбе с инфекционными заболеваниями; managed health care (амер.) – регулирование в области здравоохранения или «организованная медицина»). В этом же диапазоне значений находится слово manageable, перевод которого не так труден: The situation is manageable. – Ситуация под контролем, т.е. относительно нормальная, с ситуацией можно справиться.
    •• Теперь вернемся к нашим примерам, для экономии места предлагая только перевод интересующего нас фрагмента текста: 1. ...рационально используемые леса. 2. ...более разумная коммерческая эксплуатация (вариант: более умелое регулирование коммерческой эксплуатации) других видов флоры и фауны... 3. Политическая система не отражает в полной мере децентрализацию власти. 4. ...умелая дипломатическая реакция на проблемы, которые ставит национализм. 5. ...даст представление о том, как Китай будет вести себя в условиях перемен внутри страны.
    •• Еще два интересных примера (из статьи бывшего посла Великобритании в СССР Р.Брейтвейта в журнале Profile): Until [Kozyrev] was replaced by Primakov, there was little serious attempt to manage the disagreement between Russia and [NATO]. В переводе можно было бы прибегнуть к словам регулировать или отрегулировать, но, на мой взгляд, они будут не совсем точны. Пожалуй, лучше здесь конкретизация: ...не было сделано попытки вступить в серьезный диалог по разногласиям между Россией и НАТО. [This] is an odd way to manage the choices that Europe faces. – Это странный подход к альтернативам, с которыми сталкивается Европа.

    English-Russian nonsystematic dictionary > manage

  • 106 management

    •• manage, management

    •• Manage 1. to have under effective control. 2. to be the manager (of a business, etc.) 3. to succeed in doing or producing something, to be able to cope. 4. to contrive to persuade (a person) to do what one wants (Oxford American Dictionary).
    •• Один из «вечных спутников» англо-русского переводчика – слово, казалось бы, понятное, но доставляющее массу хлопот. Хотя и у глагола, и у существительного есть несколько простых, сразу приходящих в голову русских переводов – управлять, руководить, справляться, соответственно – управление, руководство, дирекция и т.п., можно привести множество примеров, когда эти русские слова не способны выручить переводчика. Вот несколько предложений из текущей периодики:
    •• 1. [British companies] undertook to phase out the use and sale of wood and wood products that did not come from well-managed forests (International Herald Tribune);
    •• 2. They may provide a model for better management of many other commercially exploited wild species, such as fish;
    •• 3. The political process for managing more dispersed power is very ad hoc [ in China] (World Link);
    •• 4. It was a sign of maturity and skillful diplomatic management of nationalism that both Japan and China kept the lid on the process (World Link);
    •• 5. China’s behavior regarding Hong Kong... is a guide to how China will manage domestic change (World Link).
    •• Примеров, когда слова manage, management не так просто перевести «с ходу», очень много. Иногда, «чтобы не мучиться», договариваются об условном переводе, который превращается в термин (а термин – всегда своего рода условное обозначение, понимание которого зависит от полноты знания предмета). Так появилось управление рыбными запасами ( management of fish stocks). Приходилось встречать и такой перевод словосочетания crisis management управление кризисом (иногда регулирование кризиса). И все же пока многие такие переводы не приобрели терминологического характера, а если это и произойдет, то понимание их будет доступно главным образом специалистам. Не слишком большую помощь оказывают и двуязычные словари. Как часто бывает, предлагаемые переводы неплохи в конкретном случае, но мало что дают в других контекстах, а их у таких «многовалентных» слов может быть несчетное количество.
    •• Рекомендую заглянуть в словари синонимов английского языка. Их полезно иметь под рукой не только переводчику на английский, пытающемуся поймать ускользающее слово, но и при переводе с английского, когда другие средства (включая крепкие, например, кофе) не помогают. Неплохой советчик – словарь Родейла (The Synonym Finder by J.I. Rodale). На слово manage он дает пять значений и в общей сложности 61 синоним! Не буду лишать читателя удовольствия самому достать этот словарь (это может оказаться нелегко) и прочитать эту словарную статью. (Кстати, не менее интересна и статья management.) Приведу лишь некоторые синонимы, помогающие «ощутить» значение этого слова и найти удачный перевод: arrange; direct, order; regulate, administer, control; influence; mastermind; operate, handle, manipulate; cope, function; conduct. Последние синонимы особенно интересны. Действительно, слова manage, management часто подразумевают определенные действия или поведение в каких-то конкретных условиях: crisis management действия в условиях кризиса. Нередко в переводе на русский выручают такие слова, как регулирование (но не урегулирование!), контроль, система мер (the management of contagious disease – система мер по борьбе с инфекционными заболеваниями; managed health care (амер.) – регулирование в области здравоохранения или «организованная медицина»). В этом же диапазоне значений находится слово manageable, перевод которого не так труден: The situation is manageable. – Ситуация под контролем, т.е. относительно нормальная, с ситуацией можно справиться.
    •• Теперь вернемся к нашим примерам, для экономии места предлагая только перевод интересующего нас фрагмента текста: 1. ...рационально используемые леса. 2. ...более разумная коммерческая эксплуатация (вариант: более умелое регулирование коммерческой эксплуатации) других видов флоры и фауны... 3. Политическая система не отражает в полной мере децентрализацию власти. 4. ...умелая дипломатическая реакция на проблемы, которые ставит национализм. 5. ...даст представление о том, как Китай будет вести себя в условиях перемен внутри страны.
    •• Еще два интересных примера (из статьи бывшего посла Великобритании в СССР Р.Брейтвейта в журнале Profile): Until [Kozyrev] was replaced by Primakov, there was little serious attempt to manage the disagreement between Russia and [NATO]. В переводе можно было бы прибегнуть к словам регулировать или отрегулировать, но, на мой взгляд, они будут не совсем точны. Пожалуй, лучше здесь конкретизация: ...не было сделано попытки вступить в серьезный диалог по разногласиям между Россией и НАТО. [This] is an odd way to manage the choices that Europe faces. – Это странный подход к альтернативам, с которыми сталкивается Европа.

    English-Russian nonsystematic dictionary > management

  • 107 инфантильность

    Хотя Фрейд использовал термин "инфантильный" для обозначения феноменов всего детского периода, инфантильность в современном употреблении относится к периоду первых трех лет жизни. В этот период ребенок переходит от состояния полной психической и физической зависимости к индивидуальному бытию с автономной регуляцией чувствования себя и других, способностью вербального общения и выражения внутренней реальности, независимостью во многих областях психического функционирования. К концу периода инфантильности должны произойти важные достижения в психической структуре: ребенок должен четко дифференцировать репрезентанты себя и объектов и быть способным интегрировать "хорошие" и "плохие" частичные объекты в целостные репрезентации себя и объектов. Также должны произойти дифференциация Я и Оно, развиться защитные механизмы, способные справиться с конфликтными чувствами и побуждениями. Должна появиться способность к формированию компромиссных образований, равно как и способность к продуцированию внутренней тревоги и развитию невротической симптоматики. Такой прогресс вооружает Я способностью интенциональности, сдерживания разрядки, сопротивления регрессии; зарождается толерантность к фрустрации, тревоге и амбивалентности. Ребенок обретает все большую способность справляться со сложными аффективными переживаниями при взаимодействии с одушевленной и неодушевленной средой.
    В период инфантильности происходит быстрая дифференциация и интеграция функций, которая отражает сложное взаимодействие конституциональных данностей, генетически обусловленного созревания и среды (как до, так и после рождения). Существует множество моделей развития ребенка в этот период; хотя в каждой из них акцент делается на чем-то особом, все они основаны на постулате о том, что каждый новый уровень функционирования (выражение аффектов, моторные навыки, сенсорное восприятие и ретенция, контроль побуждений и т.д.) возникает во взаимодействии ребенка со средой. Опыт переживаний организуется во все более сложные паттерны, сначала на физиологическом, а затем на психологическом уровне репрезентации.
    Из этих теоретических систем наиболее важными являются модель сенсомоторного развития Жана Пиаже, принадлежащая Фрейду теория влечений и концептуализация психосексуального развития (вместе с последующими психоаналитическими теориями Я и объектных отношений), модель сепарации-индивидуации Малер, этология человека (изучение наблюдаемого поведения), теория научения, основанные на наблюдении исследования Шпица, Вульф, Эмде, Штерна и др.
    На протяжении первого года генетически обусловленное созревание как детерминанта поведения все более уступает место опыту. Развитие в этот период неравномерно. Наиболее быстрое развитие обозначается как биоповеденческие сдвиги; имеется в виду внезапное возникновение новых способностей и функций, включая новые формы аффективного поведения, отражающие новый уровень психической и физиологической организации.
    Подобные сдвиги проявляются в виде резких изменений в социальной жизни ребенка. Так называемая реакция улыбки (2—3-й месяцы жизни) приводит к более интенсивным и качественно иным взаимодействиям с человеческим окружением, а боязнь незнакомых людей (6—8-й месяцы) указывает на появление способности испытывать страх.
    Третий заметный поведенческий сдвиг наблюдается между восемнадцатым и двадцать четвертым месяцем жизни, когда появляется жест с сигнальным значением "нет", происходит быстрое усвоение языка, развивается автономия, способность к социальным контактам, происходит смещение от сенсомоторного интеллекта к репрезентативному (Пиаже), возникает кризис восстановления (Малер), на смену приходит анальная фаза психосексуального развития (Фрейд). По истечении восемнадцати месяцев возникающее чувство Я проявляется в узнавании ребенком себя в зеркале. Ребенок начинает также говорить о себе в первом лице.
    Один из способов концептуализации сдвигов уровней психической организации заключается в том, что после двух месяцев ребенок вспоминает мать в моменты узнавания; после семи—девяти месяцев — испытывать биологические и психологические потребности; после восемнадцати месяцев мнемическое воспроизведение осуществляется относительно независимо от внешних стимулов и внутренних потребностей. Такие сдвиги в возможностях ребенка делают процесс развития внешне дискретным, поскольку достижение нового уровня интеграции и организации приводят к типу функционирования, прежде недоступному.
    Периоды поведенческих изменений в направлении более сложных уровней организации — это периоды наибольшей уязвимости ребенка к стрессу. Потенциал роста и самоконтроля может уступать место возможности дезорганизации и декомпенсации, причем на то и другое влияет конституциональная предрасположенность. Так, у ребенка, рано научившегося перемещаться в пространстве, будет иной тип объектных отношений, нежели у ребенка, более склонного к сидячему образу жизни и исследующего мир в основном зрительно. Последний может дальше продвинуться в плане индивидуации до начала физической сепарации от опекуна. На уязвимость ребенка к стрессу влияет также среда.
    Перцептивный аппарат ребенка отличается врожденной способностью направлять внимание на частичные объекты (конфигурация человеческого лица, голос матери, запах и т.п.). Такая биологически детерминированная способность, способствующая формированию связи с объектами, проявляется даже в отсутствие связанного с данным объектом опыта кормления или при редукции влечений. Следовательно, ребенок по природе социально интерактивен, ищет как возбуждающей, так и успокаивающей стимуляции и способен стимулировать других (особенно мать), вызывая реакции; таким образом, ребенок может воздействовать на окружение с момента появления на свет. Поскольку развитие является частью системы интеракций, то поведение ребенка и поведение опекуна со временем будут усложняться. Согласно одной из современных гипотез, генетически обусловленное, направленное на объект поведение дает ребенку возможность привлекать к себе внимание матери в период, когда его выживание целиком зависит от нее.
    \
    Лит.: [145, 181, 389]

    Словарь психоаналитических терминов и понятий > инфантильность

  • 108 scoop

    [skuːp] 1. сущ.
    1)
    а) лопатка, совок
    б) мед. ложечка
    2) черпание, зачерпывание

    with a scoop, at one scoop — одним взмахом

    3) котлован; впадина, углубление
    4)
    а) большое количество (какого-л. вещества), зачерпываемое за один раз
    б) разг. большой куш; большая прибыль

    I'd get a scoop to rival Watergate. — У меня была бы сенсация похлеще Уотергейтского скандала.

    2. гл.
    1) = scoop out копать; выкапывать, раскапывать

    This machine can scoop out the soil at a very fast rate. — Эта машина может очень быстро копать землю.

    Tortoise scoops out a nesting place in the sand and lays its eggs in it. — Черепаха выкапывает в песке гнездо и откладывает туда яйца.

    Syn:
    2)
    а) = scoop up / out черпать, зачерпывать; вычерпывать

    Use buckets to scoop up the water. — Черпайте воду вёдрами.

    Syn:
    bail III 2., ladle 2., dip
    б) = scoop in сгребать, собирать совком, ковшом
    3) выдалбливать, высверливать
    Syn:
    bore I 2., drill I 2.
    4) разг.
    а) сорвать куш, сорвать банк ( в азартных играх)

    Millie had shown a flush and scooped the kitty. — У Милли был флеш, так что она сорвала банк.

    б) выиграть; урвать лучший кусок
    5) разг. опубликовать сенсационное сообщение ( раньше других); победить конкурирующее издание ( опубликовав первыми сенсационное сообщение)

    During the madness of the Lewinsky scandal, several major news organizations tried to scoop each other on the web and got things wrong. — Во время безумного скандала в связи с делом Моники Левински крупнейшие электронные информационные агентства пытались обогнать друг друга в погоне за сенсацией и часто попадали впросак.

    Many scientists are so obsessed with the fear of being "scooped" that they issue a long succession of scrappy communications instead of waiting until the work is complete. — Многие учёные настолько боятся, что кто-то раньше них опубликует результаты исследований, что издают множество бессвязных статей, вместо того чтобы подождать до завершения исследования.

