Перевод: с английского на все языки

со всех языков на английский

контроль+обмена+данными

  • 41 CCP

    2) Компьютерная техника: Connective Component Programming, central collection point
    3) Биология: critical closing pressure
    4) Американизм: Correct Control Practices
    8) Шутливое выражение: Can't Code Programs
    9) Религия: Christian Concert Planning
    11) Автомобильный термин: climate control panel, controlled canister purge (GM)
    12) Биржевой термин: central counterparty group (http://www.lchclearnet.com/)
    14) Сокращение: Casualty Collecting Post, Central Command Post, Central Control Point, Chief Commissioner of Police, Chinese Communist Party (China), Chinese Communist Party, Code of Civil Procedure, Code of Criminal Procedure, Coherent Countermeasures Processor, Combat Command Post, Combined Command Post, Computer Control Panel, Consolidated Containerisation Point, Contingency Communications Package, Control & Correlation Processor, Court of Common Pleas, certificate in computer programming, chemical churning pile, console command processor, credit card purchase
    15) Университет: Co Curricular Programs
    16) Электроника: Constant Current Power, Critical Control Points
    17) Вычислительная техника: channel control processor, Command Console Processor (CP/M), Communications Control Program (OS, IBM), (PPP) Compression Control Protocol (PPP, RFC 1962), Compact Communication Products (TPS)
    19) Биотехнология: Clathrin-coated pit
    20) Геофизика: общая точка обмена
    21) Фирменный знак: Cash And Collateral Pool
    23) Энергетика: электростанция с парогазовым циклом ((разг.)), парогазовая установка (ПГУ) (combined cycle plant)
    24) Деловая лексика: Critical Control Point
    25) Глоссарий компании Сахалин Энерджи: change control procedure
    26) Менеджмент: current contract price
    27) Образование: CBT Course Project, Computer Career Program
    29) Контроль качества: contract change proposal
    30) Электротехника: Converter Commutation Protector (Siemens)
    32) Аэропорты: Concepcion, Chile
    34) Единицы измерений: Common Conversion Point

    Универсальный англо-русский словарь > CCP

  • 42 ccp

    2) Компьютерная техника: Connective Component Programming, central collection point
    3) Биология: critical closing pressure
    4) Американизм: Correct Control Practices
    8) Шутливое выражение: Can't Code Programs
    9) Религия: Christian Concert Planning
    11) Автомобильный термин: climate control panel, controlled canister purge (GM)
    12) Биржевой термин: central counterparty group (http://www.lchclearnet.com/)
    14) Сокращение: Casualty Collecting Post, Central Command Post, Central Control Point, Chief Commissioner of Police, Chinese Communist Party (China), Chinese Communist Party, Code of Civil Procedure, Code of Criminal Procedure, Coherent Countermeasures Processor, Combat Command Post, Combined Command Post, Computer Control Panel, Consolidated Containerisation Point, Contingency Communications Package, Control & Correlation Processor, Court of Common Pleas, certificate in computer programming, chemical churning pile, console command processor, credit card purchase
    15) Университет: Co Curricular Programs
    16) Электроника: Constant Current Power, Critical Control Points
    17) Вычислительная техника: channel control processor, Command Console Processor (CP/M), Communications Control Program (OS, IBM), (PPP) Compression Control Protocol (PPP, RFC 1962), Compact Communication Products (TPS)
    19) Биотехнология: Clathrin-coated pit
    20) Геофизика: общая точка обмена
    21) Фирменный знак: Cash And Collateral Pool
    23) Энергетика: электростанция с парогазовым циклом ((разг.)), парогазовая установка (ПГУ) (combined cycle plant)
    24) Деловая лексика: Critical Control Point
    25) Глоссарий компании Сахалин Энерджи: change control procedure
    26) Менеджмент: current contract price
    27) Образование: CBT Course Project, Computer Career Program
    29) Контроль качества: contract change proposal
    30) Электротехника: Converter Commutation Protector (Siemens)
    32) Аэропорты: Concepcion, Chile
    34) Единицы измерений: Common Conversion Point

    Универсальный англо-русский словарь > ccp

  • 43 HMI

    1. человеко-машинный интерфейс
    2. человеко-машинное взаимодействие
    3. терминал
    4. интерфейс управления концентратором
    5. интерфейс "человек-машина"

     

    интерфейс "человек-машина"
    аппаратно-программная система управления технологическими процессами
    HMI - это набор всех средств, позволяющих человеку вмешаться в поведение вычислительной системы. Как правило, HMI представляет собой компьютер с графическим дисплеем, где в наглядной форме отображается поведение системы, и пользователь имеет возможность вмешаться в деятельность системы. Однако в качестве HMI может выступать самый простой пульт из набора тумблеров и светодиодных индикаторов.
    [ http://www.morepc.ru/dict/]

    Тематики

    Синонимы

    EN

     

    интерфейс управления концентратором

    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    EN

     

    терминал
    Устройство ввода-вывода, обеспечивающее взаимодействие пользователей в локальной вычислительной сети или с удаленной ЭВМ через средства телеобработки данных
    [ ГОСТ 25868-91]
    [ ГОСТ Р 50304-92 ]

    Параллельные тексты EN-RU

    HMI port warning
    [Schneider Electric]

    Предупредительное состояние об ошибке обмена данными через порт связи с терминалом оператора
    [Перевод Интент]

    HMI display max current phase enable
    [Schneider Electric]

    Разрешается отображение на терминале оператора максимального линейного тока
    [Перевод Интент]

    Config via HMI keypad enable
    [Schneider Electric]

    Конфигурирование (системы) с помощью клавиатуры терминала оператора
    [Перевод Интент]


    Тематики

    • оборуд. перифер. систем обраб. информации
    • системы для сопряж. радиоэлектр. средств интерфейсные

    Обобщающие термины

    Синонимы

    EN

     

    человеко-машинное взаимодействие

    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

     

    человеко-машинный интерфейс (ЧМИ)
    Технические средства, предназначенные для обеспечения непосредственного взаимодействия между оператором и оборудованием и дающие возможность оператору управлять оборудованием и контролировать его функционирование.
    Примечание
    Такие средства могут включать приводимые в действие вручную органы управления, контрольные устройства, дисплеи.
    [ ГОСТ Р МЭК 60447-2000]

    человекомашинный интерфейс (ЧМИ)
    Технические средства контроля и управления, являющиеся частью оборудования, предназначенные для обеспечения непосредственного взаимодействия между оператором и оборудованием и дающие возможность оператору управлять оборудованием и контролировать его функционирование (ГОСТ Р МЭК 60447).
    Примечание
    Такие средства могут включать приводимые в действие вручную органы управления, контрольные устройства и дисплеи.
    [ ГОСТ Р МЭК 60073-2000]

    человеко-машинный интерфейс
    Средства обеспечения двусторонней связи "оператор - технологическое оборудование" (АСУ ТП). Название класса средств, в который входят подклассы:
    SCADA (Supervisory Control and Data Acquisition) - Операторское управление и сбор данных от технологического оборудования.
    DCS (Distributed Control Systems) - Распределенная система управления технологическим оборудованием.
    [ http://www.morepc.ru/dict/]

    Параллельные тексты EN-RU

    MotorSys™ iPMCC solutions can integrate a dedicated human-machine interface (HMI) or communicate via a personal computer directly on the motor starters.
    [Schneider Electric]

    Интеллектуальный центр распределения электроэнергии и управления электродвигателями MotorSys™ может иметь в своем составе специальный человеко-машинный интерфейс (ЧМИ). В качестве альтернативы используется обмен данным между персональным компьютером и пускателями.
    [Перевод Интент]


    HMI на базе операторских станций

    Самое, пожалуй, главное в системе управления - это организация взаимодействия между человеком и программно-аппаратным комплексом. Обеспечение такого взаимодействия и есть задача человеко-машинного интерфейса (HMI, human machine interface).

    На мой взгляд, в аббревиатуре “АСУ ТП” ключевым является слово “автоматизированная”, что подразумевает непосредственное участие человека в процессе реализации системой определенных задач. Очевидно, что чем лучше организован HMI, тем эффективнее человек сможет решать поставленные задачи.

    Как же организован HMI в современных АСУ ТП?
    Существует, как минимум, два подхода реализации функционала HMI:

    1. На базе специализированных рабочих станций оператора, устанавливаемых в центральной диспетчерской;
    2. На базе панелей локального управления, устанавливаемых непосредственно в цеху по близости с контролируемым технологическим объектам.

    Иногда эти два варианта комбинируют, чтобы достичь наибольшей гибкости управления. В данной статье речь пойдет о первом варианте организации операторского уровня.

    Аппаратно рабочая станция оператора (OS, operator station) представляет собой ни что иное как персональный компьютер. Как правило, станция снабжается несколькими широкоэкранными мониторами, функциональной клавиатурой и необходимыми сетевыми адаптерами для подключения к сетям верхнего уровня (например, на базе Industrial Ethernet). Станция оператора несколько отличается от привычных для нас офисных компьютеров, прежде всего, своим исполнением и эксплуатационными характеристиками (а также ценой 4000 - 10 000 долларов).
    На рисунке 1 изображена рабочая станция оператора системы SIMATIC PCS7 производства Siemens, обладающая следующими техническими характеристиками:

    Процессор: Intel Pentium 4, 3.4 ГГц;
    Память: DDR2 SDRAM до 4 ГБ;
    Материнская плата: ChipSet Intel 945G;
    Жесткий диск: SATA-RAID 1/2 x 120 ГБ;
    Слоты: 4 x PCI, 2 x PCI E x 1, 1 x PCI E x 16;
    Степень защиты: IP 31;
    Температура при эксплуатации: 5 – 45 C;
    Влажность: 5 – 95 % (без образования конденсата);
    Операционная система: Windows XP Professional/2003 Server.

    4876
    Рис. 1. Пример промышленной рабочей станции оператора.

    Системный блок может быть как настольного исполнения ( desktop), так и для монтажа в 19” стойку ( rack-mounted). Чаще применяется второй вариант: системный блок монтируется в запираемую стойку для лучшей защищенности и предотвращения несанкционированного доступа.

    Какое программное обеспечение используется?
    На станции оператора устанавливается программный пакет визуализации технологического процесса (часто называемый SCADA). Большинство пакетов визуализации работают под управлением операционных систем семейства Windows (Windows NT 4.0, Windows 2000/XP, Windows 2003 Server), что, на мой взгляд, является большим минусом.
    Программное обеспечение визуализации призвано выполнять следующие задачи:

    1. Отображение технологической информации в удобной для человека графической форме (как правило, в виде интерактивных мнемосхем) – Process Visualization;
    2. Отображение аварийных сигнализаций технологического процесса – Alarm Visualization;
    3. Архивирование технологических данных (сбор истории процесса) – Historical Archiving;
    4. Предоставление оператору возможности манипулировать (управлять) объектами управления – Operator Control.
    5. Контроль доступа и протоколирование действий оператора – Access Control and Operator’s Actions Archiving.
    6. Автоматизированное составление отчетов за произвольный интервал времени (посменные отчеты, еженедельные, ежемесячные и т.д.) – Automated Reporting.

    Как правило, SCADA состоит из двух частей:

    1. Среды разработки, где инженер рисует и программирует технологические мнемосхемы;
    2. Среды исполнения, необходимой для выполнения сконфигурированных мнемосхем в режиме runtime. Фактически это режим повседневной эксплуатации.

    Существует две схемы подключения операторских станций к системе управления, а точнее уровню управления. В рамках первой схемы каждая операторская станция подключается к контроллерам уровня управления напрямую или с помощью промежуточного коммутатора (см. рисунок 2). Подключенная таким образом операторская станция работает независимо от других станций сети, и поэтому часто называется одиночной (пусть Вас не смущает такое название, на самом деле таких станций в сети может быть несколько).

    4877
    Рис. 2. Схема подключения одиночных операторских станций к уровню управления.

    Есть и другой вариант. Часто операторские станции подключают к серверу или резервированной паре серверов, а серверы в свою очередь подключаются к промышленным контроллерам. Таким образом, сервер, являясь неким буфером, постоянно считывает данные с контроллера и предоставляет их по запросу рабочим станциям. Станции, подключенные по такой схеме, часто называют клиентами (см. рисунок 3).

    4878
    Рис. 3. Клиент-серверная архитектура операторского уровня.

    Как происходит информационный обмен?
    Для сопряжения операторской станции с промышленным контроллером на первой устанавливается специальное ПО, называемое драйвером ввода/вывода. Драйвер ввода/вывода поддерживает совместимый с контроллером коммуникационный протокол и позволяет прикладным программам считывать с контроллера параметры или наоборот записывать в него. Пакет визуализации обращается к драйверу ввода/вывода каждый раз, когда требуется обновление отображаемой информации или запись измененных оператором данных. Для взаимодействия пакета визуализации и драйвера ввода/вывода используется несколько протоколов, наиболее популярные из которых OPC (OLE for Process Control) и NetDDE (Network Dynamic Data Exchange). Обобщенно можно сказать, что OPC и NetDDE – это протоколы информационного обмена между различными приложениями, которые могут выполняться как на одном, так и на разных компьютерах. На рисунках 4 и 5 изображено, как взаимодействуют программные компоненты при различных схемах построения операторского уровня.  
    4879
    Рис. 4. Схема взаимодействия программных модулей при использовании одиночных станций.
     
    4880
    Рис. 5. Схема взаимодействия программных модулей при использовании клиент-серверной архитектуры.
    Как выглядит SCADA?
    Разберем простой пример. На рисунке 6 приведена абстрактная схема технологического процесса, хотя полноценным процессом это назвать трудно.
    4881
    Рис. 6. Пример операторской мнемосхемы.
    На рисунке 6 изображен очень упрощенный вариант операторской мнемосхемы для управления тех. процессом. Как видно, резервуар (емкость) наполняется водой. Задача системы - нагреть эту воду до определенной температуры. Для нагрева воды используется газовая горелка. Интенсивность горения регулируется клапаном подачи газа. Также должен быть насос для закачки воды в резервуар и клапан для спуска воды.

    На мнемосхеме отображаются основные технологические параметры, такие как: температура воды; уровень воды в резервуаре; работа насосов; состояние клапанов и т.д. Эти данные обновляются на экране с заданной частотой. Если какой-либо параметр достигает аварийного значения, соответствующее поле начинает мигать, привлекая внимание оператора.

    Сигналы ввода/вывода и исполнительные механизмы отображаются на мнемосхемах в виде интерактивных графических символов (иконок). Каждому типу сигналов и исполнительных механизмов присваивается свой символ: для дискретного сигнала это может быть переключатель, кнопка или лампочка; для аналогового – ползунок, диаграмма или текстовое поле; для двигателей и насосов – более сложные фейсплейты ( faceplates). Каждый символ, как правило, представляет собой отдельный ActiveX компонент. Вообще технология ActiveX широко используется в SCADA-пакетах, так как позволяет разработчику подгружать дополнительные символы, не входящие в стандартную библиотеку, а также разрабатывать свои собственные графические элементы, используя высокоуровневые языки программирования.

    Допустим, оператор хочет включить насос. Для этого он щелкает по его иконке и вызывает панель управления ( faceplate). На этой панели он может выполнить определенные манипуляции: включить или выключить насос, подтвердить аварийную сигнализацию, перевести его в режим “техобслуживания” и т.д. (см. рисунок 7).  
    4882
    Рис. 7. Пример фейсплейта для управления насосом.
      Оператор также может посмотреть график изменения интересующего его технологического параметра, например, за прошедшую неделю. Для этого ему надо вызвать тренд ( trend) и выбрать соответствующий параметр для отображения. Пример тренда реального времени показан на рисунке 8.
     
    4883
    Рис. 8. Пример отображения двух параметров на тренде реального времени.
    Для более детального обзора сообщений и аварийных сигнализаций оператор может воспользоваться специальной панелью ( alarm panel), пример которой изображен на рисунке 9. Это отсортированный список сигнализаций (alarms), представленный в удобной для восприятия форме. Оператор может подтвердить ту или иную аварийную сигнализацию, применить фильтр или просто ее скрыть.
    4884
    Рис. 9. Панель сообщений и аварийных сигнализаций.
    Говоря о SCADA, инженеры часто оперируют таким важным понятием как “тэг” ( tag). Тэг является по существу некой переменной программы визуализации и может быть использован как для локального хранения данных внутри программы, так и в качестве ссылки на внешний параметр процесса. Тэги могут быть разных типов, начиная от обычных числовых данных и кончая структурой с множеством полей. Например, один визуализируемый параметр ввода/вывода – это тэг, или функциональный блок PID-регулятора, выполняемый внутри контроллера, - это тоже тэг. Ниже представлена сильно упрощенная структура тэга, соответствующего простому PID-регулятору:

    Tag Name = “MyPID”;
    Tag Type = PID;

    Fields (список параметров):

    MyPID.OP
    MyPID.SP
    MyPID.PV
    MyPID.PR
    MyPID.TI
    MyPID.DI
    MyPID.Mode
    MyPID.RemoteSP
    MyPID.Alarms и т.д.

    В комплексной прикладной программе может быть несколько тысяч тэгов. Производители SCADA-пакетов это знают и поэтому применяют политику лицензирования на основе количества используемых тэгов. Каждая купленная лицензия жестко ограничивает суммарное количество тэгов, которые можно использовать в программе. Очевидно, чем больше тегов поддерживает лицензия, тем дороже она стоит; так, например, лицензия на 60 000 тэгов может обойтись в 5000 тыс. долларов или даже дороже. В дополнение к этому многие производители SCADA формируют весьма существенную разницу в цене между “голой” средой исполнения и полноценной средой разработки; естественно, последняя с таким же количеством тэгов будет стоить заметно дороже.

