Перевод: со всех языков на французский

с французского на все языки

методы+области+применения+xx

  • 1 рабочее место

    1. poste de travail
    2. place de travail

     

    рабочее место
    Элементарная единица структуры предприятия, где размещены исполнители работы, обслуживаемое технологическое оборудование, часть конвейера, на ограниченное время оснастка и предметы труда.
    Примечание:
    Определение рабочего места приведено применительно к машиностроительному производству. Определение рабочего места, применяемое в других отраслях народного хозяйства, установлено ГОСТ 19605
    [ ГОСТ 14.004-83]

    рабочее место
    Зона, оснащенная необходимыми техническими средствами, в которой совершается трудовая деятельность исполнителя или группы исполнителей, совместно выполняющих одну работу или операцию
    [ ГОСТ 19605-74]

    рабочее место
    Совокупность рабочего оборудования в рабочей области, окруженного рабочими условиями.
    [ГОСТ Р ЕН 614-1-2003]

    место рабочее
    1. Определённый участок производственной площади, закреплённый за рабочим, служащим или бригадой, оборудованный соответственно характеру выполняемых работ
    2. Расчётная единица для определения размеров торгового предприятия
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    ПРИМЕРНЫЙ ПЕРЕЧЕНЬ ОСНОВНЫХ ВОПРОСОВ ПЕРВИЧНОГО ИНСТРУКТАЖА НА РАБОЧЕМ МЕСТЕ

    1. Общие сведения о технологическом процессе и оборудовании на данном рабочем месте, производственном участке, в цехе. Основные опасные и вредные производственные факторы, возникающие при данном технологическом процессе.
    2. Безопасная организация и содержание рабочего места.
    3. Опасные зоны машины, механизма, прибора. Средства безопасности оборудования (предохранительные, тормозные устройства и ограждения, системы блокировки и сигнализации, знаки безопасности). Требования по предупреждению электротравматизма.
    4. Порядок подготовки к работе (проверка исправности оборудования, пусковых приборов, инструмента и приспособлений, блокировок, заземления и других средств защиты).
    5. Безопасные приемы и методы работы; действия при возникновении опасной ситуации.
    6. Средства индивидуальной защиты на данном рабочем месте и правила пользования ими.
    7. Схема безопасного передвижения работающих на территории цеха, участка.
    8. Внутрицеховые транспортные и грузоподъемные средства и механизмы. Требования безопасности при погрузочно-разгрузочных работах и транспортировке грузов.
    9. Характерные причины аварий, взрывов, пожаров, случаев производственных травм.
    10. Меры предупреждения аварий, взрывов, пожаров. Обязанность и действия при аварии, взрыве, пожаре. Способы применения имеющихся на участке средств пожаротушения, противоаварийной защиты и сигнализации, места их расположения.
    [ ГОСТ 12.0.004-90]

    Тематики

    EN

    DE

    FR

    Русско-французский словарь нормативно-технической терминологии > рабочее место

  • 2 расходомер жидкости (газа)

    1. débitmètre

     

    расходомер жидкости (газа)
    расходомер
    Ндп. измеритель расхода жидкости (газа)
    Измерительный прибор или совокупность приборов, предназначенных для измерения расхода жидкости (газа).
    [ ГОСТ 15528-86]

    Расходомеры, служат для измерения объема (объемный расход) или массы (массовый расход) жидкостей, газов и паров, проходящих через заданное сечение трубопровода в единицу времени. Иногда расходомеры снабжают интеграторами, или счетчиками - устройствами для суммирования измеряемых объемов или масс контролируемых сред в течение заданного промежутка времени. Расходомеры разных типов рассчитаны на измерения в определенной области расходов (рис. 1).

    5288

    Рис. 1. Диапазоны измерений расходов жидкостей, газов и паров разными расходомерами.

    Основные показатели, обусловливающие выбор расходомера: значение расхода; тип контролируемой среды, ее температура, давление, вязкость, плотность, электрическая проводимость, рН; перепад давлений на первичном измерительном преобразователе (датчике); диаметр трубопровода; диапазон (отношение максимального расхода к минимальному) и погрешность измерений. В зависимости от физ.-химических свойств измеряемой и окружающей сред в расходомеры используются различные методы измерений.

    В данной статье рассматриваются наиболее важные типы расходомеры и счетчиков, применяемых в химических лабораториях, химических и смежных отраслях промышленности для высокоточных контроля и учета химических веществ при их производстве, выдаче и потреблении, а также в системах автоматизированного управления технологическими процессами.