    6) = scoop up проталкивать (вперёд), запихивать

    Англо-русский современный словарь > scoop

  • 109 Carmen Jones

       1955 - США (107 мин)
         Произв. Fox, Garble Prod. (Отто Преминджер)
         Реж. ОТТО ПРЕМИНДЖЕР
         Сцен. Гарри Клейнер по мюзиклу Оскара Хаммерстайна II, написанному по мотивам оперы Жоржа Бизе, Мейака и Алеви по мотивам новеллы Проспера Мериме
         Опер. Сэм Ливитт (DeLuxe Color. Cinemascope)
         Муз. Хершел Бёрк Гилберт по мотивам музыки Жоржа Бизе
         Титры Сол Басс
         Хореогр. Херберт Росс
         В ролях Дороти Дэндридж (Кармен Джоунз), Гарри Белафонте (Джо), Ольга Джеймс (Синди Лу), Пёрл Бейли (Фрэнки), Джо Эдамз (Эскимос Миллер), Дайэнн Кэрролл (Мёрт), Рой Гленн (Ром), Ник Стюарт (Динк), Брок Питерз (сержант Браун); поют - Мэрилин Хорн (Кармен), Леверн Хатчерсон (Джо), Бернис Питерсон (Мёрт), Брок Питерз (Ром), Марвин Хейз (Эскимос Миллер), Джо Кроуфорд (Динк).
       Америка во время Второй мировой войны. Синди Лу навещает жениха, капрала Джо, по месту службы - в учебной части в Джексонвилле. В этот день он уезжает из части поступать в летную школу. В столовой на глазах у Синди Лу с Джо кокетничает Кармен Джоунз, работница парашютной мастерской, расположенной в части. Когда Кармен уходит, Джо просит Синди Лу выйти за него замуж. Кармен в своей мастерской яростно дерется с коллегой; ее арестовывают, и Джо должен немедленно отвезти ее в тюрьму Мейсонвилля. Он увозит ее на джипе. На железнодорожном переезде она сбегает и запрыгивает в товарный состав. Джо ловит ее и, связав, везет дальше, однако вскоре под джипом обрушивается мостик, и машина падает в воду. Кармен предлагает Джо сесть на поезд до Мейсонвилля, но для этого надо дойти до соседнего города, где родилась Кармен. Там Кармен заманивает Джо к себе домой и кормит обедом. Она пробует его соблазнить, и он не в силах устоять перед ее чарами. Позже он обнаруживает, что она исчезла, оставив ему записку.
       Синди Лу навещает Джо, отбывающего срок на гауптвахте. Он же думает только о Кармен, которая прислала ему розу. Каждый вечер она ждет его в кафе Билли Пастора. Как-то вечером в кафе торжественно входит Эскимос Миллер, знаменитый боксер-чемпион. Он замечает Кармен и требует у своего менеджера, чтобы тот взял Кармен в их чикагское турне. Подружка менеджера Фрэнки уговаривает Кармен согласиться на эту поездку, поскольку об Эскимосе говорят, что он умеет быть щедрым, когда добивается своего. В тот же вечер Джо наконец освобождают, и он приходит в кафе к Кармен. Он препирается со старшим по званию сержантом Брауном и отправляет его в нокаут. Чтобы снова не сесть в тюрьму, он сбегает вместе с Кармен, и оба едут в Чикаго на том же поезде, что и Эскимос Миллер.
       Джо разыскивает военная полиция, поэтому он не выходит из комнаты. Но Кармен может жить только свободной как ветер, и она приходит на тренировку Эскимоса Миллера, а вечером появляется в гостиничном номере, где Эскимос живет со своей свитой. Кармен гадает на картах, и ей выпадает Смерть. Она страстно целует боксера. Джо, удирая от полиции, раскрывшей его логово, приходит в зал, где тренируется Эскимос. Он видит Кармен в объятиях боксера и бросается на него с ножом. Их разнимают, и Джо убегает перед самым приходом полиции. Он отталкивает Синди Лу, пришедшую за ним. Эскимос поднимается на ринг и побеждает соперника. На выходе после матча Джо подстерегает Кармен и тащит за собой в отдельную комнату. Там он умоляет ее вернуться к нему. Она отказывается. Он угрожает. Она смеется ему в лицо, и он ее душит. Его уводит полиция.
        Персонаж, созданный Мериме, вдохновлял множество кинематографистов - от Уолша до Де Милля, от Лубича до Фейдера, - однако единственное идеальное и по-настоящему творческое экранное воплощение обрел в Кармен Джоунз: действие новеллы Мериме перенесено здесь в современность, в среду чернокожих американцев. Это преображение стало результатом множества переработок, и тут надо уточнить, что сценарий фильма в некоторых немаловажных моментах отступает от либретто мюзикла Оскара Хаммерстайна II (например, Кармен ничуть не виновата в ссоре, разгоревшейся между Джо и сержантом). По сравнению с прежними постановками, Кармен Джоунз ближе к содержанию и точке зрения новеллы Мериме: Кармен тут показана отстраненно, холодно, как человек, частично (и, несомненно, в самой главной своей части) непостижимый. Все составляющие ее характера - пылкость, эротическое обаяние, фатализм, трагичность - пересматриваются заново, чтобы окончательно поместить фигуру героини в центр драмы (все прочие персонажи существуют лишь во взаимодействии с ней) и исключить из ее окружения местный колорит и связанную с ним красочность и приторность. В этом отношении произведение Хаммерстайна - пусть в нем и нет такого местного колорита, как в других адаптациях. - по своей природе является театральным и условным (в Америке нет ни единого настолько дружного чернокожего сообщества). Прекрасно сознавая это, Преминджер попытался устранить условность в высшей степени реалистичным использованием пространства и декораций при помощи нового широкоэкранного формата «Cinemascope». Редкие фильмы так далеко заходили в отказе от экспрессионизма. Воинская часть, столовая самообслуживания, многолюдная улица Чикаго, боксерский ринг хоть и анонимны, но в то же время неоспоримо конкретны, что пошло на пользу этой обнаженной и обновленной версии трагедии Кармен.
       Хронологически фильм расположен между 1 этапами в творческом пути Преминджера. Его Кармен, хоть и с некоторыми существенными оговорками (например, в ее характере нет нервозности и склонности к ностальгии), можно поставить в один ряд с персонажами, типичными для его ранних фильмов (Падший ангел, Fallen Angel; Ангельское личико, Angel Face и т. д.): их героини растрачивают силы, приближая собственную смерть, и, при всей своей пылкости, несут в себе мощный отрицательный заряд. Но тем, как автор размещает своего персонажа в открытом, просторном, динамичном пространстве, фильм предвещает «позитивные» фрески его позднего периода (Исход, Exodus; Кардинал, The Cardinal и т. д.). На эстетическом уровне это срединное положение рождает в фильме внутреннее напряжение, а в героине - столь удачно показанные мучительные колебания между жизнелюбием и сексуальностью - и мрачным фатализмом. Эти колебания сильно изменили внешность и суть персонажа Кармен.
       Преминджер, вторично (после фильма Луна голубая, The Moon Is Blue, 1953) выступая независимым продюсером, с большим трудом добился реализации своего проекта. Студия «United Artists» отказалась участвовать в создании чернокожей Кармен, и только Зэнак - заклятый враг Преминджера со времен Лоры, Laura, ставший затем его главным заступником, - помог ему пристроить проект в студии «Fox». Однако бюджет, предоставленный Преминджеру, был крайне скуден (особенно для мюзикла), к тому же съемки пришлось уложить в феноменально короткий срок - 4 недели. В отличие от других фильмов с полностью чернокожим составом актеров (Зеленые пастбища, Green Pastures, Уильям Кейли, 1936; Хижина в небе, Cabin in the Sky, Миннелли, 1943), Кармен Джоунз пользовалась большим успехом, о чем Преминджер написал в автобиографии: «Кармен Джоунз - один из редких моих фильмов, которому удалось примирить критику с публикой». Только лишь абсурдный запрет со стороны наследников Бизе помешал французской публике познакомиться с фильмом в нормальном прокате вплоть до 1981 г.; но, естественно, киноманы пересекли границы, чтобы посмотреть его.
       N.В. 1-е титры, сделанные для Преминджера Солом Бассом. За долгий период сотрудничества с режиссером (1954–1965), который 1-м попросил его сделать титры для фильма, Сол Басс стал в графическом плане чем-то вроде «двойника» Преминджера. Художников объединяли поиски сильной и точной идеи, красоты, простоты в сочетании с эффективностью. В песенных номерах Дороти Дэндридж и Гарри Белафонте дублированы (причем великолепно) голосами Мэрилин Хорн и Леверна Хатчерсона. Пёрл Бейли сама поет свою партитуру. Помимо Дороти Дэндридж и Империо Аргентины (см. статью Кармен из Трианы, la Carmen de Triana), главными Кармен в истории кино стали Аста Нильсен (в фильме Урбана Гада Смерть в Севилье, Der Tod in Sevilla, 1913). Джералдина Фаррар (Кармен, Carmen, Де Милль, 1917), Пола Негри (Кармен, Лубич, 1918), Ракель Меллер (Кармен, Фейдер, 1926), Долорес Дель Рио (Любови Кармен, The Loves of Carmen, Уолш, 1927), Вивиан Романс (Кармен, Кристиан-Жак, 1943). Рита Хейуорт (Любови Кармен, The Loves of Carmen, Видор, 1948 - первая Кармен в цвете), Лаура Дель Соль (Кармен, Саура, 1983). Элен Делаво, Зехава Гал и Эва Саурова (в трех версиях Трагедии Кармен Питера Брука, 1983), Хулия Мигенес-Джонсон (Кармен, Рози, 1984).
       БИБЛИОГРАФИЯ: о различиях между Кармен Бизе, Хаммерстайна и Преминджера - см. Olivier Euquem, «А propos de quelques Carmen» в журнале «L'Avant-Scene», № 211–212 (1978). Список всех Кармен, чей образ впрямую или отдаленно основан на опере Бизе, см. в журнале «L'Avant-Scene». № 360 (1987). О злоключениях фильма во Франции см. журнал «Presence du cinema», № 11 (1962), книги Роже Фердинанда «Дело Кармен Джоунз» (Roger Ferdinand. L'affaire Carmen Jones) и Мишеля Мурле «От Веласкеса до Пикассо или от Бизе до Преминджера» (Michel Mourlet. De Velasquez a Picasso ou de Bizet a Preminger).

    Авторская энциклопедия фильмов Жака Лурселля > Carmen Jones

  • 110 The Lodger

    1. (1926)
       1926 - Великобритания (74 мин)
         Произв. Gainsborough Pictures (Майкл Бэлкон, Карлайл Блэкуэлл)
         Реж. АЛФРЕД ХИЧКОК
         Сцен. Элиот Стэннард по одноименному роману миссис Беллок Лоундз (титры Айвор Монтегю)
         Опер. барон Гаэтано ди Вентимилья
         В ролях Айвор Новелло (Жилец), Мэри Олт (хозяйка квартиры миссис Бантинг), Артур Чесни (ее муж), Джун (их дочь Дэйзи), Малколм Кин (полицейский Джо Беттс).
       ± Подзаголовок фильма: Рассказ о лондонском тумане. В лондонском районе орудует неуловимый убийца, среди ночи нападающий на юных блондинок и оставляющий на трупах треугольный листок бумаги с подписью «Мститель». В скромном домике в этом районе появляется новый жилец, на вид очень нервный и беспокойный; из багажа при нем только маленький кожаный саквояж. У хозяйки квартиры есть дочь Дэйзи, юная манекенщица, за которой настойчиво ухаживает полицейский, расследующий убийства. Новый жилец ведет себя странно: просит убрать из его комнаты картины, изображающие молодых светловолосых женщин, часто уходит по ночам, пряча лицо под длинным шарфом. Судя по всему, он нравится Дэйзи, и полицейский ревнует. Хозяйка обеспокоена ночными прогулками жильца и делится своими подозрениями с мужем. Вскоре муж начинает их разделять, тем более что очередное убийство происходит недалеко от их дома.
       Муж хозяйки заставляет жильца забрать шикарное платье, которое тот подарил Дэйзи: она уже успела выйти в нем на показе мод. Жилец и Дэйзи гуляют ночью и садятся на скамейку. Вне себя от ревности, полицейский разлучает их: Дэйзи говорит, что не хочет больше его видеть. Полицейский проводит обыск в комнате жильца и находит в его саквояже револьвер, карту с помеченными местами убийств и портрет 1-й жертвы. Жилец утверждает, что это его сестра. Их мать, умирая, просила отомстить за нее. Несмотря на эти слова, полицейский арестовывает жильца и надевает на него наручники. Но жильцу удается сбежать. Дэйзи находит его на месте назначенного свидания, под уличным фонарем. Они идут в кафе, но жилец вынужден прятать руки под плащом, и это привлекает внимание других посетителей. Герои бегут, преследуемые толпой.
       Полицейский узнает, что настоящий убийца только что пойман. Но толпа уже приковала жильца наручниками к уличной решетке и вот-вот с ним расправится. Полицейскому удается отцепить его и спасти. Выйдя из больницы, жилец делает предложение Дэйзи и приглашает ее, а также будущих тестя и тещу в свое шикарное поместье.
        1-й значительный фильм Хичкока. Помимо виртуозности, богатства различных эффектов и заметного влияния немецких экспрессионистов (напр., сцена, когда мать Дэйзи обыскивает комнату жильца, где на стенах отражаются уличные огни, сильно напоминает один из 1-х планов Улицы, Die Strasse), Жилец содержит множество мотивов, которые часто будут встречаться в более поздних фильмах Хичкока. Это мотивы драматургические, нравственные (ложно обвиненный человек и его путь, показанные с христианской точки зрения - см. Подозрение, Suspicion и в особенности Не тот человек, The Wrong Man) и даже визуальные: напр., лестница, источник головокружения и страха, вокруг которой строится часть действия и ряд очень красивых кадров. (По своей конструкции, построенной вокруг центральной лестницы, дом в Жильце очень близок дому в Психопате, Psycho. Вертикальный план, где по руке героя на перилах мы понимаем, что он спускается по лестнице, пробуждает в памяти знаменитый кадр из Головокружения, Vertigo).
       Хичкок часто сожалел, что звездный статус Айвора Новелло вынудил его завершить фильм счастливой развязкой: жилец оказывается невиновен. Однако такая развязка нисколько не искажает смысл фильма, напротив, значительно обогащает его. Хотя Хичкок, в сущности, не разделяет концепции Жида «Не суди», он часто нашептывает зрителю: «Не суди второпях», и этот призыв слышен во многих его сюжетах. В этом фильме родители Дэйзи быстро приходят к выводу о виновности жильца лишь потому, что он для них - чужак, а его манеры, поведение и происхождение кажутся им подозрительными. А полицейский совершенно ослеплен ревностью и гневом. Виновность других людей, прежде всего, кроется в нас самих, таится в наших комплексах и предрассудках. С другой стороны, хотя жилец в финале оказывается невиновен, его нравственный облик неоднозначен: разве он не собирался убить Мстителя? Но надо признать, что подобная двусмысленность не свойственна природе Хичкока: каждый раз, по возможности, Хичкок будет избавлять от нее свои фильмы.
    2. (1944)
       1944 - США (84 мин)
         Произв. Fox (Роберт Басслер)
         Реж. ДЖОН БРАМ
         Сцен. Барре Линдон по одноименному роману Мари Беллок Лоундз
         Опер. Люсьен Бэллэрд
         Муз. Гуго Фридхофер
         В ролях Лэрд Кригар (Жилец), Мёрл Оберон (Китти), Джордж Сандерз (Джон Уорвик), сэр Седрик Хардуик (Роберт Бёртон), Сара Оллгуд (Эллен Бёртон), Обри Мэзер (Сазерленд), Хелена Пикард (Энн Роули).
       В ночь, когда Джек-Потрошитель совершает 4-е убийство в лондонском квартале Уайтчепл, некий человек снимает комнату по объявлению, данному пожилой супружеской парой Робертом и Эллен Бёртонами. Вместе с комнатой незнакомец снимает и мансарду. Он называется фамилией Слейд и добавляет, что работает патологоанатомом, а потому его график весьма необычен. Слейд восхищен спокойствием, царящим в доме Бёртонов: «Это место - словно надежное убежище», - говорит он. Принеся жильцу завтрак, миссис Бёртон обнаруживает, что Слейд развернул лицом к стене все портреты актрис в комнате. Племянница Бёртонов Китти - артистка мюзик-холла в «Королевском театре Пиккадилли». В день премьеры она пускает в свою гримерку бывшую актрису-неудачницу Энн Роули, выполняя ее настойчивую просьбу. Китти даже дает ей денег: Энн уходит счастливая, но в тот же вечер становится 5-й жертвой Джека-Потрошителя. Слейд часто уходит и возвращается по ночам, чем навлекает подозрения миссис Бёртон. Слейда знакомят с женихом Китти - инспектором полиции Джоном Уорвиком, которому поручено расследование убийств, совершенных Потрошителем. Подозрения миссис Бёртон крепнут, когда она узнает, что Слейд сжег свой кожаный саквояж - примету, указанную во всех газетах. Но мистер Бёртон настроен скептически: по его словам, Слейд сделал это, чтобы не попасть под следствие. Он и сам припрятал свой саквояж.
       Пока миссис Бёртон угощает Слейда чаем, тот рассказывает ей о своем брате - гениальном художнике, который, по его словам, не должен был умирать. Джек-Потрошитель убивает новую жертву: на этот раз он прячется в ее комнате. Полиция оцепляет квартал, но ей не удается поймать преступника. В эту же ночь Китти видит, как Слейд сжигает свое пальто: он объясняет это тем, что испачкал его ядовитыми веществами в лаборатории. Китти верит в его искренность и защищает его от подозрений тетушки. Оставшись наедине с Китти, Слейд подозрительно возбужденным голосом объясняет, что женская красота может быть губительной. Именно она сгубила его брата. Теперь и мистер Бёртон разделяет подозрения супруги; вдвоем они делятся ими с Уорвиком, и тот пытается проверить их, взяв у жильца отпечатки пальцев. Роясь в вещах Слейда, Уорвик находит портрет его брата и вспоминает, что видел точно такой же портрет в комнате 1-й жертвы. Тем временем в «Королевском театре Пиккадилли» Китти исполняет французский танец с группой девушек-танцовщиц. Слейд пришел в театр по приглашению Китти: он и зачарован, и возмущен этим зрелищем. После номера Китти обнаруживает его в своей гримерке. Слейд хватает ее за горло: «Я люблю вас и ненавижу то зло, что живет в вас», - восклицает он. Она кричит. Прибегает Уорвик и стреляет в Слейда. Слейд ранен. Он прячется в темных закоулках и снова пытается убить Китти. Зажатый в угол полицейскими, он бросается из окна в Темзу. Его тело так и не будет найдено.
        Самая знаменитая версия похождений Джека-Потрошителя по мотивам романа Мари Беллок Лоундз, при этом - гораздо менее авторская и технически совершенная, нежели версия Хичкока (Жилец, The Lodger), а по оригинальности значительно уступающая версии Уго Фрегонезе (Человек на чердаке, Man in the Attic). Джон Брам, немецкий кинорежиссер, уроженец Гамбурга, специалист по нагнетанию тревожной атмосферы, слегка тяготеющий к барокко, использует свой скромный талант, рисуя образ викторианского Лондона - образ то устаревший и перегруженный (где чувствуется отдаленное влияние экспрессионизма), то тревожный и до странности рафинированный (и тогда в нем ощущается влияние фильма Турнёра Кошачье племя, Cat People, см. сцену, когда миссис Бёртон дает воды жильцу, чтобы раздобыть отпечатки его пальцев). Джона Брама в 1-ю очередь интересует свет, и его он использует с гораздо большей тонкостью, нежели перипетии сценария или характеры персонажей. 2-е и главное достоинство фильма - участие Лэрда Кригара, одного из самых трогательных и талантливых «тяжеловесов» в голливудском кинематографе. Очевидно, что в этой картине он без труда выделяется на фоне прочих, донельзя банальных персонажей, среди которых фигурирует и Джордж Сандерз, где-то вдруг растерявший все свои способности. Лэрд Кригар воплощает довольно смутный образ Джека-Потрошителя; его переход от желания отомстить за брата к одержимому пуританству и женоненавистничеству так и остается без объяснений. Хотя творческий путь Лэрда Кригара оказался слишком коротким (он родился в 1916 г., а умер в 1944 г., а впервые снялся в кино в 1940 г.), он успел сыграть в 3 крайне удачных фильмах: Я просыпаюсь с криком, I Wake Up Screaming, 1941 - талантливом нуаре Брюса Хамберстоуна, где он играет детектива-убийцу; в Жильце и в фильме Площадь Похмелья, Hangover Square, 1945, вышедшем на экраны уже после его смерти. Площадь Похмелья также поставлена Джоном Ирамом по сценарию Барре Линдона, и действие его снова происходит в Лондоне; герой Лэрда Кригара, сумасшедший композитор, при резких звуках теряет память и чувствует неудержимый позыв убивать. Финальная сцена, где он исполняет концерт в охваченной пламенем зале, стала знаменитой и вошла в анналы «готической мелодрамы».
       N.В. Другие версии романа Мари Беллок Лоундз сняты Хичкоком (Великобритания, 1926), Морисом Элви (Великобритания, 1932) (в этом фильме Айвор Новелло вновь играет ту же роль, что и у Хичкока) и Уго Фрегонезе (Человек на чердаке). О Джеке-Потрошителе см. также фильм Роберта Бейкера и Монти Бермана Джек-Потрошитель (Jack the Ripper, Великобритания, 1960 - достаточно блеклое раскрытие темы, поданное с хирургической точки зрения) и довольно оригинальную вариацию Николаса Майера Во всякое время, Time After Time, США 1979, где наш герой (его роль играет Дэйвид Уорнер) использует машину времени Гёрберта Уэллса, чтобы попасть в современную Америку. Напомним, что, согласно последним исследованиям, знаменитым убийцей оказался не английский аристократ, принадлежащий к королевской фамилии, как долгое время считалось, а польский еврей, умерший в 23 года в приюте для душевнобольных (***).
       ***
       --- Имеется в виду человек, известный под именем Дэйвид Коэн - центральный персонаж книги-расследования Мартина Фидо «Преступления, обнаружение и смерть Джека-Потрошителя» (Martin Fido, The Crimes, Detection and Death of Jack the Ripper, 1987). Это лишь одна из версий. В настоящее время общее число подозреваемых превышает два десятка; среди них - Льюис Кэрролл и принц Алберт Виктор, внук королевы Виктории.