    Сегодня на рынке представлено большое количество различных SCADA-пакетов, наиболее популярные из которых представлены ниже:

    1.    Wonderware Intouch;
    2.    Simatic WinCC;
    3.    Iconics Genesis32;
    4.    Citect;
    5.    Adastra Trace Mode

    Лидирующие позиции занимают Wonderware Intouch (производства Invensys) и Simatic WinCC (разработки Siemens) с суммарным количеством инсталляций более 80 тыс. в мире. Пакет визуализации технологического процесса может поставляться как в составе комплексной системы управления, так и в виде отдельного программного продукта. В последнем случае SCADA комплектуется набором драйверов ввода/вывода для коммуникации с контроллерами различных производителей.   [ http://kazanets.narod.ru/HMI_PART1.htm]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > HMI

  • 44 LC

    1. энергоузел (энергосистемы)
    2. центр нагрузки
    3. условия лицензирования
    4. тактовый генератор уровня
    5. регулирование уровня
    6. регулирование по нагрузке
    7. рабочий ресурс
    8. предельный режим
    9. предельные условия
    10. период существования
    11. освинцованный
    12. несущая с высоким уровнем мощности
    13. несущая с большим уровнем мощности
    14. нарушение контакта
    15. логическое соединение
    16. логический канал
    17. линейный соединитель
    18. контроль уровня
    19. класс управления журналом
    20. жидкостная хроматография

     

    жидкостная хроматография

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    контроль уровня

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    линейный соединитель

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    логический канал
    Логический канал это информационный поток, предназначенный для передачи определенного типа информации по радиоканалу. Логические каналы располагаются на верхнем уровне MAC. (МСЭ-Т Q.1741).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    логическое соединение
    соединение

    Взаимосвязь, обеспечиваемая некоторым уровнем, между двумя или более логическими объектами смежного верхнего уровня с целью обмена данными.
    Примечание
    Соединение получает наименование того уровня, который его обеспечивает (например, соединение физического уровня, соединение сетевого уровня).
    [ ГОСТ 24402-88]

    Тематики

    Синонимы

    EN

     

    нарушение контакта

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999]

    Тематики

    • электротехника, основные понятия

    EN

     

    несущая с большим уровнем мощности
    Модулированный сигнал, основная часть энергии которого сосредоточена на не сущей частоте. Ср. suppressed ~.
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    Тематики

    • электросвязь, основные понятия

    EN

     

    несущая с высоким уровнем мощности

    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    EN

     

    освинцованный

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999]

    Тематики

    • электротехника, основные понятия

    EN

     

    период существования
    (напр. угольных частиц в зоне горения топки котла)
    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    предельные условия

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    предельный режим

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    рабочий ресурс

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    регулирование по нагрузке

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    регулирование уровня

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    тактовый генератор уровня

    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    EN

     

    условия лицензирования

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    центр нагрузки

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    энергоузел (энергосистемы)

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > LC

  • 45 BEP

    1) Общая лексика: Bureau of Engraving & Printing
    2) Компьютерная техника: Best Efficiency Point
    3) Американизм: Bureau of Engraving and Printing
    4) Военный термин: budget execution plan
    6) Шутливое выражение: Blue Eyed Pop, Bug Eyed Penguin
    8) Автомобильный термин: (bodywork exchange parameter) (bodywork exchange parameter) параметр обмена данными по надстройке
    9) Сокращение: Battery Electronic Pack
    10) Электроника: Balanced Electrode Plane
    12) Пищевая промышленность: Black Eyed Pea
    13) Экология: biological effects program
    14) Сетевые технологии: back-end processor
    16) Контроль качества: break-even point
    17) Нефть и газ: basic engineering package

    Универсальный англо-русский словарь > BEP

  • 46 server

    ['sɜːvə]
    1) Общая лексика: игрок, подающий мяч (теннис), поднос (для тарелок, блюд), сервер, подающий игрок (волейбол)
    5) Религия: причетник, (An attendant to the celebrant at a Mass) прислужник
    8) Телекоммуникации: центральный компьютер сети
    9) Электроника: линия обслуживания
    10) Вычислительная техника: обслуживающий процессор, сервер (При организации динамического обмена данными прикладная программа, выступающая как источник данных), служебное устройство
    11) Нефть: станция
    12) Космонавтика: устройство обслуживания
    14) Футбол: подающий (спорт.)
    15) Сетевые технологии: специализированная станция
    16) Автоматика: обслуживающий элемент, обслуживающий узел (напр. сети), обслуживающее устройство (напр. транспортно-загрузочное)
    17) Контроль качества: обслуживающий прибор
    19) Макаров: канал обслуживания (ТМО), обслуживающее устройство (ТМО), одноканальная система массового обслуживания (ТМО), обслуживающий прибор (в теории массового обслуживания)
    20) Логистика: раздатчик пищи
    21) Христианство: служитель

    Универсальный англо-русский словарь > server

  • 47 LAPB

    1. сбалансированный протокол доступа к каналу
    2. процедура сбалансированного доступа к каналу
    3. протокол доступа к каналу, сбалансированный

     

    протокол доступа к каналу, сбалансированный
    Протокол, используемый для доступа в сети X.25 на канальном уровне. В X.25 также используется несбалансированный вариант (LAP). LAP и LAPB относятся к числу полнодуплексных протоколов "точка-точка" с битовой синхронизацией. 
    [ http://www.lexikon.ru/dict/net/index.html]

    Тематики

    EN

     

    процедура сбалансированного доступа к каналу
    Процедура канального уровня, используемая в сетях с коммутацией пакетов на базе протокола Х.25. Позволяет организовать симметричный режим обмена данными между пользовательским оборудованием и коммутатором сети. В процессе работы обеспечивается контроль ошибок и целостность передаваемых данных.
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    Тематики

    • электросвязь, основные понятия

    EN

     

    сбалансированный протокол доступа к каналу
    сбалансированная процедура доступа к каналу

    Протокол, используемый для доступа в сети X.25 на канальном уровне. В X.25 также используется несбалансированный вариант (LAP). LAP и LAPB относятся к числу полнодуплексных протоколов "точка-точка" с битовой синхронизацией. 
    [ http://www.lexikon.ru/dict/net/index.html]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > LAPB

  • 48 Link Access Procedure Balanced

    1. сбалансированный протокол доступа к каналу
    2. процедура сбалансированного доступа к каналу

     

    процедура сбалансированного доступа к каналу
    Процедура канального уровня, используемая в сетях с коммутацией пакетов на базе протокола Х.25. Позволяет организовать симметричный режим обмена данными между пользовательским оборудованием и коммутатором сети. В процессе работы обеспечивается контроль ошибок и целостность передаваемых данных.
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    Тематики

    • электросвязь, основные понятия

    EN

     

    сбалансированный протокол доступа к каналу
    сбалансированная процедура доступа к каналу

    Протокол, используемый для доступа в сети X.25 на канальном уровне. В X.25 также используется несбалансированный вариант (LAP). LAP и LAPB относятся к числу полнодуплексных протоколов "точка-точка" с битовой синхронизацией. 
    [ http://www.lexikon.ru/dict/net/index.html]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > Link Access Procedure Balanced

  • 49 supply chain management

    1. управление цепями (системами) поставок
    2. управление цепью поставок
    3. управление цепочками поставок
    4. управление поставками

     

    управление поставками
    Управление цепочкой процессов, обеспечивающих выпуск продукции
    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    EN

     

    управление цепочками поставок
    Здесь цепочка поставок - это глобальная сеть, которая преобразует исходное сырье в продукты и услуги, необходимые конечному потребителю, используя спроектированный поток информации, материальных ценностей и денежных средств.
    Исследователи выделяют шесть основных областей, на которых сосредоточено управление цепочками поставок: Производство, Поставки, Месторасположение, Запасы, Транспортировка и Информация. Все решения по управлению цепочками поставок делятся на две категории: стратегические (strategic) и тактические (operational). Производство (Production).
    Компания решает, что именно и как производить.
    Стратегические решения относительно производства продукции (торговля и оказание услуг - это тоже вид производства) принимаются на основе изучения потребительского спроса. Тактические решения сосредоточены на планировании объемов производства, рабочей загрузки и обслуживания оборудования, контроле качества и т. д. Поставки (Supply).
    Затем компания должна определить, что она будет производить самостоятельно, а какие компоненты (комплектующие, товары или услуги) покупать у сторонних фирм.
    Стратегические решения касаются перечня приобретаемых компонентов и требований к их поставщикам относительно скорости, качества и гибкости поставок.
    Тактические же относятся к текущему управлению поставками для обеспечения необходимого уровня производства. Месторасположение (Location).
    Решения о месторасположении производственных мощностей, центров складирования и источников поставок полностью относятся к стратегическим. Они зависят от характера рынка, отраслевой специфики, а также от политической и экономической ситуации в регионе. Запасы (Inventory).
    Основная цель запасов - страхование от непредвиденных случаев, таких, как всплеск спроса или задержка поставок. Прогнозирование поведения потребителей, организация бесперебойного снабжения и гибкость производства, хотя, на первый взгляд, и не связаны с уровнем запасов, но на самом деле оказывают на него непосредственное влияние.
    Поэтому стратегические решения направлены на выработку политики компании в отношении запасов. К слову, среднестатистическое предприятие вкладывает в запасы около 30% всех своих активов (до 90% оборотных средств), а расходы на содержание запасов обходятся в 20--40% их стоимости. Тактические решения сосредоточены на поддержании оптимального уровня запасов в каждом узле сети для бесперебойного удовлетворения колебаний потребительского спроса. Транспортировка (Transportation). Решения, связанные с транспортировкой, в основном, относятся к стратегическим. Они зависят от месторасположения участников цепочки поставок, политики в отношении запасов и требуемого уровня обслуживания клиентов. Важно определить правильные способы и эффективные методы оперативного управления транспортировкой, так как эти операции составляют около 30% общих расходов на снабжение, и именно с опозданиями в доставке связано в среднем более 70% ошибок в распределении товаров. Информация (Information). Эффективное функционирование цепочки поставок невозможно без оперативного обмена данными между всеми ее участниками.
    Стратегические решения касаются источников информации, ее содержания, механизмов и средств распределения, а также правил доступа. Тактические решения направлены на интеграцию информационных систем участников цепочки поставок в общую инфраструктуру.
    В составе SCM-системы можно условно выделить две подсистемы
    SCP (Supply Chain Planning)
    Планирование цепочек поставок. Основу SCP составляют системы для расширенного планирования и формирования календарных графиков (APS). При изменении информации о прогнозах спроса, уровне запасов, сроках поставок, взаиморасположении торговых партнеров и т. д. APS-система позволяет оперативно проанализировать перемены и внести необходимые коррективы в расписание поставок и производства. В SCP также входят системы для совместной разработки прогнозов. Они ориентированы на торговые пары "поставщик-покупатель" и позволяют сравнивать информацию о прогнозах спроса, поступившую от покупателей, с прогнозами наличия необходимой продукции, полученной от поставщиков. Результатом является сбалансированный прогноз, согласованный с обеими заинтересованными сторонами. В основе работы этих систем лежит стандарт совместного планирования, прогнозирования и пополнения запасов (CPFR - Collaborative Planning, Forecasting and Replenishment -), разработанный ассоциацией VICS (Voluntary Interindustry Commerce Standards).
    Помимо решения задач оперативного управления, SCP-системы позволяют осуществлять стратегическое планирование структуры цепочки поставок: разрабатывать планы сети поставок, моделировать различные ситуации, оценивать уровень выполнения операций, сравнивать плановые и текущие показатели.
    SCE (Supply Chain Execution)
    Исполнение цепочек поставок. В подгруппу SCE входят TMS, WMS, OMS, а также MES-системы.
    [ http://www.morepc.ru/dict/]

    Тематики

    EN

     

    управление цепью поставок
    Формирование, планирование, исполнение, контроль и мониторинг деятельности цепи поставок с целью создания чистой ценности, построения конкурентоспособной инфраструктуры, усиления международной (мировой) логистики, синхронизации поставок со спросом и глобальной оценки деятельности.
    [ http://www.abc.org.ru/gloss.html]

    Тематики

    EN

     

    управление цепями (системами) поставок
    УЦП

    УЦП планирует и управляет цепочкой поставок, т.е. процессом производства и распределения товара в целом, начиная от стадии сырья, заканчивая конечной продажей клиенту. Цепочка поставок обычно включает третьи стороны, такие как поставщики, оптовые торговцы или посредники, которые зачастую находятся в других странах. Таким образом, эффективное межгосударственное УЦП в значительной степени зависит от упрощенных и стандартизированных процедур при пересечении границ. Оптимизация цепочки поставок может способствовать значительному снижению стоимости, усилению конкурентоспособности компаний и повышению ориентированности на клиента, посредством производства товаров, удовлетворяющих потребности покупателей
    [Упрощение процедур торговли: англо-русский глоссарий терминов (пересмотренное второе издание) НЬЮ-ЙОРК, ЖЕНЕВА, МОСКВА 2011 год]

    EN

    supply chain management
    Scm plans and manages the supply chain, i.e. the entire production and distribution process of a good from its raw materials to the final sale to the customer. The supply chain usually includes third parties like suppliers, wholesalers or intermediaries, which are frequently located in different countries. Thus, efficient inter-country scm crucially depends on simplified and standardized border-crossing procedures. Optimizing the supply chain can attain substantial cost reductions, can boost the competitiveness of firms and can increase their consumer-friendliness by producing goods, which are tailored to the customers â needs
    [Trade Facilitation Terms: An English - Russian Glossary (revised second edition) NEW YORK, GENEVA, MOSCOW 2803]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > supply chain management

  • 50 verification

    1. проверка (подлинности)
    2. долговременная маркировка
    3. верификация (штрихового кода)
    4. верификация (с точки зрения электробезопасности)
    5. верификация (проверка)
    6. верификация (доказательство правильности)
    7. верификация (в менеджменте качества)
    8. верификация

     

    верификация
    контроль
    проверка

    Установление соответствия принятой и переданной информации с помощью логических методов [http://www.rol.ru/files/dict/internet/#].
    [ http://www.morepc.ru/dict/]

    верификация
    (ITIL Service Transition)
    Деятельность, которая гарантирует, что новая или измененная ИТ- услуга, процесс, план или другой результат - полный, точный, надежный и соответствует своей спецификации проектирования.
    См. тж. подтверждение; приёмка; подтверждение и тестирование услуг.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    EN

    verification 
    (ITIL Service Transition)
    An activity that ensures that a new or changed IT service, process, plan or other deliverable is complete, accurate, reliable and matches its design specification.
    See also acceptance; validation; service validation and testing.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    Тематики

    Синонимы

    EN

     

    верификация
    Подтверждение посредством представления объективных свидетельств того, что установленные требования были выполнены.
    Примечания
    1. Термин "верифицирован" используют для обозначения соответствующего статуса.
    2. Деятельность по подтверждению требования может включать в себя:
    - осуществление альтернативных расчетов;
    - сравнение спецификации на новый проект с аналогичной документацией на апробированный проект;
    - проведение испытаний и демонстраций;
    - анализ документов до их выпуска.
    [ ГОСТ Р ИСО 9000-2008]

    Тематики

    EN

     

    верификация (доказательство правильности)
    контроль
    проверка


    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    Синонимы

    EN

     

    верификация (проверка)
    1. Процесс определения соответствия качества или характеристик продукта или услуги тому, что предписывается, предопределяется или требуется. Верификация тесно связана с обеспечением качества и контролем качества. верификация компьютерной системы computer system verification Процесс, имеющий целью обеспечить, чтобы данный этап в жизненном цикле системы удовлетворял требованиям, введенным на предыдущем этапе. верификация модели model verification Процесс, имеющий целью определить, правильно ли отображает данная вычислительная модель искомую концептуальную модель или математическую модель. Верификация системного кода system code verification Анализ кодирования источника на предмет его соответствия описанию в документации системного кода. 2. Подтверждение на основе объективных свидетельств того, что установленные требования были выполнены. См. валидация (аттестация). Соответствующий статус – ‘верифицировано’. Верификация может включать такие операции, как: осуществление альтернативных расчетов; сравнение научной и технической документации по новому проекту с аналогичной документацией по апробированному проекту; проведение испытаний и демонстраций; и анализ документов до их выпуска.
    [Глоссарий МАГАТЭ по вопросам безопасности]

    Тематики

    EN

     

    верификация
    Подтверждение выполнения требований путем исследования и сбора объективных свидетельств.
    Примечания
    1. Адаптировано из ИСО 8402 путем исключения примечаний.
    2. В контексте настоящего стандарта верификация представляет собой выполняемую для каждой стадии жизненного цикла соответствующей системы безопасности (общей, E/E/PES систем и программного обеспечения) путем анализа и/или тестирования демонстрацию того, что для используемых входных данных компоненты удовлетворяют во всех отношениях набору задач и требований для соответствующей стадии.
    Пример
    Процесс верификации включает в себя:
    - просмотр выходных данных (документов, относящихся ко всем стадиям жизненного цикла систем безопасности) для того, чтобы убедиться в соответствии задачам и требованиям соответствующей стадии, с учетом конкретных входных данных для этой стадии;
    - просмотр проектов;
    - тестирование проектируемых продуктов для того, чтобы убедиться, что они работают в соответствии с их спецификациями;
    - проверка интеграции, реализуемая внешними тестами, для всех систем, образующихся покомпонентным добавлением к исходной системе, и необходимая для того, чтобы убедиться, что все компоненты работают вместе в соответствии со спецификацией.
    [ ГОСТ Р МЭК 61508-4-2007]

    Тематики

    EN

     

    верификация (штрихового кода)
    Техническая процедура измерения показателей символа штрихового кода, в процессе которой определяется их соответствие требованиям, предъявляемым к символу.
    [ ГОСТ 30721-2000]
    [ ГОСТ Р 51294.3-99]

    Тематики

    EN

    DE

    FR

     

    проверка (подлинности)
    верификация

    Процесс сопоставления субъекта с заявленными о нем сведениями. В частности процедура сравнения подписи, созданной с помощью частного ключа, с соответсвующим открытым ключом.
    [ http://www.rfcmd.ru/glossword/1.8/index.php?a=index&d=5048]

    Тематики

    Синонимы

    EN

    4.55 верификация (verification): Подтверждение (на основе представления объективных свидетельств) того, что заданные требования полностью выполнены [3].

    Примечание - Верификация в контексте жизненного цикла представляет собой совокупность действий по сравнению полученного результата жизненного цикла с требуемыми характеристиками для этого результата. Результатами жизненного цикла могут являться (но не ограничиваться ими): заданные требования, описание проекта и непосредственно система.

    Источник: ГОСТ Р ИСО/МЭК 12207-2010: Информационная технология. Системная и программная инженерия. Процессы жизненного цикла программных средств оригинал документа

    4.23 верификация (verification): Процесс, в результате которого приходят к заключению, что два изображения принадлежат одному и тому же человеку; сопоставление 1:1 («один к одному»).

    Примечание - Термины и соответствующие определения к ним установлены только для использования в настоящем стандарте.

    Источник: ГОСТ Р ИСО/МЭК 19794-5-2006: Автоматическая идентификация. Идентификация биометрическая. Форматы обмена биометрическими данными. Часть 5. Данные изображения лица оригинал документа

    4.24 верификация (verification): Подтверждение на основе представления объективных свидетельств того, что установленные требования были выполнены [3].

    Примечание - Верификация в контексте жизненного цикла системы является совокупностью действий по сравнению полученного результата жизненного цикла системы с требуемыми характеристиками для этого результата. Результатами жизненного цикла могут являться (но не ограничиваются только ими) установленные требования, описание проекта и непосредственно система.

