Перевод: с французского на русский

с русского на французский

изоляции

  • 21 tension d'isolement assignée (d'un dispositif de connexion)

    1. номинальное напряжение изоляции (соединительного устройства)

     

    напряжение по изоляции
    Напряжение, определяемое изготовителем для данного соединителя и его составных частей, с которыми соотносятся испытания на электрическую прочность изоляции, воздушные зазоры и расстояния утечки.
    [ ГОСТ Р 51323.1-99]

    номинальное напряжение изоляции (соединительного устройства)

    -
    [IEV number 442-06-39]

    EN

    rated insulation voltage, (of a connecting device)
    phase/neutral or phase/phase voltage value assigned to the connecting device by the manufacturer, this device being intended to be used in installations, the voltage supply of which does not exceed the rated insulation voltage of the connecting device itself
    NOTE – Rated insulation voltage is always understood to be between live parts and not between live parts and earth (ground).
    [IEV number 442-06-39]

    FR

    tension d'isolement assignée (d'un dispositif de connexion)
    valeur de la tension phase/neutre ou phase/phase assignée par le constructeur du dispositif de connexion, celui-ci étant prévu pour être utilisé dans des installations dont la tension d'alimentation ne dépasse pas la tension d'isolement assignée du dispositif de connexion lui-même
    NOTE – La tension d'isolement assignée est toujours comprise comme la tension entre parties sous tension et non entre parties sous tension et terre.
    [IEV number 442-06-39]

    Тематики

    EN

    • rated insulation voltage, (of a connecting device)

    DE

    FR

    Франко-русский словарь нормативно-технической терминологии > tension d'isolement assignée (d'un dispositif de connexion)

  • 22 masse (dans une installation électrique)

    1. открытая проводящая часть

     

    открытая проводящая часть
    Проводящая часть, которой легко коснуться и которая в нормальных условиях эксплуатации не находится под напряжением, но может оказаться под ним в аварийных условиях.
    (МЭС 441-11-10).
    Примечание. К типичным открытым проводящим частям относятся стенки оболочек, ручки управления и т. п.
    [ ГОСТ Р 50030. 1-2000 ( МЭК 60947-1-99)]

    открытая проводящая часть
    Доступная прикосновению проводящая часть электрооборудования, которая обычно не находится под напряжением, но может оказаться под напряжением при повреждении основной изоляции.
    Открытая проводящая часть представляет собой доступную прикосновению проводящую часть электрооборудования, которая, в отличие от токоведущих частей, не находится под напряжением при нормальных условиях. Человек и животные, находящиеся в здании, имеют многочисленные контакты с открытыми проводящими частями, во время которых они не подвергаются опасности поражения электрическим током. Если произошло повреждение основной изоляции опасной токоведущей части, открытая проводящая часть может оказаться под напряжением. Тогда она будет представлять реальную угрозу для человека и животных, которые прикоснулись к ней. К открытым проводящим частям, прежде всего, относят металлические оболочки и доступную прикосновению арматуру электрооборудования класса 0 и класса I, например, металлические корпусы холодильников, стиральных машин, электрических плит, металлическую арматуру светильников и др.
    [ http://www.volt-m.ru/glossary/letter/%CE/view/45/]

    открытая проводящая часть

    Токопроводящая Проводящая часть электрического оборудования, доступная прикосновению, которая обычно не находится, но может оказаться под напряжением в случае повреждения (МЭС 826-03-02, с изменением).
    [ ГОСТ Р 51321. 1-2000 ( МЭК 60439-1-92)]

    открытые проводящие части
    Нетоковедущие, части, доступные прикосновению человека, между которыми или между ними и землей при нарушении изоляции токоведущих частей может возникнуть относительно земли напряжение, превышающее предельно допустимое для человека значение напряжения прикосновения. При этом под нетоковедущей частью понимается электропроводящая часть электроустановки, не находящаяся в процессе ее работы под рабочим напряжением.
    [ ГОСТ Р 50669-94]

    открытая проводящая часть
    Доступная для прикосновения проводящая часть оборудования, которая нормально не находится под напряжением, но может оказаться под напряжением при повреждении основной изоляции.
    [ ГОСТ Р МЭК 60050-195-2005]
    [ ГОСТ Р МЭК 60050-826-2009]

    открытая токопроводящая проводящая часть
    Токопроводящая Проводящая часть электрического оборудования, к которой можно прикоснуться и которая обычно не находится под напряжением, но в случае повреждения может оказаться под напряжением.
    Примечание - Токопроводящую Проводящую часть электрического оборудования, которая в результате повреждения может оказаться под напряжением через открытую токопроводящую часть, не считают открытой токопроводящей частью.
    [ГОСТ ЕН 1070-2003]

    незащищенная токопроводящая
    открытая проводящая часть
    Проводящая часть электрооборудования, которой можно коснуться и которая обычно не находится под напряжением, но в случае неполадки может стать таковой повреждения может оказаться под напряжением.
    [МЭС 826-12-10, модифицированный]
    [ ГОСТ Р МЭК 60204-1-2007]

    EN

    exposed-conductive-part
    conductive part of equipment which can be touched and which is not normally live, but which can become live when basic insulation fails
    Source: 195-06-10
    [IEV number 826-12-10]

    exposed conductive part
    conductive part of electrical equipment, which can be touched and which is not live under normal operating conditions, but which can become live under fault conditions
    [IEV 826-12-10, modified]
    [IEC 60204-1, ed. 5.0 (2005-10)]
    [IEC 60204-1-2006]

    FR

    partie conductrice accessible, f
    masse (dans une installation électrique), f
    partie conductrice d'un matériel, susceptible d'être touchée, et qui n'est pas normalement sous tension, mais peut le devenir lorsque l'isolation principale est défaillante
    Source: 195-06-10
    [IEV number 826-12-10]

    partie conductrice accessible;
    masse

    partie conductrice d'un matériel électrique susceptible d'être touchée et qui n'est pas normalement sous tension mais qui peut le devenir en cas de défaut
    [IEC 60204-1, ed. 5.0 (2005-10)]

    Недопустимые, нерекомендуемые

    Тематики

    EN

    DE

    FR

    Франко-русский словарь нормативно-технической терминологии > masse (dans une installation électrique)

  • 23 partie conductrice accessible

    1. открытая проводящая часть

     

    открытая проводящая часть
    Проводящая часть, которой легко коснуться и которая в нормальных условиях эксплуатации не находится под напряжением, но может оказаться под ним в аварийных условиях.
    (МЭС 441-11-10).
    Примечание. К типичным открытым проводящим частям относятся стенки оболочек, ручки управления и т. п.
    [ ГОСТ Р 50030. 1-2000 ( МЭК 60947-1-99)]

    открытая проводящая часть
    Доступная прикосновению проводящая часть электрооборудования, которая обычно не находится под напряжением, но может оказаться под напряжением при повреждении основной изоляции.
    Открытая проводящая часть представляет собой доступную прикосновению проводящую часть электрооборудования, которая, в отличие от токоведущих частей, не находится под напряжением при нормальных условиях. Человек и животные, находящиеся в здании, имеют многочисленные контакты с открытыми проводящими частями, во время которых они не подвергаются опасности поражения электрическим током. Если произошло повреждение основной изоляции опасной токоведущей части, открытая проводящая часть может оказаться под напряжением. Тогда она будет представлять реальную угрозу для человека и животных, которые прикоснулись к ней. К открытым проводящим частям, прежде всего, относят металлические оболочки и доступную прикосновению арматуру электрооборудования класса 0 и класса I, например, металлические корпусы холодильников, стиральных машин, электрических плит, металлическую арматуру светильников и др.
    [ http://www.volt-m.ru/glossary/letter/%CE/view/45/]