    Авторская энциклопедия фильмов Жака Лурселля > The Lodger

  • 111 Sorry, Wrong Number

     Извините, вы ошиблись номером
       1948 – США (89 мин)
         Произв. PAR (Хэл Б. Уоллис и Анатоль Литвак)
         Реж. AHAТОЛЬ ЛИТВАК
         Сцен. Люсиль Флетчер по ее же одноименной радиопьесе
         Опер. Сол Полито
         Муз. Джин Мерритт, Уолтер Оберст
         В ролях Барбара Стэнуик (Леона Стивенсон), Бёрт Ланкастер (Генри Стивенсон), Энн Ричардз (Сэлли Лорд Додж), Уэнделл Кори (доктор Александер), Херолд Вермилье (Уолдо Эванз), Эд Бегли (Джеймс Коттерелл), Лайф Эриксон (Фред Лорд).
       → Миссис Леона Стивенсон, богатая дочь хозяина сети аптек и магазинов, тяжело больна и прикована к постели. Сидя в одиночестве в большой нью-йоркской квартире, она безуспешно пытается дозвониться до своего мужа. Она случайно вторгается в телефонный разговор 2 мужчин, планирующих убить некую женщину в 23.15. Она пытается сообщить об этом в полицию, но ее не принимают всерьез. После этого она не отходит от телефона и постепенно узнает страшные подробности. Она и есть та самая жертва готовящегося убийства. Ее муж Генри, мелкий служащий, женившийся на ней под влиянием ее воли, обаяния и богатства, замешан в темной афере с продажей лекарств. Лекарства были украдены из заведения отца Леоны, чьим главным помощником Генри стал после свадьбы. Задолжав сообщнику, которого он пытался предать, Генри видит лишь один выход: убить жену, получить страховку и расплатиться с долгами. Леона наконец узнает от врача свой точный диагноз: ее постоянные боли в сердце вызваны нервами, а не органическими причинами. Изменив решение, муж Леоны, бегущий от полиции, звонит жене за несколько мгновений до рокового часа. Он говорит, чтобы она бежала к окну и звала на помощь. Слишком поздно: убийца уже проник в квартиру и нападает на Леону. Генри снова перезванивает. Трубку снимает убийца и сухо отвечает: «Извините, вы ошиблись номером».
         Этот фильм – расширенная экранизация радиопьесы, состоящей в основном из единственного монолога. Извините, вы ошиблись номером снят Анатолем Литваком – скромным, но зачастую блистательным мастером; этот фильм – побочное порождение нуара. Ряд характерных тенденций этого жанра (пессимизм, сложность композиции, слабоволие некоторых персонажей) приобретают в нем очень зрелищное развитие, но вместе с тем близкое к упадку. Фильм имел в свое время огромный коммерческий успех, что заставляет задуматься об эволюции массовых вкусов. Здесь история, и без того поначалу довольно запутанная (но при этом довольно прочная), изложена таким способом, который значительно увеличивает ее сложность: 7 флэшбеков, из которых 2 рождаются внутри других флэшбеков. В то время публика почти беспричинно сходила с ума по таким сложным конструкциям. Зритель был готов погрузиться вслед за рассказчиком в самые темные уголки повествования – главное, чтобы при этом было интересно. В наши дни можно допустить, что зритель сделает над собой усилие и попытается понять такой сюжет, но очевидно, что удовольствия он от этого не получит. Вкусы публики тяготеют к простым, примитивным историям, где главные мысли, если они имеются, вбиваются в головы зрителей, как гвозди молотком; к историям, в манере изложения которых постоянно учитывается рассеянное внимание зрителей: они могут ходить туда-сюда, выходить из зала и возвращаться без риска что-либо упустить из развития главной сюжетной линии. Сложность конструкции в этом фильме служила тем же целям, что и крайне живой ритм. Зритель хотел быть в буквальном смысле унесен потоком повествования. Сейчас же ему больше нравятся фильмы, по которым можно неторопливо пройтись степенным прогулочным шагом.
       Еще одна мысль, на которую наводит успех фильма, связана с его развязкой. Развязка Извините, вы ошиблись номером так мрачна, что от нее по спине бегут мурашки. В то время бесконечное множество фильмов в других жанрах завершалось хэппи-эндом. Очень часто многие заблуждаются насчет значения хэппи-энда и концовок голливудских фильмов в целом. В любом жанре концовки подчинялись законам судьбы, мрачным или светлым; они управляли движением фильма до самых последних секунд. Какой бы ни была развязка, у зрителя должно было сложиться впечатление, будто она не могла быть другой. И публика любила, чтобы определенная логика придавала каждому мгновению фильма (и в особенности последним минутам) абсолютную и неоспоримую полноту. Счастливым или несчастливым финалом проверялась обоснованность точки зрения рассказчика и его отправных установок. Это не отменяло двусмысленности в актерской игре, нравственных споров и даже исключений из общего правила. Но общее правило было, и в 9 случаях из 10 оно соблюдалось. Нельзя сказать, что зритель больше любил счастливые финалы, чем несчастливые; или что он больше любил счастливые финалы, чем любит их сейчас, – доказательством тому служит на редкость страшная и безысходная концовка этого фильма. Но он хотел, чтобы светлый фильм оставался светлым до конца, а мрачный – до конца оставался мрачным. Сегодня же публика хочет видеть в финалах как можно меньше ярких красок и больше неуверенности.

    Авторская энциклопедия фильмов Жака Лурселля > Sorry, Wrong Number

  • 112 crowd

    [kraud]
    crowd разг. компания, группа людей crowd множество, масса (чего-л.) crowd амер. оказывать давление; торопить, приставать (с чем-л.) crowd собираться толпой, толпиться; тесниться; набиваться битком crowd театр. статисты; he might pass in the crowd он не хуже других crowd теснить, вытеснять crowd толкотня; давка crowd толпа crowd толпиться to crowd (on) sail мор. спешить, идти на всех парусах; crowd into протискиваться, втискиваться; crowd out вытеснять; crowd through = crowd into to crowd (on) sail мор. спешить, идти на всех парусах; crowd into протискиваться, втискиваться; crowd out вытеснять; crowd through = crowd into to crowd (on) sail мор. спешить, идти на всех парусах; crowd into протискиваться, втискиваться; crowd out вытеснять; crowd through = crowd into to crowd (on) sail мор. спешить, идти на всех парусах; crowd into протискиваться, втискиваться; crowd out вытеснять; crowd through = crowd into sail: it's time to hoist crowd пора уходить (или идти); to crowd sail форсировать паруса; ставить все наличные паруса to crowd (on) sail мор. спешить, идти на всех парусах; crowd into протискиваться, втискиваться; crowd out вытеснять; crowd through = crowd into crowd театр. статисты; he might pass in the crowd он не хуже других

    English-Russian short dictionary > crowd

  • 113 программируемый логический контроллер

    1. speicherprogrammierbare Steuerung, f

     

    программируемый логический контроллер
    ПЛК
    -
    [Интент]

    контроллер
    Управляющее устройство, осуществляющее автоматическое управление посредством программной реализации алгоритмов управления.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    EN

    storage-programmable logic controller
    computer-aided control equipment or system whose logic sequence can be varied via a directly or remote-control connected programming device, for example a control panel, a host computer or a portable terminal
    [IEV ref 351-32-34]

    FR

    automate programmable à mémoire
    équipement ou système de commande assisté par ordinateur dont la séquence logique peut être modifiée directement ou par l'intermédiaire d'un dispositif de programmation relié à une télécommande, par exemple un panneau de commande, un ordinateur hôte ou un terminal de données portatif
    [IEV ref 351-32-34]

      См. также:
    - архитектура контроллера;
    - производительность контроллера;
    - время реакции контроллера;
    КЛАССИФИКАЦИЯ

      Основным показателем ПЛК является количество каналов ввода-вывода. По этому признаку ПЛК делятся на следующие группы: По расположению модулей ввода-вывода ПЛК бывают:
    • моноблочными - в которых устройство ввода-вывода не может быть удалено из контроллера или заменено на другое. Конструктивно контроллер представляет собой единое целое с устройствами ввода-вывода (например, одноплатный контроллер). Моноблочный контроллер может иметь, например, 16 каналов дискретного ввода и 8 каналов релейного вывода;
    • модульные - состоящие из общей корзины (шасси), в которой располагаются модуль центрального процессора и сменные модули ввода-вывода. Состав модулей выбирается пользователем в зависимости от решаемой задачи. Типовое количество слотов для сменных модулей - от 8 до 32;
    • распределенные (с удаленными модулями ввода-вывода) - в которых модули ввода-вывода выполнены в отдельных корпусах, соединяются с модулем контроллера по сети (обычно на основе интерфейса RS-485) и могут быть расположены на расстоянии до 1,2 км от процессорного модуля.
    Часто перечисленные конструктивные типы контроллеров комбинируются, например, моноблочный контроллер может иметь несколько съемных плат; моноблочный и модульный контроллеры могут быть дополнены удаленными модулями ввода-вывода, чтобы увеличить общее количество каналов.

    Многие контроллеры имеют набор сменных процессорных плат разной производительности. Это позволяет расширить круг потенциальных пользователей системы без изменения ее конструктива.

    По конструктивному исполнению и способу крепления контроллеры делятся на:
    По области применения контроллеры делятся на следующие типы:
    • универсальные общепромышленные;
    • для управления роботами;
    • для управления позиционированием и перемещением;
    • коммуникационные;
    • ПИД-контроллеры;
    • специализированные.

    По способу программирования контроллеры бывают:
    • программируемые с лицевой панели контроллера;
    • программируемые переносным программатором;
    • программируемые с помощью дисплея, мыши и клавиатуры;
    • программируемые с помощью персонального компьютера.

    Контроллеры могут программироваться на следующих языках:
    • на классических алгоритмических языках (C, С#, Visual Basic);
    • на языках МЭК 61131-3.

    Контроллеры могут содержать в своем составе модули ввода-вывода или не содержать их. Примерами контроллеров без модулей ввода-вывода являются коммуникационные контроллеры, которые выполняют функцию межсетевого шлюза, или контроллеры, получающие данные от контроллеров нижнего уровня иерархии АСУ ТП.   Контроллеры для систем автоматизации

    Слово "контроллер" произошло от английского "control" (управление), а не от русского "контроль" (учет, проверка). Контроллером в системах автоматизации называют устройство, выполняющее управление физическими процессами по записанному в него алгоритму, с использованием информации, получаемой от датчиков и выводимой в исполнительные устройства.

    Первые контроллеры появились на рубеже 60-х и 70-х годов в автомобильной промышленности, где использовались для автоматизации сборочных линий. В то время компьютеры стоили чрезвычайно дорого, поэтому контроллеры строились на жесткой логике (программировались аппаратно), что было гораздо дешевле. Однако перенастройка с одной технологической линии на другую требовала фактически изготовления нового контроллера. Поэтому появились контроллеры, алгоритм работы которых мог быть изменен несколько проще - с помощью схемы соединений реле. Такие контроллеры получили название программируемых логических контроллеров (ПЛК), и этот термин сохранился до настоящего времени. Везде ниже термины "контроллер" и "ПЛК" мы будем употреблять как синонимы.

    Немного позже появились ПЛК, которые можно было программировать на машинно-ориентированном языке, что было проще конструктивно, но требовало участия специально обученного программиста для внесения даже незначительных изменений в алгоритм управления. С этого момента началась борьба за упрощение процесса программирования ПЛК, которая привела сначала к созданию языков высокого уровня, затем - специализированных языков визуального программирования, похожих на язык релейной логики. В настоящее время этот процесс завершился созданием международного стандарта IEC (МЭК) 1131-3, который позже был переименован в МЭК 61131-3. Стандарт МЭК 61131-3 поддерживает пять языков технологического программирования, что исключает необходимость привлечения профессиональных программистов при построении систем с контроллерами, оставляя для них решение нестандартных задач.

    В связи с тем, что способ программирования является наиболее существенным классифицирующим признаком контроллера, понятие "ПЛК" все реже используется для обозначения управляющих контроллеров, которые не поддерживают технологические языки программирования.   Жесткие ограничения на стоимость и огромное разнообразие целей автоматизации привели к невозможности создания универсального ПЛК, как это случилось с офисными компьютерами. Область автоматизации выдвигает множество задач, в соответствии с которыми развивается и рынок, содержащий сотни непохожих друг на друга контроллеров, различающихся десятками параметров.

    Выбор оптимального для конкретной задачи контроллера основывается обычно на соответствии функциональных характеристик контроллера решаемой задаче при условии минимальной его стоимости. Учитываются также другие важные характеристики (температурный диапазон, надежность, бренд изготовителя, наличие разрешений Ростехнадзора, сертификатов и т. п.).

    Несмотря на огромное разнообразие контроллеров, в их развитии заметны следующие общие тенденции:
    • уменьшение габаритов;
    • расширение функциональных возможностей;
    • увеличение количества поддерживаемых интерфейсов и сетей;
    • использование идеологии "открытых систем";
    • использование языков программирования стандарта МЭК 61131-3;
    • снижение цены.
    Еще одной тенденцией является появление в контроллерах признаков компьютера (наличие мыши, клавиатуры, монитора, ОС Windows, возможности подключения жесткого диска), а в компьютерах - признаков контроллера (расширенный температурный диапазон, электронный диск, защита от пыли и влаги, крепление на DIN-рейку, наличие сторожевого таймера, увеличенное количество коммуникационных портов, использование ОС жесткого реального времени, функции самотестирования и диагностики, контроль целостности прикладной программы). Появились компьютеры в конструктивах для жестких условий эксплуатации. Аппаратные различия между компьютером и контроллером постепенно исчезают. Основными отличительными признаками контроллера остаются его назначение и наличие технологического языка программирования.

    [ http://bookasutp.ru/Chapter6_1.aspx]  
    Программируемый логический контроллер (ПЛК, PLC) – микропроцессорное устройство, предназначенное для управления технологическим процессом и другими сложными технологическими объектами.
    Принцип работы контроллера состоит в выполнение следующего цикла операций:

    1.    Сбор сигналов с датчиков;
    2.    Обработка сигналов согласно прикладному алгоритму управления;
    3.    Выдача управляющих воздействий на исполнительные устройства.

    В нормальном режиме работы контроллер непрерывно выполняет этот цикл с частотой от 50 раз в секунду. Время, затрачиваемое контроллером на выполнение полного цикла, часто называют временем (или периодом) сканирования; в большинстве современных ПЛК сканирование может настраиваться пользователем в диапазоне от 20 до 30000 миллисекунд. Для быстрых технологических процессов, где критична скорость реакции системы и требуется оперативное регулирование, время сканирования может составлять 20 мс, однако для большинства непрерывных процессов период 100 мс считается вполне приемлемым.

    Аппаратно контроллеры имеют модульную архитектуру и могут состоять из следующих компонентов:

    1.    Базовая панель ( Baseplate). Она служит для размещения на ней других модулей системы, устанавливаемых в специально отведенные позиции (слоты). Внутри базовой панели проходят две шины: одна - для подачи питания на электронные модули, другая – для пересылки данных и информационного обмена между модулями.

    2.    Модуль центрального вычислительного устройства ( СPU). Это мозг системы. Собственно в нем и происходит математическая обработка данных. Для связи с другими устройствами CPU часто оснащается сетевым интерфейсом, поддерживающим тот или иной коммуникационный стандарт.

    3.    Дополнительные коммуникационные модули. Необходимы для добавления сетевых интерфейсов, неподдерживаемых напрямую самим CPU. Коммуникационные модули существенно расширяют возможности ПЛК по сетевому взаимодействию. C их помощью к контроллеру подключают узлы распределенного ввода/вывода, интеллектуальные полевые приборы и станции операторского уровня.

    4.    Блок питания. Нужен для запитки системы от 220 V. Однако многие ПЛК не имеют стандартного блока питания и запитываются от внешнего.  
    4906
    Рис.1. Контроллер РСУ с коммуникациями Profibus и Ethernet.
     
    Иногда на базовую панель, помимо указанных выше, допускается устанавливать модули ввода/вывода полевых сигналов, которые образуют так называемый локальный ввод/вывод. Однако для большинства РСУ (DCS) характерно использование именно распределенного (удаленного) ввода/вывода.

    Отличительной особенностью контроллеров, применяемых в DCS, является возможность их резервирования. Резервирование нужно для повышения отказоустойчивости системы и заключается, как правило, в дублировании аппаратных модулей системы.
     
    4907
    Рис. 2. Резервированный контроллер с коммуникациями Profibus и Ethernet.
     
    Резервируемые модули работают параллельно и выполняют одни и те же функции. При этом один модуль находится в активном состоянии, а другой, являясь резервом, – в режиме “standby”. В случае отказа активного модуля, система автоматически переключается на резерв (это называется “горячий резерв”).

    Обратите внимание, контроллеры связаны шиной синхронизации, по которой они мониторят состояние друг друга. Это решение позволяет разнести резервированные модули на значительное расстояние друг от друга (например, расположить их в разных шкафах или даже аппаратных).

    Допустим, в данный момент активен левый контроллер, правый – находится в резерве. При этом, даже находясь в резерве, правый контроллер располагает всеми процессными данными и выполняет те же самые математические операции, что и левый. Контроллеры синхронизированы. Предположим, случается отказ левого контроллера, а именно модуля CPU. Управление автоматически передается резервному контроллеру, и теперь он становится главным. Здесь очень большое значение имеют время, которое система тратит на переключение на резерв (обычно меньше 0.5 с) и отсутствие возмущений (удара). Теперь система работает на резерве. Как только инженер заменит отказавший модуль CPU на исправный, система автоматически передаст ему управление и возвратится в исходное состояние.

    На рис. 3 изображен резервированный контроллер S7-400H производства Siemens. Данный контроллер входит в состав РСУ Simatic PCS7.
     