    Источник: ГОСТ Р ИСО/МЭК 15288-2005: Информационная технология. Системная инженерия. Процессы жизненного цикла систем оригинал документа

    3.36 верификация (verification): Подтверждение экспертизой и представлением объективных доказательств того, что конкретные требования полностью реализованы.

    Примечания

    1 В процессе проектирования и разработки верификация связана с экспертизой результатов данной работы в целях определения их соответствия установленным требованиям.

    2 Термин «верифицирован» используется для обозначения соответствующих состояний проверенного объекта. (См. 2.17 title="Управление качеством и обеспечение качества - Словарь").

    Источник: ГОСТ Р ИСО/МЭК 12207-99: Информационная технология. Процессы жизненного цикла программных средств оригинал документа

    3.18 верификация (verification): Подтверждение посредством предоставления объективных свидетельств того, что установленные требования были выполнены.

    [ИСО 9000:2005]

    Примечание - В качестве синонима может использоваться термин «проверка соответствия».

    Источник: ГОСТ Р ИСО/МЭК 27004-2011: Информационная технология. Методы и средства обеспечения безопасности. Менеджмент информационной безопасности. Измерения оригинал документа

    2.22 верификация (verification): Подтверждение на основе анализа и представления объективных свидетельств того, что установленные требования выполнены.

    Примечание - При проектировании и разработке верификация означает процесс анализа результатов предпринятой деятельности с целью определения соответствия установленным к этой деятельности требованиям ([4], подпункт 3.8.4).

    Источник: ГОСТ Р ИСО 14971-2006: Изделия медицинские. Применение менеджмента риска к медицинским изделиям оригинал документа

    3.8.4 верификация (verification): Подтверждение посредством представления объективных свидетельств (3.8.1) того, что установленные требования (3.1.2) были выполнены.

    Примечания

    1 Термин «верифицирован» используют для обозначения соответствующего статуса.

    2 Деятельность по подтверждению требования может включать в себя:

    - осуществление альтернативных расчетов;

    - сравнение спецификации (3.7.3) на новый проект с аналогичной документацией на апробированный проект;

    - проведение испытаний (3.8.3) и демонстраций;

    - анализ документов до их выпуска.

    Источник: ГОСТ Р ИСО 9000-2008: Системы менеджмента качества. Основные положения и словарь оригинал документа

    2.18 верификация (verification): Подтверждение посредством предоставления объективных свидетельств того, что установленные требования выполнены.

    Примечание - Верификация это набор действий, с помощью которого происходит сопоставление характеристик системы или элемента системы с установленными требованиями к характеристикам. Верификация может охватывать установленные требования, описание проекта и саму систему.

    Источник: ГОСТ Р ИСО 9241-210-2012: Эргономика взаимодействия человек-система. Часть 210. Человеко-ориентированное проектирование интерактивных систем оригинал документа

    2.35 верификация (verification): Систематический, независимый и документально оформленный процесс оценки утверждения по ПГ на соответствие согласованным критериям верификации.

    Примечание - В некоторых случаях, например при верификациях первой стороной, независимость может быть продемонстрирована невозложением на какое-либо лицо ответственности за подготовку данных и представление соответствующей информации по ПГ.

    Источник: ГОСТ Р ИСО 14064-1-2007: Газы парниковые. Часть 1. Требования и руководство по количественному определению и отчетности о выбросах и удалении парниковых газов на уровне организации оригинал документа

    2.28 верификация (verification): Систематический, независимый и документально оформленный процесс оценки утверждения по парниковым газам (2.10) на соответствие согласованным критериям верификации.

    Примечание - В некоторых случаях, например при верификациях первой стороной, независимость может быть продемонстрирована невозложением на какое-либо лицо ответственности за подготовку данных и представление соответствующей информации по ПГ.

    Источник: ГОСТ Р ИСО 14064-2-2007: Газы парниковые. Часть 2. Требования и руководство по количественной оценке, мониторингу и составлению отчетной документации на проекты сокращения выбросов парниковых газов или увеличения их удаления на уровне проекта оригинал документа

    2.36 верификация (verification): Систематический, независимый и документально оформленный процесс оценки утверждения по ПГ (2.11)на соответствие согласованным критериям верификации (2.33).

    Примечание - В некоторых случаях, например при верификации первой стороной, независимость может быть продемонстрирована невозложением на какое-либо лицо ответственности за подготовку данных и представление соответствующей информации по ПГ.

    Источник: ГОСТ Р ИСО 14064-3-2007: Газы парниковые. Часть 3. Требования и руководство по валидации и верификации утверждений, касающихся парниковых газов оригинал документа

    3.1.22 верификация (verification): Подтверждение на основе представления объективных свидетельств того, что установленные требования были выполнены.

    [ИСО 9000, статья 3.8.4]

    Источник: ГОСТ ИСО 14698-1-2005: Чистые помещения и связанные с ними контролируемые среды. Контроль биозагрязнений. Часть 1. Общие принципы и методы оригинал документа

    3.116 верификация (verification): Экспертиза, призванная подтвердить, что деятельность, изделие или услуга соответствуют заданным требованиям.

    Источник: ГОСТ Р 54382-2011: Нефтяная и газовая промышленность. Подводные трубопроводные системы. Общие технические требования оригинал документа

    3.17 верификация (verification): Комплекс операций для проверки испытательного оборудования (например, испытательного генератора и соединительных кабелей), а также для демонстрации того, что испытательная система функционирует.

    Примечание - Методы, используемые для верификации, отличаются от методов калибровки.

    Источник: ГОСТ Р 51317.4.2-2010: Совместимость технических средств электромагнитная. Устойчивость к электростатическим разрядам. Требования и методы испытаний оригинал документа

    3.26 верификация (verification): Процесс определения, соответствует ли качество продукта или услуги установленным требованиям.

    [Справочник по безопасности МАГАТЭ, Издание 2.0, 2006]

    Источник: ГОСТ Р МЭК 62340-2011: Атомные станции. Системы контроля и управления, важные для безопасности. Требования по предотвращению отказов по общей причине оригинал документа

    3.7 верификация (verification): Подтверждение на основе объективных данных, что установленные требования были выполнены.

    Примечание 1 -Адаптированный термин по ИСО 9000:2005, пункт 3.8.4 [1].

    Примечание 2 - См. рисунок 1.

    Примечание 3 - Данный термин часто используют совместно с термином «валидация», и оба термина составляют аббревиатуру «V&V» (верификация и валидация).

    Источник: ГОСТ Р ИСО 11064-7-2010: Эргономическое проектирование центров управления. Часть 7. Принципы оценки оригинал документа

    2.141 верификация (verification): Подтверждение на основе представления объективных свидетельств того, что установленные требования были выполнены.

    Примечание - При аттестации (верификации) документированной системы контроля (2.70) могут использоваться методы текущего контроля и аудита, методики и проверки, в том числе случайный отбор проб и проведение анализа.

    [ИСО 14698-1:2003, статья 3.1.22]

    Источник: ГОСТ Р ИСО 14644-6-2010: Чистые помещения и связанные с ними контролируемые среды. Часть 6. Термины оригинал документа

    3.43 верификация (verification): Подтверждение экспертизой и предоставлением иного объективного свидетельства того, что результаты функционирования соответствуют целям и требованиям, определенным для такого функционирования.

    [МЭК 62138, пункт 3.35]

    Источник: ГОСТ Р МЭК 60880-2010: Атомные электростанции. Системы контроля и управления, важные для безопасности. Программное обеспечение компьютерных систем, выполняющих функции категории А оригинал документа

    3.18 верификация (verification): Подтверждение экспертизой и представление иного объективного доказательства того, что результаты функционирования отвечают целям и требованиям, определенным для такого функционирования (ИСО 12207).

    [МЭК 62138:2004, определение 3.35]

    Источник: ГОСТ Р МЭК 60987-2011: Атомные станции. Системы контроля и управления, важные для безопасности. Требования к разработке аппаратного обеспечения компьютеризованных систем оригинал документа

    3.8.1 верификация (verification): Подтверждение выполнения требований путем исследования и сбора объективных свидетельств.

    Примечания

    1. Адаптировано из ИСО 8402 путем исключения примечаний.

    2. В контексте настоящего стандарта верификация представляет собой выполняемую для каждой стадии жизненного цикла соответствующей системы безопасности (общей, E/E/PES систем и программного обеспечения) путем анализа и/или тестирования демонстрацию того, что для используемых входных данных компоненты удовлетворяют во всех отношениях набору задач и требований для соответствующей стадии.

    ПРИМЕР - Процесс верификации включает в себя:

    Источник: ГОСТ Р МЭК 61508-4-2007: Функциональная безопасность систем электрических, электронных, программируемых электронных, связанных с безопасностью. Часть 4. Термины и определения оригинал документа

    3.8.4 верификация (verification): Подтверждение посредством представления объективных свидетельств (3.8.1) того, что установленные требования (3.1.2) были выполнены.

    Примечания

    1 Термин «верифицирован» используют для обозначения соответствующего статуса.

    2 Деятельность по подтверждению требования может включать в себя:

    - осуществление альтернативных расчетов;

    - сравнение спецификации (3.7.3) на новый проект с аналогичной документацией на апробированный проект;

    - проведение испытаний (3.8.3) и демонстраций;

    - анализ документов до их выпуска.

    Источник: ГОСТ ISO 9000-2011: Системы менеджмента качества. Основные положения и словарь

    3.2.59 верификация (verification): Подтверждение на основе представления объективных свидетельств того, что установленные требования были выполнены.

    Источник: ГОСТ Р 54147-2010: Стратегический и инновационный менеджмент. Термины и определения оригинал документа

    5.1 верификация (verification):

    в контексте маркировки и декларирования: Подтверждение посредством предоставления объективных свидетельств выполнения установленных требований.

    [ИСО 14025:2006];

    в контексте парниковых газов: Систематический, независимый и документально оформленный процесс (6.4) для оценки утверждения по парниковым газам (9.5.2) на соответствие согласованным критериям верификации (5.12).

    Примечание - В некоторых случаях, например при верификациях первой стороной, независимость может быть продемонстрирована свободой от несения ответственности за подготовку данных и представление информации по парниковым газам.

    [ИСО 14065:2007]

    Источник: ГОСТ Р ИСО 14050-2009: Менеджмент окружающей среды. Словарь оригинал документа

    3.3.7 верификация (verification): Систематический, независимый и документально оформленный процесс оценки утверждения по ПГ на соответствие согласованным критериям верификации.

    Примечания

    1 В некоторых случаях, например при верификациях первой стороной, независимость может быть продемонстрирована невозложением на какое-либо лицо ответственности за подготовку данных и представление соответствующей информации по ПГ.

    2 В соответствии с ИСО 14064-3:2006, статья 2.36.

    Источник: ГОСТ Р ИСО 14065-2010: Газы парниковые. Требования к органам по валидации и верификации парниковых газов для их применения при аккредитации или других формах признания оригинал документа

    04.02.27 долговременная маркировка [ permanent marking]: Изображение, полученное с помощью интрузивного или неинтрузивного маркирования, которое должно оставаться различимым, как минимум, в течение установленного срока службы изделия.

    Сравнить с терминологической статьей «соединение» по ИСО/МЭК19762-11).

    ______________

    1)Терминологическая статья 04.02.27 не связана с указанной терминологической статьей.

    <2>4 Сокращения

    ECI интерпретация в расширенном канале [extended channel interpretation]

    DPM прямое маркирование изделий [direct part marking]

    BWA коррекция ширины штриха [bar width adjustment]

    BWC компенсация ширины штриха [barwidth compensation]

    CPI число знаков на дюйм [characters per inch]

    PCS сигнал контраста печати [print contrast signal]

    ORM оптический носитель данных [optically readable medium]

    FoV поле обзора [field of view]

    Алфавитный указатель терминов на английском языке

    (n, k)symbology

    04.02.13

    add-on symbol

    03.02.29

    alignment pattern

    04.02.07

    aperture

    02.04.09

    auto discrimination

    02.04.33

    auxiliary character/pattern

    03.01.04

    background

    02.02.05

    bar

    02.01.05

    bar code character

    02.01.09

    bar code density

    03.02.14

    barcode master

    03.02.19

    barcode reader

    02.04.05

    barcode symbol

    02.01.03

    bar height

    02.01.16

    bar-space sequence

    02.01.20

    barwidth

    02.01.17

    barwidth adjustment

    03.02.21

    barwidth compensation

    03.02.22

    barwidth gain/loss

    03.02.23

    barwidth increase

    03.02.24

    barwidth reduction

    03.02.25

    bearer bar

    03.02.11

    binary symbology

    03.01.10

    characters per inch

    03.02.15

    charge-coupled device

    02.04.13

    coded character set

    02.01.08

    column

    04.02.11

    compaction mode

    04.02.15

    composite symbol

    04.02.14

    contact scanner

    02.04.07

    continuous code

    03.01.12

    corner marks

    03.02.20

    data codeword

    04.02.18

    data region

    04.02.17

    decodability

    02.02.28

    decode algorithm

    02.02.01

    defect

    02.02.22

    delineator

    03.02.30

    densitometer

    02.02.18

    depth of field (1)

    02.04.30

    depth of field (2)

    02.04.31

    diffuse reflection

    02.02.09

    direct part marking

    04.02.24

    discrete code

    03.01.13

    dot code

    04.02.05

    effective aperture

    02.04.10

    element

    02.01.14

    erasure

    04.02.21

    error correction codeword

    04.02.19

    error correction level

    04.02.20

    even parity

    03.02.08

    field of view

    02.04.32

    film master

    03.02.18

    finder pattern

    04.02.08

    fixed beam scanner

    02.04.16

    fixed parity

    03.02.10

    fixed pattern

    04.02.03

    flat-bed scanner

    02.04.21

    gloss

    02.02.13

    guard pattern

    03.02.04

    helium neon laser

    02.04.14

    integrated artwork

    03.02.28

    intercharacter gap

    03.01.08

    intrusive marking

    04.02.25

    label printing machine

    02.04.34

    ladder orientation

    03.02.05

    laser engraver

    02.04.35

    latch character

    02.01.24

    linear bar code symbol

    03.01.01

    magnification factor

    03.02.27

    matrix symbology

    04.02.04

    modular symbology

    03.01.11

    module (1)

    02.01.13

    module (2)

    04.02.06

    modulo

    03.02.03

    moving beam scanner

    02.04.15

    multi-row symbology

    04.02.09

    non-intrusive marking

    04.02.26

    odd parity

    03.02.07

    omnidirectional

    03.01.14

    omnidirectional scanner

    02.04.20

    opacity

    02.02.16

    optically readable medium

    02.01.01

    optical throw

    02.04.27

    orientation

    02.04.23

    orientation pattern

    02.01.22

    oscillating mirror scanner

    02.04.19

    overhead

    03.01.03

    overprinting

    02.04.36

    pad character

    04.02.22

    pad codeword

    04.02.23

    permanent marking

    04.02.27

    photometer

    02.02.19

    picket fence orientation

    03.02.06

    pitch

    02.04.26

    pixel

    02.04.37

    print contrast signal

    02.02.20

    printability gauge

    03.02.26

    printability test

    02.02.21

    print quality

    02.02.02

    quiet zone

    02.01.06

    raster

    02.04.18

    raster scanner

    02.04.17

    reading angle

    02.04.22

    reading distance

    02.04.29

    read rate

    02.04.06

    redundancy

    03.01.05

    reference decode algorithm

    02.02.26

    reference threshold

    02.02.27

    reflectance

    02.02.07

    reflectance difference

    02.02.11

    regular reflection

    02.02.08

    resolution

    02.01.15

    row

    04.02.10

    scanner

    02.04.04

    scanning window

    02.04.28

    scan, noun (1)

    02.04.01

    scan, noun (2)

    02.04.03

    scan reflectance profile

    02.02.17

    scan, verb

    02.04.02

    self-checking

    02.01.21

    shift character

    02.01.23

    short read

    03.02.12

    show through

    02.02.12

    single line (beam) scanner

    02.04.11

    skew

    02.04.25

    slot reader

    02.04.12

    speck

    02.02.24

    spectral response

    02.02.10

    spot

    02.02.25

    stacked symbology

    04.02.12

    stop character/pattern

    03.01.02

    structured append

    04.02.16

    substitution error

    03.02.01

    substrate

    02.02.06

    symbol architecture

    02.01.04

    symbol aspect ratio

    02.01.19

    symbol character

    02.01.07

    symbol check character

    03.02.02

    symbol density

    03.02.16

    symbology

    02.01.02

    symbol width

    02.01.18

    tilt

    02.04.24

    transmittance (l)

    02.02.14

    transmittance (2)

    02.02.15

    truncation

    03.02.13

    two-dimensional symbol (1)

    04.02.01

    two-dimensional symbol (2)

    04.02.02

    two-width symbology

    03.01.09

    variable parity encodation

    03.02.09

    verification

    02.02.03

    verifier

    02.02.04

    vertical redundancy

    03.01.06

    void

    02.02.23

    wand

    02.04.08

    wide: narrow ratio

    03.01.07

    X dimension

    02.01.10

    Y dimension

    02.01.11

    Z dimension

    02.01.12

    zero-suppression

    03.02.17

    <2>Приложение ДА1)

    ______________

    1)

    Источник: ГОСТ Р ИСО/МЭК 19762-2-2011: Информационные технологии. Технологии автоматической идентификации и сбора данных (АИСД). Гармонизированный словарь. Часть 2. Оптические носители данных (ОНД) оригинал документа

    Англо-русский словарь нормативно-технической терминологии > verification

  • 51 identification

    1. отождествление
    2. опознавательный знак
    3. опознавание
    4. метка, идентифицирующая объект
    5. идентификация (в теории управления)
    6. идентификация (в системах охраны и безопасности объектов)
    7. идентификация
    8. идентификационное письмо

     

    идентификационное письмо
    Письмо, выдаваемое банком своему клиенту, которому уже был выдан аккредитив (letter of credit). Это письмо должно быть представлено вместе с аккредитивом принимающему банку; оно подтверждает личность предъявителя и его подпись. Особенно часто оно используется совместно с циркулярным аккредитивом, которым пользуются путешественники, хотя сейчас более широко используются дорожные чеки (travellers cheques).
    [ http://www.vocable.ru/dictionary/533/symbol/97]

    Тематики

    EN

     

    идентификация
    Установление тождества объектов на основе совпадения их признаков.
    [ГОСТ 7.0-99]

    идентификация
    Присвоение субъектам и объектам доступа идентификатора и (или) сравнение предъявляемого идентификатора с перечнем присвоенных идентификаторов [4].
    [4] Государственная техническая комиссия при Президенте Российской Федерации.
    Сборник руководящих документов по защите от несанкционированного доступа. М., 1998.