    открытая проводящая часть

    Токопроводящая Проводящая часть электрического оборудования, доступная прикосновению, которая обычно не находится, но может оказаться под напряжением в случае повреждения (МЭС 826-03-02, с изменением).
    [ ГОСТ Р 51321. 1-2000 ( МЭК 60439-1-92)]

    открытые проводящие части
    Нетоковедущие, части, доступные прикосновению человека, между которыми или между ними и землей при нарушении изоляции токоведущих частей может возникнуть относительно земли напряжение, превышающее предельно допустимое для человека значение напряжения прикосновения. При этом под нетоковедущей частью понимается электропроводящая часть электроустановки, не находящаяся в процессе ее работы под рабочим напряжением.
    [ ГОСТ Р 50669-94]

    открытая проводящая часть
    Доступная для прикосновения проводящая часть оборудования, которая нормально не находится под напряжением, но может оказаться под напряжением при повреждении основной изоляции.
    [ ГОСТ Р МЭК 60050-195-2005]
    [ ГОСТ Р МЭК 60050-826-2009]

    открытая токопроводящая проводящая часть
    Токопроводящая Проводящая часть электрического оборудования, к которой можно прикоснуться и которая обычно не находится под напряжением, но в случае повреждения может оказаться под напряжением.
    Примечание - Токопроводящую Проводящую часть электрического оборудования, которая в результате повреждения может оказаться под напряжением через открытую токопроводящую часть, не считают открытой токопроводящей частью.
    [ГОСТ ЕН 1070-2003]

    незащищенная токопроводящая
    открытая проводящая часть
    Проводящая часть электрооборудования, которой можно коснуться и которая обычно не находится под напряжением, но в случае неполадки может стать таковой повреждения может оказаться под напряжением.
    [МЭС 826-12-10, модифицированный]
    [ ГОСТ Р МЭК 60204-1-2007]

    EN

    exposed-conductive-part
    conductive part of equipment which can be touched and which is not normally live, but which can become live when basic insulation fails
    Source: 195-06-10
    [IEV number 826-12-10]

    exposed conductive part
    conductive part of electrical equipment, which can be touched and which is not live under normal operating conditions, but which can become live under fault conditions
    [IEV 826-12-10, modified]
    [IEC 60204-1, ed. 5.0 (2005-10)]
    [IEC 60204-1-2006]

    FR

    partie conductrice accessible, f
    masse (dans une installation électrique), f
    partie conductrice d'un matériel, susceptible d'être touchée, et qui n'est pas normalement sous tension, mais peut le devenir lorsque l'isolation principale est défaillante
    Source: 195-06-10
    [IEV number 826-12-10]

    partie conductrice accessible;
    masse

    partie conductrice d'un matériel électrique susceptible d'être touchée et qui n'est pas normalement sous tension mais qui peut le devenir en cas de défaut
    [IEC 60204-1, ed. 5.0 (2005-10)]

    Недопустимые, нерекомендуемые

    Тематики

    EN

    DE

    FR

    Франко-русский словарь нормативно-технической терминологии > partie conductrice accessible

  • 24 écran (d'un câble)

    1. экран по изоляции (кабеля)

     

    экран по изоляции (кабеля)
    проводящий(ие) слой(и), выполнящий(е) функцию регулирования электрического поля в пределах изоляции. Он (они) может (могут) способствовать получению ровной гладкой поверхности на границах слоя изоляции и устранению пустот на этом участке 
    [IEV number 461-03-01]

    EN

    screen (of a cable)
    conducting layer or assembly of conducting layers having the function of control of the electric field within the insulation
    NOTE – It may also provide smooth surfaces at the boundaries of the insulation and assist in the elimination of spaces at these boundaries.
    [IEV number 461-03-01]

    FR

    écran (d'un câble)
    couche conductrice ou ensemble de couches conductrices ayant pour fonction d'imposer la configuration du champ électrique à l'intérieur de l'isolation
    NOTE – Ces couches peuvent aussi permettre de réaliser des surfaces lisses à la limite de l'isolation et contribuer à éliminer les vides à cet endroit.
    [IEV number 461-03-01]

    Тематики

    • кабели, провода...

    EN

    DE

    • Leitschicht (eines Kabels), f

    FR

    Франко-русский словарь нормативно-технической терминологии > écran (d'un câble)

  • 25 rigidité diélectrique

    1. электрическая прочность изоляции

     

    электрическая прочность изоляции
    Испытательное напряжение, прикладываемое в специальных условиях, которое должна выдерживать изоляция устройства
    [МЭК 50(151)-78]

    EN

    dielectric strength
    maximum voltage between all parts of the electric circuit and the sheath of the thermometer or, in the case of a thermometer with two or more sensing circuits, between two individual circuits which the thermometer can withstand without damage. The measurement conditions for d.c and a.c (with frequency) have to be specified.
    [IEC 60751, ed. 2.0 (2008-07)]

    FR

    rigidité diélectrique
    tension maximale entre tous les composants du circuit électrique et la gaine du thermomètre ou, dans le cas d’un thermomètre possédant plusieurs circuits de capteurs, entre deux circuits individuels, que le thermomètre peut supporter sans dégradation. Les conditions de mesure pour les tensions continues et alternatives (ainsi que la fréquence) doivent être spécifiées
    [IEC 60751, ed. 2.0 (2008-07)]

    Параллельные тексты EN-RU

    If used in conditions of highly humidity, the dielectric strength or electric performance may be degraded.
    [LS Industrial Systems]

    При эксплуатации (выключателя) в условиях повышенной влажности могут ухудшиться электрическая прочность изоляции и другие электрические характеристики.
    [Перевод Интент]

    Недопустимые, нерекомендуемые

    Тематики

    • электротехника, основные понятия

    EN

    FR

    Франко-русский словарь нормативно-технической терминологии > rigidité diélectrique

  • 26 niveau d'isolement de base

    сущ.
    тех. базисный импульсный уровень изоляции, базисный уровень изоляции, основной уровень импульсной прочности, полный импульсный уровень изоляции

    Французско-русский универсальный словарь > niveau d'isolement de base

  • 27 refermeture automatique

    1. автоматическое повторное включение

     

    автоматическое повторное включение
    АПВ

    Коммутационный цикл, при котором выключатель вслед за его отключением автоматически включается через установленный промежуток времени (О - tбт - В).
    [ ГОСТ Р 52565-2006]

    автоматическое повторное включение
    АПВ

    Автоматическое включение аварийно отключившегося элемента электрической сети
    [ОАО РАО "ЕЭС России" СТО 17330282.27.010.001-2008]

    (автоматическое) повторное включение
    АПВ


    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва]

    EN

    automatic reclosing
    automatic reclosing of a circuit-breaker associated with a faulted section of a network after an interval of time which permits that section to recover from a transient fault
    [IEC 61936-1, ed. 1.0 (2002-10)]
    [IEV 604-02-32]


    auto-reclosing
    the operating sequence of a mechanical switching device whereby, following its opening, it closes automatically after a predetermined time
    [IEC 62271-100, ed. 2.0 (2008-04)]
    auto-reclosing (of a mechanical switching device)
    the operating sequence of a mechanical switching device whereby, following its opening, it closes automatically after a predetermined time
    [IEV number 441-16-10]