     
    4908
    Рис. 3. Резервированный контроллер S7-400H. Несколько другое техническое решение показано на примере резервированного контроллера FCP270 производства Foxboro (рис. 4). Данный контроллер входит в состав системы управления Foxboro IA Series.  
    4909
    Рис. 4. Резервированный контроллер FCP270.
    На базовой панели инсталлировано два процессорных модуля, работающих как резервированная пара, и коммуникационный модуль для сопряжения с оптическими сетями стандарта Ethernet. Взаимодействие между модулями происходит по внутренней шине (тоже резервированной), спрятанной непосредственно в базовую панель (ее не видно на рисунке).

    На рисунке ниже показан контроллер AC800M производства ABB (часть РСУ Extended Automation System 800xA).  
    4910
    Рис. 5. Контроллер AC800M.
     
    Это не резервированный вариант. Контроллер состоит из двух коммуникационных модулей, одного СPU и одного локального модуля ввода/вывода. Кроме этого, к контроллеру можно подключить до 64 внешних модулей ввода/вывода.

    При построении РСУ важно выбрать контроллер, удовлетворяющий всем техническим условиям и требованиям конкретного производства. Подбирая оптимальную конфигурацию, инженеры оперируют определенными техническими характеристиками промышленных контроллеров. Наиболее значимые перечислены ниже:

    1.    Возможность полного резервирования. Для задач, где отказоустойчивость критична (химия, нефтехимия, металлургия и т.д.), применение резервированных конфигураций вполне оправдано, тогда как для других менее ответственных производств резервирование зачастую оказывается избыточным решением.

    2.    Количество и тип поддерживаемых коммуникационных интерфейсов. Это определяет гибкость и масштабируемость системы управления в целом. Современные контроллеры способны поддерживать до 10 стандартов передачи данных одновременно, что во многом определяет их универсальность.

    3.    Быстродействие. Измеряется, как правило, в количестве выполняемых в секунду элементарных операций (до 200 млн.). Иногда быстродействие измеряется количеством обрабатываемых за секунду функциональных блоков (что такое функциональный блок – будет рассказано в следующей статье). Быстродействие зависит от типа центрального процессора (популярные производители - Intel, AMD, Motorola, Texas Instruments и т.д.)

    4.    Объем оперативной памяти. Во время работы контроллера в его оперативную память загружены запрограммированные пользователем алгоритмы автоматизированного управления, операционная система, библиотечные модули и т.д. Очевидно, чем больше оперативной памяти, тем сложнее и объемнее алгоритмы контроллер может выполнять, тем больше простора для творчества у программиста. Варьируется от 256 килобайт до 32 мегабайт.

    5.    Надежность. Наработка на отказ до 10-12 лет.

    6. Наличие специализированных средств разработки и поддержка различных языков программирования. Очевидно, что существование специализированный среды разработки прикладных программ – это стандарт для современного контроллера АСУ ТП. Для удобства программиста реализуется поддержка сразу нескольких языков как визуального, так и текстового (процедурного) программирования (FBD, SFC, IL, LAD, ST; об этом в следующей статье).

    7.    Возможность изменения алгоритмов управления на “лету” (online changes), т.е. без остановки работы контроллера. Для большинства контроллеров, применяемых в РСУ, поддержка online changes жизненно необходима, так как позволяет тонко настраивать систему или расширять ее функционал прямо на работающем производстве.

    8.    Возможность локального ввода/вывода. Как видно из рис. 4 контроллер Foxboro FCP270 рассчитан на работу только с удаленной подсистемой ввода/вывода, подключаемой к нему по оптическим каналам. Simatic S7-400 может спокойно работать как с локальными модулями ввода/вывода (свободные слоты на базовой панели есть), так и удаленными узлами.

    9.    Вес, габаритные размеры, вид монтажа (на DIN-рейку, на монтажную панель или в стойку 19”). Важно учитывать при проектировании и сборке системных шкафов.

    10.  Условия эксплуатации (температура, влажность, механические нагрузки). Большинство промышленных контроллеров могут работать в нечеловеческих условиях от 0 до 65 °С и при влажности до 95-98%.

    [ http://kazanets.narod.ru/PLC_PART1.htm]

    Тематики

    Синонимы

    EN

    DE

    • speicherprogrammierbare Steuerung, f

    FR

    Русско-немецкий словарь нормативно-технической терминологии > программируемый логический контроллер

  • 114 automate programmable à mémoire

    1. программируемый логический контроллер

     

    программируемый логический контроллер
    ПЛК
    -
    [Интент]

    контроллер
    Управляющее устройство, осуществляющее автоматическое управление посредством программной реализации алгоритмов управления.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    EN

    storage-programmable logic controller
    computer-aided control equipment or system whose logic sequence can be varied via a directly or remote-control connected programming device, for example a control panel, a host computer or a portable terminal
    [IEV ref 351-32-34]

    FR

    automate programmable à mémoire
    équipement ou système de commande assisté par ordinateur dont la séquence logique peut être modifiée directement ou par l'intermédiaire d'un dispositif de programmation relié à une télécommande, par exemple un panneau de commande, un ordinateur hôte ou un terminal de données portatif
    [IEV ref 351-32-34]

      См. также:
    - архитектура контроллера;
    - производительность контроллера;
    - время реакции контроллера;
    КЛАССИФИКАЦИЯ

      Основным показателем ПЛК является количество каналов ввода-вывода. По этому признаку ПЛК делятся на следующие группы: По расположению модулей ввода-вывода ПЛК бывают:
    • моноблочными - в которых устройство ввода-вывода не может быть удалено из контроллера или заменено на другое. Конструктивно контроллер представляет собой единое целое с устройствами ввода-вывода (например, одноплатный контроллер). Моноблочный контроллер может иметь, например, 16 каналов дискретного ввода и 8 каналов релейного вывода;
    • модульные - состоящие из общей корзины (шасси), в которой располагаются модуль центрального процессора и сменные модули ввода-вывода. Состав модулей выбирается пользователем в зависимости от решаемой задачи. Типовое количество слотов для сменных модулей - от 8 до 32;
    • распределенные (с удаленными модулями ввода-вывода) - в которых модули ввода-вывода выполнены в отдельных корпусах, соединяются с модулем контроллера по сети (обычно на основе интерфейса RS-485) и могут быть расположены на расстоянии до 1,2 км от процессорного модуля.
    Часто перечисленные конструктивные типы контроллеров комбинируются, например, моноблочный контроллер может иметь несколько съемных плат; моноблочный и модульный контроллеры могут быть дополнены удаленными модулями ввода-вывода, чтобы увеличить общее количество каналов.

    Многие контроллеры имеют набор сменных процессорных плат разной производительности. Это позволяет расширить круг потенциальных пользователей системы без изменения ее конструктива.

    По конструктивному исполнению и способу крепления контроллеры делятся на:
    По области применения контроллеры делятся на следующие типы:
    • универсальные общепромышленные;
    • для управления роботами;
    • для управления позиционированием и перемещением;
    • коммуникационные;
    • ПИД-контроллеры;
    • специализированные.

    По способу программирования контроллеры бывают:
    • программируемые с лицевой панели контроллера;
    • программируемые переносным программатором;
    • программируемые с помощью дисплея, мыши и клавиатуры;
    • программируемые с помощью персонального компьютера.

    Контроллеры могут программироваться на следующих языках:
    • на классических алгоритмических языках (C, С#, Visual Basic);
    • на языках МЭК 61131-3.

    Контроллеры могут содержать в своем составе модули ввода-вывода или не содержать их. Примерами контроллеров без модулей ввода-вывода являются коммуникационные контроллеры, которые выполняют функцию межсетевого шлюза, или контроллеры, получающие данные от контроллеров нижнего уровня иерархии АСУ ТП.   Контроллеры для систем автоматизации

    Слово "контроллер" произошло от английского "control" (управление), а не от русского "контроль" (учет, проверка). Контроллером в системах автоматизации называют устройство, выполняющее управление физическими процессами по записанному в него алгоритму, с использованием информации, получаемой от датчиков и выводимой в исполнительные устройства.

    Первые контроллеры появились на рубеже 60-х и 70-х годов в автомобильной промышленности, где использовались для автоматизации сборочных линий. В то время компьютеры стоили чрезвычайно дорого, поэтому контроллеры строились на жесткой логике (программировались аппаратно), что было гораздо дешевле. Однако перенастройка с одной технологической линии на другую требовала фактически изготовления нового контроллера. Поэтому появились контроллеры, алгоритм работы которых мог быть изменен несколько проще - с помощью схемы соединений реле. Такие контроллеры получили название программируемых логических контроллеров (ПЛК), и этот термин сохранился до настоящего времени. Везде ниже термины "контроллер" и "ПЛК" мы будем употреблять как синонимы.

    Немного позже появились ПЛК, которые можно было программировать на машинно-ориентированном языке, что было проще конструктивно, но требовало участия специально обученного программиста для внесения даже незначительных изменений в алгоритм управления. С этого момента началась борьба за упрощение процесса программирования ПЛК, которая привела сначала к созданию языков высокого уровня, затем - специализированных языков визуального программирования, похожих на язык релейной логики. В настоящее время этот процесс завершился созданием международного стандарта IEC (МЭК) 1131-3, который позже был переименован в МЭК 61131-3. Стандарт МЭК 61131-3 поддерживает пять языков технологического программирования, что исключает необходимость привлечения профессиональных программистов при построении систем с контроллерами, оставляя для них решение нестандартных задач.

    В связи с тем, что способ программирования является наиболее существенным классифицирующим признаком контроллера, понятие "ПЛК" все реже используется для обозначения управляющих контроллеров, которые не поддерживают технологические языки программирования.   Жесткие ограничения на стоимость и огромное разнообразие целей автоматизации привели к невозможности создания универсального ПЛК, как это случилось с офисными компьютерами. Область автоматизации выдвигает множество задач, в соответствии с которыми развивается и рынок, содержащий сотни непохожих друг на друга контроллеров, различающихся десятками параметров.

    Выбор оптимального для конкретной задачи контроллера основывается обычно на соответствии функциональных характеристик контроллера решаемой задаче при условии минимальной его стоимости. Учитываются также другие важные характеристики (температурный диапазон, надежность, бренд изготовителя, наличие разрешений Ростехнадзора, сертификатов и т. п.).

    Несмотря на огромное разнообразие контроллеров, в их развитии заметны следующие общие тенденции:
    • уменьшение габаритов;
    • расширение функциональных возможностей;
    • увеличение количества поддерживаемых интерфейсов и сетей;
    • использование идеологии "открытых систем";
    • использование языков программирования стандарта МЭК 61131-3;
    • снижение цены.
    Еще одной тенденцией является появление в контроллерах признаков компьютера (наличие мыши, клавиатуры, монитора, ОС Windows, возможности подключения жесткого диска), а в компьютерах - признаков контроллера (расширенный температурный диапазон, электронный диск, защита от пыли и влаги, крепление на DIN-рейку, наличие сторожевого таймера, увеличенное количество коммуникационных портов, использование ОС жесткого реального времени, функции самотестирования и диагностики, контроль целостности прикладной программы). Появились компьютеры в конструктивах для жестких условий эксплуатации. Аппаратные различия между компьютером и контроллером постепенно исчезают. Основными отличительными признаками контроллера остаются его назначение и наличие технологического языка программирования.

    [ http://bookasutp.ru/Chapter6_1.aspx]  
    Программируемый логический контроллер (ПЛК, PLC) – микропроцессорное устройство, предназначенное для управления технологическим процессом и другими сложными технологическими объектами.
    Принцип работы контроллера состоит в выполнение следующего цикла операций:

    1.    Сбор сигналов с датчиков;
    2.    Обработка сигналов согласно прикладному алгоритму управления;
    3.    Выдача управляющих воздействий на исполнительные устройства.

    В нормальном режиме работы контроллер непрерывно выполняет этот цикл с частотой от 50 раз в секунду. Время, затрачиваемое контроллером на выполнение полного цикла, часто называют временем (или периодом) сканирования; в большинстве современных ПЛК сканирование может настраиваться пользователем в диапазоне от 20 до 30000 миллисекунд. Для быстрых технологических процессов, где критична скорость реакции системы и требуется оперативное регулирование, время сканирования может составлять 20 мс, однако для большинства непрерывных процессов период 100 мс считается вполне приемлемым.

    Аппаратно контроллеры имеют модульную архитектуру и могут состоять из следующих компонентов:

    1.    Базовая панель ( Baseplate). Она служит для размещения на ней других модулей системы, устанавливаемых в специально отведенные позиции (слоты). Внутри базовой панели проходят две шины: одна - для подачи питания на электронные модули, другая – для пересылки данных и информационного обмена между модулями.

    2.    Модуль центрального вычислительного устройства ( СPU). Это мозг системы. Собственно в нем и происходит математическая обработка данных. Для связи с другими устройствами CPU часто оснащается сетевым интерфейсом, поддерживающим тот или иной коммуникационный стандарт.

    3.    Дополнительные коммуникационные модули. Необходимы для добавления сетевых интерфейсов, неподдерживаемых напрямую самим CPU. Коммуникационные модули существенно расширяют возможности ПЛК по сетевому взаимодействию. C их помощью к контроллеру подключают узлы распределенного ввода/вывода, интеллектуальные полевые приборы и станции операторского уровня.

    4.    Блок питания. Нужен для запитки системы от 220 V. Однако многие ПЛК не имеют стандартного блока питания и запитываются от внешнего.  
    4906
    Рис.1. Контроллер РСУ с коммуникациями Profibus и Ethernet.
     
    Иногда на базовую панель, помимо указанных выше, допускается устанавливать модули ввода/вывода полевых сигналов, которые образуют так называемый локальный ввод/вывод. Однако для большинства РСУ (DCS) характерно использование именно распределенного (удаленного) ввода/вывода.

    Отличительной особенностью контроллеров, применяемых в DCS, является возможность их резервирования. Резервирование нужно для повышения отказоустойчивости системы и заключается, как правило, в дублировании аппаратных модулей системы.
     
    4907
    Рис. 2. Резервированный контроллер с коммуникациями Profibus и Ethernet.
     
    Резервируемые модули работают параллельно и выполняют одни и те же функции. При этом один модуль находится в активном состоянии, а другой, являясь резервом, – в режиме “standby”. В случае отказа активного модуля, система автоматически переключается на резерв (это называется “горячий резерв”).

    Обратите внимание, контроллеры связаны шиной синхронизации, по которой они мониторят состояние друг друга. Это решение позволяет разнести резервированные модули на значительное расстояние друг от друга (например, расположить их в разных шкафах или даже аппаратных).

    Допустим, в данный момент активен левый контроллер, правый – находится в резерве. При этом, даже находясь в резерве, правый контроллер располагает всеми процессными данными и выполняет те же самые математические операции, что и левый. Контроллеры синхронизированы. Предположим, случается отказ левого контроллера, а именно модуля CPU. Управление автоматически передается резервному контроллеру, и теперь он становится главным. Здесь очень большое значение имеют время, которое система тратит на переключение на резерв (обычно меньше 0.5 с) и отсутствие возмущений (удара). Теперь система работает на резерве. Как только инженер заменит отказавший модуль CPU на исправный, система автоматически передаст ему управление и возвратится в исходное состояние.

    На рис. 3 изображен резервированный контроллер S7-400H производства Siemens. Данный контроллер входит в состав РСУ Simatic PCS7.
     
     
    4908
    Рис. 3. Резервированный контроллер S7-400H. Несколько другое техническое решение показано на примере резервированного контроллера FCP270 производства Foxboro (рис. 4). Данный контроллер входит в состав системы управления Foxboro IA Series.  
    4909
    Рис. 4. Резервированный контроллер FCP270.
    На базовой панели инсталлировано два процессорных модуля, работающих как резервированная пара, и коммуникационный модуль для сопряжения с оптическими сетями стандарта Ethernet. Взаимодействие между модулями происходит по внутренней шине (тоже резервированной), спрятанной непосредственно в базовую панель (ее не видно на рисунке).

    На рисунке ниже показан контроллер AC800M производства ABB (часть РСУ Extended Automation System 800xA).  
    4910
    Рис. 5. Контроллер AC800M.
     
    Это не резервированный вариант. Контроллер состоит из двух коммуникационных модулей, одного СPU и одного локального модуля ввода/вывода. Кроме этого, к контроллеру можно подключить до 64 внешних модулей ввода/вывода.

    При построении РСУ важно выбрать контроллер, удовлетворяющий всем техническим условиям и требованиям конкретного производства. Подбирая оптимальную конфигурацию, инженеры оперируют определенными техническими характеристиками промышленных контроллеров. Наиболее значимые перечислены ниже:

    1.    Возможность полного резервирования. Для задач, где отказоустойчивость критична (химия, нефтехимия, металлургия и т.д.), применение резервированных конфигураций вполне оправдано, тогда как для других менее ответственных производств резервирование зачастую оказывается избыточным решением.

    2.    Количество и тип поддерживаемых коммуникационных интерфейсов. Это определяет гибкость и масштабируемость системы управления в целом. Современные контроллеры способны поддерживать до 10 стандартов передачи данных одновременно, что во многом определяет их универсальность.

    3.    Быстродействие. Измеряется, как правило, в количестве выполняемых в секунду элементарных операций (до 200 млн.). Иногда быстродействие измеряется количеством обрабатываемых за секунду функциональных блоков (что такое функциональный блок – будет рассказано в следующей статье). Быстродействие зависит от типа центрального процессора (популярные производители - Intel, AMD, Motorola, Texas Instruments и т.д.)

    4.    Объем оперативной памяти. Во время работы контроллера в его оперативную память загружены запрограммированные пользователем алгоритмы автоматизированного управления, операционная система, библиотечные модули и т.д. Очевидно, чем больше оперативной памяти, тем сложнее и объемнее алгоритмы контроллер может выполнять, тем больше простора для творчества у программиста. Варьируется от 256 килобайт до 32 мегабайт.

    5.    Надежность. Наработка на отказ до 10-12 лет.

    6. Наличие специализированных средств разработки и поддержка различных языков программирования. Очевидно, что существование специализированный среды разработки прикладных программ – это стандарт для современного контроллера АСУ ТП. Для удобства программиста реализуется поддержка сразу нескольких языков как визуального, так и текстового (процедурного) программирования (FBD, SFC, IL, LAD, ST; об этом в следующей статье).