     

    5289

    Расходомеры переменного перепада давлений (рис. 2, а). Действие их основано на зависимости перепада давлений на гидравлическом сопротивлении (диафрагмы, сопла и трубы Вентури, сопла Лаваля и др.), расположенном в потоке контролируемой среды, от ее расхода Q. Измерения разности давлений Dp = p1 - p2 осуществляются на прямолинейном участке трубопровода (длиной до 10 и не менее 5 диаметров соответственно до и после гидравлического сопротивления). Расходомеры данного типа особенно распространены благодаря следующим достоинствам: простоте конструкции и возможности измерений в широком диапазоне значений расхода и диаметров трубопроводов (от десятков до 3000 мм и более); возможности применения для различных по составу и агрессивности жидкостей и газов при температурах до 350-400 °С и давлениях до 100 МПа; возможности расчетным путем определять расход без натурной градуировки расходомеры в случае трубопроводов диаметрами 50-1000 мм. Недостатки: небольшой диапазон измерений из-за квадратичной зависимости между расходом и перепадом давлений (3:1); значительные потери давления на гидравлическом сопротивлении и связанные с этим дополнительные затраты энергии. Погрешность 1,5-2,5% от макс. расхода.

    5290

    Расходомеры постоянного перепада давлений, или ротаметры ( рис. 2, б). В этих приборах измеряется прямо пропорциональная расходу величина перемещения поплавка h внутри конической трубки под воздействием движущегося снизу вверх потока контролируемой среды. Последний поднимает поплавок до тех пор, пока подъемная сила, возникающая благодаря наличию на нем перепада давлений, не уравновесится весом поплавка. Трубки ротаметров могут быть стеклянными (рассчитаны на давление до 2,5 МПа) и металлическими (до 70 МПа). Поплавки в зависимости от свойств жидкости или газа изготовляют из различных металлов либо пластмасс. Приборы работоспособны при температурах от — 80 до 400 °С, предпочтительны для трубопроводов диаметром до 150 мм, имеют равномерные шкалы, градуированные в единицах объемного расхода. Достоинства: возможность измерений расхода жидкостей и газов от весьма малых значений (0,002 л/ч по воде, 0,03 л/ч по воздуху) до высоких (150-200 и до 3000 м3/ч); широкий диапазон измерений (10:1); малые потери давления (до 0,015 МПа). Погрешность 0,5-2,5% от макс. расхода.

    5291

    Электромагнитные расходомеры (рис. 2, в). Действие их основано на прямо пропорциональной зависимости расхода от эдс, индуцированной в потоке электропроводной жидкости (минимальная удельная электрическая проводимость 10-3-10-4 См/м), движущейся во внеш. магнитное поле, которое направлено перпендикулярно оси трубопровода. Эдс определяется с помощью двух электродов, вводимых в измеряемую среду диаметрально противоположно через электроизоляционное покрытие внутри поверхности трубопровода. Материалы покрытий - резины, фторопласты, эпоксидные компаунды, керамика и другие. Приборы позволяют измерять расход различных пульп, сиропов, агрессивных и радиоактивных жидкостей и т. д. при давлениях обычно до 2,5 МПа (иногда до 20 МПа); диаметр трубопроводов, как правило, 2-3000 мм. Во избежание поляризации электродов измерения проводят в переменном магнитном поле. Допустимые температуры контролируемой среды определяются термостойкостью электроизоляционных покрытий и могут достигать, как правило, 230 °С. При измерении расхода жидких металлов (например, Na, К и их эвтектик) указанные температуры обусловлены термостойкостью используемых конструкционных материалов, в первую очередь магнитов, создающих постоянное магнитное поле (исключает возникновение в металлах вихревых токов) и составляют 400-500 °С; в данном случае трубопроводы не имеют внутренней изоляции, а. электроды привариваются непосредственно к их наружным поверхностям. Достоинства: высокое быстродействие; широкий диапазон измерений (100:1); отсутствие потерь давления (приборы не имеют элементов, выступающих внутрь трубопровода); показания приборов не зависят от вязкости и плотности жидкостей. Погрешность 0,5-1,0% от измеряемой величины.

    5292

    Тахометрические расходомеры В турбинных расходомерах (рис. 2, г) используется зависимость измеряемой тахометром частоты вращения турбинки, приводимой в движение потоком среды (нефтепродукты, растворы кислот и щелочей, нейтральные или агрессивные газы) от ее расхода. Турбинки могут размещаться аксиально либо тангенциально по отношению к направлению движения потока. Диаметр трубопроводов 4-4000 мм; вязкость среды 0,8-750 мм2/с; температура от -240 до 550 °С, давление до 70 МПа; диапазон измерений до 100:1; потери давления 0,05 МПа. Погрешность 0,5-1,5% от макс. расхода.