    FR

    réenclenchement automatique
    refermeture du disjoncteur associé à une fraction de réseau affectée d'un défaut, par un dispositif automatique après un intervalle de temps permettant la disparition d'un défaut fugitif
    [IEC 61936-1, ed. 1.0 (2002-10)]
    [IEV 604-02-32]


    refermeture automatique
    séquence de manoeuvres par laquelle, à la suite d’une ouverture, un appareil mécanique de connexion est refermé automatiquement après un intervalle de temps prédéterminé
    [IEC 62271-100, ed. 2.0 (2008-04)]
    refermeture automatique (d'un appareil mécanique de connexion)
    séquence de manoeuvres par laquelle, à la suite d'une ouverture, un appareil mécanique de connexion est refermé automatiquement après un intervalle de temps prédéterminé
    [IEV number 441-16-10]

     
    Автоматическое повторное включение (АПВ), быстрое автоматическое обратное включение в работу высоковольтных линий электропередачи и электрооборудования высокого напряжения после их автоматического отключения; одно из наиболее эффективных средств противоаварийной автоматики. Повышает надёжность электроснабжения потребителей и восстанавливает нормальный режим работы электрической системы. Во многих случаях после быстрого отключения участка электрической системы, на котором возникло короткое замыкание в результате кратковременного нарушения изоляции или пробоя воздушного промежутка, при последующей подаче напряжения повторное короткое замыкание не возникает.   АПВ выполняется с помощью автоматических устройств, воздействующих на высоковольтные выключатели после их аварийного автоматического отключения от релейной защиты. Многие из этих автоматических устройств обеспечивают АПВ при самопроизвольном отключении выключателей, например при сильных сотрясениях почвы во время близких взрывов, землетрясениях и т. п. Эффективность АПВ тем выше, чем быстрее следует оно за аварийным отключением, т. е. чем меньше время перерыва питания потребителей. Это время зависит от длительности цикла АПВ. В электрических системах применяют однократное АПВ — с одним циклом, двукратное — при неуспешном первом цикле, и трёхкратное — с тремя последовательными циклами. Цикл АПВ — время от момента подачи сигнала на отключение до замыкания цепи главными контактами выключателя — состоит из времени отключения и включения выключателя и времени срабатывания устройства АПВ. Длительность бестоковой паузы, когда потребитель не получает электроэнергию, выбирается такой, чтобы успело произойти восстановление изоляции (деионизация среды) в месте короткого замыкания, привод выключателя после отключения был бы готов к повторному включению, а выключатель к моменту замыкания его главных контактов восстановил способность к отключению поврежденной цепи в случае неуспешного АПВ. Время деионизации зависит от среды, климатических условий и других факторов. Время восстановления отключающей способности выключателя определяется его конструкцией и количеством циклов АПВ., предшествовавших данному. Обычно длительность 1-го цикла не превышает 0,5—1,5 сек, 2-го — от 10 до 15 сек, 3-го — от 60 до 120 сек.

    Наиболее распространено однократное АПВ, обеспечивающее на воздушных линиях высокого напряжения (110 кв и выше) до 86 %, а на кабельных линиях (3—10 кв) — до 55 % успешных включений. Двукратное АПВ обеспечивает во втором цикле до 15 % успешных включений. Третий цикл увеличивает число успешных включений всего на 3—5 %. На линиях электропередачи высокого напряжения (от 110 до 500 кВ) применяется однофазовое АПВ; при этом выключатели должны иметь отдельные приводы на каждой фазе.

    Применение АПВ экономически выгодно, т. к. стоимость устройств АПВ и их эксплуатации несравнимо меньше ущерба из-за перерыва в подаче электроэнергии.
    [ БСЭ]

     

    НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ АПВ

    Опыт эксплуатации сетей высокого напряжения показал, что если поврежденную линию электропередачи быстро отключить, т. е. снять с нее напряжение, то в большинстве случаев повреждение ликвидируется. При этом электрическая дуга, возникавшая в месте короткого замыкания (КЗ), не успевает вызвать существенных разрушений оборудования, препятствующих обратному включению линии под напряжение.
    Самоустраняющиеся повреждения принято называть неустойчивыми. Такие повреждения возникают в результате грозовых перекрытий изоляции, схлестывания проводов при ветре и сбрасывании гололеда, падения деревьев, задевания проводов движущимися механизмами.
    Данные о повреждаемости воздушных линий электропередачи (ВЛ) за многолетний период эксплуатации показывают, что доля неустойчивых повреждений весьма высока и составляет 50—90 %.
    При ликвидации аварии оперативный персонал производит обычно опробование линии путем включения ее под напряжение, так как отыскание места повреждения на линии электропередачи путем ее обхода требует длительного времени, а многие повреждения носят неустойчивый характер. Эту операцию называют повторным включением.
    Если КЗ самоустранилось, то линия, на которой произошло неустойчивое повреждение, при повторном включении остается в работе. Поэтому повторные включения при неустойчивых повреждениях принято называть успешными.
    На ВЛ успешность повторного включения сильно зависит от номинального напряжения линий. На линиях ПО кВ и выше успешность повторного включения значительно выше, чем на ВЛ 6—35 кВ. Высокий процент успешных повторных включений в сетях высокого и сверхвысокого напряжения объясняется быстродействием релейной защиты (как правило, не более 0,1-0,15 с), большим сечением проводов и расстояний между ними, высокой механической прочностью опор. [Овчинников В. В., Автоматическое повторное включение. — М.:Энергоатомиздат, 1986.— 96 с: ил. — (Б-ка электромонтера; Вып. 587). Энергоатомиздат, 1986]

    АВТОМАТИЧЕСКОЕ ПОВТОРНОЕ ВКЛЮЧЕНИЕ (АПВ)

    3.3.2. Устройства АПВ должны предусматриваться для быстрого восстановления питания потребителей или межсистемных и внутрисистемных связей путем автоматического включения выключателей, отключенных устройствами релейной защиты.

    Должно предусматриваться автоматическое повторное включение:

    1) воздушных и смешанных (кабельно-воздушных) линий всех типов напряжением выше 1 кВ. Отказ от применения АПВ должен быть в каждом отдельном случае обоснован. На кабельных линиях 35 кВ и ниже АПВ рекомендуется применять в случаях, когда оно может быть эффективным в связи со значительной вероятностью повреждений с образованием открытой дуги (например, наличие нескольких промежуточных сборок, питание по одной линии нескольких подстанций), а также с целью исправления неселективного действия защиты. Вопрос о применении АПВ на кабельных линиях 110 кВ и выше должен решаться при проектировании в каждом отдельном случае с учетом конкретных условий;

    2) шин электростанций и подстанций (см. 3.3.24 и 3.3.25);

    3) трансформаторов (см. 3.3.26);

    4) ответственных электродвигателей, отключаемых для обеспечения самозапуска других электродвигателей (см. 3.3.38).

    Для осуществления АПВ по п. 1-3 должны также предусматриваться устройства АПВ на обходных, шиносоединительных и секционных выключателях.