    7.    Возможность изменения алгоритмов управления на “лету” (online changes), т.е. без остановки работы контроллера. Для большинства контроллеров, применяемых в РСУ, поддержка online changes жизненно необходима, так как позволяет тонко настраивать систему или расширять ее функционал прямо на работающем производстве.

    8.    Возможность локального ввода/вывода. Как видно из рис. 4 контроллер Foxboro FCP270 рассчитан на работу только с удаленной подсистемой ввода/вывода, подключаемой к нему по оптическим каналам. Simatic S7-400 может спокойно работать как с локальными модулями ввода/вывода (свободные слоты на базовой панели есть), так и удаленными узлами.

    9.    Вес, габаритные размеры, вид монтажа (на DIN-рейку, на монтажную панель или в стойку 19”). Важно учитывать при проектировании и сборке системных шкафов.

    10.  Условия эксплуатации (температура, влажность, механические нагрузки). Большинство промышленных контроллеров могут работать в нечеловеческих условиях от 0 до 65 °С и при влажности до 95-98%.

    [ http://kazanets.narod.ru/PLC_PART1.htm]

    Тематики

    Синонимы

    EN

    DE

    • speicherprogrammierbare Steuerung, f

    FR

    Франко-русский словарь нормативно-технической терминологии > automate programmable à mémoire

  • 115 speicherprogrammierbare Steuerung, f

    1. программируемый логический контроллер

     

    программируемый логический контроллер
    ПЛК
    -
    [Интент]

    контроллер
    Управляющее устройство, осуществляющее автоматическое управление посредством программной реализации алгоритмов управления.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    EN

    storage-programmable logic controller
    computer-aided control equipment or system whose logic sequence can be varied via a directly or remote-control connected programming device, for example a control panel, a host computer or a portable terminal
    [IEV ref 351-32-34]

    FR

    automate programmable à mémoire
    équipement ou système de commande assisté par ordinateur dont la séquence logique peut être modifiée directement ou par l'intermédiaire d'un dispositif de programmation relié à une télécommande, par exemple un panneau de commande, un ordinateur hôte ou un terminal de données portatif
    [IEV ref 351-32-34]

      См. также:
    - архитектура контроллера;
    - производительность контроллера;
    - время реакции контроллера;
    КЛАССИФИКАЦИЯ

      Основным показателем ПЛК является количество каналов ввода-вывода. По этому признаку ПЛК делятся на следующие группы: По расположению модулей ввода-вывода ПЛК бывают:
    • моноблочными - в которых устройство ввода-вывода не может быть удалено из контроллера или заменено на другое. Конструктивно контроллер представляет собой единое целое с устройствами ввода-вывода (например, одноплатный контроллер). Моноблочный контроллер может иметь, например, 16 каналов дискретного ввода и 8 каналов релейного вывода;
    • модульные - состоящие из общей корзины (шасси), в которой располагаются модуль центрального процессора и сменные модули ввода-вывода. Состав модулей выбирается пользователем в зависимости от решаемой задачи. Типовое количество слотов для сменных модулей - от 8 до 32;
    • распределенные (с удаленными модулями ввода-вывода) - в которых модули ввода-вывода выполнены в отдельных корпусах, соединяются с модулем контроллера по сети (обычно на основе интерфейса RS-485) и могут быть расположены на расстоянии до 1,2 км от процессорного модуля.
    Часто перечисленные конструктивные типы контроллеров комбинируются, например, моноблочный контроллер может иметь несколько съемных плат; моноблочный и модульный контроллеры могут быть дополнены удаленными модулями ввода-вывода, чтобы увеличить общее количество каналов.

    Многие контроллеры имеют набор сменных процессорных плат разной производительности. Это позволяет расширить круг потенциальных пользователей системы без изменения ее конструктива.

    По конструктивному исполнению и способу крепления контроллеры делятся на:
    По области применения контроллеры делятся на следующие типы:
    • универсальные общепромышленные;
    • для управления роботами;
    • для управления позиционированием и перемещением;
    • коммуникационные;
    • ПИД-контроллеры;
    • специализированные.

    По способу программирования контроллеры бывают:
    • программируемые с лицевой панели контроллера;
    • программируемые переносным программатором;
    • программируемые с помощью дисплея, мыши и клавиатуры;
    • программируемые с помощью персонального компьютера.

    Контроллеры могут программироваться на следующих языках:
    • на классических алгоритмических языках (C, С#, Visual Basic);
    • на языках МЭК 61131-3.

    Контроллеры могут содержать в своем составе модули ввода-вывода или не содержать их. Примерами контроллеров без модулей ввода-вывода являются коммуникационные контроллеры, которые выполняют функцию межсетевого шлюза, или контроллеры, получающие данные от контроллеров нижнего уровня иерархии АСУ ТП.   Контроллеры для систем автоматизации

    Слово "контроллер" произошло от английского "control" (управление), а не от русского "контроль" (учет, проверка). Контроллером в системах автоматизации называют устройство, выполняющее управление физическими процессами по записанному в него алгоритму, с использованием информации, получаемой от датчиков и выводимой в исполнительные устройства.

    Первые контроллеры появились на рубеже 60-х и 70-х годов в автомобильной промышленности, где использовались для автоматизации сборочных линий. В то время компьютеры стоили чрезвычайно дорого, поэтому контроллеры строились на жесткой логике (программировались аппаратно), что было гораздо дешевле. Однако перенастройка с одной технологической линии на другую требовала фактически изготовления нового контроллера. Поэтому появились контроллеры, алгоритм работы которых мог быть изменен несколько проще - с помощью схемы соединений реле. Такие контроллеры получили название программируемых логических контроллеров (ПЛК), и этот термин сохранился до настоящего времени. Везде ниже термины "контроллер" и "ПЛК" мы будем употреблять как синонимы.

    Немного позже появились ПЛК, которые можно было программировать на машинно-ориентированном языке, что было проще конструктивно, но требовало участия специально обученного программиста для внесения даже незначительных изменений в алгоритм управления. С этого момента началась борьба за упрощение процесса программирования ПЛК, которая привела сначала к созданию языков высокого уровня, затем - специализированных языков визуального программирования, похожих на язык релейной логики. В настоящее время этот процесс завершился созданием международного стандарта IEC (МЭК) 1131-3, который позже был переименован в МЭК 61131-3. Стандарт МЭК 61131-3 поддерживает пять языков технологического программирования, что исключает необходимость привлечения профессиональных программистов при построении систем с контроллерами, оставляя для них решение нестандартных задач.

    В связи с тем, что способ программирования является наиболее существенным классифицирующим признаком контроллера, понятие "ПЛК" все реже используется для обозначения управляющих контроллеров, которые не поддерживают технологические языки программирования.   Жесткие ограничения на стоимость и огромное разнообразие целей автоматизации привели к невозможности создания универсального ПЛК, как это случилось с офисными компьютерами. Область автоматизации выдвигает множество задач, в соответствии с которыми развивается и рынок, содержащий сотни непохожих друг на друга контроллеров, различающихся десятками параметров.

    Выбор оптимального для конкретной задачи контроллера основывается обычно на соответствии функциональных характеристик контроллера решаемой задаче при условии минимальной его стоимости. Учитываются также другие важные характеристики (температурный диапазон, надежность, бренд изготовителя, наличие разрешений Ростехнадзора, сертификатов и т. п.).

    Несмотря на огромное разнообразие контроллеров, в их развитии заметны следующие общие тенденции:
    • уменьшение габаритов;
    • расширение функциональных возможностей;
    • увеличение количества поддерживаемых интерфейсов и сетей;
    • использование идеологии "открытых систем";
    • использование языков программирования стандарта МЭК 61131-3;
    • снижение цены.
    Еще одной тенденцией является появление в контроллерах признаков компьютера (наличие мыши, клавиатуры, монитора, ОС Windows, возможности подключения жесткого диска), а в компьютерах - признаков контроллера (расширенный температурный диапазон, электронный диск, защита от пыли и влаги, крепление на DIN-рейку, наличие сторожевого таймера, увеличенное количество коммуникационных портов, использование ОС жесткого реального времени, функции самотестирования и диагностики, контроль целостности прикладной программы). Появились компьютеры в конструктивах для жестких условий эксплуатации. Аппаратные различия между компьютером и контроллером постепенно исчезают. Основными отличительными признаками контроллера остаются его назначение и наличие технологического языка программирования.

    [ http://bookasutp.ru/Chapter6_1.aspx]  
    Программируемый логический контроллер (ПЛК, PLC) – микропроцессорное устройство, предназначенное для управления технологическим процессом и другими сложными технологическими объектами.
    Принцип работы контроллера состоит в выполнение следующего цикла операций:

    1.    Сбор сигналов с датчиков;
    2.    Обработка сигналов согласно прикладному алгоритму управления;
    3.    Выдача управляющих воздействий на исполнительные устройства.

    В нормальном режиме работы контроллер непрерывно выполняет этот цикл с частотой от 50 раз в секунду. Время, затрачиваемое контроллером на выполнение полного цикла, часто называют временем (или периодом) сканирования; в большинстве современных ПЛК сканирование может настраиваться пользователем в диапазоне от 20 до 30000 миллисекунд. Для быстрых технологических процессов, где критична скорость реакции системы и требуется оперативное регулирование, время сканирования может составлять 20 мс, однако для большинства непрерывных процессов период 100 мс считается вполне приемлемым.

    Аппаратно контроллеры имеют модульную архитектуру и могут состоять из следующих компонентов:

    1.    Базовая панель ( Baseplate). Она служит для размещения на ней других модулей системы, устанавливаемых в специально отведенные позиции (слоты). Внутри базовой панели проходят две шины: одна - для подачи питания на электронные модули, другая – для пересылки данных и информационного обмена между модулями.

    2.    Модуль центрального вычислительного устройства ( СPU). Это мозг системы. Собственно в нем и происходит математическая обработка данных. Для связи с другими устройствами CPU часто оснащается сетевым интерфейсом, поддерживающим тот или иной коммуникационный стандарт.

    3.    Дополнительные коммуникационные модули. Необходимы для добавления сетевых интерфейсов, неподдерживаемых напрямую самим CPU. Коммуникационные модули существенно расширяют возможности ПЛК по сетевому взаимодействию. C их помощью к контроллеру подключают узлы распределенного ввода/вывода, интеллектуальные полевые приборы и станции операторского уровня.

    4.    Блок питания. Нужен для запитки системы от 220 V. Однако многие ПЛК не имеют стандартного блока питания и запитываются от внешнего.  
    4906
    Рис.1. Контроллер РСУ с коммуникациями Profibus и Ethernet.
     
    Иногда на базовую панель, помимо указанных выше, допускается устанавливать модули ввода/вывода полевых сигналов, которые образуют так называемый локальный ввод/вывод. Однако для большинства РСУ (DCS) характерно использование именно распределенного (удаленного) ввода/вывода.

    Отличительной особенностью контроллеров, применяемых в DCS, является возможность их резервирования. Резервирование нужно для повышения отказоустойчивости системы и заключается, как правило, в дублировании аппаратных модулей системы.
     
    4907
    Рис. 2. Резервированный контроллер с коммуникациями Profibus и Ethernet.
     
    Резервируемые модули работают параллельно и выполняют одни и те же функции. При этом один модуль находится в активном состоянии, а другой, являясь резервом, – в режиме “standby”. В случае отказа активного модуля, система автоматически переключается на резерв (это называется “горячий резерв”).

    Обратите внимание, контроллеры связаны шиной синхронизации, по которой они мониторят состояние друг друга. Это решение позволяет разнести резервированные модули на значительное расстояние друг от друга (например, расположить их в разных шкафах или даже аппаратных).

    Допустим, в данный момент активен левый контроллер, правый – находится в резерве. При этом, даже находясь в резерве, правый контроллер располагает всеми процессными данными и выполняет те же самые математические операции, что и левый. Контроллеры синхронизированы. Предположим, случается отказ левого контроллера, а именно модуля CPU. Управление автоматически передается резервному контроллеру, и теперь он становится главным. Здесь очень большое значение имеют время, которое система тратит на переключение на резерв (обычно меньше 0.5 с) и отсутствие возмущений (удара). Теперь система работает на резерве. Как только инженер заменит отказавший модуль CPU на исправный, система автоматически передаст ему управление и возвратится в исходное состояние.

    На рис. 3 изображен резервированный контроллер S7-400H производства Siemens. Данный контроллер входит в состав РСУ Simatic PCS7.
     
     
    4908
    Рис. 3. Резервированный контроллер S7-400H. Несколько другое техническое решение показано на примере резервированного контроллера FCP270 производства Foxboro (рис. 4). Данный контроллер входит в состав системы управления Foxboro IA Series.  
    4909
    Рис. 4. Резервированный контроллер FCP270.
    На базовой панели инсталлировано два процессорных модуля, работающих как резервированная пара, и коммуникационный модуль для сопряжения с оптическими сетями стандарта Ethernet. Взаимодействие между модулями происходит по внутренней шине (тоже резервированной), спрятанной непосредственно в базовую панель (ее не видно на рисунке).

    На рисунке ниже показан контроллер AC800M производства ABB (часть РСУ Extended Automation System 800xA).  
    4910
    Рис. 5. Контроллер AC800M.
     
    Это не резервированный вариант. Контроллер состоит из двух коммуникационных модулей, одного СPU и одного локального модуля ввода/вывода. Кроме этого, к контроллеру можно подключить до 64 внешних модулей ввода/вывода.

    При построении РСУ важно выбрать контроллер, удовлетворяющий всем техническим условиям и требованиям конкретного производства. Подбирая оптимальную конфигурацию, инженеры оперируют определенными техническими характеристиками промышленных контроллеров. Наиболее значимые перечислены ниже:

    1.    Возможность полного резервирования. Для задач, где отказоустойчивость критична (химия, нефтехимия, металлургия и т.д.), применение резервированных конфигураций вполне оправдано, тогда как для других менее ответственных производств резервирование зачастую оказывается избыточным решением.

    2.    Количество и тип поддерживаемых коммуникационных интерфейсов. Это определяет гибкость и масштабируемость системы управления в целом. Современные контроллеры способны поддерживать до 10 стандартов передачи данных одновременно, что во многом определяет их универсальность.

    3.    Быстродействие. Измеряется, как правило, в количестве выполняемых в секунду элементарных операций (до 200 млн.). Иногда быстродействие измеряется количеством обрабатываемых за секунду функциональных блоков (что такое функциональный блок – будет рассказано в следующей статье). Быстродействие зависит от типа центрального процессора (популярные производители - Intel, AMD, Motorola, Texas Instruments и т.д.)

    4.    Объем оперативной памяти. Во время работы контроллера в его оперативную память загружены запрограммированные пользователем алгоритмы автоматизированного управления, операционная система, библиотечные модули и т.д. Очевидно, чем больше оперативной памяти, тем сложнее и объемнее алгоритмы контроллер может выполнять, тем больше простора для творчества у программиста. Варьируется от 256 килобайт до 32 мегабайт.

    5.    Надежность. Наработка на отказ до 10-12 лет.

    6. Наличие специализированных средств разработки и поддержка различных языков программирования. Очевидно, что существование специализированный среды разработки прикладных программ – это стандарт для современного контроллера АСУ ТП. Для удобства программиста реализуется поддержка сразу нескольких языков как визуального, так и текстового (процедурного) программирования (FBD, SFC, IL, LAD, ST; об этом в следующей статье).

    7.    Возможность изменения алгоритмов управления на “лету” (online changes), т.е. без остановки работы контроллера. Для большинства контроллеров, применяемых в РСУ, поддержка online changes жизненно необходима, так как позволяет тонко настраивать систему или расширять ее функционал прямо на работающем производстве.

    8.    Возможность локального ввода/вывода. Как видно из рис. 4 контроллер Foxboro FCP270 рассчитан на работу только с удаленной подсистемой ввода/вывода, подключаемой к нему по оптическим каналам. Simatic S7-400 может спокойно работать как с локальными модулями ввода/вывода (свободные слоты на базовой панели есть), так и удаленными узлами.

    9.    Вес, габаритные размеры, вид монтажа (на DIN-рейку, на монтажную панель или в стойку 19”). Важно учитывать при проектировании и сборке системных шкафов.

    10.  Условия эксплуатации (температура, влажность, механические нагрузки). Большинство промышленных контроллеров могут работать в нечеловеческих условиях от 0 до 65 °С и при влажности до 95-98%.

    [ http://kazanets.narod.ru/PLC_PART1.htm]

    Тематики

    Синонимы

    EN

    DE

    • speicherprogrammierbare Steuerung, f

    FR

    Немецко-русский словарь нормативно-технической терминологии > speicherprogrammierbare Steuerung, f

  • 116 программируемый логический контроллер

    1. storage-programmable logic controller
    2. Programmable Logic Controller
    3. programmable controller
    4. PLC

     

    программируемый логический контроллер
    ПЛК
    -
    [Интент]

    контроллер
    Управляющее устройство, осуществляющее автоматическое управление посредством программной реализации алгоритмов управления.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    EN

    storage-programmable logic controller
    computer-aided control equipment or system whose logic sequence can be varied via a directly or remote-control connected programming device, for example a control panel, a host computer or a portable terminal
    [IEV ref 351-32-34]

    FR

    automate programmable à mémoire
    équipement ou système de commande assisté par ordinateur dont la séquence logique peut être modifiée directement ou par l'intermédiaire d'un dispositif de programmation relié à une télécommande, par exemple un panneau de commande, un ordinateur hôte ou un terminal de données portatif
    [IEV ref 351-32-34]

      См. также:
    - архитектура контроллера;
    - производительность контроллера;
    - время реакции контроллера;
    КЛАССИФИКАЦИЯ

      Основным показателем ПЛК является количество каналов ввода-вывода. По этому признаку ПЛК делятся на следующие группы: По расположению модулей ввода-вывода ПЛК бывают:
    • моноблочными - в которых устройство ввода-вывода не может быть удалено из контроллера или заменено на другое. Конструктивно контроллер представляет собой единое целое с устройствами ввода-вывода (например, одноплатный контроллер). Моноблочный контроллер может иметь, например, 16 каналов дискретного ввода и 8 каналов релейного вывода;
    • модульные - состоящие из общей корзины (шасси), в которой располагаются модуль центрального процессора и сменные модули ввода-вывода. Состав модулей выбирается пользователем в зависимости от решаемой задачи. Типовое количество слотов для сменных модулей - от 8 до 32;
    • распределенные (с удаленными модулями ввода-вывода) - в которых модули ввода-вывода выполнены в отдельных корпусах, соединяются с модулем контроллера по сети (обычно на основе интерфейса RS-485) и могут быть расположены на расстоянии до 1,2 км от процессорного модуля.
    Часто перечисленные конструктивные типы контроллеров комбинируются, например, моноблочный контроллер может иметь несколько съемных плат; моноблочный и модульный контроллеры могут быть дополнены удаленными модулями ввода-вывода, чтобы увеличить общее количество каналов.