    [ОСТ 45.127-99]

    Тематики

    EN

    FR

     

    идентификация
    Присвоение субъектам и объектам доступа идентификатора и/или сравнение предъявляемого идентификатора с перечнем присвоенных идентификаторов
    [РД 25.03.001-2002] 

    Тематики

    EN

     

    идентификация
    Процесс определения значений параметров математической модели процессов в объекте (в заданном классе моделей) по значениям координат объекта, измеряемым в процессе функционирования.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    Тематики

    • автоматизация, основные понятия

    EN

     

    метка, идентифицирующая объект

    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

     

    опознавание

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999]

    Тематики

    • электротехника, основные понятия

    EN

     

    отождествление
    идентификация


    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    Синонимы

    EN

    4.15 идентификация (identification): Процесс последовательного сопоставления полученного изображения лица со множеством изображений лиц для обнаружения похожего изображения; сопоставление 1:N («один ко многим»).

    Источник: ГОСТ Р ИСО/МЭК 19794-5-2006: Автоматическая идентификация. Идентификация биометрическая. Форматы обмена биометрическими данными. Часть 5. Данные изображения лица оригинал документа

    2.17 идентификация (identification): Выполнение проверок, позволяющих системе обработки данных распознавать объекты.

    Источник: ГОСТ Р ИСО/ТС 22600-2-2009: Информатизация здоровья. Управление полномочиями и контроль доступа. Часть 2. Формальные модели

    3.30 идентификация (identification): Процесс установления единственным образом однозначной идентичности объекта [5].

    Источник: ГОСТ Р ИСО/ТО 13569-2007: Финансовые услуги. Рекомендации по информационной безопасности

    3.30 идентификация (identification): Процесс установления единственным образом однозначной идентичности объекта [5].

    Источник: ГОСТ Р ИСО ТО 13569-2007: Финансовые услуги. Рекомендации по информационной безопасности

    3.11 опознавательный знак (identification): Символ, метка или сегмент указателя и шкалы, с помощью которых водитель может распознать характеристику, отображаемую элементом управления, индикатором или сигнализатором.

    Источник: ГОСТ Р ИСО 4040-2011: Эргономика транспортных средств. Расположение элементов ручного управления, индикаторов и сигнализаторов в автомобиле оригинал документа

    Англо-русский словарь нормативно-технической терминологии > identification

  • 52 audit trail

    1. след контроля
    2. системный журнал
    3. контрольный след
    4. контрольный журнал аудита (термин APC)
    5. контрольный журнал
    6. контрольный анализ (процесса)
    7. контрольная запись (в информационных технологиях)
    8. контроль прослеживаемости
    9. журнал регистрации сетевых событий
    10. данные проверки
    11. аудиторский след
    12. аудиторский журнал
    13. аудиторская прослеживаемость

     

    аудиторская прослеживаемость
    Возможность проследить детали прошлых трансакций по счетам. Прослеживаемость обычно относится к компьютерным файлам и имеет большое значение в сделках с ценными бумагами, так как позволяет наблюдательным органам проследить операции и убедиться в том, что они были проведены по справедливым ценам. Часто аудиторскую прослеживаемость называют прослеживаемостью на бумаге (paper trail).
    [ http://www.vocable.ru/dictionary/533/symbol/97]

    Тематики

    EN

     

    аудиторский журнал
    Журнал регистрации обращений к защищенным данным.
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    Тематики

    • электросвязь, основные понятия

    EN

     

    аудиторский след
    Последовательная регистрация событий, произошедших в Системе.
    [Глоссарий терминов, используемых в платежных и расчетных системах. Комитет по платежным и расчетным системам Банка международных расчетов. Базель, Швейцария, март 2003 г.]

    Тематики

    EN

     

    данные проверки
    Данные, которые собраны и могут быть использованы для содействия проведению проверки безопасности.
    Рекомендация МСЭ-Т X.800.
    [http://www.rfcmd.ru/glossword/1.8/index.php?a=index&d=23]

    Тематики

    EN

     

    журнал регистрации сетевых событий
    аудиторское заключение


    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    Синонимы

    EN

     

    контрольная запись
    контрольный журнал

    Запись, в которой указывается, какой пользователь, когда, какие ресурсы получил и в течении какого времени.
    Журнал, в котором фиксируются обращения к защищенным данным. Просмотр этого журнала позволяет выявить попытки несанкционированного доступа и идентифицировать лиц, делавших такие попытки.
    [ http://www.morepc.ru/dict/]

    Тематики

    Синонимы

    EN

     

    контрольный анализ (процесса)

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    контрольный журнал

    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    контрольный след
    Подробная запись процедуры информационного обмена, позволяющая проверить правильность функционирования аппаратных и программных средств.
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    Тематики

    • электросвязь, основные понятия

    EN

     

    системный журнал
    Хронологически упорядоченная совокупность записей результатов деятельности субъектов системы, достаточная для восстановления, просмотра и анализа последовательности действий, окружающих или приводящих к выполнению операций, процедур или совершению событий при транзакции с целью инспекции конечного результата.
    [http://www.rfcmd.ru/glossword/1.8/index.php?a=index&d=23]

    Тематики

    EN

     

    след контроля
    Записи о транзакциях, выполняемых в системе. Последовательность этих записей документирует ход обработки информации в системе, что позволяет проследить (провести трассировку) его: вперед от исходных транзакций до создаваемых в процессе их работы записей и/или отчетов или назад от конечных записей/отчетов до исходных транзакций. След контроля позволяет определить источники возникновения транзакций и последовательность их выполнения системой.
    [Домарев В.В. Безопасность информационных технологий. Системный подход.]

    Тематики

    EN

    2.7 контрольный журнал (audit trail): Журнал, предназначенный для регистрации процессов функционирования в информационной системе.

    Источник: ГОСТ Р ИСО/МЭК ТО 10032-2007: Эталонная модель управления данными

    контрольный журнал (audit trail): Хронологическая запись действий пользователей информационной системы, позволяющая точно восстанавливать предшествующие состояния информации.

    Источник: ГОСТ Р ИСО/ТС 18308-2008: Информатизация здоровья. Требования к архитектуре электронного учета здоровья

    2.19 контроль прослеживаемости (audit trail): Ряд документов или записей в протоколах, который позволяет проследить взаимосвязанную информацию.

    [ИСО 14698-2:2003, статья 3.3]

    Источник: ГОСТ Р ИСО 14644-6-2010: Чистые помещения и связанные с ними контролируемые среды. Часть 6. Термины оригинал документа

    Англо-русский словарь нормативно-технической терминологии > audit trail

  • 53 plc

    1. связь по ЛЭП
    2. программируемый логический контроллер
    3. несущая в канале ВЧ-связи по ЛЭП
    4. маскирование потери пакета
    5. контроллер с программируемой логикой
    6. акционерная компания с ограниченной ответственностью

     

    акционерная компания с ограниченной ответственностью
    AG - аббревиатура для обозначения AKTIENGESELLSCHAFT (акционерное общество). Оно пишется после названия немецких, австрийских или швейцарских компаний и является эквивалентом английской аббревиатуры plc (public limited company-акционерная компания с ограниченной ответственностью). Сравни: GmbH.
    [ http://www.vocable.ru/dictionary/533/symbol/97]

    Тематики

    EN

    DE

    • AG

     

    контроллер с программируемой логикой

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    маскирование потери пакета
    Метод сокрытия факта потери медиапакетов путем генерирования синтезируемых пакетов (МСЭ-T G.1050).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    несущая в канале ВЧ-связи по ЛЭП

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999]

    Тематики

    • электротехника, основные понятия

    EN

     

    программируемый логический контроллер
    ПЛК
    -
    [Интент]

    контроллер
    Управляющее устройство, осуществляющее автоматическое управление посредством программной реализации алгоритмов управления.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    EN

    storage-programmable logic controller
    computer-aided control equipment or system whose logic sequence can be varied via a directly or remote-control connected programming device, for example a control panel, a host computer or a portable terminal
    [IEV ref 351-32-34]

    FR

    automate programmable à mémoire
    équipement ou système de commande assisté par ordinateur dont la séquence logique peut être modifiée directement ou par l'intermédiaire d'un dispositif de programmation relié à une télécommande, par exemple un panneau de commande, un ordinateur hôte ou un terminal de données portatif
    [IEV ref 351-32-34]

      См. также:
    - архитектура контроллера;
    - производительность контроллера;
    - время реакции контроллера;
    КЛАССИФИКАЦИЯ

      Основным показателем ПЛК является количество каналов ввода-вывода. По этому признаку ПЛК делятся на следующие группы: По расположению модулей ввода-вывода ПЛК бывают:
    • моноблочными - в которых устройство ввода-вывода не может быть удалено из контроллера или заменено на другое. Конструктивно контроллер представляет собой единое целое с устройствами ввода-вывода (например, одноплатный контроллер). Моноблочный контроллер может иметь, например, 16 каналов дискретного ввода и 8 каналов релейного вывода;
    • модульные - состоящие из общей корзины (шасси), в которой располагаются модуль центрального процессора и сменные модули ввода-вывода. Состав модулей выбирается пользователем в зависимости от решаемой задачи. Типовое количество слотов для сменных модулей - от 8 до 32;
    • распределенные (с удаленными модулями ввода-вывода) - в которых модули ввода-вывода выполнены в отдельных корпусах, соединяются с модулем контроллера по сети (обычно на основе интерфейса RS-485) и могут быть расположены на расстоянии до 1,2 км от процессорного модуля.
    Часто перечисленные конструктивные типы контроллеров комбинируются, например, моноблочный контроллер может иметь несколько съемных плат; моноблочный и модульный контроллеры могут быть дополнены удаленными модулями ввода-вывода, чтобы увеличить общее количество каналов.

    Многие контроллеры имеют набор сменных процессорных плат разной производительности. Это позволяет расширить круг потенциальных пользователей системы без изменения ее конструктива.

    По конструктивному исполнению и способу крепления контроллеры делятся на:
    По области применения контроллеры делятся на следующие типы:
    • универсальные общепромышленные;
    • для управления роботами;
    • для управления позиционированием и перемещением;
    • коммуникационные;
    • ПИД-контроллеры;
    • специализированные.

    По способу программирования контроллеры бывают:
    • программируемые с лицевой панели контроллера;
    • программируемые переносным программатором;
    • программируемые с помощью дисплея, мыши и клавиатуры;
    • программируемые с помощью персонального компьютера.

    Контроллеры могут программироваться на следующих языках:
    • на классических алгоритмических языках (C, С#, Visual Basic);
    • на языках МЭК 61131-3.

    Контроллеры могут содержать в своем составе модули ввода-вывода или не содержать их. Примерами контроллеров без модулей ввода-вывода являются коммуникационные контроллеры, которые выполняют функцию межсетевого шлюза, или контроллеры, получающие данные от контроллеров нижнего уровня иерархии АСУ ТП.   Контроллеры для систем автоматизации

    Слово "контроллер" произошло от английского "control" (управление), а не от русского "контроль" (учет, проверка). Контроллером в системах автоматизации называют устройство, выполняющее управление физическими процессами по записанному в него алгоритму, с использованием информации, получаемой от датчиков и выводимой в исполнительные устройства.

    Первые контроллеры появились на рубеже 60-х и 70-х годов в автомобильной промышленности, где использовались для автоматизации сборочных линий. В то время компьютеры стоили чрезвычайно дорого, поэтому контроллеры строились на жесткой логике (программировались аппаратно), что было гораздо дешевле. Однако перенастройка с одной технологической линии на другую требовала фактически изготовления нового контроллера. Поэтому появились контроллеры, алгоритм работы которых мог быть изменен несколько проще - с помощью схемы соединений реле. Такие контроллеры получили название программируемых логических контроллеров (ПЛК), и этот термин сохранился до настоящего времени. Везде ниже термины "контроллер" и "ПЛК" мы будем употреблять как синонимы.

    Немного позже появились ПЛК, которые можно было программировать на машинно-ориентированном языке, что было проще конструктивно, но требовало участия специально обученного программиста для внесения даже незначительных изменений в алгоритм управления. С этого момента началась борьба за упрощение процесса программирования ПЛК, которая привела сначала к созданию языков высокого уровня, затем - специализированных языков визуального программирования, похожих на язык релейной логики. В настоящее время этот процесс завершился созданием международного стандарта IEC (МЭК) 1131-3, который позже был переименован в МЭК 61131-3. Стандарт МЭК 61131-3 поддерживает пять языков технологического программирования, что исключает необходимость привлечения профессиональных программистов при построении систем с контроллерами, оставляя для них решение нестандартных задач.

    В связи с тем, что способ программирования является наиболее существенным классифицирующим признаком контроллера, понятие "ПЛК" все реже используется для обозначения управляющих контроллеров, которые не поддерживают технологические языки программирования.   Жесткие ограничения на стоимость и огромное разнообразие целей автоматизации привели к невозможности создания универсального ПЛК, как это случилось с офисными компьютерами. Область автоматизации выдвигает множество задач, в соответствии с которыми развивается и рынок, содержащий сотни непохожих друг на друга контроллеров, различающихся десятками параметров.

    Выбор оптимального для конкретной задачи контроллера основывается обычно на соответствии функциональных характеристик контроллера решаемой задаче при условии минимальной его стоимости. Учитываются также другие важные характеристики (температурный диапазон, надежность, бренд изготовителя, наличие разрешений Ростехнадзора, сертификатов и т. п.).

    Несмотря на огромное разнообразие контроллеров, в их развитии заметны следующие общие тенденции:
    • уменьшение габаритов;
    • расширение функциональных возможностей;
    • увеличение количества поддерживаемых интерфейсов и сетей;
    • использование идеологии "открытых систем";
    • использование языков программирования стандарта МЭК 61131-3;
    • снижение цены.
    Еще одной тенденцией является появление в контроллерах признаков компьютера (наличие мыши, клавиатуры, монитора, ОС Windows, возможности подключения жесткого диска), а в компьютерах - признаков контроллера (расширенный температурный диапазон, электронный диск, защита от пыли и влаги, крепление на DIN-рейку, наличие сторожевого таймера, увеличенное количество коммуникационных портов, использование ОС жесткого реального времени, функции самотестирования и диагностики, контроль целостности прикладной программы). Появились компьютеры в конструктивах для жестких условий эксплуатации. Аппаратные различия между компьютером и контроллером постепенно исчезают. Основными отличительными признаками контроллера остаются его назначение и наличие технологического языка программирования.

    [ http://bookasutp.ru/Chapter6_1.aspx]  
    Программируемый логический контроллер (ПЛК, PLC) – микропроцессорное устройство, предназначенное для управления технологическим процессом и другими сложными технологическими объектами.
    Принцип работы контроллера состоит в выполнение следующего цикла операций:

    1.    Сбор сигналов с датчиков;
    2.    Обработка сигналов согласно прикладному алгоритму управления;
    3.    Выдача управляющих воздействий на исполнительные устройства.

    В нормальном режиме работы контроллер непрерывно выполняет этот цикл с частотой от 50 раз в секунду. Время, затрачиваемое контроллером на выполнение полного цикла, часто называют временем (или периодом) сканирования; в большинстве современных ПЛК сканирование может настраиваться пользователем в диапазоне от 20 до 30000 миллисекунд. Для быстрых технологических процессов, где критична скорость реакции системы и требуется оперативное регулирование, время сканирования может составлять 20 мс, однако для большинства непрерывных процессов период 100 мс считается вполне приемлемым.

    Аппаратно контроллеры имеют модульную архитектуру и могут состоять из следующих компонентов:

    1.    Базовая панель ( Baseplate). Она служит для размещения на ней других модулей системы, устанавливаемых в специально отведенные позиции (слоты). Внутри базовой панели проходят две шины: одна - для подачи питания на электронные модули, другая – для пересылки данных и информационного обмена между модулями.

    2.    Модуль центрального вычислительного устройства ( СPU). Это мозг системы. Собственно в нем и происходит математическая обработка данных. Для связи с другими устройствами CPU часто оснащается сетевым интерфейсом, поддерживающим тот или иной коммуникационный стандарт.

    3.    Дополнительные коммуникационные модули. Необходимы для добавления сетевых интерфейсов, неподдерживаемых напрямую самим CPU. Коммуникационные модули существенно расширяют возможности ПЛК по сетевому взаимодействию. C их помощью к контроллеру подключают узлы распределенного ввода/вывода, интеллектуальные полевые приборы и станции операторского уровня.

    4.    Блок питания. Нужен для запитки системы от 220 V. Однако многие ПЛК не имеют стандартного блока питания и запитываются от внешнего.  
    4906
    Рис.1. Контроллер РСУ с коммуникациями Profibus и Ethernet.
     
    Иногда на базовую панель, помимо указанных выше, допускается устанавливать модули ввода/вывода полевых сигналов, которые образуют так называемый локальный ввод/вывод. Однако для большинства РСУ (DCS) характерно использование именно распределенного (удаленного) ввода/вывода.

    Отличительной особенностью контроллеров, применяемых в DCS, является возможность их резервирования. Резервирование нужно для повышения отказоустойчивости системы и заключается, как правило, в дублировании аппаратных модулей системы.
     
    4907
    Рис. 2. Резервированный контроллер с коммуникациями Profibus и Ethernet.
     
    Резервируемые модули работают параллельно и выполняют одни и те же функции. При этом один модуль находится в активном состоянии, а другой, являясь резервом, – в режиме “standby”. В случае отказа активного модуля, система автоматически переключается на резерв (это называется “горячий резерв”).

    Обратите внимание, контроллеры связаны шиной синхронизации, по которой они мониторят состояние друг друга. Это решение позволяет разнести резервированные модули на значительное расстояние друг от друга (например, расположить их в разных шкафах или даже аппаратных).

    Допустим, в данный момент активен левый контроллер, правый – находится в резерве. При этом, даже находясь в резерве, правый контроллер располагает всеми процессными данными и выполняет те же самые математические операции, что и левый. Контроллеры синхронизированы. Предположим, случается отказ левого контроллера, а именно модуля CPU. Управление автоматически передается резервному контроллеру, и теперь он становится главным. Здесь очень большое значение имеют время, которое система тратит на переключение на резерв (обычно меньше 0.5 с) и отсутствие возмущений (удара). Теперь система работает на резерве. Как только инженер заменит отказавший модуль CPU на исправный, система автоматически передаст ему управление и возвратится в исходное состояние.

    На рис. 3 изображен резервированный контроллер S7-400H производства Siemens. Данный контроллер входит в состав РСУ Simatic PCS7.
     