    Допускается в целях экономии аппаратуры выполнение устройства группового АПВ на линиях, в первую очередь кабельных, и других присоединениях 6-10 кВ. При этом следует учитывать недостатки устройства группового АПВ, например возможность отказа в случае, если после отключения выключателя одного из присоединений отключение выключателя другого присоединения происходит до возврата устройства АПВ в исходное положение.

    3.3.3. Устройства АПВ должны быть выполнены так, чтобы они не действовали при:

    1) отключении выключателя персоналом дистанционно или при помощи телеуправления;

    2) автоматическом отключении от релейной защиты непосредственно после включения персоналом дистанционно или при помощи телеуправления;

    3) отключении выключателя защитой от внутренних повреждений трансформаторов и вращающихся машин, устройствами противоаварийной автоматики, а также в других случаях отключений выключателя, когда действие АПВ недопустимо. АПВ после действия АЧР (ЧАПВ) должно выполняться в соответствии с 3.3.81.

    Устройства АПВ должны быть выполнены так, чтобы была исключена возможностью многократного включения на КЗ при любой неисправности в схеме устройства.

    Устройства АПВ должны выполняться с автоматическим возвратом.

    3.3.4. При применении АПВ должно, как правило, предусматриваться ускорение действия релейной защиты на случай неуспешного АПВ. Ускорение действия релейной защиты после неуспешного АПВ выполняется с помощью устройства ускорения после включения выключателя, которое, как правило, должно использоваться и при включении выключателя по другим причинам (от ключа управления, телеуправления или устройства АВР). При ускорении защиты после включения выключателя должны быть приняты меры против возможного отключения выключателя защитой под действием толчка тока при включении из-за неодновременного включения фаз выключателя.

    Не следует ускорять защиты после включения выключателя, когда линия уже включена под напряжение другим своим выключателем (т. е. при наличии симметричного напряжения на линии).

    Допускается не ускорять после АПВ действие защит линий 35 кВ и ниже, выполненных на переменном оперативном токе, если для этого требуется значительное усложнение защит и время их действия при металлическом КЗ вблизи места установки не превосходит 1,5 с.

    3.3.5. Устройства трехфазного АПВ (ТАПВ) должны осуществляться преимущественно с пуском при несоответствии между ранее поданной оперативной командой и отключенным положением выключателя; допускается также пуск устройства АПВ от защиты.

    3.3.6. Могут применяться, как правило, устройства ТАПВ однократного или двукратного действия (последнее - если это допустимо по условиям работы выключателя). Устройство ТАПВ двукратного действия рекомендуется принимать для воздушных линий, в особенности для одиночных с односторонним питанием. В сетях 35 кВ и ниже устройства ТАПВ двукратного действия рекомендуется применять в первую очередь для линий, не имеющих резервирования по сети.

    В сетях с изолированной или компенсированной нейтралью, как правило, должна применяться блокировка второго цикла АПВ в случае замыкания на землю после АПВ первого цикла (например, по наличию напряжений нулевой последовательности). Выдержка времени ТАПВ во втором цикле должна быть не менее 15-20 с.

    3.3.7. Для ускорения восстановления нормального режима работы электропередачи выдержка времени устройства ТАПВ (в особенности для первого цикла АПВ двукратного действия на линиях с односторонним питанием) должна приниматься минимально возможной с учетом времени погасания дуги и деионизации среды в месте повреждения, а также с учетом времени готовности выключателя и его привода к повторному включению.

    Выдержка времени устройства ТАПВ на линии с двусторонним питанием должна выбираться также с учетом возможного неодновременного отключения повреждения с обоих концов линии; при этом время действия защит, предназначенных для дальнего резервирования, учитываться не должно. Допускается не учитывать разновременности отключения выключателей по концам линии, когда они отключаются в результате срабатывания высокочастотной защиты.

    С целью повышения эффективности ТАПВ однократного действия допускается увеличивать его выдержку времени (по возможности с учетом работы потребителя).

    3.3.8. На одиночных линиях 110 кВ и выше с односторонним питанием, для которых допустим в случае неуспешного ТАПВ переход на длительную работу двумя фазами, следует предусматривать ТАПВ двукратного действия на питающем конце линии. Перевод линии на работу двумя фазами может производиться персоналом на месте или при помощи телеуправления.

    Для перевода линии после неуспешного АПВ на работу двумя фазами следует предусматривать пофазное управление разъединителями или выключателями на питающем и приемном концах линии.

    При переводе линии на длительную работу двумя фазами следует при необходимости принимать меры к уменьшению помех в работе линий связи из-за неполнофазного режима работы линии. С этой целью допускается ограничение мощности, передаваемой по линии в неполнофазном режиме (если это возможно по условиям работы потребителя).

    В отдельных случаях при наличии специального обоснования допускается также перерыв в работе линии связи на время неполнофазного режима.

    3.3.9. На линиях, отключение которых не приводит к нарушению электрической связи между генерирующими источниками, например на параллельных линиях с односторонним питанием, следует устанавливать устройства ТАПВ без проверки синхронизма.

    3.3.10. На одиночных линиях с двусторонним питанием (при отсутствии шунтирующих связей) должен предусматриваться один из следующих видов трехфазного АПВ (или их комбинаций):

    а) быстродействующее ТАПВ (БАПВ)

    б) несинхронное ТАПВ (НАПВ);

    в) ТАПВ с улавливанием синхронизма (ТАПВ УС).

    Кроме того, может предусматриваться однофазное АПВ (ОАПВ) в сочетании с различными видами ТАПВ, если выключатели оборудованы пофазным управлением и не нарушается устойчивость параллельной работы частей энергосистемы в цикле ОАПВ.

    Выбор видов АПВ производится, исходя из совокупности конкретных условий работы системы и оборудования с учетом указаний 3.3.11-3.3.15.

    3.3.11. Быстродействующее АПВ, или БАПВ (одновременное включение с минимальной выдержкой времени с обоих концов), рекомендуется предусматривать на линиях по 3.3.10 для автоматического повторного включения, как правило, при небольшом расхождении угла между векторами ЭДС соединяемых систем. БАПВ может применяться при наличии выключателей, допускающих БАПВ, если после включения обеспечивается сохранение синхронной параллельной работы систем и максимальный электромагнитный момент синхронных генераторов и компенсаторов меньше (с учетом необходимого запаса) электромагнитного момента, возникающего при трехфазном КЗ на выводах машины.

    Оценка максимального электромагнитного момента должна производиться для предельно возможного расхождения угла за время БАПВ. Соответственно запуск БАПВ должен производиться лишь при срабатывании быстродействующей защиты, зона действия которой охватывает всю линию. БАПВ должно блокироваться при срабатывании резервных защит и блокироваться или задерживаться при работе УРОВ.

    Если для сохранения устойчивости энергосистемы при неуспешном БАПВ требуется большой объем воздействий от противоаварийной автоматики, применение БАПВ не рекомендуется.

    3.3.12. Несинхронное АПВ (НАПВ) может применяться на линиях по 3.3.10 (в основном 110-220 кВ), если:

    а) максимальный электромагнитный момент синхронных генераторов и компенсаторов, возникающий при несинхронном включении, меньше (с учетом необходимого запаса) электромагнитного момента, возникающего при трехфазном КЗ на выводах машины, при этом в качестве практических критериев оценки допустимости НАПВ принимаются расчетные начальные значения периодических составляющих токов статора при угле включения 180°;

    б) максимальный ток через трансформатор (автотрансформатор) при угле включения 180° меньше тока КЗ на его выводах при питании от шин бесконечной мощности;

    в) после АПВ обеспечивается достаточно быстрая ресинхронизация; если в результате несинхронного автоматического повторного включения возможно возникновение длительного асинхронного хода, должны применяться специальные мероприятия для его предотвращения или прекращения.