    В шариковых расходомерах контролируемая жидкая среда закручивается с помощью неподвижного винтового направляющего аппарата и увлекает за собой металлический шарик, заставляя его вращаться внутри трубопровода (перемещению вдоль оси препятствуют ограничит. кольца). Мера расхода - частота вращения шарика, измеряемая, например, тахометром. Диаметр трубопроводов 5-150 мм; температура среды от -30 до 250 °С, давление до 6,4 МПа; диапазон измерений 10:1; потери давления до 0,05 МПа. В этих приборах в отличие от турбинных отсутствуют опорные подшипники, что позволяет измерять расход жидкостей с механическими включениями и увеличивает ресурс работы. Погрешность не более 1,5% от максимального расхода.

    5293

    Ультразвуковые расходомеры (рис. 2, д). В основу их работы положено использование разницы во времени прохождения ультразвуковых колебаний (более 20 кГц) в направлении потока контролируемой среды и против него. Электронное устройство формирует электрический импульс, поступающий на пьезоэлемент П1, который излучает электромеханические колебания в движущуюся среду. Эти колебания воспринимаются через некоторое время пьезоэлементом П2, преобразуются им в электрический импульс, попадающий в электронное устройство и снова направляемый им на пьезоэлемент П1 и т.д. Контур П1-П2 характеризуется частотой f1 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной разности между скоростью распространения звука в контролируемой среде и скоростью самой среды. Аналогично электронное устройство подает импульсы в обратном направлении, то есть от пьезоэлемента П2 к пьезоэлементу П1. Контур П2-П1 характеризуется частотой f2 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной сумме скоростей распространения звука в среде и самой среды. Далее электронное устройство определяет разность Df указанных частот, которая пропорциональна скорости (расходу) среды.

    Эти приборы не вызывают потерь давления, обладают высоким быстродействием и обеспечивают измерение пульсирующих расходов (частота 5-10 кГц) любых не содержащих газовых включений жидкостей (в т. ч. вязких и агрессивных), а также газов и паров. Диаметр трубопроводов 10-3000 мм и более; температура среды от —40 до 200°С (реже-от —250 до 250 °C), давление до 4 МПа; диапазон измерений 100:1. Погрешность 1,0-2,5% от макс. расхода.

    5294

    Вихревые расходомеры (рис. 2, е). Действие их основано на зависимости между расходом и частотой возникновения вихрей за твердым телом (например, металлическим прямоугольным стержнем), которое расположено в потоке жидкости или газа. Образованию вихрей способствует поочередное изменение давления па гранях этого тела. Диапазон частот образования вихрей определяется размером и конфигурацией тела и диаметром трубопроводов (25-300 мм). Температура среды обычно от - 50 до 400 °С, реже от -270 до 450 °С; давление до 4 МПа, иногда до -6,3 МПа; диапазон измерений: для жидкостей 12:1, для газов 40:1. Градуировка приборов не зависит от плотности и вязкости контролируемой среды, а также от ее температуры и давления. Погрешность 0,5-1,0% от измеряемой величины при числах Рейнольдса Re > 30000; при Re < 10000 определение расхода практически невозможно из-за отсутствия вихрей.

    5295

    Объемные расходомеры (рис. 2,ж). В качестве измерителей объема служат счетчики с цилиндрическими или овальными шестернями, поршневые, с плавающей шайбой, лопастные, винтовые и другие. Они снабжены устройствами выдачи сигналов, пропорциональных объемному расходу вещества. Эти приборы пропускают определенный объем жидкости за один цикл хода чувствительного элемента. Мера расхода - число таких циклов. Диаметр трубопроводов 15-300 мм; температура среды до 150°С, давление до 10 МПа; диапазон измерений до 20:1. Основное достоинство - стабильность показаний. Недостатки: необходимость установки фильтров, задерживающих твердые частицы (чувствительный элемент при их проникновении может выйти из строя); износ движущихся деталей, приводящий к увеличению погрешности показаний, которая обычно составляет 0,5-1,0 от измеряемой величины.

    5296

    Струйные расходомеры (рис. 2,з). В них используется принцип действия генератора автоколебаний. В приборе часть струи потока жидкости или газа ответвляется и через так называемый канал обратной связи а поступает на вход устройства, создавая поперечное давление на струю. Последняя перебрасывается к противоположной стенке трубопровода, где от нее снова ответвляется часть потока, подаваемая через канал б на вход прибора; в результате струя переходит в первоначальное положение и т. д. Такой переброс происходит с частотой, пропорциональной расходу контролируемой среды, и сопровождается изменением давления в каналах а и б, что позволяет датчику давления воспринимать автоколебания. Диаметр трубопроводов 2-25 мм; температура среды от —263 до 500 °С, давление до 4 МПа; диапазон измерений 10:1. Основное достоинство - отсутствие подвижных элементов. Погрешность-1,5% от макс. расхода.