    Многие контроллеры имеют набор сменных процессорных плат разной производительности. Это позволяет расширить круг потенциальных пользователей системы без изменения ее конструктива.

    По конструктивному исполнению и способу крепления контроллеры делятся на:
    По области применения контроллеры делятся на следующие типы:
    • универсальные общепромышленные;
    • для управления роботами;
    • для управления позиционированием и перемещением;
    • коммуникационные;
    • ПИД-контроллеры;
    • специализированные.

    По способу программирования контроллеры бывают:
    • программируемые с лицевой панели контроллера;
    • программируемые переносным программатором;
    • программируемые с помощью дисплея, мыши и клавиатуры;
    • программируемые с помощью персонального компьютера.

    Контроллеры могут программироваться на следующих языках:
    • на классических алгоритмических языках (C, С#, Visual Basic);
    • на языках МЭК 61131-3.

    Контроллеры могут содержать в своем составе модули ввода-вывода или не содержать их. Примерами контроллеров без модулей ввода-вывода являются коммуникационные контроллеры, которые выполняют функцию межсетевого шлюза, или контроллеры, получающие данные от контроллеров нижнего уровня иерархии АСУ ТП.   Контроллеры для систем автоматизации

    Слово "контроллер" произошло от английского "control" (управление), а не от русского "контроль" (учет, проверка). Контроллером в системах автоматизации называют устройство, выполняющее управление физическими процессами по записанному в него алгоритму, с использованием информации, получаемой от датчиков и выводимой в исполнительные устройства.

    Первые контроллеры появились на рубеже 60-х и 70-х годов в автомобильной промышленности, где использовались для автоматизации сборочных линий. В то время компьютеры стоили чрезвычайно дорого, поэтому контроллеры строились на жесткой логике (программировались аппаратно), что было гораздо дешевле. Однако перенастройка с одной технологической линии на другую требовала фактически изготовления нового контроллера. Поэтому появились контроллеры, алгоритм работы которых мог быть изменен несколько проще - с помощью схемы соединений реле. Такие контроллеры получили название программируемых логических контроллеров (ПЛК), и этот термин сохранился до настоящего времени. Везде ниже термины "контроллер" и "ПЛК" мы будем употреблять как синонимы.

    Немного позже появились ПЛК, которые можно было программировать на машинно-ориентированном языке, что было проще конструктивно, но требовало участия специально обученного программиста для внесения даже незначительных изменений в алгоритм управления. С этого момента началась борьба за упрощение процесса программирования ПЛК, которая привела сначала к созданию языков высокого уровня, затем - специализированных языков визуального программирования, похожих на язык релейной логики. В настоящее время этот процесс завершился созданием международного стандарта IEC (МЭК) 1131-3, который позже был переименован в МЭК 61131-3. Стандарт МЭК 61131-3 поддерживает пять языков технологического программирования, что исключает необходимость привлечения профессиональных программистов при построении систем с контроллерами, оставляя для них решение нестандартных задач.

    В связи с тем, что способ программирования является наиболее существенным классифицирующим признаком контроллера, понятие "ПЛК" все реже используется для обозначения управляющих контроллеров, которые не поддерживают технологические языки программирования.   Жесткие ограничения на стоимость и огромное разнообразие целей автоматизации привели к невозможности создания универсального ПЛК, как это случилось с офисными компьютерами. Область автоматизации выдвигает множество задач, в соответствии с которыми развивается и рынок, содержащий сотни непохожих друг на друга контроллеров, различающихся десятками параметров.

    Выбор оптимального для конкретной задачи контроллера основывается обычно на соответствии функциональных характеристик контроллера решаемой задаче при условии минимальной его стоимости. Учитываются также другие важные характеристики (температурный диапазон, надежность, бренд изготовителя, наличие разрешений Ростехнадзора, сертификатов и т. п.).

    Несмотря на огромное разнообразие контроллеров, в их развитии заметны следующие общие тенденции:
    • уменьшение габаритов;
    • расширение функциональных возможностей;
    • увеличение количества поддерживаемых интерфейсов и сетей;
    • использование идеологии "открытых систем";
    • использование языков программирования стандарта МЭК 61131-3;
    • снижение цены.
    Еще одной тенденцией является появление в контроллерах признаков компьютера (наличие мыши, клавиатуры, монитора, ОС Windows, возможности подключения жесткого диска), а в компьютерах - признаков контроллера (расширенный температурный диапазон, электронный диск, защита от пыли и влаги, крепление на DIN-рейку, наличие сторожевого таймера, увеличенное количество коммуникационных портов, использование ОС жесткого реального времени, функции самотестирования и диагностики, контроль целостности прикладной программы). Появились компьютеры в конструктивах для жестких условий эксплуатации. Аппаратные различия между компьютером и контроллером постепенно исчезают. Основными отличительными признаками контроллера остаются его назначение и наличие технологического языка программирования.

    [ http://bookasutp.ru/Chapter6_1.aspx]  
    Программируемый логический контроллер (ПЛК, PLC) – микропроцессорное устройство, предназначенное для управления технологическим процессом и другими сложными технологическими объектами.
    Принцип работы контроллера состоит в выполнение следующего цикла операций:

    1.    Сбор сигналов с датчиков;
    2.    Обработка сигналов согласно прикладному алгоритму управления;
    3.    Выдача управляющих воздействий на исполнительные устройства.

    В нормальном режиме работы контроллер непрерывно выполняет этот цикл с частотой от 50 раз в секунду. Время, затрачиваемое контроллером на выполнение полного цикла, часто называют временем (или периодом) сканирования; в большинстве современных ПЛК сканирование может настраиваться пользователем в диапазоне от 20 до 30000 миллисекунд. Для быстрых технологических процессов, где критична скорость реакции системы и требуется оперативное регулирование, время сканирования может составлять 20 мс, однако для большинства непрерывных процессов период 100 мс считается вполне приемлемым.

    Аппаратно контроллеры имеют модульную архитектуру и могут состоять из следующих компонентов:

    1.    Базовая панель ( Baseplate). Она служит для размещения на ней других модулей системы, устанавливаемых в специально отведенные позиции (слоты). Внутри базовой панели проходят две шины: одна - для подачи питания на электронные модули, другая – для пересылки данных и информационного обмена между модулями.

    2.    Модуль центрального вычислительного устройства ( СPU). Это мозг системы. Собственно в нем и происходит математическая обработка данных. Для связи с другими устройствами CPU часто оснащается сетевым интерфейсом, поддерживающим тот или иной коммуникационный стандарт.

    3.    Дополнительные коммуникационные модули. Необходимы для добавления сетевых интерфейсов, неподдерживаемых напрямую самим CPU. Коммуникационные модули существенно расширяют возможности ПЛК по сетевому взаимодействию. C их помощью к контроллеру подключают узлы распределенного ввода/вывода, интеллектуальные полевые приборы и станции операторского уровня.

    4.    Блок питания. Нужен для запитки системы от 220 V. Однако многие ПЛК не имеют стандартного блока питания и запитываются от внешнего.  
    4906
    Рис.1. Контроллер РСУ с коммуникациями Profibus и Ethernet.
     
    Иногда на базовую панель, помимо указанных выше, допускается устанавливать модули ввода/вывода полевых сигналов, которые образуют так называемый локальный ввод/вывод. Однако для большинства РСУ (DCS) характерно использование именно распределенного (удаленного) ввода/вывода.

    Отличительной особенностью контроллеров, применяемых в DCS, является возможность их резервирования. Резервирование нужно для повышения отказоустойчивости системы и заключается, как правило, в дублировании аппаратных модулей системы.
     
    4907
    Рис. 2. Резервированный контроллер с коммуникациями Profibus и Ethernet.
     
    Резервируемые модули работают параллельно и выполняют одни и те же функции. При этом один модуль находится в активном состоянии, а другой, являясь резервом, – в режиме “standby”. В случае отказа активного модуля, система автоматически переключается на резерв (это называется “горячий резерв”).

    Обратите внимание, контроллеры связаны шиной синхронизации, по которой они мониторят состояние друг друга. Это решение позволяет разнести резервированные модули на значительное расстояние друг от друга (например, расположить их в разных шкафах или даже аппаратных).

    Допустим, в данный момент активен левый контроллер, правый – находится в резерве. При этом, даже находясь в резерве, правый контроллер располагает всеми процессными данными и выполняет те же самые математические операции, что и левый. Контроллеры синхронизированы. Предположим, случается отказ левого контроллера, а именно модуля CPU. Управление автоматически передается резервному контроллеру, и теперь он становится главным. Здесь очень большое значение имеют время, которое система тратит на переключение на резерв (обычно меньше 0.5 с) и отсутствие возмущений (удара). Теперь система работает на резерве. Как только инженер заменит отказавший модуль CPU на исправный, система автоматически передаст ему управление и возвратится в исходное состояние.

    На рис. 3 изображен резервированный контроллер S7-400H производства Siemens. Данный контроллер входит в состав РСУ Simatic PCS7.
     
     
    4908
    Рис. 3. Резервированный контроллер S7-400H. Несколько другое техническое решение показано на примере резервированного контроллера FCP270 производства Foxboro (рис. 4). Данный контроллер входит в состав системы управления Foxboro IA Series.  
    4909
    Рис. 4. Резервированный контроллер FCP270.
    На базовой панели инсталлировано два процессорных модуля, работающих как резервированная пара, и коммуникационный модуль для сопряжения с оптическими сетями стандарта Ethernet. Взаимодействие между модулями происходит по внутренней шине (тоже резервированной), спрятанной непосредственно в базовую панель (ее не видно на рисунке).

    На рисунке ниже показан контроллер AC800M производства ABB (часть РСУ Extended Automation System 800xA).  
    4910
    Рис. 5. Контроллер AC800M.
     
    Это не резервированный вариант. Контроллер состоит из двух коммуникационных модулей, одного СPU и одного локального модуля ввода/вывода. Кроме этого, к контроллеру можно подключить до 64 внешних модулей ввода/вывода.

    При построении РСУ важно выбрать контроллер, удовлетворяющий всем техническим условиям и требованиям конкретного производства. Подбирая оптимальную конфигурацию, инженеры оперируют определенными техническими характеристиками промышленных контроллеров. Наиболее значимые перечислены ниже:

    1.    Возможность полного резервирования. Для задач, где отказоустойчивость критична (химия, нефтехимия, металлургия и т.д.), применение резервированных конфигураций вполне оправдано, тогда как для других менее ответственных производств резервирование зачастую оказывается избыточным решением.

    2.    Количество и тип поддерживаемых коммуникационных интерфейсов. Это определяет гибкость и масштабируемость системы управления в целом. Современные контроллеры способны поддерживать до 10 стандартов передачи данных одновременно, что во многом определяет их универсальность.

    3.    Быстродействие. Измеряется, как правило, в количестве выполняемых в секунду элементарных операций (до 200 млн.). Иногда быстродействие измеряется количеством обрабатываемых за секунду функциональных блоков (что такое функциональный блок – будет рассказано в следующей статье). Быстродействие зависит от типа центрального процессора (популярные производители - Intel, AMD, Motorola, Texas Instruments и т.д.)

    4.    Объем оперативной памяти. Во время работы контроллера в его оперативную память загружены запрограммированные пользователем алгоритмы автоматизированного управления, операционная система, библиотечные модули и т.д. Очевидно, чем больше оперативной памяти, тем сложнее и объемнее алгоритмы контроллер может выполнять, тем больше простора для творчества у программиста. Варьируется от 256 килобайт до 32 мегабайт.

    5.    Надежность. Наработка на отказ до 10-12 лет.

    6. Наличие специализированных средств разработки и поддержка различных языков программирования. Очевидно, что существование специализированный среды разработки прикладных программ – это стандарт для современного контроллера АСУ ТП. Для удобства программиста реализуется поддержка сразу нескольких языков как визуального, так и текстового (процедурного) программирования (FBD, SFC, IL, LAD, ST; об этом в следующей статье).

    7.    Возможность изменения алгоритмов управления на “лету” (online changes), т.е. без остановки работы контроллера. Для большинства контроллеров, применяемых в РСУ, поддержка online changes жизненно необходима, так как позволяет тонко настраивать систему или расширять ее функционал прямо на работающем производстве.

    8.    Возможность локального ввода/вывода. Как видно из рис. 4 контроллер Foxboro FCP270 рассчитан на работу только с удаленной подсистемой ввода/вывода, подключаемой к нему по оптическим каналам. Simatic S7-400 может спокойно работать как с локальными модулями ввода/вывода (свободные слоты на базовой панели есть), так и удаленными узлами.

    9.    Вес, габаритные размеры, вид монтажа (на DIN-рейку, на монтажную панель или в стойку 19”). Важно учитывать при проектировании и сборке системных шкафов.

    10.  Условия эксплуатации (температура, влажность, механические нагрузки). Большинство промышленных контроллеров могут работать в нечеловеческих условиях от 0 до 65 °С и при влажности до 95-98%.

    [ http://kazanets.narod.ru/PLC_PART1.htm]

    Тематики

    Синонимы

    EN

    DE

    • speicherprogrammierbare Steuerung, f

    FR

    Русско-английский словарь нормативно-технической терминологии > программируемый логический контроллер

  • 117 сложная система

    1. complicated system
    2. complex system

     

    сложная система

    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    сложная система
    Термин, который большинство авторов употребляют как синоним термина “большая система”; другие же проводят между ними различия. Например, считают, что величина системы отражает лишь количество ее элементов и связей между ними, а сложность характеризует неоднородность этих элементов и связей. Следовательно, С.с. невозможно исследовать иначе, чем по подсистемам, не только потому, что ее “не охватишь взглядом”, но потому, что неоднородность каждой из них требует для своего описания иного языка. Например, завод можно рассматривать как С.с., состоящую из материально-вещественной, финансовой, кадровой и других подсистем. Первую из них описывают на языке материально-вещественных связей (потоков сырья, продукции и т.д.), вторую — на языке финансовых категорий (денежных выплат, цен и т.п.), третью — на языке социологии, учета кадров. Можно и по-другому расчленить систему “завод” на подсистемы: ими будут, например, цехи, службы, другие подразделения; или еще по-иному — выделив вспомогательное и основное производство, бытовое обслуживание работников. Возможность различного (по разным основаниям) членения системы на подсистемы является, следовательно, признаком ее сложности. С.с. обычно обладает иерархической структурой. Ей присуще также свойство целостности: изменения, возникшие в каком-либо из ее элементов, сказываются и на других элементах, на функционировании всей системы. Отсюда необходимость системного подхода к изучению С.с., что в данном случае означает исследование каждой части системы с учетом целей и функционирования системы в целом. Изучение таких систем особенно затрудняется тем, что в них действует множество разнородных факторов, приводящих к различным по природе, но тесно взаимодействующим процессам. Можно встретить также термины “диффузная система”, “плохо организованная система”, “слабоструктурированная система”, и все они означают то же, что рассматриваемый термин. С.с. (большие системы) есть всюду — в природе, технике, обществе. Изучением их общих закономерностей, особенностей и структуры занимается теория больших систем с широким использованием математической статистики и экономико-математических моделей.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > сложная система

  • 118 программируемый логический контроллер

    1. automate programmable à mémoire

     

    программируемый логический контроллер
    ПЛК
    -
    [Интент]

    контроллер
    Управляющее устройство, осуществляющее автоматическое управление посредством программной реализации алгоритмов управления.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    EN

    storage-programmable logic controller
    computer-aided control equipment or system whose logic sequence can be varied via a directly or remote-control connected programming device, for example a control panel, a host computer or a portable terminal
    [IEV ref 351-32-34]

    FR

    automate programmable à mémoire
    équipement ou système de commande assisté par ordinateur dont la séquence logique peut être modifiée directement ou par l'intermédiaire d'un dispositif de programmation relié à une télécommande, par exemple un panneau de commande, un ordinateur hôte ou un terminal de données portatif
    [IEV ref 351-32-34]

      См. также:
    - архитектура контроллера;
    - производительность контроллера;
    - время реакции контроллера;
    КЛАССИФИКАЦИЯ

      Основным показателем ПЛК является количество каналов ввода-вывода. По этому признаку ПЛК делятся на следующие группы: По расположению модулей ввода-вывода ПЛК бывают:
    • моноблочными - в которых устройство ввода-вывода не может быть удалено из контроллера или заменено на другое. Конструктивно контроллер представляет собой единое целое с устройствами ввода-вывода (например, одноплатный контроллер). Моноблочный контроллер может иметь, например, 16 каналов дискретного ввода и 8 каналов релейного вывода;
    • модульные - состоящие из общей корзины (шасси), в которой располагаются модуль центрального процессора и сменные модули ввода-вывода. Состав модулей выбирается пользователем в зависимости от решаемой задачи. Типовое количество слотов для сменных модулей - от 8 до 32;
    • распределенные (с удаленными модулями ввода-вывода) - в которых модули ввода-вывода выполнены в отдельных корпусах, соединяются с модулем контроллера по сети (обычно на основе интерфейса RS-485) и могут быть расположены на расстоянии до 1,2 км от процессорного модуля.
    Часто перечисленные конструктивные типы контроллеров комбинируются, например, моноблочный контроллер может иметь несколько съемных плат; моноблочный и модульный контроллеры могут быть дополнены удаленными модулями ввода-вывода, чтобы увеличить общее количество каналов.