    При соблюдении этих условий НАПВ допускается применять также в режиме ремонта на параллельных линиях.

    При выполнении НАПВ необходимо принять меры по предотвращению излишнего срабатывания защиты. С этой целью рекомендуется, в частности, осуществлять включение выключателей при НАПВ в определенной последовательности, например выполнением АПВ с одной из сторон линии с контролем наличия напряжения на ней после успешного ТАПВ с противоположной стороны.

    3.3.13. АПВ с улавливанием синхронизма может применяться на линиях по 3.3.10 для включения линии при значительных (примерно до 4%) скольжениях и допустимом угле.

    Возможно также следующее выполнение АПВ. На конце линии, который должен включаться первым, производится ускоренное ТАПВ (с фиксацией срабатывания быстродействующей защиты, зона действия которой охватывает всю линию) без контроля напряжения на линии (УТАПВ БК) или ТАПВ с контролем отсутствия напряжения на линии (ТАПВ ОН), а на другом ее конце - ТАПВ с улавливанием синхронизма. Последнее производится при условии, что включение первого конца было успешным (это может быть определено, например, при помощи контроля наличия напряжения на линии).

    Для улавливания синхронизма могут применяться устройства, построенные по принципу синхронизатора с постоянным углом опережения.

    Устройства АПВ следует выполнять так, чтобы имелась возможность изменять очередность включения выключателей по концам линии.

    При выполнении устройства АПВ УС необходимо стремиться к обеспечению его действия при возможно большей разности частот. Максимальный допустимый угол включения при применении АПВ УС должен приниматься с учетом условий, указанных в 3.3.12. При применении устройства АПВ УС рекомендуется его использование для включения линии персоналом (полуавтоматическая синхронизация).

    3.3.14. На линиях, оборудованных трансформаторами напряжения, для контроля отсутствия напряжения (КОН) и контроля наличия напряжения (КНН) на линии при различных видах ТАПВ рекомендуется использовать органы, реагирующие на линейное (фазное) напряжение и на напряжения обратной и нулевой последовательностей. В некоторых случаях, например на линиях без шунтирующих реакторов, можно не использовать напряжение нулевой последовательности.

    3.3.15. Однофазное автоматическое повторное включение (ОАПВ) может применяться только в сетях с большим током замыкания на землю. ОАПВ без автоматического перевода линии на длительный неполнофазный режим при устойчивом повреждении фазы следует применять:

    а) на одиночных сильно нагруженных межсистемных или внутрисистемных линиях электропередачи;

    б) на сильно нагруженных межсистемных линиях 220 кВ и выше с двумя и более обходными связями при условии, что отключение одной из них может привести к нарушению динамической устойчивости энергосистемы;

    в) на межсистемных и внутрисистемных линиях разных классов напряжения, если трехфазное отключение линии высшего напряжения может привести к недопустимой перегрузке линий низшего напряжения с возможностью нарушения устойчивости энергосистемы;

    г) на линиях, связывающих с системой крупные блочные электростанции без значительной местной нагрузки;

    д) на линиях электропередачи, где осуществление ТАПВ сопряжено со значительным сбросом нагрузки вследствие понижения напряжения.

    Устройство ОАПВ должно выполняться так, чтобы при выводе его из работы или исчезновении питания автоматически осуществлялся перевод действия защит линии на отключение трех фаз помимо устройства.

    Выбор поврежденных фаз при КЗ на землю должен осуществляться при помощи избирательных органов, которые могут быть также использованы в качестве дополнительной быстродействующей защиты линии в цикле ОАПВ, при ТАПВ, БАПВ и одностороннем включении линии оперативным персоналом.

    Выдержка временем ОАПВ должна отстраиваться от времени погасания дуги и деионизации среды в месте однофазного КЗ в неполнофазном режиме с учетом возможности неодновременного срабатывания защиты по концам линии, а также каскадного действия избирательных органов.

    3.3.16. На линиях по 3.3.15 ОАПВ должно применяться в сочетании с различными видами ТАПВ. При этом должна быть предусмотрена возможность запрета ТАПВ во всех случаях ОАПВ или только при неуспешном ОАПВ. В зависимости от конкретных условий допускается осуществление ТАПВ после неуспешного ОАПВ. В этих случаях предусматривается действие ТАПВ сначала на одном конце линии с контролем отсутствия напряжения на линии и с увеличенной выдержкой времени.

    3.3.17. На одиночных линиях с двусторонним питанием, связывающих систему с электростанцией небольшой мощности, могут применяться ТАПВ с автоматической самосинхронизацией (АПВС) гидрогенераторов для гидроэлектростанций и ТАПВ в сочетании с делительными устройствами - для гидро- и теплоэлектростанций.

    3.3.18. На линиях с двусторонним питанием при наличии нескольких обходных связей следует применять:

    1) при наличии двух связей, а также при наличии трех связей, если вероятно одновременное длительное отключение двух из этих связей (например, двухцепной линии):

    несинхронное АПВ (в основном для линий 110-220 кВ и при соблюдении условий, указанных в 3.3.12, но для случая отключения всех связей);

    АПВ с проверкой синхронизма (при невозможности выполнения несинхронного АПВ по причинам, указанным в 3.3.12, но для случая отключения всех связей).

    Для ответственных линий при наличии двух связей, а также при наличии трех связей, две из которых - двухцепная линия, при невозможности применения НАПВ по причинам, указанным в 3.3.12, разрешается применять устройства ОАПВ, БАПВ или АПВ УС (см. 3.3.11, 3.3.13, 3.3.15). При этом устройства ОАПВ и БАПВ следует дополнять устройством АПВ с проверкой синхронизма;

    2) при наличии четырех и более связей, а также при наличии трех связей, если в последнем случае одновременное длительное отключение двух из этих связей маловероятно (например, если все линии одноцепные), - АПВ без проверки синхронизма.

    3.3.19. Устройства АПВ с проверкой синхронизма следует выполнять на одном конце линии с контролем отсутствия напряжения на линии и с контролем наличия синхронизма, на другом конце - только с контролем наличия синхронизма. Схемы устройства АПВ с проверкой синхронизма линии должны выполняться одинаковыми на обоих концах с учетом возможности изменения очередности включения выключателей линии при АПВ.

    Рекомендуется использовать устройство АПВ с проверкой синхронизма для проверки синхронизма соединяемых систем при включении линии персоналом.

    3.3.20. Допускается совместное применение нескольких видов трехфазного АПВ на линии, например БАПВ и ТАПВ с проверкой синхронизма. Допускается также использовать различные виды устройств АПВ на разных концах линии, например УТАПВ БК (см. 3.3.13) на одном конце линии и ТАПВ с контролем наличия напряжения и синхронизма на другом.

    3.3.21. Допускается сочетание ТАПВ с неселективными быстродействующими защитами для исправления неселективного действия последних. В сетях, состоящих из ряда последовательно включенных линий, при применении для них неселективных быстродействующих защит для исправления их действия рекомендуется применять поочередное АПВ; могут также применяться устройства АПВ с ускорением защиты до АПВ или с кратностью действия (не более трех), возрастающей по направлению к источнику питания.