     
    4908
    Рис. 3. Резервированный контроллер S7-400H. Несколько другое техническое решение показано на примере резервированного контроллера FCP270 производства Foxboro (рис. 4). Данный контроллер входит в состав системы управления Foxboro IA Series.  
    4909
    Рис. 4. Резервированный контроллер FCP270.
    На базовой панели инсталлировано два процессорных модуля, работающих как резервированная пара, и коммуникационный модуль для сопряжения с оптическими сетями стандарта Ethernet. Взаимодействие между модулями происходит по внутренней шине (тоже резервированной), спрятанной непосредственно в базовую панель (ее не видно на рисунке).

    На рисунке ниже показан контроллер AC800M производства ABB (часть РСУ Extended Automation System 800xA).  
    4910
    Рис. 5. Контроллер AC800M.
     
    Это не резервированный вариант. Контроллер состоит из двух коммуникационных модулей, одного СPU и одного локального модуля ввода/вывода. Кроме этого, к контроллеру можно подключить до 64 внешних модулей ввода/вывода.

    При построении РСУ важно выбрать контроллер, удовлетворяющий всем техническим условиям и требованиям конкретного производства. Подбирая оптимальную конфигурацию, инженеры оперируют определенными техническими характеристиками промышленных контроллеров. Наиболее значимые перечислены ниже:

    1.    Возможность полного резервирования. Для задач, где отказоустойчивость критична (химия, нефтехимия, металлургия и т.д.), применение резервированных конфигураций вполне оправдано, тогда как для других менее ответственных производств резервирование зачастую оказывается избыточным решением.

    2.    Количество и тип поддерживаемых коммуникационных интерфейсов. Это определяет гибкость и масштабируемость системы управления в целом. Современные контроллеры способны поддерживать до 10 стандартов передачи данных одновременно, что во многом определяет их универсальность.

    3.    Быстродействие. Измеряется, как правило, в количестве выполняемых в секунду элементарных операций (до 200 млн.). Иногда быстродействие измеряется количеством обрабатываемых за секунду функциональных блоков (что такое функциональный блок – будет рассказано в следующей статье). Быстродействие зависит от типа центрального процессора (популярные производители - Intel, AMD, Motorola, Texas Instruments и т.д.)

    4.    Объем оперативной памяти. Во время работы контроллера в его оперативную память загружены запрограммированные пользователем алгоритмы автоматизированного управления, операционная система, библиотечные модули и т.д. Очевидно, чем больше оперативной памяти, тем сложнее и объемнее алгоритмы контроллер может выполнять, тем больше простора для творчества у программиста. Варьируется от 256 килобайт до 32 мегабайт.

    5.    Надежность. Наработка на отказ до 10-12 лет.

    6. Наличие специализированных средств разработки и поддержка различных языков программирования. Очевидно, что существование специализированный среды разработки прикладных программ – это стандарт для современного контроллера АСУ ТП. Для удобства программиста реализуется поддержка сразу нескольких языков как визуального, так и текстового (процедурного) программирования (FBD, SFC, IL, LAD, ST; об этом в следующей статье).

    7.    Возможность изменения алгоритмов управления на “лету” (online changes), т.е. без остановки работы контроллера. Для большинства контроллеров, применяемых в РСУ, поддержка online changes жизненно необходима, так как позволяет тонко настраивать систему или расширять ее функционал прямо на работающем производстве.

    8.    Возможность локального ввода/вывода. Как видно из рис. 4 контроллер Foxboro FCP270 рассчитан на работу только с удаленной подсистемой ввода/вывода, подключаемой к нему по оптическим каналам. Simatic S7-400 может спокойно работать как с локальными модулями ввода/вывода (свободные слоты на базовой панели есть), так и удаленными узлами.

    9.    Вес, габаритные размеры, вид монтажа (на DIN-рейку, на монтажную панель или в стойку 19”). Важно учитывать при проектировании и сборке системных шкафов.

    10.  Условия эксплуатации (температура, влажность, механические нагрузки). Большинство промышленных контроллеров могут работать в нечеловеческих условиях от 0 до 65 °С и при влажности до 95-98%.

    [ http://kazanets.narod.ru/PLC_PART1.htm]

    Тематики

    Синонимы

    EN

    DE

    • speicherprogrammierbare Steuerung, f

    FR

     

    связь по ЛЭП

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

    Англо-русский словарь нормативно-технической терминологии > plc

  • 54 programmable logic controller

    1. программируемый логический контроллер
    2. контроллер с программируемой логикой

     

    контроллер с программируемой логикой

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    программируемый логический контроллер
    ПЛК
    -
    [Интент]

    контроллер
    Управляющее устройство, осуществляющее автоматическое управление посредством программной реализации алгоритмов управления.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    EN

    storage-programmable logic controller
    computer-aided control equipment or system whose logic sequence can be varied via a directly or remote-control connected programming device, for example a control panel, a host computer or a portable terminal
    [IEV ref 351-32-34]

    FR

    automate programmable à mémoire
    équipement ou système de commande assisté par ordinateur dont la séquence logique peut être modifiée directement ou par l'intermédiaire d'un dispositif de programmation relié à une télécommande, par exemple un panneau de commande, un ordinateur hôte ou un terminal de données portatif
    [IEV ref 351-32-34]

      См. также:
    - архитектура контроллера;
    - производительность контроллера;
    - время реакции контроллера;
    КЛАССИФИКАЦИЯ

      Основным показателем ПЛК является количество каналов ввода-вывода. По этому признаку ПЛК делятся на следующие группы: По расположению модулей ввода-вывода ПЛК бывают:
    • моноблочными - в которых устройство ввода-вывода не может быть удалено из контроллера или заменено на другое. Конструктивно контроллер представляет собой единое целое с устройствами ввода-вывода (например, одноплатный контроллер). Моноблочный контроллер может иметь, например, 16 каналов дискретного ввода и 8 каналов релейного вывода;
    • модульные - состоящие из общей корзины (шасси), в которой располагаются модуль центрального процессора и сменные модули ввода-вывода. Состав модулей выбирается пользователем в зависимости от решаемой задачи. Типовое количество слотов для сменных модулей - от 8 до 32;
    • распределенные (с удаленными модулями ввода-вывода) - в которых модули ввода-вывода выполнены в отдельных корпусах, соединяются с модулем контроллера по сети (обычно на основе интерфейса RS-485) и могут быть расположены на расстоянии до 1,2 км от процессорного модуля.
    Часто перечисленные конструктивные типы контроллеров комбинируются, например, моноблочный контроллер может иметь несколько съемных плат; моноблочный и модульный контроллеры могут быть дополнены удаленными модулями ввода-вывода, чтобы увеличить общее количество каналов.

    Многие контроллеры имеют набор сменных процессорных плат разной производительности. Это позволяет расширить круг потенциальных пользователей системы без изменения ее конструктива.

    По конструктивному исполнению и способу крепления контроллеры делятся на:
    По области применения контроллеры делятся на следующие типы:
    • универсальные общепромышленные;
    • для управления роботами;
    • для управления позиционированием и перемещением;
    • коммуникационные;
    • ПИД-контроллеры;
    • специализированные.

    По способу программирования контроллеры бывают:
    • программируемые с лицевой панели контроллера;
    • программируемые переносным программатором;
    • программируемые с помощью дисплея, мыши и клавиатуры;
    • программируемые с помощью персонального компьютера.

    Контроллеры могут программироваться на следующих языках:
    • на классических алгоритмических языках (C, С#, Visual Basic);
    • на языках МЭК 61131-3.

    Контроллеры могут содержать в своем составе модули ввода-вывода или не содержать их. Примерами контроллеров без модулей ввода-вывода являются коммуникационные контроллеры, которые выполняют функцию межсетевого шлюза, или контроллеры, получающие данные от контроллеров нижнего уровня иерархии АСУ ТП.   Контроллеры для систем автоматизации

    Слово "контроллер" произошло от английского "control" (управление), а не от русского "контроль" (учет, проверка). Контроллером в системах автоматизации называют устройство, выполняющее управление физическими процессами по записанному в него алгоритму, с использованием информации, получаемой от датчиков и выводимой в исполнительные устройства.

    Первые контроллеры появились на рубеже 60-х и 70-х годов в автомобильной промышленности, где использовались для автоматизации сборочных линий. В то время компьютеры стоили чрезвычайно дорого, поэтому контроллеры строились на жесткой логике (программировались аппаратно), что было гораздо дешевле. Однако перенастройка с одной технологической линии на другую требовала фактически изготовления нового контроллера. Поэтому появились контроллеры, алгоритм работы которых мог быть изменен несколько проще - с помощью схемы соединений реле. Такие контроллеры получили название программируемых логических контроллеров (ПЛК), и этот термин сохранился до настоящего времени. Везде ниже термины "контроллер" и "ПЛК" мы будем употреблять как синонимы.

    Немного позже появились ПЛК, которые можно было программировать на машинно-ориентированном языке, что было проще конструктивно, но требовало участия специально обученного программиста для внесения даже незначительных изменений в алгоритм управления. С этого момента началась борьба за упрощение процесса программирования ПЛК, которая привела сначала к созданию языков высокого уровня, затем - специализированных языков визуального программирования, похожих на язык релейной логики. В настоящее время этот процесс завершился созданием международного стандарта IEC (МЭК) 1131-3, который позже был переименован в МЭК 61131-3. Стандарт МЭК 61131-3 поддерживает пять языков технологического программирования, что исключает необходимость привлечения профессиональных программистов при построении систем с контроллерами, оставляя для них решение нестандартных задач.

    В связи с тем, что способ программирования является наиболее существенным классифицирующим признаком контроллера, понятие "ПЛК" все реже используется для обозначения управляющих контроллеров, которые не поддерживают технологические языки программирования.   Жесткие ограничения на стоимость и огромное разнообразие целей автоматизации привели к невозможности создания универсального ПЛК, как это случилось с офисными компьютерами. Область автоматизации выдвигает множество задач, в соответствии с которыми развивается и рынок, содержащий сотни непохожих друг на друга контроллеров, различающихся десятками параметров.

    Выбор оптимального для конкретной задачи контроллера основывается обычно на соответствии функциональных характеристик контроллера решаемой задаче при условии минимальной его стоимости. Учитываются также другие важные характеристики (температурный диапазон, надежность, бренд изготовителя, наличие разрешений Ростехнадзора, сертификатов и т. п.).

    Несмотря на огромное разнообразие контроллеров, в их развитии заметны следующие общие тенденции:
    • уменьшение габаритов;
    • расширение функциональных возможностей;
    • увеличение количества поддерживаемых интерфейсов и сетей;
    • использование идеологии "открытых систем";
    • использование языков программирования стандарта МЭК 61131-3;
    • снижение цены.
    Еще одной тенденцией является появление в контроллерах признаков компьютера (наличие мыши, клавиатуры, монитора, ОС Windows, возможности подключения жесткого диска), а в компьютерах - признаков контроллера (расширенный температурный диапазон, электронный диск, защита от пыли и влаги, крепление на DIN-рейку, наличие сторожевого таймера, увеличенное количество коммуникационных портов, использование ОС жесткого реального времени, функции самотестирования и диагностики, контроль целостности прикладной программы). Появились компьютеры в конструктивах для жестких условий эксплуатации. Аппаратные различия между компьютером и контроллером постепенно исчезают. Основными отличительными признаками контроллера остаются его назначение и наличие технологического языка программирования.

    [ http://bookasutp.ru/Chapter6_1.aspx]  
    Программируемый логический контроллер (ПЛК, PLC) – микропроцессорное устройство, предназначенное для управления технологическим процессом и другими сложными технологическими объектами.
    Принцип работы контроллера состоит в выполнение следующего цикла операций:

    1.    Сбор сигналов с датчиков;
    2.    Обработка сигналов согласно прикладному алгоритму управления;
    3.    Выдача управляющих воздействий на исполнительные устройства.

    В нормальном режиме работы контроллер непрерывно выполняет этот цикл с частотой от 50 раз в секунду. Время, затрачиваемое контроллером на выполнение полного цикла, часто называют временем (или периодом) сканирования; в большинстве современных ПЛК сканирование может настраиваться пользователем в диапазоне от 20 до 30000 миллисекунд. Для быстрых технологических процессов, где критична скорость реакции системы и требуется оперативное регулирование, время сканирования может составлять 20 мс, однако для большинства непрерывных процессов период 100 мс считается вполне приемлемым.

    Аппаратно контроллеры имеют модульную архитектуру и могут состоять из следующих компонентов:

    1.    Базовая панель ( Baseplate). Она служит для размещения на ней других модулей системы, устанавливаемых в специально отведенные позиции (слоты). Внутри базовой панели проходят две шины: одна - для подачи питания на электронные модули, другая – для пересылки данных и информационного обмена между модулями.

    2.    Модуль центрального вычислительного устройства ( СPU). Это мозг системы. Собственно в нем и происходит математическая обработка данных. Для связи с другими устройствами CPU часто оснащается сетевым интерфейсом, поддерживающим тот или иной коммуникационный стандарт.

    3.    Дополнительные коммуникационные модули. Необходимы для добавления сетевых интерфейсов, неподдерживаемых напрямую самим CPU. Коммуникационные модули существенно расширяют возможности ПЛК по сетевому взаимодействию. C их помощью к контроллеру подключают узлы распределенного ввода/вывода, интеллектуальные полевые приборы и станции операторского уровня.

    4.    Блок питания. Нужен для запитки системы от 220 V. Однако многие ПЛК не имеют стандартного блока питания и запитываются от внешнего.  
    4906
    Рис.1. Контроллер РСУ с коммуникациями Profibus и Ethernet.
     
    Иногда на базовую панель, помимо указанных выше, допускается устанавливать модули ввода/вывода полевых сигналов, которые образуют так называемый локальный ввод/вывод. Однако для большинства РСУ (DCS) характерно использование именно распределенного (удаленного) ввода/вывода.

    Отличительной особенностью контроллеров, применяемых в DCS, является возможность их резервирования. Резервирование нужно для повышения отказоустойчивости системы и заключается, как правило, в дублировании аппаратных модулей системы.
     
    4907
    Рис. 2. Резервированный контроллер с коммуникациями Profibus и Ethernet.
     
    Резервируемые модули работают параллельно и выполняют одни и те же функции. При этом один модуль находится в активном состоянии, а другой, являясь резервом, – в режиме “standby”. В случае отказа активного модуля, система автоматически переключается на резерв (это называется “горячий резерв”).

    Обратите внимание, контроллеры связаны шиной синхронизации, по которой они мониторят состояние друг друга. Это решение позволяет разнести резервированные модули на значительное расстояние друг от друга (например, расположить их в разных шкафах или даже аппаратных).

    Допустим, в данный момент активен левый контроллер, правый – находится в резерве. При этом, даже находясь в резерве, правый контроллер располагает всеми процессными данными и выполняет те же самые математические операции, что и левый. Контроллеры синхронизированы. Предположим, случается отказ левого контроллера, а именно модуля CPU. Управление автоматически передается резервному контроллеру, и теперь он становится главным. Здесь очень большое значение имеют время, которое система тратит на переключение на резерв (обычно меньше 0.5 с) и отсутствие возмущений (удара). Теперь система работает на резерве. Как только инженер заменит отказавший модуль CPU на исправный, система автоматически передаст ему управление и возвратится в исходное состояние.

    На рис. 3 изображен резервированный контроллер S7-400H производства Siemens. Данный контроллер входит в состав РСУ Simatic PCS7.
     
     
    4908
    Рис. 3. Резервированный контроллер S7-400H. Несколько другое техническое решение показано на примере резервированного контроллера FCP270 производства Foxboro (рис. 4). Данный контроллер входит в состав системы управления Foxboro IA Series.  
    4909
    Рис. 4. Резервированный контроллер FCP270.
    На базовой панели инсталлировано два процессорных модуля, работающих как резервированная пара, и коммуникационный модуль для сопряжения с оптическими сетями стандарта Ethernet. Взаимодействие между модулями происходит по внутренней шине (тоже резервированной), спрятанной непосредственно в базовую панель (ее не видно на рисунке).

    На рисунке ниже показан контроллер AC800M производства ABB (часть РСУ Extended Automation System 800xA).  
    4910
    Рис. 5. Контроллер AC800M.
     
    Это не резервированный вариант. Контроллер состоит из двух коммуникационных модулей, одного СPU и одного локального модуля ввода/вывода. Кроме этого, к контроллеру можно подключить до 64 внешних модулей ввода/вывода.

    При построении РСУ важно выбрать контроллер, удовлетворяющий всем техническим условиям и требованиям конкретного производства. Подбирая оптимальную конфигурацию, инженеры оперируют определенными техническими характеристиками промышленных контроллеров. Наиболее значимые перечислены ниже:

    1.    Возможность полного резервирования. Для задач, где отказоустойчивость критична (химия, нефтехимия, металлургия и т.д.), применение резервированных конфигураций вполне оправдано, тогда как для других менее ответственных производств резервирование зачастую оказывается избыточным решением.

    2.    Количество и тип поддерживаемых коммуникационных интерфейсов. Это определяет гибкость и масштабируемость системы управления в целом. Современные контроллеры способны поддерживать до 10 стандартов передачи данных одновременно, что во многом определяет их универсальность.

    3.    Быстродействие. Измеряется, как правило, в количестве выполняемых в секунду элементарных операций (до 200 млн.). Иногда быстродействие измеряется количеством обрабатываемых за секунду функциональных блоков (что такое функциональный блок – будет рассказано в следующей статье). Быстродействие зависит от типа центрального процессора (популярные производители - Intel, AMD, Motorola, Texas Instruments и т.д.)

    4.    Объем оперативной памяти. Во время работы контроллера в его оперативную память загружены запрограммированные пользователем алгоритмы автоматизированного управления, операционная система, библиотечные модули и т.д. Очевидно, чем больше оперативной памяти, тем сложнее и объемнее алгоритмы контроллер может выполнять, тем больше простора для творчества у программиста. Варьируется от 256 килобайт до 32 мегабайт.

    5.    Надежность. Наработка на отказ до 10-12 лет.

    6. Наличие специализированных средств разработки и поддержка различных языков программирования. Очевидно, что существование специализированный среды разработки прикладных программ – это стандарт для современного контроллера АСУ ТП. Для удобства программиста реализуется поддержка сразу нескольких языков как визуального, так и текстового (процедурного) программирования (FBD, SFC, IL, LAD, ST; об этом в следующей статье).

    7.    Возможность изменения алгоритмов управления на “лету” (online changes), т.е. без остановки работы контроллера. Для большинства контроллеров, применяемых в РСУ, поддержка online changes жизненно необходима, так как позволяет тонко настраивать систему или расширять ее функционал прямо на работающем производстве.