    Многие контроллеры имеют набор сменных процессорных плат разной производительности. Это позволяет расширить круг потенциальных пользователей системы без изменения ее конструктива.

    По конструктивному исполнению и способу крепления контроллеры делятся на:
    По области применения контроллеры делятся на следующие типы:
    • универсальные общепромышленные;
    • для управления роботами;
    • для управления позиционированием и перемещением;
    • коммуникационные;
    • ПИД-контроллеры;
    • специализированные.

    По способу программирования контроллеры бывают:
    • программируемые с лицевой панели контроллера;
    • программируемые переносным программатором;
    • программируемые с помощью дисплея, мыши и клавиатуры;
    • программируемые с помощью персонального компьютера.

    Контроллеры могут программироваться на следующих языках:
    • на классических алгоритмических языках (C, С#, Visual Basic);
    • на языках МЭК 61131-3.

    Контроллеры могут содержать в своем составе модули ввода-вывода или не содержать их. Примерами контроллеров без модулей ввода-вывода являются коммуникационные контроллеры, которые выполняют функцию межсетевого шлюза, или контроллеры, получающие данные от контроллеров нижнего уровня иерархии АСУ ТП.   Контроллеры для систем автоматизации

    Слово "контроллер" произошло от английского "control" (управление), а не от русского "контроль" (учет, проверка). Контроллером в системах автоматизации называют устройство, выполняющее управление физическими процессами по записанному в него алгоритму, с использованием информации, получаемой от датчиков и выводимой в исполнительные устройства.

    Первые контроллеры появились на рубеже 60-х и 70-х годов в автомобильной промышленности, где использовались для автоматизации сборочных линий. В то время компьютеры стоили чрезвычайно дорого, поэтому контроллеры строились на жесткой логике (программировались аппаратно), что было гораздо дешевле. Однако перенастройка с одной технологической линии на другую требовала фактически изготовления нового контроллера. Поэтому появились контроллеры, алгоритм работы которых мог быть изменен несколько проще - с помощью схемы соединений реле. Такие контроллеры получили название программируемых логических контроллеров (ПЛК), и этот термин сохранился до настоящего времени. Везде ниже термины "контроллер" и "ПЛК" мы будем употреблять как синонимы.

    Немного позже появились ПЛК, которые можно было программировать на машинно-ориентированном языке, что было проще конструктивно, но требовало участия специально обученного программиста для внесения даже незначительных изменений в алгоритм управления. С этого момента началась борьба за упрощение процесса программирования ПЛК, которая привела сначала к созданию языков высокого уровня, затем - специализированных языков визуального программирования, похожих на язык релейной логики. В настоящее время этот процесс завершился созданием международного стандарта IEC (МЭК) 1131-3, который позже был переименован в МЭК 61131-3. Стандарт МЭК 61131-3 поддерживает пять языков технологического программирования, что исключает необходимость привлечения профессиональных программистов при построении систем с контроллерами, оставляя для них решение нестандартных задач.

    В связи с тем, что способ программирования является наиболее существенным классифицирующим признаком контроллера, понятие "ПЛК" все реже используется для обозначения управляющих контроллеров, которые не поддерживают технологические языки программирования.   Жесткие ограничения на стоимость и огромное разнообразие целей автоматизации привели к невозможности создания универсального ПЛК, как это случилось с офисными компьютерами. Область автоматизации выдвигает множество задач, в соответствии с которыми развивается и рынок, содержащий сотни непохожих друг на друга контроллеров, различающихся десятками параметров.

    Выбор оптимального для конкретной задачи контроллера основывается обычно на соответствии функциональных характеристик контроллера решаемой задаче при условии минимальной его стоимости. Учитываются также другие важные характеристики (температурный диапазон, надежность, бренд изготовителя, наличие разрешений Ростехнадзора, сертификатов и т. п.).

    Несмотря на огромное разнообразие контроллеров, в их развитии заметны следующие общие тенденции:
    • уменьшение габаритов;
    • расширение функциональных возможностей;
    • увеличение количества поддерживаемых интерфейсов и сетей;
    • использование идеологии "открытых систем";
    • использование языков программирования стандарта МЭК 61131-3;
    • снижение цены.
    Еще одной тенденцией является появление в контроллерах признаков компьютера (наличие мыши, клавиатуры, монитора, ОС Windows, возможности подключения жесткого диска), а в компьютерах - признаков контроллера (расширенный температурный диапазон, электронный диск, защита от пыли и влаги, крепление на DIN-рейку, наличие сторожевого таймера, увеличенное количество коммуникационных портов, использование ОС жесткого реального времени, функции самотестирования и диагностики, контроль целостности прикладной программы). Появились компьютеры в конструктивах для жестких условий эксплуатации. Аппаратные различия между компьютером и контроллером постепенно исчезают. Основными отличительными признаками контроллера остаются его назначение и наличие технологического языка программирования.

    [ http://bookasutp.ru/Chapter6_1.aspx]  
    Программируемый логический контроллер (ПЛК, PLC) – микропроцессорное устройство, предназначенное для управления технологическим процессом и другими сложными технологическими объектами.
    Принцип работы контроллера состоит в выполнение следующего цикла операций:

    1.    Сбор сигналов с датчиков;
    2.    Обработка сигналов согласно прикладному алгоритму управления;
    3.    Выдача управляющих воздействий на исполнительные устройства.

    В нормальном режиме работы контроллер непрерывно выполняет этот цикл с частотой от 50 раз в секунду. Время, затрачиваемое контроллером на выполнение полного цикла, часто называют временем (или периодом) сканирования; в большинстве современных ПЛК сканирование может настраиваться пользователем в диапазоне от 20 до 30000 миллисекунд. Для быстрых технологических процессов, где критична скорость реакции системы и требуется оперативное регулирование, время сканирования может составлять 20 мс, однако для большинства непрерывных процессов период 100 мс считается вполне приемлемым.

    Аппаратно контроллеры имеют модульную архитектуру и могут состоять из следующих компонентов:

    1.    Базовая панель ( Baseplate). Она служит для размещения на ней других модулей системы, устанавливаемых в специально отведенные позиции (слоты). Внутри базовой панели проходят две шины: одна - для подачи питания на электронные модули, другая – для пересылки данных и информационного обмена между модулями.

    2.    Модуль центрального вычислительного устройства ( СPU). Это мозг системы. Собственно в нем и происходит математическая обработка данных. Для связи с другими устройствами CPU часто оснащается сетевым интерфейсом, поддерживающим тот или иной коммуникационный стандарт.

    3.    Дополнительные коммуникационные модули. Необходимы для добавления сетевых интерфейсов, неподдерживаемых напрямую самим CPU. Коммуникационные модули существенно расширяют возможности ПЛК по сетевому взаимодействию. C их помощью к контроллеру подключают узлы распределенного ввода/вывода, интеллектуальные полевые приборы и станции операторского уровня.

    4.    Блок питания. Нужен для запитки системы от 220 V. Однако многие ПЛК не имеют стандартного блока питания и запитываются от внешнего.  
    4906
    Рис.1. Контроллер РСУ с коммуникациями Profibus и Ethernet.
     
    Иногда на базовую панель, помимо указанных выше, допускается устанавливать модули ввода/вывода полевых сигналов, которые образуют так называемый локальный ввод/вывод. Однако для большинства РСУ (DCS) характерно использование именно распределенного (удаленного) ввода/вывода.

    Отличительной особенностью контроллеров, применяемых в DCS, является возможность их резервирования. Резервирование нужно для повышения отказоустойчивости системы и заключается, как правило, в дублировании аппаратных модулей системы.
     
    4907
    Рис. 2. Резервированный контроллер с коммуникациями Profibus и Ethernet.
     
    Резервируемые модули работают параллельно и выполняют одни и те же функции. При этом один модуль находится в активном состоянии, а другой, являясь резервом, – в режиме “standby”. В случае отказа активного модуля, система автоматически переключается на резерв (это называется “горячий резерв”).

    Обратите внимание, контроллеры связаны шиной синхронизации, по которой они мониторят состояние друг друга. Это решение позволяет разнести резервированные модули на значительное расстояние друг от друга (например, расположить их в разных шкафах или даже аппаратных).

    Допустим, в данный момент активен левый контроллер, правый – находится в резерве. При этом, даже находясь в резерве, правый контроллер располагает всеми процессными данными и выполняет те же самые математические операции, что и левый. Контроллеры синхронизированы. Предположим, случается отказ левого контроллера, а именно модуля CPU. Управление автоматически передается резервному контроллеру, и теперь он становится главным. Здесь очень большое значение имеют время, которое система тратит на переключение на резерв (обычно меньше 0.5 с) и отсутствие возмущений (удара). Теперь система работает на резерве. Как только инженер заменит отказавший модуль CPU на исправный, система автоматически передаст ему управление и возвратится в исходное состояние.

    На рис. 3 изображен резервированный контроллер S7-400H производства Siemens. Данный контроллер входит в состав РСУ Simatic PCS7.
     
     
    4908
    Рис. 3. Резервированный контроллер S7-400H. Несколько другое техническое решение показано на примере резервированного контроллера FCP270 производства Foxboro (рис. 4). Данный контроллер входит в состав системы управления Foxboro IA Series.  
    4909
    Рис. 4. Резервированный контроллер FCP270.
    На базовой панели инсталлировано два процессорных модуля, работающих как резервированная пара, и коммуникационный модуль для сопряжения с оптическими сетями стандарта Ethernet. Взаимодействие между модулями происходит по внутренней шине (тоже резервированной), спрятанной непосредственно в базовую панель (ее не видно на рисунке).

    На рисунке ниже показан контроллер AC800M производства ABB (часть РСУ Extended Automation System 800xA).  
    4910
    Рис. 5. Контроллер AC800M.
     
    Это не резервированный вариант. Контроллер состоит из двух коммуникационных модулей, одного СPU и одного локального модуля ввода/вывода. Кроме этого, к контроллеру можно подключить до 64 внешних модулей ввода/вывода.

    При построении РСУ важно выбрать контроллер, удовлетворяющий всем техническим условиям и требованиям конкретного производства. Подбирая оптимальную конфигурацию, инженеры оперируют определенными техническими характеристиками промышленных контроллеров. Наиболее значимые перечислены ниже:

    1.    Возможность полного резервирования. Для задач, где отказоустойчивость критична (химия, нефтехимия, металлургия и т.д.), применение резервированных конфигураций вполне оправдано, тогда как для других менее ответственных производств резервирование зачастую оказывается избыточным решением.

    2.    Количество и тип поддерживаемых коммуникационных интерфейсов. Это определяет гибкость и масштабируемость системы управления в целом. Современные контроллеры способны поддерживать до 10 стандартов передачи данных одновременно, что во многом определяет их универсальность.

    3.    Быстродействие. Измеряется, как правило, в количестве выполняемых в секунду элементарных операций (до 200 млн.). Иногда быстродействие измеряется количеством обрабатываемых за секунду функциональных блоков (что такое функциональный блок – будет рассказано в следующей статье). Быстродействие зависит от типа центрального процессора (популярные производители - Intel, AMD, Motorola, Texas Instruments и т.д.)

    4.    Объем оперативной памяти. Во время работы контроллера в его оперативную память загружены запрограммированные пользователем алгоритмы автоматизированного управления, операционная система, библиотечные модули и т.д. Очевидно, чем больше оперативной памяти, тем сложнее и объемнее алгоритмы контроллер может выполнять, тем больше простора для творчества у программиста. Варьируется от 256 килобайт до 32 мегабайт.

    5.    Надежность. Наработка на отказ до 10-12 лет.

    6. Наличие специализированных средств разработки и поддержка различных языков программирования. Очевидно, что существование специализированный среды разработки прикладных программ – это стандарт для современного контроллера АСУ ТП. Для удобства программиста реализуется поддержка сразу нескольких языков как визуального, так и текстового (процедурного) программирования (FBD, SFC, IL, LAD, ST; об этом в следующей статье).

    7.    Возможность изменения алгоритмов управления на “лету” (online changes), т.е. без остановки работы контроллера. Для большинства контроллеров, применяемых в РСУ, поддержка online changes жизненно необходима, так как позволяет тонко настраивать систему или расширять ее функционал прямо на работающем производстве.

    8.    Возможность локального ввода/вывода. Как видно из рис. 4 контроллер Foxboro FCP270 рассчитан на работу только с удаленной подсистемой ввода/вывода, подключаемой к нему по оптическим каналам. Simatic S7-400 может спокойно работать как с локальными модулями ввода/вывода (свободные слоты на базовой панели есть), так и удаленными узлами.

    9.    Вес, габаритные размеры, вид монтажа (на DIN-рейку, на монтажную панель или в стойку 19”). Важно учитывать при проектировании и сборке системных шкафов.

    10.  Условия эксплуатации (температура, влажность, механические нагрузки). Большинство промышленных контроллеров могут работать в нечеловеческих условиях от 0 до 65 °С и при влажности до 95-98%.

    [ http://kazanets.narod.ru/PLC_PART1.htm]

    Тематики

    Синонимы

    EN

    DE

    • speicherprogrammierbare Steuerung, f

    FR

    Русско-французский словарь нормативно-технической терминологии > программируемый логический контроллер

  • 119 plc

    1. связь по ЛЭП
    2. программируемый логический контроллер
    3. несущая в канале ВЧ-связи по ЛЭП
    4. маскирование потери пакета
    5. контроллер с программируемой логикой
    6. акционерная компания с ограниченной ответственностью

     

    акционерная компания с ограниченной ответственностью
    AG - аббревиатура для обозначения AKTIENGESELLSCHAFT (акционерное общество). Оно пишется после названия немецких, австрийских или швейцарских компаний и является эквивалентом английской аббревиатуры plc (public limited company-акционерная компания с ограниченной ответственностью). Сравни: GmbH.
    [ http://www.vocable.ru/dictionary/533/symbol/97]

    Тематики

    EN

    DE

    • AG

     

    контроллер с программируемой логикой

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    маскирование потери пакета
    Метод сокрытия факта потери медиапакетов путем генерирования синтезируемых пакетов (МСЭ-T G.1050).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    несущая в канале ВЧ-связи по ЛЭП

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999]

    Тематики

    • электротехника, основные понятия

    EN

     

    программируемый логический контроллер
    ПЛК
    -
    [Интент]

    контроллер
    Управляющее устройство, осуществляющее автоматическое управление посредством программной реализации алгоритмов управления.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    EN

    storage-programmable logic controller
    computer-aided control equipment or system whose logic sequence can be varied via a directly or remote-control connected programming device, for example a control panel, a host computer or a portable terminal
    [IEV ref 351-32-34]

    FR

    automate programmable à mémoire
    équipement ou système de commande assisté par ordinateur dont la séquence logique peut être modifiée directement ou par l'intermédiaire d'un dispositif de programmation relié à une télécommande, par exemple un panneau de commande, un ordinateur hôte ou un terminal de données portatif
    [IEV ref 351-32-34]

      См. также:
    - архитектура контроллера;
    - производительность контроллера;
    - время реакции контроллера;
    КЛАССИФИКАЦИЯ

      Основным показателем ПЛК является количество каналов ввода-вывода. По этому признаку ПЛК делятся на следующие группы: По расположению модулей ввода-вывода ПЛК бывают:
    • моноблочными - в которых устройство ввода-вывода не может быть удалено из контроллера или заменено на другое. Конструктивно контроллер представляет собой единое целое с устройствами ввода-вывода (например, одноплатный контроллер). Моноблочный контроллер может иметь, например, 16 каналов дискретного ввода и 8 каналов релейного вывода;
    • модульные - состоящие из общей корзины (шасси), в которой располагаются модуль центрального процессора и сменные модули ввода-вывода. Состав модулей выбирается пользователем в зависимости от решаемой задачи. Типовое количество слотов для сменных модулей - от 8 до 32;
    • распределенные (с удаленными модулями ввода-вывода) - в которых модули ввода-вывода выполнены в отдельных корпусах, соединяются с модулем контроллера по сети (обычно на основе интерфейса RS-485) и могут быть расположены на расстоянии до 1,2 км от процессорного модуля.
    Часто перечисленные конструктивные типы контроллеров комбинируются, например, моноблочный контроллер может иметь несколько съемных плат; моноблочный и модульный контроллеры могут быть дополнены удаленными модулями ввода-вывода, чтобы увеличить общее количество каналов.

    Многие контроллеры имеют набор сменных процессорных плат разной производительности. Это позволяет расширить круг потенциальных пользователей системы без изменения ее конструктива.

    По конструктивному исполнению и способу крепления контроллеры делятся на:
    По области применения контроллеры делятся на следующие типы:
    • универсальные общепромышленные;
    • для управления роботами;
    • для управления позиционированием и перемещением;
    • коммуникационные;
    • ПИД-контроллеры;
    • специализированные.

    По способу программирования контроллеры бывают:
    • программируемые с лицевой панели контроллера;
    • программируемые переносным программатором;
    • программируемые с помощью дисплея, мыши и клавиатуры;
    • программируемые с помощью персонального компьютера.

    Контроллеры могут программироваться на следующих языках:
    • на классических алгоритмических языках (C, С#, Visual Basic);
    • на языках МЭК 61131-3.

    Контроллеры могут содержать в своем составе модули ввода-вывода или не содержать их. Примерами контроллеров без модулей ввода-вывода являются коммуникационные контроллеры, которые выполняют функцию межсетевого шлюза, или контроллеры, получающие данные от контроллеров нижнего уровня иерархии АСУ ТП.   Контроллеры для систем автоматизации

    Слово "контроллер" произошло от английского "control" (управление), а не от русского "контроль" (учет, проверка). Контроллером в системах автоматизации называют устройство, выполняющее управление физическими процессами по записанному в него алгоритму, с использованием информации, получаемой от датчиков и выводимой в исполнительные устройства.