    3.3.22. При применении трехфазного однократного АПВ линий, питающих трансформаторы, со стороны высшего напряжения которых устанавливаются короткозамыкатели и отделители, для отключения отделителя в бестоковую паузу время действия устройства АПВ должно быть отстроено от суммарного времени включения короткозамыкателя и отключения отделителя. При применении трехфазного АПВ двукратного действия (см. 3.3.6) время действия АПВ в первом цикле по указанному условию не должно увеличиваться, если отключение отделителя предусматривается в бестоковую паузу второго цикла АПВ.

    Для линий, на которые вместо выключателей устанавливаются отделители, отключение отделителей в случае неуспешного АПВ в первом цикле должно производиться в бестоковую паузу второго цикла АПВ.

    3.3.23. Если в результате действия АПВ возможно несинхронное включение синхронных компенсаторов или синхронных электродвигателей и если такое включение для них недопустимо, а также для исключения подпитки от этих машин места повреждения следует предусматривать автоматическое отключение этих синхронных машин при исчезновении питания или переводить их в асинхронный режим отключением АГП с последующим автоматическим включением или ресинхронизацией после восстановления напряжения в результате успешного АПВ.

    Для подстанций с синхронными компенсаторами или синхронными электродвигателями должны применяться меры, предотвращающие излишние срабатывания АЧР при действии АПВ.

    3.3.24. АПВ шин электростанций и подстанций при наличии специальной защиты шин и выключателей, допускающих АПВ, должно выполняться по одному из двух вариантов:

    1) автоматическим опробованием (постановка шин под напряжение выключателем от АПВ одного из питающих элементов);

    2) автоматической сборкой схемы; при этом первым от устройства АПВ включается один из питающих элементов (например, линия, трансформатор), при успешном включении этого элемента производится последующее, возможно более полное автоматическое восстановление схемы доаварийного режима путем включения других элементов. АПВ шин по этому варианту рекомендуется применять в первую очередь для подстанций без постоянного дежурства персонала.

    При выполнении АПВ шин должны применяться меры, исключающие несинхронное включение (если оно является недопустимым).

    Должна обеспечиваться достаточная чувствительность защиты шин на случай неуспешного АПВ.

    3.3.25. На двухтрансформаторных понижающих подстанциях при раздельной работе трансформаторов, как правило, должны предусматриваться устройства АПВ шин среднего и низшего напряжений в сочетании с устройствами АВР; при внутренних повреждениях трансформаторов должно действовать АВР, при прочих повреждениях - АПВ (см. 3.3.42).

    Допускается для двухтрансформаторной подстанции, в нормальном режиме которой предусматривается параллельная работа трансформаторов на шинах данного напряжения, устанавливать дополнительно к устройству АПВ устройство АВР, предназначенное для режима, когда один из трансформаторов выведен в резерв.

    3.3.26. Устройствами АПВ должны быть оборудованы все одиночные понижающие трансформаторы мощностью более 1 MB·А на подстанциях энергосистем, имеющие выключатель и максимальную токовую защиту с питающей стороны, когда отключение трансформатора приводит к обесточению электроустановок потребителей. Допускается в отдельных случаях действие АПВ и при отключении трансформатора защитой от внутренних повреждений.

    3.3.27. При неуспешном АПВ включаемого первым выключателем элемента, присоединенного двумя или более выключателями, АПВ остальных выключателей этого элемента, как правило, должно запрещаться.

    3.3.28. При наличии на подстанции или электростанции выключателей с электромагнитным приводом, если от устройства АПВ могут быть одновременно включены два или более выключателей, для обеспечения необходимого уровня напряжения аккумуляторной батареи при включении и для снижения сечения кабелей цепей питания электромагнитов включения следует, как правило, выполнять АПВ так, чтобы одновременное включение нескольких выключателей было исключено (например, применением на присоединениях АПВ с различными выдержками времени).

    Допускается в отдельных случаях (преимущественно при напряжении 110 кВ и большом числе присоединений, оборудованных АПВ) одновременное включение от АПВ двух выключателей.

    3.3.29. Действие устройств АПВ должно фиксироваться указательными реле, встроенными в реле указателями срабатывания, счетчиками числа срабатываний или другими устройствами аналогичного назначения.
    [ ПУЭ]

    Тематики

    Обобщающие термины

    Синонимы

    Сопутствующие термины

    EN

    DE

    FR

    Франко-русский словарь нормативно-технической терминологии > refermeture automatique

  • 28 réenclenchement automatique

    1. автоматическое повторное включение

     

    автоматическое повторное включение
    АПВ

    Коммутационный цикл, при котором выключатель вслед за его отключением автоматически включается через установленный промежуток времени (О - tбт - В).
    [ ГОСТ Р 52565-2006]

    автоматическое повторное включение
    АПВ

    Автоматическое включение аварийно отключившегося элемента электрической сети
    [ОАО РАО "ЕЭС России" СТО 17330282.27.010.001-2008]

    (автоматическое) повторное включение
    АПВ


    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва]

    EN

    automatic reclosing
    automatic reclosing of a circuit-breaker associated with a faulted section of a network after an interval of time which permits that section to recover from a transient fault
    [IEC 61936-1, ed. 1.0 (2002-10)]
    [IEV 604-02-32]


    auto-reclosing
    the operating sequence of a mechanical switching device whereby, following its opening, it closes automatically after a predetermined time
    [IEC 62271-100, ed. 2.0 (2008-04)]
    auto-reclosing (of a mechanical switching device)
    the operating sequence of a mechanical switching device whereby, following its opening, it closes automatically after a predetermined time
    [IEV number 441-16-10]

    FR

    réenclenchement automatique
    refermeture du disjoncteur associé à une fraction de réseau affectée d'un défaut, par un dispositif automatique après un intervalle de temps permettant la disparition d'un défaut fugitif
    [IEC 61936-1, ed. 1.0 (2002-10)]
    [IEV 604-02-32]


    refermeture automatique
    séquence de manoeuvres par laquelle, à la suite d’une ouverture, un appareil mécanique de connexion est refermé automatiquement après un intervalle de temps prédéterminé
    [IEC 62271-100, ed. 2.0 (2008-04)]
    refermeture automatique (d'un appareil mécanique de connexion)
    séquence de manoeuvres par laquelle, à la suite d'une ouverture, un appareil mécanique de connexion est refermé automatiquement après un intervalle de temps prédéterminé
    [IEV number 441-16-10]