    8.    Возможность локального ввода/вывода. Как видно из рис. 4 контроллер Foxboro FCP270 рассчитан на работу только с удаленной подсистемой ввода/вывода, подключаемой к нему по оптическим каналам. Simatic S7-400 может спокойно работать как с локальными модулями ввода/вывода (свободные слоты на базовой панели есть), так и удаленными узлами.

    9.    Вес, габаритные размеры, вид монтажа (на DIN-рейку, на монтажную панель или в стойку 19”). Важно учитывать при проектировании и сборке системных шкафов.

    10.  Условия эксплуатации (температура, влажность, механические нагрузки). Большинство промышленных контроллеров могут работать в нечеловеческих условиях от 0 до 65 °С и при влажности до 95-98%.

    [ http://kazanets.narod.ru/PLC_PART1.htm]

    Тематики

    Синонимы

    EN

    DE

    • speicherprogrammierbare Steuerung, f

    FR

    Англо-русский словарь нормативно-технической терминологии > programmable logic controller

  • 55 programmable controller

    1. программируемый логический контроллер
    2. программируемый контроллер

     

    программируемый контроллер

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    программируемый логический контроллер
    ПЛК
    -
    [Интент]

    контроллер
    Управляющее устройство, осуществляющее автоматическое управление посредством программной реализации алгоритмов управления.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    EN

    storage-programmable logic controller
    computer-aided control equipment or system whose logic sequence can be varied via a directly or remote-control connected programming device, for example a control panel, a host computer or a portable terminal
    [IEV ref 351-32-34]

    FR

    automate programmable à mémoire
    équipement ou système de commande assisté par ordinateur dont la séquence logique peut être modifiée directement ou par l'intermédiaire d'un dispositif de programmation relié à une télécommande, par exemple un panneau de commande, un ordinateur hôte ou un terminal de données portatif
    [IEV ref 351-32-34]

      См. также:
    - архитектура контроллера;
    - производительность контроллера;
    - время реакции контроллера;
    КЛАССИФИКАЦИЯ

      Основным показателем ПЛК является количество каналов ввода-вывода. По этому признаку ПЛК делятся на следующие группы: По расположению модулей ввода-вывода ПЛК бывают:
    • моноблочными - в которых устройство ввода-вывода не может быть удалено из контроллера или заменено на другое. Конструктивно контроллер представляет собой единое целое с устройствами ввода-вывода (например, одноплатный контроллер). Моноблочный контроллер может иметь, например, 16 каналов дискретного ввода и 8 каналов релейного вывода;
    • модульные - состоящие из общей корзины (шасси), в которой располагаются модуль центрального процессора и сменные модули ввода-вывода. Состав модулей выбирается пользователем в зависимости от решаемой задачи. Типовое количество слотов для сменных модулей - от 8 до 32;
    • распределенные (с удаленными модулями ввода-вывода) - в которых модули ввода-вывода выполнены в отдельных корпусах, соединяются с модулем контроллера по сети (обычно на основе интерфейса RS-485) и могут быть расположены на расстоянии до 1,2 км от процессорного модуля.
    Часто перечисленные конструктивные типы контроллеров комбинируются, например, моноблочный контроллер может иметь несколько съемных плат; моноблочный и модульный контроллеры могут быть дополнены удаленными модулями ввода-вывода, чтобы увеличить общее количество каналов.

    Многие контроллеры имеют набор сменных процессорных плат разной производительности. Это позволяет расширить круг потенциальных пользователей системы без изменения ее конструктива.

    По конструктивному исполнению и способу крепления контроллеры делятся на:
    По области применения контроллеры делятся на следующие типы:
    • универсальные общепромышленные;
    • для управления роботами;
    • для управления позиционированием и перемещением;
    • коммуникационные;
    • ПИД-контроллеры;
    • специализированные.

    По способу программирования контроллеры бывают:
    • программируемые с лицевой панели контроллера;
    • программируемые переносным программатором;
    • программируемые с помощью дисплея, мыши и клавиатуры;
    • программируемые с помощью персонального компьютера.

    Контроллеры могут программироваться на следующих языках:
    • на классических алгоритмических языках (C, С#, Visual Basic);
    • на языках МЭК 61131-3.

    Контроллеры могут содержать в своем составе модули ввода-вывода или не содержать их. Примерами контроллеров без модулей ввода-вывода являются коммуникационные контроллеры, которые выполняют функцию межсетевого шлюза, или контроллеры, получающие данные от контроллеров нижнего уровня иерархии АСУ ТП.   Контроллеры для систем автоматизации

    Слово "контроллер" произошло от английского "control" (управление), а не от русского "контроль" (учет, проверка). Контроллером в системах автоматизации называют устройство, выполняющее управление физическими процессами по записанному в него алгоритму, с использованием информации, получаемой от датчиков и выводимой в исполнительные устройства.

    Первые контроллеры появились на рубеже 60-х и 70-х годов в автомобильной промышленности, где использовались для автоматизации сборочных линий. В то время компьютеры стоили чрезвычайно дорого, поэтому контроллеры строились на жесткой логике (программировались аппаратно), что было гораздо дешевле. Однако перенастройка с одной технологической линии на другую требовала фактически изготовления нового контроллера. Поэтому появились контроллеры, алгоритм работы которых мог быть изменен несколько проще - с помощью схемы соединений реле. Такие контроллеры получили название программируемых логических контроллеров (ПЛК), и этот термин сохранился до настоящего времени. Везде ниже термины "контроллер" и "ПЛК" мы будем употреблять как синонимы.

    Немного позже появились ПЛК, которые можно было программировать на машинно-ориентированном языке, что было проще конструктивно, но требовало участия специально обученного программиста для внесения даже незначительных изменений в алгоритм управления. С этого момента началась борьба за упрощение процесса программирования ПЛК, которая привела сначала к созданию языков высокого уровня, затем - специализированных языков визуального программирования, похожих на язык релейной логики. В настоящее время этот процесс завершился созданием международного стандарта IEC (МЭК) 1131-3, который позже был переименован в МЭК 61131-3. Стандарт МЭК 61131-3 поддерживает пять языков технологического программирования, что исключает необходимость привлечения профессиональных программистов при построении систем с контроллерами, оставляя для них решение нестандартных задач.

    В связи с тем, что способ программирования является наиболее существенным классифицирующим признаком контроллера, понятие "ПЛК" все реже используется для обозначения управляющих контроллеров, которые не поддерживают технологические языки программирования.   Жесткие ограничения на стоимость и огромное разнообразие целей автоматизации привели к невозможности создания универсального ПЛК, как это случилось с офисными компьютерами. Область автоматизации выдвигает множество задач, в соответствии с которыми развивается и рынок, содержащий сотни непохожих друг на друга контроллеров, различающихся десятками параметров.

    Выбор оптимального для конкретной задачи контроллера основывается обычно на соответствии функциональных характеристик контроллера решаемой задаче при условии минимальной его стоимости. Учитываются также другие важные характеристики (температурный диапазон, надежность, бренд изготовителя, наличие разрешений Ростехнадзора, сертификатов и т. п.).

    Несмотря на огромное разнообразие контроллеров, в их развитии заметны следующие общие тенденции:
    • уменьшение габаритов;
    • расширение функциональных возможностей;
    • увеличение количества поддерживаемых интерфейсов и сетей;
    • использование идеологии "открытых систем";
    • использование языков программирования стандарта МЭК 61131-3;
    • снижение цены.
    Еще одной тенденцией является появление в контроллерах признаков компьютера (наличие мыши, клавиатуры, монитора, ОС Windows, возможности подключения жесткого диска), а в компьютерах - признаков контроллера (расширенный температурный диапазон, электронный диск, защита от пыли и влаги, крепление на DIN-рейку, наличие сторожевого таймера, увеличенное количество коммуникационных портов, использование ОС жесткого реального времени, функции самотестирования и диагностики, контроль целостности прикладной программы). Появились компьютеры в конструктивах для жестких условий эксплуатации. Аппаратные различия между компьютером и контроллером постепенно исчезают. Основными отличительными признаками контроллера остаются его назначение и наличие технологического языка программирования.

    [ http://bookasutp.ru/Chapter6_1.aspx]  
    Программируемый логический контроллер (ПЛК, PLC) – микропроцессорное устройство, предназначенное для управления технологическим процессом и другими сложными технологическими объектами.
    Принцип работы контроллера состоит в выполнение следующего цикла операций:

    1.    Сбор сигналов с датчиков;
    2.    Обработка сигналов согласно прикладному алгоритму управления;
    3.    Выдача управляющих воздействий на исполнительные устройства.

    В нормальном режиме работы контроллер непрерывно выполняет этот цикл с частотой от 50 раз в секунду. Время, затрачиваемое контроллером на выполнение полного цикла, часто называют временем (или периодом) сканирования; в большинстве современных ПЛК сканирование может настраиваться пользователем в диапазоне от 20 до 30000 миллисекунд. Для быстрых технологических процессов, где критична скорость реакции системы и требуется оперативное регулирование, время сканирования может составлять 20 мс, однако для большинства непрерывных процессов период 100 мс считается вполне приемлемым.

    Аппаратно контроллеры имеют модульную архитектуру и могут состоять из следующих компонентов:

    1.    Базовая панель ( Baseplate). Она служит для размещения на ней других модулей системы, устанавливаемых в специально отведенные позиции (слоты). Внутри базовой панели проходят две шины: одна - для подачи питания на электронные модули, другая – для пересылки данных и информационного обмена между модулями.

    2.    Модуль центрального вычислительного устройства ( СPU). Это мозг системы. Собственно в нем и происходит математическая обработка данных. Для связи с другими устройствами CPU часто оснащается сетевым интерфейсом, поддерживающим тот или иной коммуникационный стандарт.

    3.    Дополнительные коммуникационные модули. Необходимы для добавления сетевых интерфейсов, неподдерживаемых напрямую самим CPU. Коммуникационные модули существенно расширяют возможности ПЛК по сетевому взаимодействию. C их помощью к контроллеру подключают узлы распределенного ввода/вывода, интеллектуальные полевые приборы и станции операторского уровня.

    4.    Блок питания. Нужен для запитки системы от 220 V. Однако многие ПЛК не имеют стандартного блока питания и запитываются от внешнего.  
    4906
    Рис.1. Контроллер РСУ с коммуникациями Profibus и Ethernet.
     
    Иногда на базовую панель, помимо указанных выше, допускается устанавливать модули ввода/вывода полевых сигналов, которые образуют так называемый локальный ввод/вывод. Однако для большинства РСУ (DCS) характерно использование именно распределенного (удаленного) ввода/вывода.

    Отличительной особенностью контроллеров, применяемых в DCS, является возможность их резервирования. Резервирование нужно для повышения отказоустойчивости системы и заключается, как правило, в дублировании аппаратных модулей системы.
     
    4907
    Рис. 2. Резервированный контроллер с коммуникациями Profibus и Ethernet.
     
    Резервируемые модули работают параллельно и выполняют одни и те же функции. При этом один модуль находится в активном состоянии, а другой, являясь резервом, – в режиме “standby”. В случае отказа активного модуля, система автоматически переключается на резерв (это называется “горячий резерв”).

    Обратите внимание, контроллеры связаны шиной синхронизации, по которой они мониторят состояние друг друга. Это решение позволяет разнести резервированные модули на значительное расстояние друг от друга (например, расположить их в разных шкафах или даже аппаратных).

    Допустим, в данный момент активен левый контроллер, правый – находится в резерве. При этом, даже находясь в резерве, правый контроллер располагает всеми процессными данными и выполняет те же самые математические операции, что и левый. Контроллеры синхронизированы. Предположим, случается отказ левого контроллера, а именно модуля CPU. Управление автоматически передается резервному контроллеру, и теперь он становится главным. Здесь очень большое значение имеют время, которое система тратит на переключение на резерв (обычно меньше 0.5 с) и отсутствие возмущений (удара). Теперь система работает на резерве. Как только инженер заменит отказавший модуль CPU на исправный, система автоматически передаст ему управление и возвратится в исходное состояние.

    На рис. 3 изображен резервированный контроллер S7-400H производства Siemens. Данный контроллер входит в состав РСУ Simatic PCS7.
     
     
    4908
    Рис. 3. Резервированный контроллер S7-400H. Несколько другое техническое решение показано на примере резервированного контроллера FCP270 производства Foxboro (рис. 4). Данный контроллер входит в состав системы управления Foxboro IA Series.  
    4909
    Рис. 4. Резервированный контроллер FCP270.
    На базовой панели инсталлировано два процессорных модуля, работающих как резервированная пара, и коммуникационный модуль для сопряжения с оптическими сетями стандарта Ethernet. Взаимодействие между модулями происходит по внутренней шине (тоже резервированной), спрятанной непосредственно в базовую панель (ее не видно на рисунке).

    На рисунке ниже показан контроллер AC800M производства ABB (часть РСУ Extended Automation System 800xA).  
    4910
    Рис. 5. Контроллер AC800M.
     
    Это не резервированный вариант. Контроллер состоит из двух коммуникационных модулей, одного СPU и одного локального модуля ввода/вывода. Кроме этого, к контроллеру можно подключить до 64 внешних модулей ввода/вывода.

    При построении РСУ важно выбрать контроллер, удовлетворяющий всем техническим условиям и требованиям конкретного производства. Подбирая оптимальную конфигурацию, инженеры оперируют определенными техническими характеристиками промышленных контроллеров. Наиболее значимые перечислены ниже:

    1.    Возможность полного резервирования. Для задач, где отказоустойчивость критична (химия, нефтехимия, металлургия и т.д.), применение резервированных конфигураций вполне оправдано, тогда как для других менее ответственных производств резервирование зачастую оказывается избыточным решением.

    2.    Количество и тип поддерживаемых коммуникационных интерфейсов. Это определяет гибкость и масштабируемость системы управления в целом. Современные контроллеры способны поддерживать до 10 стандартов передачи данных одновременно, что во многом определяет их универсальность.

    3.    Быстродействие. Измеряется, как правило, в количестве выполняемых в секунду элементарных операций (до 200 млн.). Иногда быстродействие измеряется количеством обрабатываемых за секунду функциональных блоков (что такое функциональный блок – будет рассказано в следующей статье). Быстродействие зависит от типа центрального процессора (популярные производители - Intel, AMD, Motorola, Texas Instruments и т.д.)

    4.    Объем оперативной памяти. Во время работы контроллера в его оперативную память загружены запрограммированные пользователем алгоритмы автоматизированного управления, операционная система, библиотечные модули и т.д. Очевидно, чем больше оперативной памяти, тем сложнее и объемнее алгоритмы контроллер может выполнять, тем больше простора для творчества у программиста. Варьируется от 256 килобайт до 32 мегабайт.

    5.    Надежность. Наработка на отказ до 10-12 лет.

    6. Наличие специализированных средств разработки и поддержка различных языков программирования. Очевидно, что существование специализированный среды разработки прикладных программ – это стандарт для современного контроллера АСУ ТП. Для удобства программиста реализуется поддержка сразу нескольких языков как визуального, так и текстового (процедурного) программирования (FBD, SFC, IL, LAD, ST; об этом в следующей статье).

    7.    Возможность изменения алгоритмов управления на “лету” (online changes), т.е. без остановки работы контроллера. Для большинства контроллеров, применяемых в РСУ, поддержка online changes жизненно необходима, так как позволяет тонко настраивать систему или расширять ее функционал прямо на работающем производстве.

    8.    Возможность локального ввода/вывода. Как видно из рис. 4 контроллер Foxboro FCP270 рассчитан на работу только с удаленной подсистемой ввода/вывода, подключаемой к нему по оптическим каналам. Simatic S7-400 может спокойно работать как с локальными модулями ввода/вывода (свободные слоты на базовой панели есть), так и удаленными узлами.

    9.    Вес, габаритные размеры, вид монтажа (на DIN-рейку, на монтажную панель или в стойку 19”). Важно учитывать при проектировании и сборке системных шкафов.

    10.  Условия эксплуатации (температура, влажность, механические нагрузки). Большинство промышленных контроллеров могут работать в нечеловеческих условиях от 0 до 65 °С и при влажности до 95-98%.

    [ http://kazanets.narod.ru/PLC_PART1.htm]

    Тематики

    Синонимы

    EN

    DE

    • speicherprogrammierbare Steuerung, f

    FR

    Англо-русский словарь нормативно-технической терминологии > programmable controller

  • 56 storage-programmable logic controller

    1. программируемый логический контроллер

     

    программируемый логический контроллер
    ПЛК
    -
    [Интент]

    контроллер
    Управляющее устройство, осуществляющее автоматическое управление посредством программной реализации алгоритмов управления.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    EN

    storage-programmable logic controller
    computer-aided control equipment or system whose logic sequence can be varied via a directly or remote-control connected programming device, for example a control panel, a host computer or a portable terminal
    [IEV ref 351-32-34]

    FR

    automate programmable à mémoire
    équipement ou système de commande assisté par ordinateur dont la séquence logique peut être modifiée directement ou par l'intermédiaire d'un dispositif de programmation relié à une télécommande, par exemple un panneau de commande, un ordinateur hôte ou un terminal de données portatif
    [IEV ref 351-32-34]

      См. также:
    - архитектура контроллера;
    - производительность контроллера;
    - время реакции контроллера;
    КЛАССИФИКАЦИЯ

      Основным показателем ПЛК является количество каналов ввода-вывода. По этому признаку ПЛК делятся на следующие группы: По расположению модулей ввода-вывода ПЛК бывают:
    • моноблочными - в которых устройство ввода-вывода не может быть удалено из контроллера или заменено на другое. Конструктивно контроллер представляет собой единое целое с устройствами ввода-вывода (например, одноплатный контроллер). Моноблочный контроллер может иметь, например, 16 каналов дискретного ввода и 8 каналов релейного вывода;
    • модульные - состоящие из общей корзины (шасси), в которой располагаются модуль центрального процессора и сменные модули ввода-вывода. Состав модулей выбирается пользователем в зависимости от решаемой задачи. Типовое количество слотов для сменных модулей - от 8 до 32;
    • распределенные (с удаленными модулями ввода-вывода) - в которых модули ввода-вывода выполнены в отдельных корпусах, соединяются с модулем контроллера по сети (обычно на основе интерфейса RS-485) и могут быть расположены на расстоянии до 1,2 км от процессорного модуля.
    Часто перечисленные конструктивные типы контроллеров комбинируются, например, моноблочный контроллер может иметь несколько съемных плат; моноблочный и модульный контроллеры могут быть дополнены удаленными модулями ввода-вывода, чтобы увеличить общее количество каналов.