    Первые контроллеры появились на рубеже 60-х и 70-х годов в автомобильной промышленности, где использовались для автоматизации сборочных линий. В то время компьютеры стоили чрезвычайно дорого, поэтому контроллеры строились на жесткой логике (программировались аппаратно), что было гораздо дешевле. Однако перенастройка с одной технологической линии на другую требовала фактически изготовления нового контроллера. Поэтому появились контроллеры, алгоритм работы которых мог быть изменен несколько проще - с помощью схемы соединений реле. Такие контроллеры получили название программируемых логических контроллеров (ПЛК), и этот термин сохранился до настоящего времени. Везде ниже термины "контроллер" и "ПЛК" мы будем употреблять как синонимы.

    Немного позже появились ПЛК, которые можно было программировать на машинно-ориентированном языке, что было проще конструктивно, но требовало участия специально обученного программиста для внесения даже незначительных изменений в алгоритм управления. С этого момента началась борьба за упрощение процесса программирования ПЛК, которая привела сначала к созданию языков высокого уровня, затем - специализированных языков визуального программирования, похожих на язык релейной логики. В настоящее время этот процесс завершился созданием международного стандарта IEC (МЭК) 1131-3, который позже был переименован в МЭК 61131-3. Стандарт МЭК 61131-3 поддерживает пять языков технологического программирования, что исключает необходимость привлечения профессиональных программистов при построении систем с контроллерами, оставляя для них решение нестандартных задач.

    В связи с тем, что способ программирования является наиболее существенным классифицирующим признаком контроллера, понятие "ПЛК" все реже используется для обозначения управляющих контроллеров, которые не поддерживают технологические языки программирования.   Жесткие ограничения на стоимость и огромное разнообразие целей автоматизации привели к невозможности создания универсального ПЛК, как это случилось с офисными компьютерами. Область автоматизации выдвигает множество задач, в соответствии с которыми развивается и рынок, содержащий сотни непохожих друг на друга контроллеров, различающихся десятками параметров.

    Выбор оптимального для конкретной задачи контроллера основывается обычно на соответствии функциональных характеристик контроллера решаемой задаче при условии минимальной его стоимости. Учитываются также другие важные характеристики (температурный диапазон, надежность, бренд изготовителя, наличие разрешений Ростехнадзора, сертификатов и т. п.).

    Несмотря на огромное разнообразие контроллеров, в их развитии заметны следующие общие тенденции:
    • уменьшение габаритов;
    • расширение функциональных возможностей;
    • увеличение количества поддерживаемых интерфейсов и сетей;
    • использование идеологии "открытых систем";
    • использование языков программирования стандарта МЭК 61131-3;
    • снижение цены.
    Еще одной тенденцией является появление в контроллерах признаков компьютера (наличие мыши, клавиатуры, монитора, ОС Windows, возможности подключения жесткого диска), а в компьютерах - признаков контроллера (расширенный температурный диапазон, электронный диск, защита от пыли и влаги, крепление на DIN-рейку, наличие сторожевого таймера, увеличенное количество коммуникационных портов, использование ОС жесткого реального времени, функции самотестирования и диагностики, контроль целостности прикладной программы). Появились компьютеры в конструктивах для жестких условий эксплуатации. Аппаратные различия между компьютером и контроллером постепенно исчезают. Основными отличительными признаками контроллера остаются его назначение и наличие технологического языка программирования.

    [ http://bookasutp.ru/Chapter6_1.aspx]  
    Программируемый логический контроллер (ПЛК, PLC) – микропроцессорное устройство, предназначенное для управления технологическим процессом и другими сложными технологическими объектами.
    Принцип работы контроллера состоит в выполнение следующего цикла операций:

    1.    Сбор сигналов с датчиков;
    2.    Обработка сигналов согласно прикладному алгоритму управления;
    3.    Выдача управляющих воздействий на исполнительные устройства.

    В нормальном режиме работы контроллер непрерывно выполняет этот цикл с частотой от 50 раз в секунду. Время, затрачиваемое контроллером на выполнение полного цикла, часто называют временем (или периодом) сканирования; в большинстве современных ПЛК сканирование может настраиваться пользователем в диапазоне от 20 до 30000 миллисекунд. Для быстрых технологических процессов, где критична скорость реакции системы и требуется оперативное регулирование, время сканирования может составлять 20 мс, однако для большинства непрерывных процессов период 100 мс считается вполне приемлемым.

    Аппаратно контроллеры имеют модульную архитектуру и могут состоять из следующих компонентов:

    1.    Базовая панель ( Baseplate). Она служит для размещения на ней других модулей системы, устанавливаемых в специально отведенные позиции (слоты). Внутри базовой панели проходят две шины: одна - для подачи питания на электронные модули, другая – для пересылки данных и информационного обмена между модулями.

    2.    Модуль центрального вычислительного устройства ( СPU). Это мозг системы. Собственно в нем и происходит математическая обработка данных. Для связи с другими устройствами CPU часто оснащается сетевым интерфейсом, поддерживающим тот или иной коммуникационный стандарт.

    3.    Дополнительные коммуникационные модули. Необходимы для добавления сетевых интерфейсов, неподдерживаемых напрямую самим CPU. Коммуникационные модули существенно расширяют возможности ПЛК по сетевому взаимодействию. C их помощью к контроллеру подключают узлы распределенного ввода/вывода, интеллектуальные полевые приборы и станции операторского уровня.

    4.    Блок питания. Нужен для запитки системы от 220 V. Однако многие ПЛК не имеют стандартного блока питания и запитываются от внешнего.  
    4906
    Рис.1. Контроллер РСУ с коммуникациями Profibus и Ethernet.
     
    Иногда на базовую панель, помимо указанных выше, допускается устанавливать модули ввода/вывода полевых сигналов, которые образуют так называемый локальный ввод/вывод. Однако для большинства РСУ (DCS) характерно использование именно распределенного (удаленного) ввода/вывода.

    Отличительной особенностью контроллеров, применяемых в DCS, является возможность их резервирования. Резервирование нужно для повышения отказоустойчивости системы и заключается, как правило, в дублировании аппаратных модулей системы.
     
    4907
    Рис. 2. Резервированный контроллер с коммуникациями Profibus и Ethernet.
     
    Резервируемые модули работают параллельно и выполняют одни и те же функции. При этом один модуль находится в активном состоянии, а другой, являясь резервом, – в режиме “standby”. В случае отказа активного модуля, система автоматически переключается на резерв (это называется “горячий резерв”).

    Обратите внимание, контроллеры связаны шиной синхронизации, по которой они мониторят состояние друг друга. Это решение позволяет разнести резервированные модули на значительное расстояние друг от друга (например, расположить их в разных шкафах или даже аппаратных).

    Допустим, в данный момент активен левый контроллер, правый – находится в резерве. При этом, даже находясь в резерве, правый контроллер располагает всеми процессными данными и выполняет те же самые математические операции, что и левый. Контроллеры синхронизированы. Предположим, случается отказ левого контроллера, а именно модуля CPU. Управление автоматически передается резервному контроллеру, и теперь он становится главным. Здесь очень большое значение имеют время, которое система тратит на переключение на резерв (обычно меньше 0.5 с) и отсутствие возмущений (удара). Теперь система работает на резерве. Как только инженер заменит отказавший модуль CPU на исправный, система автоматически передаст ему управление и возвратится в исходное состояние.

    На рис. 3 изображен резервированный контроллер S7-400H производства Siemens. Данный контроллер входит в состав РСУ Simatic PCS7.
     
     
    4908
    Рис. 3. Резервированный контроллер S7-400H. Несколько другое техническое решение показано на примере резервированного контроллера FCP270 производства Foxboro (рис. 4). Данный контроллер входит в состав системы управления Foxboro IA Series.  
    4909
    Рис. 4. Резервированный контроллер FCP270.
    На базовой панели инсталлировано два процессорных модуля, работающих как резервированная пара, и коммуникационный модуль для сопряжения с оптическими сетями стандарта Ethernet. Взаимодействие между модулями происходит по внутренней шине (тоже резервированной), спрятанной непосредственно в базовую панель (ее не видно на рисунке).

    На рисунке ниже показан контроллер AC800M производства ABB (часть РСУ Extended Automation System 800xA).  
    4910
    Рис. 5. Контроллер AC800M.
     
    Это не резервированный вариант. Контроллер состоит из двух коммуникационных модулей, одного СPU и одного локального модуля ввода/вывода. Кроме этого, к контроллеру можно подключить до 64 внешних модулей ввода/вывода.

    При построении РСУ важно выбрать контроллер, удовлетворяющий всем техническим условиям и требованиям конкретного производства. Подбирая оптимальную конфигурацию, инженеры оперируют определенными техническими характеристиками промышленных контроллеров. Наиболее значимые перечислены ниже:

    1.    Возможность полного резервирования. Для задач, где отказоустойчивость критична (химия, нефтехимия, металлургия и т.д.), применение резервированных конфигураций вполне оправдано, тогда как для других менее ответственных производств резервирование зачастую оказывается избыточным решением.

    2.    Количество и тип поддерживаемых коммуникационных интерфейсов. Это определяет гибкость и масштабируемость системы управления в целом. Современные контроллеры способны поддерживать до 10 стандартов передачи данных одновременно, что во многом определяет их универсальность.

    3.    Быстродействие. Измеряется, как правило, в количестве выполняемых в секунду элементарных операций (до 200 млн.). Иногда быстродействие измеряется количеством обрабатываемых за секунду функциональных блоков (что такое функциональный блок – будет рассказано в следующей статье). Быстродействие зависит от типа центрального процессора (популярные производители - Intel, AMD, Motorola, Texas Instruments и т.д.)

    4.    Объем оперативной памяти. Во время работы контроллера в его оперативную память загружены запрограммированные пользователем алгоритмы автоматизированного управления, операционная система, библиотечные модули и т.д. Очевидно, чем больше оперативной памяти, тем сложнее и объемнее алгоритмы контроллер может выполнять, тем больше простора для творчества у программиста. Варьируется от 256 килобайт до 32 мегабайт.

    5.    Надежность. Наработка на отказ до 10-12 лет.

    6. Наличие специализированных средств разработки и поддержка различных языков программирования. Очевидно, что существование специализированный среды разработки прикладных программ – это стандарт для современного контроллера АСУ ТП. Для удобства программиста реализуется поддержка сразу нескольких языков как визуального, так и текстового (процедурного) программирования (FBD, SFC, IL, LAD, ST; об этом в следующей статье).

    7.    Возможность изменения алгоритмов управления на “лету” (online changes), т.е. без остановки работы контроллера. Для большинства контроллеров, применяемых в РСУ, поддержка online changes жизненно необходима, так как позволяет тонко настраивать систему или расширять ее функционал прямо на работающем производстве.

    8.    Возможность локального ввода/вывода. Как видно из рис. 4 контроллер Foxboro FCP270 рассчитан на работу только с удаленной подсистемой ввода/вывода, подключаемой к нему по оптическим каналам. Simatic S7-400 может спокойно работать как с локальными модулями ввода/вывода (свободные слоты на базовой панели есть), так и удаленными узлами.

    9.    Вес, габаритные размеры, вид монтажа (на DIN-рейку, на монтажную панель или в стойку 19”). Важно учитывать при проектировании и сборке системных шкафов.

    10.  Условия эксплуатации (температура, влажность, механические нагрузки). Большинство промышленных контроллеров могут работать в нечеловеческих условиях от 0 до 65 °С и при влажности до 95-98%.

    [ http://kazanets.narod.ru/PLC_PART1.htm]

    Тематики

    Синонимы

    EN

    DE

    • speicherprogrammierbare Steuerung, f

    FR

     

    связь по ЛЭП

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

    Англо-русский словарь нормативно-технической терминологии > plc

  • 120 ALG

    1. шлюз уровня
    2. шлюз прикладного уровня
    3. алгоритм

     

    алгоритм
    Конечный набор предписаний для получения решения задачи посредством конечного количества операций.
    [ ГОСТ 34.003-90]

    алгоритм
    Конечное упорядоченное множество точно определенных правил для решения конкретной задачи.
    [ИСО/МЭК 2382-1]
    [ ГОСТ Р 52292-2004]

    алгоритм
    Последовательность действий для определенного вычисления
    [ ГОСТ 30721-2000]
    [ ГОСТ Р 51294.3-99]

    алгоритм
    Набор упорядоченных шагов для решения задачи, такой как математическая формула или инструкция в программе. В контексте кодирования речи алгоритмами называют математические методы, используемые для компрессии речи. Уникальные алгоритмы кодирования речи патентуются. Конкретные реализации алгоритмов в компьютерных программах также являются субъектом авторского права.
    Совокупность четко определенных правил, процедур или команд, обеспечивающих решение поставленной задачи за конечное число шагов.
    [ http://www.morepc.ru/dict/]

    алгоритм
    алгорифм
    Точное предписание относительно последовательности действий (шагов), преобразующих исходные данные в искомый результат. Это понятие появилось за много веков до появления компьютеров, с которыми его обычно связывают. Термин же происходит от слова Algorithmi, так на латинском языке звучало имя хорезмского математика IX столетия аль-Хорезми, трактат которого в средние века был распространен в Европе. Тогда алгоритмом называлось десятичное счисление и искусство счета в этой системе. А. — основа решения любой экономико-математической задачи, задачи управления, а также построения многих экономико-математических моделей — особенно прикладных, предназначенных для практических расчетов на компьютерах. Оценка качества А. обычно определяется его сходимостью (если А. не сходится, он не годится), скоростью сходимости (чем она выше, т.е. чем меньше шагов требуется для решения, тем А. лучше); кроме того, важную роль играют время счета на компьютере (оно зависит не только от числа шагов, но и других обстоятельств), удобство обращения к А., возможность работы в режиме диалога человека и ЭВМ. Для наглядности алгоритм, если он относительно прост, можно отобразить в виде блок-схемы (см. рис. А.2). А., записанный таким образом, чтобы его могла выполнять вычислительная машина, называется программой. Рис.А.2 Блок-схема алгоритма вычисления среднего арифметического Среди важнейших (для экономико-математических приложений) видов алгоритмов назовем следующие: Алгоритмитеративный [iterative routine] - см. Итеративные методы. Алгоритм моделирующий. [simulator] - алгоритм (компьютерная программа), имитирующий при исследовании сложных систем взаимодействие элементов процесса и позволяющий при заданной совокупности экзогенных величин (параметров, управляющих переменных) получить эндогенные величины (выходы) или их искомые характеристики. Алгоритм циклический [cyclical algorithm] - алгоритм, при котором через какое-то (обычно большое) число шагов результаты начинают повторяться. Таков, например, А. вычисления на компьютере псевдослучайных чисел. Алгоритм управления [control procedure] - точно определенный порядок выработки управленческих решений, формирования планов, обмена информацией в процессе управления. Тщательная отработка А. у. — необходимый этап проектирования любой АСУ. Для проверки А.у. эффективно применение методов машинной имитации.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

    DE

    FR

     

    шлюз прикладного уровня
    Устройство, поддерживающее протоколы, которое соединяет два или более участка сети, и может интерпретировать и модифицировать протоколы уровня приложения для обеспечения трансляций адресов передачи и выполнения других функций. ALG может обеспечивать NAT транспортного уровня и функции брандмауэра изнутри или может контролировать их извне (МСЭ-Т Н.235.3, МСЭ-Т Н.235.9).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    шлюз уровня
    (МСЭ-Т Н.235.0).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

    Англо-русский словарь нормативно-технической терминологии > ALG

См. также в других словарях:

  • МНОЖЕСТВО —         см. Класс в логике. Философский энциклопедический словарь. М.: Советская энциклопедия. Гл. редакция: Л. Ф. Ильичёв, П. Н. Федосеев, С. М. Ковалёв, В. Г. Панов. 1983. МНОЖЕСТВО …   Философская энциклопедия

  • Множество мандельброта — В математике множество Мандельброта это фрактал, определённый как множество точек на комплексной плоскости, для которых итеративная последовательность …   Википедия

  • множество — набор комплект — [http://www.rfcmd.ru/glossword/1.8/index.php?a=index d=4318] множество Одно из основных понятий современной математики, «произвольная совокупность определенных и различимых объектов, объединенных мысленно в единое… …   Справочник технического переводчика

  • Множество — [set] одно из основных понятий современной математики, «произвольная совокупность определенных и различимых объектов, объединенных мысленно в единое целое». (Так определял множество основатель теории множеств, известный немецкий… …   Экономико-математический словарь

  • Множество (тип данных) — У этого термина существуют и другие значения, см. Множество (значения). Множество тип и структура данных в информатике, является реализацией математического объекта множество. Данные типа множество позволяют хранить ограниченное число значений… …   Википедия

  • МНОЖЕСТВО — набор, совокупность, собрание каких либо объектов, наз. его элементами, обладающих общим для всех их характеристич. свойством. Множество есть многое, мыслимое нами как единое (Г. Кантор). Это не является в полном смысле логич. определением… …   Математическая энциклопедия

  • ДИОФАНТОВО МНОЖЕСТВО — множество состоящее из упорядоченных наборов из пцелых (целых неотрицательных, целых положительных) чисел, для к рого можно указать диофантово уравнение зависящее от ппараметров а 1, ..., а п, допустимыми значениями к рых являются целые… …   Математическая энциклопедия

  • Пустое множество — Обозначение пустого множества Пустое множество (в математике)  множество, не содержащее ни одного элемента. Из аксиомы объёмности следует, что есть только одно множество, обладающее таким свойс …   Википедия

  • Непустое множество — Пустым множеством в математике называется множество, не содержащее ни одного элемента. В одних теориях множеств существование [по меньшей мере одного] пустого множества провозглашается (см. аксиому пустого множества), в других  доказывается. Во… …   Википедия

  • Жизнь других — Das Leben der Anderen …   Википедия

  • Притягивающее множество — Притягивающее множество  такое компактное инвариантное относительно потока φt множество B⊂M, для которого существует окрестность U (открытое множество содержащее B), такая, что почти для всех при (то есть при ) Подмножество G фазового… …   Википедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»