     
    Автоматическое повторное включение (АПВ), быстрое автоматическое обратное включение в работу высоковольтных линий электропередачи и электрооборудования высокого напряжения после их автоматического отключения; одно из наиболее эффективных средств противоаварийной автоматики. Повышает надёжность электроснабжения потребителей и восстанавливает нормальный режим работы электрической системы. Во многих случаях после быстрого отключения участка электрической системы, на котором возникло короткое замыкание в результате кратковременного нарушения изоляции или пробоя воздушного промежутка, при последующей подаче напряжения повторное короткое замыкание не возникает.   АПВ выполняется с помощью автоматических устройств, воздействующих на высоковольтные выключатели после их аварийного автоматического отключения от релейной защиты. Многие из этих автоматических устройств обеспечивают АПВ при самопроизвольном отключении выключателей, например при сильных сотрясениях почвы во время близких взрывов, землетрясениях и т. п. Эффективность АПВ тем выше, чем быстрее следует оно за аварийным отключением, т. е. чем меньше время перерыва питания потребителей. Это время зависит от длительности цикла АПВ. В электрических системах применяют однократное АПВ — с одним циклом, двукратное — при неуспешном первом цикле, и трёхкратное — с тремя последовательными циклами. Цикл АПВ — время от момента подачи сигнала на отключение до замыкания цепи главными контактами выключателя — состоит из времени отключения и включения выключателя и времени срабатывания устройства АПВ. Длительность бестоковой паузы, когда потребитель не получает электроэнергию, выбирается такой, чтобы успело произойти восстановление изоляции (деионизация среды) в месте короткого замыкания, привод выключателя после отключения был бы готов к повторному включению, а выключатель к моменту замыкания его главных контактов восстановил способность к отключению поврежденной цепи в случае неуспешного АПВ. Время деионизации зависит от среды, климатических условий и других факторов. Время восстановления отключающей способности выключателя определяется его конструкцией и количеством циклов АПВ., предшествовавших данному. Обычно длительность 1-го цикла не превышает 0,5—1,5 сек, 2-го — от 10 до 15 сек, 3-го — от 60 до 120 сек.

    Наиболее распространено однократное АПВ, обеспечивающее на воздушных линиях высокого напряжения (110 кв и выше) до 86 %, а на кабельных линиях (3—10 кв) — до 55 % успешных включений. Двукратное АПВ обеспечивает во втором цикле до 15 % успешных включений. Третий цикл увеличивает число успешных включений всего на 3—5 %. На линиях электропередачи высокого напряжения (от 110 до 500 кВ) применяется однофазовое АПВ; при этом выключатели должны иметь отдельные приводы на каждой фазе.

    Применение АПВ экономически выгодно, т. к. стоимость устройств АПВ и их эксплуатации несравнимо меньше ущерба из-за перерыва в подаче электроэнергии.
    [ БСЭ]

     

    НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ АПВ

    Опыт эксплуатации сетей высокого напряжения показал, что если поврежденную линию электропередачи быстро отключить, т. е. снять с нее напряжение, то в большинстве случаев повреждение ликвидируется. При этом электрическая дуга, возникавшая в месте короткого замыкания (КЗ), не успевает вызвать существенных разрушений оборудования, препятствующих обратному включению линии под напряжение.
    Самоустраняющиеся повреждения принято называть неустойчивыми. Такие повреждения возникают в результате грозовых перекрытий изоляции, схлестывания проводов при ветре и сбрасывании гололеда, падения деревьев, задевания проводов движущимися механизмами.
    Данные о повреждаемости воздушных линий электропередачи (ВЛ) за многолетний период эксплуатации показывают, что доля неустойчивых повреждений весьма высока и составляет 50—90 %.
    При ликвидации аварии оперативный персонал производит обычно опробование линии путем включения ее под напряжение, так как отыскание места повреждения на линии электропередачи путем ее обхода требует длительного времени, а многие повреждения носят неустойчивый характер. Эту операцию называют повторным включением.
    Если КЗ самоустранилось, то линия, на которой произошло неустойчивое повреждение, при повторном включении остается в работе. Поэтому повторные включения при неустойчивых повреждениях принято называть успешными.
    На ВЛ успешность повторного включения сильно зависит от номинального напряжения линий. На линиях ПО кВ и выше успешность повторного включения значительно выше, чем на ВЛ 6—35 кВ. Высокий процент успешных повторных включений в сетях высокого и сверхвысокого напряжения объясняется быстродействием релейной защиты (как правило, не более 0,1-0,15 с), большим сечением проводов и расстояний между ними, высокой механической прочностью опор. [Овчинников В. В., Автоматическое повторное включение. — М.:Энергоатомиздат, 1986.— 96 с: ил. — (Б-ка электромонтера; Вып. 587). Энергоатомиздат, 1986]

    АВТОМАТИЧЕСКОЕ ПОВТОРНОЕ ВКЛЮЧЕНИЕ (АПВ)

    3.3.2. Устройства АПВ должны предусматриваться для быстрого восстановления питания потребителей или межсистемных и внутрисистемных связей путем автоматического включения выключателей, отключенных устройствами релейной защиты.

    Должно предусматриваться автоматическое повторное включение:

    1) воздушных и смешанных (кабельно-воздушных) линий всех типов напряжением выше 1 кВ. Отказ от применения АПВ должен быть в каждом отдельном случае обоснован. На кабельных линиях 35 кВ и ниже АПВ рекомендуется применять в случаях, когда оно может быть эффективным в связи со значительной вероятностью повреждений с образованием открытой дуги (например, наличие нескольких промежуточных сборок, питание по одной линии нескольких подстанций), а также с целью исправления неселективного действия защиты. Вопрос о применении АПВ на кабельных линиях 110 кВ и выше должен решаться при проектировании в каждом отдельном случае с учетом конкретных условий;

    2) шин электростанций и подстанций (см. 3.3.24 и 3.3.25);

    3) трансформаторов (см. 3.3.26);

    4) ответственных электродвигателей, отключаемых для обеспечения самозапуска других электродвигателей (см. 3.3.38).

    Для осуществления АПВ по п. 1-3 должны также предусматриваться устройства АПВ на обходных, шиносоединительных и секционных выключателях.

    Допускается в целях экономии аппаратуры выполнение устройства группового АПВ на линиях, в первую очередь кабельных, и других присоединениях 6-10 кВ. При этом следует учитывать недостатки устройства группового АПВ, например возможность отказа в случае, если после отключения выключателя одного из присоединений отключение выключателя другого присоединения происходит до возврата устройства АПВ в исходное положение.

    3.3.3. Устройства АПВ должны быть выполнены так, чтобы они не действовали при:

    1) отключении выключателя персоналом дистанционно или при помощи телеуправления;

    2) автоматическом отключении от релейной защиты непосредственно после включения персоналом дистанционно или при помощи телеуправления;

    3) отключении выключателя защитой от внутренних повреждений трансформаторов и вращающихся машин, устройствами противоаварийной автоматики, а также в других случаях отключений выключателя, когда действие АПВ недопустимо. АПВ после действия АЧР (ЧАПВ) должно выполняться в соответствии с 3.3.81.

    Устройства АПВ должны быть выполнены так, чтобы была исключена возможностью многократного включения на КЗ при любой неисправности в схеме устройства.

    Устройства АПВ должны выполняться с автоматическим возвратом.

    3.3.4. При применении АПВ должно, как правило, предусматриваться ускорение действия релейной защиты на случай неуспешного АПВ. Ускорение действия релейной защиты после неуспешного АПВ выполняется с помощью устройства ускорения после включения выключателя, которое, как правило, должно использоваться и при включении выключателя по другим причинам (от ключа управления, телеуправления или устройства АВР). При ускорении защиты после включения выключателя должны быть приняты меры против возможного отключения выключателя защитой под действием толчка тока при включении из-за неодновременного включения фаз выключателя.

    Не следует ускорять защиты после включения выключателя, когда линия уже включена под напряжение другим своим выключателем (т. е. при наличии симметричного напряжения на линии).

    Допускается не ускорять после АПВ действие защит линий 35 кВ и ниже, выполненных на переменном оперативном токе, если для этого требуется значительное усложнение защит и время их действия при металлическом КЗ вблизи места установки не превосходит 1,5 с.