    Многие контроллеры имеют набор сменных процессорных плат разной производительности. Это позволяет расширить круг потенциальных пользователей системы без изменения ее конструктива.

    По конструктивному исполнению и способу крепления контроллеры делятся на:
    По области применения контроллеры делятся на следующие типы:
    • универсальные общепромышленные;
    • для управления роботами;
    • для управления позиционированием и перемещением;
    • коммуникационные;
    • ПИД-контроллеры;
    • специализированные.

    По способу программирования контроллеры бывают:
    • программируемые с лицевой панели контроллера;
    • программируемые переносным программатором;
    • программируемые с помощью дисплея, мыши и клавиатуры;
    • программируемые с помощью персонального компьютера.

    Контроллеры могут программироваться на следующих языках:
    • на классических алгоритмических языках (C, С#, Visual Basic);
    • на языках МЭК 61131-3.

    Контроллеры могут содержать в своем составе модули ввода-вывода или не содержать их. Примерами контроллеров без модулей ввода-вывода являются коммуникационные контроллеры, которые выполняют функцию межсетевого шлюза, или контроллеры, получающие данные от контроллеров нижнего уровня иерархии АСУ ТП.   Контроллеры для систем автоматизации

    Слово "контроллер" произошло от английского "control" (управление), а не от русского "контроль" (учет, проверка). Контроллером в системах автоматизации называют устройство, выполняющее управление физическими процессами по записанному в него алгоритму, с использованием информации, получаемой от датчиков и выводимой в исполнительные устройства.

    Первые контроллеры появились на рубеже 60-х и 70-х годов в автомобильной промышленности, где использовались для автоматизации сборочных линий. В то время компьютеры стоили чрезвычайно дорого, поэтому контроллеры строились на жесткой логике (программировались аппаратно), что было гораздо дешевле. Однако перенастройка с одной технологической линии на другую требовала фактически изготовления нового контроллера. Поэтому появились контроллеры, алгоритм работы которых мог быть изменен несколько проще - с помощью схемы соединений реле. Такие контроллеры получили название программируемых логических контроллеров (ПЛК), и этот термин сохранился до настоящего времени. Везде ниже термины "контроллер" и "ПЛК" мы будем употреблять как синонимы.

    Немного позже появились ПЛК, которые можно было программировать на машинно-ориентированном языке, что было проще конструктивно, но требовало участия специально обученного программиста для внесения даже незначительных изменений в алгоритм управления. С этого момента началась борьба за упрощение процесса программирования ПЛК, которая привела сначала к созданию языков высокого уровня, затем - специализированных языков визуального программирования, похожих на язык релейной логики. В настоящее время этот процесс завершился созданием международного стандарта IEC (МЭК) 1131-3, который позже был переименован в МЭК 61131-3. Стандарт МЭК 61131-3 поддерживает пять языков технологического программирования, что исключает необходимость привлечения профессиональных программистов при построении систем с контроллерами, оставляя для них решение нестандартных задач.

    В связи с тем, что способ программирования является наиболее существенным классифицирующим признаком контроллера, понятие "ПЛК" все реже используется для обозначения управляющих контроллеров, которые не поддерживают технологические языки программирования.   Жесткие ограничения на стоимость и огромное разнообразие целей автоматизации привели к невозможности создания универсального ПЛК, как это случилось с офисными компьютерами. Область автоматизации выдвигает множество задач, в соответствии с которыми развивается и рынок, содержащий сотни непохожих друг на друга контроллеров, различающихся десятками параметров.

    Выбор оптимального для конкретной задачи контроллера основывается обычно на соответствии функциональных характеристик контроллера решаемой задаче при условии минимальной его стоимости. Учитываются также другие важные характеристики (температурный диапазон, надежность, бренд изготовителя, наличие разрешений Ростехнадзора, сертификатов и т. п.).

    Несмотря на огромное разнообразие контроллеров, в их развитии заметны следующие общие тенденции:
    • уменьшение габаритов;
    • расширение функциональных возможностей;
    • увеличение количества поддерживаемых интерфейсов и сетей;
    • использование идеологии "открытых систем";
    • использование языков программирования стандарта МЭК 61131-3;
    • снижение цены.
    Еще одной тенденцией является появление в контроллерах признаков компьютера (наличие мыши, клавиатуры, монитора, ОС Windows, возможности подключения жесткого диска), а в компьютерах - признаков контроллера (расширенный температурный диапазон, электронный диск, защита от пыли и влаги, крепление на DIN-рейку, наличие сторожевого таймера, увеличенное количество коммуникационных портов, использование ОС жесткого реального времени, функции самотестирования и диагностики, контроль целостности прикладной программы). Появились компьютеры в конструктивах для жестких условий эксплуатации. Аппаратные различия между компьютером и контроллером постепенно исчезают. Основными отличительными признаками контроллера остаются его назначение и наличие технологического языка программирования.

    [ http://bookasutp.ru/Chapter6_1.aspx]  
    Программируемый логический контроллер (ПЛК, PLC) – микропроцессорное устройство, предназначенное для управления технологическим процессом и другими сложными технологическими объектами.
    Принцип работы контроллера состоит в выполнение следующего цикла операций:

    1.    Сбор сигналов с датчиков;
    2.    Обработка сигналов согласно прикладному алгоритму управления;
    3.    Выдача управляющих воздействий на исполнительные устройства.

    В нормальном режиме работы контроллер непрерывно выполняет этот цикл с частотой от 50 раз в секунду. Время, затрачиваемое контроллером на выполнение полного цикла, часто называют временем (или периодом) сканирования; в большинстве современных ПЛК сканирование может настраиваться пользователем в диапазоне от 20 до 30000 миллисекунд. Для быстрых технологических процессов, где критична скорость реакции системы и требуется оперативное регулирование, время сканирования может составлять 20 мс, однако для большинства непрерывных процессов период 100 мс считается вполне приемлемым.

    Аппаратно контроллеры имеют модульную архитектуру и могут состоять из следующих компонентов:

    1.    Базовая панель ( Baseplate). Она служит для размещения на ней других модулей системы, устанавливаемых в специально отведенные позиции (слоты). Внутри базовой панели проходят две шины: одна - для подачи питания на электронные модули, другая – для пересылки данных и информационного обмена между модулями.

    2.    Модуль центрального вычислительного устройства ( СPU). Это мозг системы. Собственно в нем и происходит математическая обработка данных. Для связи с другими устройствами CPU часто оснащается сетевым интерфейсом, поддерживающим тот или иной коммуникационный стандарт.

    3.    Дополнительные коммуникационные модули. Необходимы для добавления сетевых интерфейсов, неподдерживаемых напрямую самим CPU. Коммуникационные модули существенно расширяют возможности ПЛК по сетевому взаимодействию. C их помощью к контроллеру подключают узлы распределенного ввода/вывода, интеллектуальные полевые приборы и станции операторского уровня.

    4.    Блок питания. Нужен для запитки системы от 220 V. Однако многие ПЛК не имеют стандартного блока питания и запитываются от внешнего.  
    4906
    Рис.1. Контроллер РСУ с коммуникациями Profibus и Ethernet.
     
    Иногда на базовую панель, помимо указанных выше, допускается устанавливать модули ввода/вывода полевых сигналов, которые образуют так называемый локальный ввод/вывод. Однако для большинства РСУ (DCS) характерно использование именно распределенного (удаленного) ввода/вывода.

    Отличительной особенностью контроллеров, применяемых в DCS, является возможность их резервирования. Резервирование нужно для повышения отказоустойчивости системы и заключается, как правило, в дублировании аппаратных модулей системы.
     
    4907
    Рис. 2. Резервированный контроллер с коммуникациями Profibus и Ethernet.
     
    Резервируемые модули работают параллельно и выполняют одни и те же функции. При этом один модуль находится в активном состоянии, а другой, являясь резервом, – в режиме “standby”. В случае отказа активного модуля, система автоматически переключается на резерв (это называется “горячий резерв”).

    Обратите внимание, контроллеры связаны шиной синхронизации, по которой они мониторят состояние друг друга. Это решение позволяет разнести резервированные модули на значительное расстояние друг от друга (например, расположить их в разных шкафах или даже аппаратных).

    Допустим, в данный момент активен левый контроллер, правый – находится в резерве. При этом, даже находясь в резерве, правый контроллер располагает всеми процессными данными и выполняет те же самые математические операции, что и левый. Контроллеры синхронизированы. Предположим, случается отказ левого контроллера, а именно модуля CPU. Управление автоматически передается резервному контроллеру, и теперь он становится главным. Здесь очень большое значение имеют время, которое система тратит на переключение на резерв (обычно меньше 0.5 с) и отсутствие возмущений (удара). Теперь система работает на резерве. Как только инженер заменит отказавший модуль CPU на исправный, система автоматически передаст ему управление и возвратится в исходное состояние.

    На рис. 3 изображен резервированный контроллер S7-400H производства Siemens. Данный контроллер входит в состав РСУ Simatic PCS7.
     
     
    4908
    Рис. 3. Резервированный контроллер S7-400H. Несколько другое техническое решение показано на примере резервированного контроллера FCP270 производства Foxboro (рис. 4). Данный контроллер входит в состав системы управления Foxboro IA Series.  
    4909
    Рис. 4. Резервированный контроллер FCP270.
    На базовой панели инсталлировано два процессорных модуля, работающих как резервированная пара, и коммуникационный модуль для сопряжения с оптическими сетями стандарта Ethernet. Взаимодействие между модулями происходит по внутренней шине (тоже резервированной), спрятанной непосредственно в базовую панель (ее не видно на рисунке).

    На рисунке ниже показан контроллер AC800M производства ABB (часть РСУ Extended Automation System 800xA).  
    4910
    Рис. 5. Контроллер AC800M.
     
    Это не резервированный вариант. Контроллер состоит из двух коммуникационных модулей, одного СPU и одного локального модуля ввода/вывода. Кроме этого, к контроллеру можно подключить до 64 внешних модулей ввода/вывода.

    При построении РСУ важно выбрать контроллер, удовлетворяющий всем техническим условиям и требованиям конкретного производства. Подбирая оптимальную конфигурацию, инженеры оперируют определенными техническими характеристиками промышленных контроллеров. Наиболее значимые перечислены ниже:

    1.    Возможность полного резервирования. Для задач, где отказоустойчивость критична (химия, нефтехимия, металлургия и т.д.), применение резервированных конфигураций вполне оправдано, тогда как для других менее ответственных производств резервирование зачастую оказывается избыточным решением.

    2.    Количество и тип поддерживаемых коммуникационных интерфейсов. Это определяет гибкость и масштабируемость системы управления в целом. Современные контроллеры способны поддерживать до 10 стандартов передачи данных одновременно, что во многом определяет их универсальность.

    3.    Быстродействие. Измеряется, как правило, в количестве выполняемых в секунду элементарных операций (до 200 млн.). Иногда быстродействие измеряется количеством обрабатываемых за секунду функциональных блоков (что такое функциональный блок – будет рассказано в следующей статье). Быстродействие зависит от типа центрального процессора (популярные производители - Intel, AMD, Motorola, Texas Instruments и т.д.)

    4.    Объем оперативной памяти. Во время работы контроллера в его оперативную память загружены запрограммированные пользователем алгоритмы автоматизированного управления, операционная система, библиотечные модули и т.д. Очевидно, чем больше оперативной памяти, тем сложнее и объемнее алгоритмы контроллер может выполнять, тем больше простора для творчества у программиста. Варьируется от 256 килобайт до 32 мегабайт.

    5.    Надежность. Наработка на отказ до 10-12 лет.

    6. Наличие специализированных средств разработки и поддержка различных языков программирования. Очевидно, что существование специализированный среды разработки прикладных программ – это стандарт для современного контроллера АСУ ТП. Для удобства программиста реализуется поддержка сразу нескольких языков как визуального, так и текстового (процедурного) программирования (FBD, SFC, IL, LAD, ST; об этом в следующей статье).

    7.    Возможность изменения алгоритмов управления на “лету” (online changes), т.е. без остановки работы контроллера. Для большинства контроллеров, применяемых в РСУ, поддержка online changes жизненно необходима, так как позволяет тонко настраивать систему или расширять ее функционал прямо на работающем производстве.

    8.    Возможность локального ввода/вывода. Как видно из рис. 4 контроллер Foxboro FCP270 рассчитан на работу только с удаленной подсистемой ввода/вывода, подключаемой к нему по оптическим каналам. Simatic S7-400 может спокойно работать как с локальными модулями ввода/вывода (свободные слоты на базовой панели есть), так и удаленными узлами.

    9.    Вес, габаритные размеры, вид монтажа (на DIN-рейку, на монтажную панель или в стойку 19”). Важно учитывать при проектировании и сборке системных шкафов.

    10.  Условия эксплуатации (температура, влажность, механические нагрузки). Большинство промышленных контроллеров могут работать в нечеловеческих условиях от 0 до 65 °С и при влажности до 95-98%.

    [ http://kazanets.narod.ru/PLC_PART1.htm]

    Тематики

    Синонимы

    EN

    DE

    • speicherprogrammierbare Steuerung, f

    FR

    Англо-русский словарь нормативно-технической терминологии > storage-programmable logic controller

  • 57 service

    1. электронная доска объявлений
    2. услуга уровня
    3. услуга связи
    4. услуга (в информационных технологиях)
    5. услуга
    6. техническое обслуживание
    7. система энергоснабжения
    8. сервис (сети и системы связи)
    9. сервис
    10. работа прибора
    11. присоединенное положение (выдвижной части)
    12. подводка

     

    подводка

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    присоединенное положение
    Положение съемной или выдвижной части, в котором она полностью присоединена для выполнения предназначенной функции.
    [ ГОСТ Р 51321. 1-2000 ( МЭК 60439-1-92)]

    присоединенное положение
    Положение выдвижной отделяемой части НКУ, при котором она полностью соединена с ним для выполнения заданной ей функции.
    [ ГОСТ Р МЭК 61439.1-2013]

    EN

    service position (of a removable part)
    connected position (of a removable part)
    the position of a removable part in which it is fully connected for its intended function
    [IEV number 441-16-25]

    connected position

    position of a removable part when it is fully connected for its intended function
    [IEC 61439-1, ed. 2.0 (2011-08)]

    FR

    position raccordée
    position d'une partie amovible lorsque celle-ci est entièrement raccordée pour la fonction à laquelle elle est destinée
    [IEC 61439-1, ed. 2.0 (2011-08)]


    Параллельные тексты EN-RU
    5656

    Рис. Schneider Electric
     

    Draw-in

    - The functional unit is operational.
    - Power and auxiliaries are connected.

    [Schneider Electric]

    Присоединённое положение

    - Функциональный блок присоединён для выполнения своей функции.
    - Главная и вспомогательные цепи присоединены.

    [Перевод Интент]


    0425

    Рис. Schneider Electric
     

    The withdrawable drawers have 3 positions: connected, disconnected and testing.
    The “ plug-in / test / draw-out” positions are mechanically marked by an indexing device associated with a mechanical indicator on the drawer sides.

    [Schneider Electric]

    Выдвижные ящики имеют три положения: присоединенное, отсоединенное и испытательное.
    Выдвижные ящики имеют три положения: присоединенное, испытательное и отсоединенное. Указанные положения промаркированы на боковых сторонах выдвижных ящиков и однозначно определяются механическим указателем.
    [Перевод Интент]

    Тематики

    Обобщающие термины

    Синонимы

    EN

    FR

     

    работа прибора
    действие
    функция


    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    Синонимы

    EN

     

    сервис
    служба
    услуга

    1. Последовательность программ, которая под управлением вещателя может быть в режиме вещания передана как часть расписания.
    2. Логический объект в системе предоставляемых функций и интерфейсов, поддерживающий одно или множество приложений, отличие которого от других объектов заключается в доступе конечного пользователя к управлению шлюзом сервисов.
    [ ГОСТ Р 54456-2011]

    Тематики

    • телевидение, радиовещание, видео

    Синонимы

    EN

     

    сервис (сети и системы связи)
    Функциональная возможность ресурса, которая может быть смоделирована последовательностью сервисных примитивов.
    [ ГОСТ Р 54325-2011 (IEC/TS 61850-2:2003)]

    EN

    service
    functional capability of a resource which can be modelled by a sequence of service primitives
    [IEC 61850-2, ed. 1.0 (2003-08)]

    Тематики

    EN

     

    система энергоснабжения
    Совокупность взаимосвязанных энергоустановок, осуществляющих энергоснабжение района, города, предприятия.
    [ ГОСТ 19431-84]

     

    Тематики

    EN

     

    техническое обслуживание
    Ндп. профилактическое обслуживание
    технический уход
    техническое содержание

    По ГОСТ 18322-78
    [ ГОСТ 20375-83]

    техническое обслуживание
    Ндп. профилактическое обслуживание
    технический уход

    Комплекс операций или операция по поддержанию работоспособности или исправности изделия при использовании по назначению, ожидании, хранении и транспортировании

    Техническое обслуживание содержит регламентированные в конструкторской документации операции для поддержания работоспособности или исправности изделия в течение его срока службы.
    Под операцией технического обслуживания в соответствии с ГОСТ 3.1109-82 понимают законченную часть технического обслуживания составной части изделия, выполняемую на одном рабочем месте исполнителем определенной специальности.
    Под транспортированием понимают операцию перемещения груза по определенному маршруту от места погрузки до места разгрузки или перегрузки. В транспортирование самоходных изделий не включается их перемещение своим ходом.
    Под ожиданием понимают нахождение изделия в состоянии готовности к использованию по назначению.
    В техническое обслуживание могут входить мойка изделия, контроль его технического состояния, очистка, смазывание, крепление болтовых соединений, замена некоторых составных частей изделия (например, фильтрующих элементов), регулировка и т. д.
    [ ГОСТ 18322-78]
    [ПОТ Р М-016-2001]
    [РД 153-34.0-03.150-00]

    техническое обслуживание
    Комплекс операций или операция по поддержанию работоспособности или исправности изделия (технического устройства) при использовании по назначению, ожидании, хранении и транспортировании
    [ПБ 12-529-03 Правила безопасности систем газораспределения и газопотребления, утверждены постановлением Госгортехнадзора России от 18. 03. 2003 №9]
    [СТО Газпром РД 2.5-141-2005]

    Недопустимые, нерекомендуемые

    Тематики

    EN

    DE

     

    услуга (в информационных технологиях)
    Способ предоставления ценности заказчикам через содействие им в получении конечных результатов, которых Заказчики хотят достичь без владения специфическими затратами и рисками. Термин «услуга» может использоваться для обозначения основной услуги, ИТ-услуги или пакета услуг.
    См. тж. полезность; гарантия.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    EN

    service
    A means of delivering value to customers by facilitating outcomes customers want to achieve without the ownership of specific costs and risks. The term «service» is sometimes used as a synonym for core service, IT service or service package.
    See also utility; warranty.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    Тематики

    EN

     

    услуга уровня
    услуга

    Функциональная возможность, которую данный уровень взаимосвязи открытых систем вместе с нижерасположенными уровнями обеспечивает смежному верхнему уровню.
    [ ГОСТ 24402-88]

    Тематики

    Синонимы

    EN

     

    электронная доска объявлений
    Частный случай телеконференции, специальная база данных, на которой "вывешиваются" различные объявления и сообщения с целью обмена ими.
    Виртуальная доска (электронная доска объявлений) создается с помощью специальных программ, обеспечивающих выполнение трех функций:
    одно и то же изображение выдается на экраны всех персональных компьютеров, пользователи которых заявили о своем участии в дискуссии;
    изменения в это изображение можно вносить с клавиатуры или мыши, подключенных к любому компьютеру;
    обеспечение такой телефонии, при которой голос одного участника слышат все остальные участники дискуссии.
    Участники дискуссии видят виртуальную доску и изменения, вносимые любым из них. Телефония позволяет им также комментировать замечания, записываемые на доске.
    Виртуальная доска является удобным средством проведения видеоконференций.
    (Терминологическая база данных по информатике и бизнесу [Электронный ресурс])
    [ http://www.morepc.ru/dict/]

    Тематики

    EN

    2.61 услуга (service): Предоставление функциональных возможностей одним процессором другим процессорам или одним процессом другим процессам.