    5297

    Корреляционные расходомеры (рис. 2, и). В этих приборах с помощью сложных ультразвуковых и иных устройств осуществляется запоминание в заданном сечении трубопровода (I) характерного "образа" потока контролируемой среды и его последнее распознавание в другом сечении (II), расположенном на определенном расстоянии от первого. Мера расхода - время прохождения "образом" потока участка трубопровода между сечениями. Диаметр трубопроводов 15-900 мм; температура среды до 100-150°С, давление до 20 МПа; диапазон измерений 10:1. Достоинства: независимость показаний от изменений плотности, вязкости, электропроводности и других параметров жидкости; отсутствие потерь давления. Погрешность 1 % от измеряемой величины.

    [ http://www.chemport.ru/data/chemipedia/article_3233.html]

     

     

    Недопустимые, нерекомендуемые

    Тематики

    Синонимы

    EN

    DE

    FR

    14. Расходомер жидкости (газа)

    Расходомер

    Ндп. Измеритель расхода жидкости (газа)

    D. Durchflußmeßgerät

    E. Flowmeter

    F. Débitmètre

    Измерительный прибор или совокупность приборов, предназначенных для измерения расхода жидкости (газа)

    Источник: ГОСТ 15528-86: Средства измерений расхода, объема или массы протекающих жидкости и газа. Термины и определения оригинал документа

    Русско-французский словарь нормативно-технической терминологии > расходомер жидкости (газа)

См. также в других словарях:

  • Области применения оптических сенсоров первого поколения — Определяемое вещество Оптическая характеристика Области применения Ионы меди поглощение при 930 нм …   Химический справочник

  • Р 50.1.068-2009: Менеджмент риска. Рекомендации по внедрению. Часть 1. Определение области применения — Терминология Р 50.1.068 2009: Менеджмент риска. Рекомендации по внедрению. Часть 1. Определение области применения: 3.13 анализ риска (risk analysis): Систематическое использование информации для определения источников и количественной оценки… …   Словарь-справочник терминов нормативно-технической документации

  • Методы развития творческого воображения — ТРИЗ теория решения изобретательских задач, основанная Генрихом Сауловичем Альтшуллером и его коллегами в 1946 году, и впервые опубликованная в 1956 году[1] это технология творчества, основанная на идее о том, что «изобретательское творчество… …   Википедия

  • Методы экологического мониторинга — В этой статье отсутствует вступление. Пожалуйста, допишите вводную секцию, кратко раскрывающую тему статьи. В зависимости от точности результатов, которые необходимо получить при проведении мониторинга по тому или иному компоненту, явлению, пр …   Википедия

  • методы — методы: Методы косвенного измерения влажности газов, основанные на зависимости их оптических свойств от влажности. Источник: РМГ 75 2004: Государственная система обеспечения единства измерений. Измерен …   Словарь-справочник терминов нормативно-технической документации

  • МЕТОДЫ ВРАЧЕБНОГО ИССЛЕДОВАНИЯ — І. Общие принципы врачебного исследования. Рост и углубление наших знаний, все большее, и большее техническое оснащение клиники, основанное на использовании новейших достижений физики, химии и техники, связанное с этим усложнение методов… …   Большая медицинская энциклопедия

  • МЕТОДЫ ИССЛЕДОВАНИЯ ПРИЧИННЫХ СВЯЗЕЙ — логич. методы установления причин явлений или вытекающих из них следствий. Простейшими М. и. п. с. являются методы изучения эмпирич. причинных связей, известные под названием методов Бэкона – Милля (или индуктивных методов Милля, или методов… …   Философская энциклопедия

  • Методы многомерного анализа (multivariate analysis methods) — Многомерность свойственна психол. данным по природе, поскольку они чаще всего состоят по крайней мере из неск. наблюдений за поведением одного человека или группы лиц. М. м. а. и были созданы для совместной обработки таких данных, напр. для их… …   Психологическая энциклопедия

  • МЕТОДЫ ИССЛЕДОВАНИЯ — в педагогике, приёмы, процедуры и операции эмпирич. и теоретич. познания и изучения явлений действительности. Система М. и, определяется исходной концепцией исследователя, его представлениями о сущности и структуре изучаемого, общей методологич.… …   Российская педагогическая энциклопедия

  • МЕТОДЫ КЛАССИФИКАЦИИ — совокупность методов статистич. многомерного анализа. В зависимости от того, в какой области научн. знаний М.к. возникли и получили свое развитие, они наз. методами многомерной классификации, таксономии, кластерного анализа, группировки,… …   Российская социологическая энциклопедия

  • МЕТОДЫ ИССЛЕДОВАНИЯ в педагогике — приёмы, процедуры и операции эмпирич. и теоретич. познания и изучения явлений действительности. Система М. и, определяется исходной концепцией исследователя, его представлениями о сущности и структуре изучаемого, общей методологич. ориентации,… …   Российская педагогическая энциклопедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»