    Источник: ГОСТ Р ИСО/МЭК ТО 10032-2007: Эталонная модель управления данными

    3.4 услуга (service): Результат по меньшей мере одного действия, непременно осуществляемого во взаимодействии между поставщиком и потребителем, причем такой результат носит, как правило, нематериальный характер.

    Примечания

    1 Предоставление услуги может включать, к примеру, следующее:

    - деятельность, осуществляемую на поставляемой потребителем материальной продукции (например, нуждающийся в ремонте автомобиль);

    - деятельность, осуществляемую на поставляемой потребителем нематериальной продукции (например, заявление о доходах, необходимое для определения размера налога);

    - предоставление нематериальной продукции (например, информации в смысле передачи знаний);

    - создание благоприятных условий для потребителей (например, в гостиницах и ресторанах).

    2 Определение заимствовано из стандарта ИСО 9000:2005 (3.4.2, примечание 2).

    Источник: ГОСТ Р ИСО/МЭК 17020-2012: Оценка соответствия. Требования к работе различных типов органов инспекции оригинал документа

    3.17 услуга связи (service): Деятельность по приему, обработке, хранению, передаче, доставке сообщений электросвязи или почтовых отправлений. Является составной частью продукта, предназначенной для продажи клиенту в составе продукта.

    Примечание - Одна и та же услуга может входить во множество различных продуктов, предоставляемых по различной цене.

    Источник: ГОСТ Р 53633.1-2009: Информационная технология. Сеть управления электросвязью. Расширенная схема деятельности организации связи (eТОМ). Декомпозиция и описания процессов. Процессы уровня 2 eTOM. Основная деятельность. Управление взаимоотношениями с поставщиками и партнерами оригинал документа

    2.44 услуга (service): Результат процесса (2.31).

    Примечание 1 - Определение адаптировано из определения термина «продукт» в стандарте ИСО 9000:2005.

    Примечание 2 - Услуги являются одной из четырех видовых категорий продуктов вместе с программным обеспечением, аппаратными средствами и технологическими материалами. Многие продукты включают элементы, принадлежащие к различным видовым категориям. От доминирующего элемента зависит, может ли продукт называться услугой.

    Примечание 3 - Услуга является результатом по крайней мере одного действия, которое в обязательном порядке выполняется на стыке взаимодействия поставщика услуги и, во-первых, ее потребителя (2.50), а во-вторых, заинтересованной стороны (2.47). Услуга обычно нематериальна. Предоставление услуги может включать, например, следующее:

    - деятельность в отношении материального продукта, поставляемого потребителем, например сточных вод (2.51);

    - деятельность в отношении нематериального продукта, исходящего от потребителя, например обработка заказов на новое подсоединение (2.9);

    - поставка нематериального продукта, например поставка информации;

    - создание окружения для потребителя, например обслуживающих офисов.

    Примечание 4 - Слово service (услуга; служба) в английском языке может также относиться к юридическому лицу, осуществляющему действия, относящиеся к рассматриваемому вопросу, как, например, подразумевается в выражениях bus service (автобусное сообщение), police service (полицейская служба), fire service (пожарная служба), water or wastewater service (водоснабжение или удаление сточных вод). В этом контексте слово service подразумевает юридическое лицо, оказывающее услугу (например, «перевозка пассажиров», «обеспечение общественной безопасности», «пожарная защита и пожаротушение» и «доставка питьевой воды или сбор сточных вод»). Если слово service может пониматься таким образом, water service (водоснабжение) является синонимом water utility (система коммунального водоснабжения) (2.53); поэтому в настоящем стандарте во избежание путаницы применяется только определение в пункте 2.44.

    Источник: ГОСТ Р ИСО 24511-2009: Деятельность, связанная с услугами питьевого водоснабжения и удаления сточных вод. Руководящие указания для менеджмента коммунальных предприятий и оценке услуг удаления сточных вод оригинал документа

    2.44 услуга (service): Результат процесса (2.31).

    Примечание 1 - Определение адаптировано из определения термина «продукт» в стандарте ИСО 9000:2005.

    Примечание 2 - Услуги являются одной из четырех видовых категорий продуктов вместе с программным обеспечением, аппаратными средствами и технологическими материалами. Многие продукты включают элементы, принадлежащие к различным видовым категориям. От доминирующего элемента зависит, может ли продукт называться услугой.

    Примечание 3 - Услуга является результатом по крайней мере одного действия, которое в обязательном порядке выполняется на стыке взаимодействия поставщика услуги и, во-первых, ее потребителя (2.50), а во-вторых, заинтересованной стороны (2.47). Услуга обычно нематериальна. Предоставление услуги может включать, например, следующее:

    - деятельность в отношении материального продукта, поставляемого потребителем, например сточных вод (2.51);

    - деятельность в отношении нематериального продукта, исходящего от потребителя, например обработка заказов на новое подсоединение (2.9);

    - поставка нематериального продукта, например поставка информации;

    - создание окружения для потребителя, например обслуживающих офисов.

    Примечание 4 - Слово service (услуга; служба) в английском языке может также относиться к юридическому лицу, осуществляющему действия, относящиеся к рассматриваемому вопросу, как, например, подразумевается в выражениях bus service (автобусное сообщение), police service (полицейская служба), fire service (пожарная служба), water or wastewater service (водоснабжение или удаление сточных вод). В этом контексте слово service подразумевает юридическое лицо, оказывающее услугу (например, «перевозка пассажиров», «обеспечение общественной безопасности», «пожарная защита и пожаротушение» и «доставка питьевой воды или сбор сточных вод»). Если слово service понимается таким образом, water service (водоснабжение) является синонимом water utility (система коммунального водоснабжения) (2.53); поэтому в настоящем стандарте во избежание путаницы применяется только определение по пункту 2.44.

    Источник: ГОСТ Р ИСО 24512-2009: Деятельность, связанная с услугами питьевого водоснабжения и удаления сточных вод. Руководящие указания для менеджмента систем питьевого водоснабжения и оценке услуг питьевого водоснабжения оригинал документа

    3.17 услуга связи (service): Деятельность по приему, обработке, хранению, передаче, доставке сообщений электросвязи или почтовых отправлений. Является составной частью продукта, предназначенной для продажи клиенту в составе продукта.

    Примечание - Одна и та же услуга может входить во множество различных продуктов, предоставляемых по различной цене.

    Источник: ГОСТ Р 53633.2-2009: Информационные технологии. Сеть управления электросвязью. Расширенная схема деятельности организации связи (eТОМ). Декомпозиция и описания процессов. Процессы уровня 2 eTOM. Основная деятельность. Управление и эксплуатация ресурсов оригинал документа

    2.20 услуга связи (service): Деятельность по приему, обработке, хранению, передаче, доставке сообщений электросвязи или почтовых отправлений. Является составной частью продукта, предназначенной для продажи клиенту в составе продукта.

    Примечание - Одна и та же услуга может входить во множество различных продуктов, предоставляемых по различной цене.

    Источник: ГОСТ Р 53633.0-2009: Информационные технологии. Сеть управления электросвязью. Расширенная схема деятельности организации связи (eТОМ). Общая структура бизнес-процессов оригинал документа

    3.17 услуга связи (service): Деятельность по приему, обработке, хранению, передаче, доставке сообщений электросвязи или почтовых отправлений. Является составной частью продукта, предназначенной для продажи клиенту в составе продукта.

    Примечание - Одна и та же услуга может входить во множество различных продуктов, предоставляемых по различной цене.

    Источник: ГОСТ Р 53633.3-2009: Информационная технология. Сеть управления электросвязью. Расширенная схема деятельности организации связи (eТОМ). Декомпозиция и описания процессов. Процессы уровня 2 eTOM. Основная деятельность. Управление взаимоотношениями с клиентами оригинал документа

    32. Услуга уровня

    Услуга

    Service

    Функциональная возможность, которую данный уровень взаимосвязи открытых систем вместе с нижерасположенными уровнями обеспечивает смежному верхнему уровню

    Источник: ГОСТ 24402-88: Телеобработка данных и вычислительные сети. Термины и определения оригинал документа

    2.23 услуга (service): Определенный неосязаемый (нематериальный) выход из технической энергетической системы или польза от использования продукта.

    Источник: ГОСТ Р ИСО 13600-2011: Системы технические энергетические. Основные положения оригинал документа

    3.17 услуга связи (service): Деятельность по приему, обработке, хранению, передаче, доставке сообщений электросвязи или почтовых отправлений. Является составной частью продукта, предназначенной для продажи клиенту в составе продукта.

    Примечание - Одна и та же услуга может входить во множество различных продуктов, предоставляемых по различной цене.

    Источник: ГОСТ Р 53633.6-2012: Информационные технологии. Сеть управления электросвязью. Расширенная схема деятельности организации связи (eTOM). Декомпозиция и описания процессов. Процессы уровня 2 eTOM. Стратегия, инфраструктура и продукт Разработка и управление услугами оригинал документа

    2.44 услуга (service): Результат процесса (2.31).

    Примечание 1 - Определение адаптировано из определения термина «продукт» в стандарте ИСО 9000:2005.

    Примечание 2 - Услуги являются одной из четырех видовых категорий продуктов вместе с программным обеспечением, аппаратными средствами и технологическими материалами. Многие продукты включают элементы, принадлежащие к различным видовым категориям. От доминирующего элемента зависит, может ли продукт называться услугой.

    Примечание 3 - Услуга является результатом по крайней мере одного действия, которое в обязательном порядке выполняется на стыке взаимодействия поставщика услуги и, во-первых, ее потребителя (2.50), а во-вторых, заинтересованной стороны (2.47). Услуга обычно нематериальна. Предоставление услуги может включать, например, следующее:

    - деятельность в отношении материального продукта, поставляемого потребителем, например сточных вод (2.51);

    - деятельность в отношении нематериального продукта, исходящего от потребителя, например обработка заказов на новое подсоединение (2.9);

    - поставка нематериального продукта, например поставка информации;

    - создание окружения для потребителя, например обслуживающих офисов.

    Примечание 4 - Слово service (услуга; служба) в английском языке может также относиться к юридическому лицу, осуществляющему действия, относящиеся к рассматриваемому вопросу, как, например, подразумевается в выражениях bus service (автобусное сообщение), police service (полицейская служба), fire service (пожарная служба), water or wastewater service (водоснабжение или удаление сточных вод). В этом контексте слово service подразумевает юридическое лицо, оказывающее услугу (например, «перевозка пассажиров», «обеспечение общественной безопасности», «пожарная защита и пожаротушение» и «доставка питьевой воды или сбор сточных вод»). Если слово service понимается таким образом, water service (водоснабжение) является синонимом water utility (система коммунального водоснабжения) (2.53); поэтому в настоящем стандарте во избежание путаницы применяется только определение в пункте 2.44.

    Источник: ГОСТ Р ИСО 24510-2009: Деятельность, связанная с услугами питьевого водоснабжения и удаления сточных вод. Руководящие указания по оценке и улучшению услуги, оказываемой потребителям оригинал документа

    2.32 услуга (service): Связанные с обеспечением безопасности процесс или задача, выполняемый или решаемая оцениваемым объектом, организацией или конкретным лицом.

    Источник: ГОСТ Р 54581-2011: Информационная технология. Методы и средства обеспечения безопасности. Основы доверия к безопасности ИТ. Часть 1. Обзор и основы оригинал документа

    3.17 услуга связи (service): Деятельность по приему, обработке, хранению, передаче, доставке сообщений электросвязи или почтовых отправлений. Является составной частью продукта, предназначенной для продажи клиенту в составе продукта.

    Примечание - Одна и та же услуга может входить во множество различных продуктов, предоставляемых по различной цене.

    Источник: ГОСТ Р 53633.8-2012: Информационные технологии. Сеть управления электросвязью. Расширенная схема деятельности организации связи (eTOM). Декомпозиция и описания процессов. Процессы уровня 2 eTOM. Стратегия, инфраструктура и продукт. Разработка и управление цепочками поставок оригинал документа

    3.17 услуга связи (service): Деятельность по приему, обработке, хранению, передаче, доставке сообщений электросвязи или почтовых отправлений. Является составной частью продукта, предназначенной для продажи клиенту в составе продукта.

    Примечание - Одна и та же услуга может входить во множество различных продуктов, предоставляемых по различной цене.

    Источник: ГОСТ Р 53633.5-2012: Информационные технологии. Сеть управления электросвязью. Расширенная схема деятельности организации связи (eTOM). Декомпозиция и описания процессов. Процессы уровня 2 eTOM. Стратегия, инфраструктура и продукт. Управление маркетингом и предложением продукта оригинал документа

    3.6 услуга (service): Результат одного или нескольких процессов, выполненных органом местного самоуправления (3.4).

    Примечания

    1 Термин «услуга» обычно указывает на материальную продукцию. Везде, где в ИСО 9001 встречается термин «продукция» организации, это означает и продукцию и услугу, поставляемые и предоставляемые органом местного самоуправления. Несмотря на преобладание нематериального характера, услуга может включать в себя некоторые материальные компоненты (например, консультативные брошюры, наличие канализации, убежищ и др.).

    2 Примеры услуг могут касаться состояния питьевой воды, сточных вод, дренажа, освещения, канализации, гражданской обороны и др.

    3 Одной из основных услуг, часто предоставляемых органом местного самоуправления, является услуга по разработке проектов, для которых может быть необходима разработка планов по качеству (см. ИСО 10005 и ИСО 10006 для разработки планов по качеству и менеджменту проектов соответственно).

    Источник: ГОСТ Р 52614.4-2007: Руководящие указания по применению ГОСТ Р ИСО 9001-2001 в органах местного самоуправления оригинал документа

    Англо-русский словарь нормативно-технической терминологии > service

См. также в других словарях:

  • контроль обмена данными — [Интент] Тематики информационные технологии в целом EN communication monitoring …   Справочник технического переводчика

  • ГОСТ Р ИСО/МЭК 24713-2-2011: Информационные технологии. Биометрия. Биометрические профили для взаимодействия и обмена данными. Часть 2. Контроль физического доступа сотрудников аэропортов — Терминология ГОСТ Р ИСО/МЭК 24713 2 2011: Информационные технологии. Биометрия. Биометрические профили для взаимодействия и обмена данными. Часть 2. Контроль физического доступа сотрудников аэропортов оригинал документа: 4.15 база данных… …   Словарь-справочник терминов нормативно-технической документации

  • биометрический — 4.4. биометрический (biometric): Имеющий отношение к биометрии. Источник …   Словарь-справочник терминов нормативно-технической документации

  • система — 4.48 система (system): Комбинация взаимодействующих элементов, организованных для достижения одной или нескольких поставленных целей. Примечание 1 Система может рассматриваться как продукт или предоставляемые им услуги. Примечание 2 На практике… …   Словарь-справочник терминов нормативно-технической документации

  • идентификатор — 2.18 идентификатор (identifier): Информационный объект, используемый для объявления идентичности до потенциального подтверждения соответствующим аутентификатором [18]. Источник: ГОСТ Р ИСО/ТС 22600 2 2009: Информатизация здоровья. Управлени …   Словарь-справочник терминов нормативно-технической документации

  • CANopen — открытый сетевой протокол верхнего уровня для подключения встраиваемых устройств в бортовых транспортных и промышленных сетях. В качестве сетевого и транспортного уровня использует протокол реального времени CAN. Используется для связи датчиков,… …   Википедия

  • 50.1.031-2001: Информационные технологии поддержки жизненного цикла продукции. Терминологический словарь. Часть 1. Стадии жизненного цикла продукции — Терминология 50.1.031 2001: Информационные технологии поддержки жизненного цикла продукции. Терминологический словарь. Часть 1. Стадии жизненного цикла продукции: 3.7.12. (всеобщее) управление качеством : Совокупность программных средств и данных …   Словарь-справочник терминов нормативно-технической документации

  • Р 50.1.031-2001: Информационные технологии поддержки жизненного цикла продукции. Терминологический словарь. Часть 1. Стадии жизненного цикла продукции — Терминология Р 50.1.031 2001: Информационные технологии поддержки жизненного цикла продукции. Терминологический словарь. Часть 1. Стадии жизненного цикла продукции: 3.7.12. (всеобщее) управление качеством : Совокупность программных средств и… …   Словарь-справочник терминов нормативно-технической документации

  • средства — 3.17 средства [индивидуальной, коллективной] защиты работников: Технические средства, используемые для предотвращения или уменьшения воздействия на работников вредных или опасных производственных факторов, а также для защиты от загрязнения [2].… …   Словарь-справочник терминов нормативно-технической документации

  • метод — метод: Метод косвенного измерения влажности веществ, основанный на зависимости диэлектрической проницаемости этих веществ от их влажности. Источник: РМГ 75 2004: Государственная система обеспечения еди …   Словарь-справочник терминов нормативно-технической документации

  • вероятность — 3.3 вероятность (probability): Мера того, что событие может произойти. Примечания 1 ИСО 3534 1 дает математическое определение вероятности: «действительное число в интервале от 0 до 1, относящееся к случайному событию». Число может отражать… …   Словарь-справочник терминов нормативно-технической документации

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»