    3.3.5. Устройства трехфазного АПВ (ТАПВ) должны осуществляться преимущественно с пуском при несоответствии между ранее поданной оперативной командой и отключенным положением выключателя; допускается также пуск устройства АПВ от защиты.

    3.3.6. Могут применяться, как правило, устройства ТАПВ однократного или двукратного действия (последнее - если это допустимо по условиям работы выключателя). Устройство ТАПВ двукратного действия рекомендуется принимать для воздушных линий, в особенности для одиночных с односторонним питанием. В сетях 35 кВ и ниже устройства ТАПВ двукратного действия рекомендуется применять в первую очередь для линий, не имеющих резервирования по сети.

    В сетях с изолированной или компенсированной нейтралью, как правило, должна применяться блокировка второго цикла АПВ в случае замыкания на землю после АПВ первого цикла (например, по наличию напряжений нулевой последовательности). Выдержка времени ТАПВ во втором цикле должна быть не менее 15-20 с.

    3.3.7. Для ускорения восстановления нормального режима работы электропередачи выдержка времени устройства ТАПВ (в особенности для первого цикла АПВ двукратного действия на линиях с односторонним питанием) должна приниматься минимально возможной с учетом времени погасания дуги и деионизации среды в месте повреждения, а также с учетом времени готовности выключателя и его привода к повторному включению.

    Выдержка времени устройства ТАПВ на линии с двусторонним питанием должна выбираться также с учетом возможного неодновременного отключения повреждения с обоих концов линии; при этом время действия защит, предназначенных для дальнего резервирования, учитываться не должно. Допускается не учитывать разновременности отключения выключателей по концам линии, когда они отключаются в результате срабатывания высокочастотной защиты.

    С целью повышения эффективности ТАПВ однократного действия допускается увеличивать его выдержку времени (по возможности с учетом работы потребителя).

    3.3.8. На одиночных линиях 110 кВ и выше с односторонним питанием, для которых допустим в случае неуспешного ТАПВ переход на длительную работу двумя фазами, следует предусматривать ТАПВ двукратного действия на питающем конце линии. Перевод линии на работу двумя фазами может производиться персоналом на месте или при помощи телеуправления.

    Для перевода линии после неуспешного АПВ на работу двумя фазами следует предусматривать пофазное управление разъединителями или выключателями на питающем и приемном концах линии.

    При переводе линии на длительную работу двумя фазами следует при необходимости принимать меры к уменьшению помех в работе линий связи из-за неполнофазного режима работы линии. С этой целью допускается ограничение мощности, передаваемой по линии в неполнофазном режиме (если это возможно по условиям работы потребителя).

    В отдельных случаях при наличии специального обоснования допускается также перерыв в работе линии связи на время неполнофазного режима.

    3.3.9. На линиях, отключение которых не приводит к нарушению электрической связи между генерирующими источниками, например на параллельных линиях с односторонним питанием, следует устанавливать устройства ТАПВ без проверки синхронизма.

    3.3.10. На одиночных линиях с двусторонним питанием (при отсутствии шунтирующих связей) должен предусматриваться один из следующих видов трехфазного АПВ (или их комбинаций):

    а) быстродействующее ТАПВ (БАПВ)

    б) несинхронное ТАПВ (НАПВ);

    в) ТАПВ с улавливанием синхронизма (ТАПВ УС).

    Кроме того, может предусматриваться однофазное АПВ (ОАПВ) в сочетании с различными видами ТАПВ, если выключатели оборудованы пофазным управлением и не нарушается устойчивость параллельной работы частей энергосистемы в цикле ОАПВ.

    Выбор видов АПВ производится, исходя из совокупности конкретных условий работы системы и оборудования с учетом указаний 3.3.11-3.3.15.

    3.3.11. Быстродействующее АПВ, или БАПВ (одновременное включение с минимальной выдержкой времени с обоих концов), рекомендуется предусматривать на линиях по 3.3.10 для автоматического повторного включения, как правило, при небольшом расхождении угла между векторами ЭДС соединяемых систем. БАПВ может применяться при наличии выключателей, допускающих БАПВ, если после включения обеспечивается сохранение синхронной параллельной работы систем и максимальный электромагнитный момент синхронных генераторов и компенсаторов меньше (с учетом необходимого запаса) электромагнитного момента, возникающего при трехфазном КЗ на выводах машины.

    Оценка максимального электромагнитного момента должна производиться для предельно возможного расхождения угла за время БАПВ. Соответственно запуск БАПВ должен производиться лишь при срабатывании быстродействующей защиты, зона действия которой охватывает всю линию. БАПВ должно блокироваться при срабатывании резервных защит и блокироваться или задерживаться при работе УРОВ.

    Если для сохранения устойчивости энергосистемы при неуспешном БАПВ требуется большой объем воздействий от противоаварийной автоматики, применение БАПВ не рекомендуется.

    3.3.12. Несинхронное АПВ (НАПВ) может применяться на линиях по 3.3.10 (в основном 110-220 кВ), если:

    а) максимальный электромагнитный момент синхронных генераторов и компенсаторов, возникающий при несинхронном включении, меньше (с учетом необходимого запаса) электромагнитного момента, возникающего при трехфазном КЗ на выводах машины, при этом в качестве практических критериев оценки допустимости НАПВ принимаются расчетные начальные значения периодических составляющих токов статора при угле включения 180°;

    б) максимальный ток через трансформатор (автотрансформатор) при угле включения 180° меньше тока КЗ на его выводах при питании от шин бесконечной мощности;

    в) после АПВ обеспечивается достаточно быстрая ресинхронизация; если в результате несинхронного автоматического повторного включения возможно возникновение длительного асинхронного хода, должны применяться специальные мероприятия для его предотвращения или прекращения.

    При соблюдении этих условий НАПВ допускается применять также в режиме ремонта на параллельных линиях.

    При выполнении НАПВ необходимо принять меры по предотвращению излишнего срабатывания защиты. С этой целью рекомендуется, в частности, осуществлять включение выключателей при НАПВ в определенной последовательности, например выполнением АПВ с одной из сторон линии с контролем наличия напряжения на ней после успешного ТАПВ с противоположной стороны.

    3.3.13. АПВ с улавливанием синхронизма может применяться на линиях по 3.3.10 для включения линии при значительных (примерно до 4%) скольжениях и допустимом угле.

    Возможно также следующее выполнение АПВ. На конце линии, который должен включаться первым, производится ускоренное ТАПВ (с фиксацией срабатывания быстродействующей защиты, зона действия которой охватывает всю линию) без контроля напряжения на линии (УТАПВ БК) или ТАПВ с контролем отсутствия напряжения на линии (ТАПВ ОН), а на другом ее конце - ТАПВ с улавливанием синхронизма. Последнее производится при условии, что включение первого конца было успешным (это может быть определено, например, при помощи контроля наличия напряжения на линии).

    Для улавливания синхронизма могут применяться устройства, построенные по принципу синхронизатора с постоянным углом опережения.

    Устройства АПВ следует выполнять так, чтобы имелась возможность изменять очередность включения выключателей по концам линии.

    При выполнении устройства АПВ УС необходимо стремиться к обеспечению его действия при возможно большей разности частот. Максимальный допустимый угол включения при применении АПВ УС должен приниматься с учетом условий, указанных в 3.3.12. При применении устройства АПВ УС рекомендуется его использование для включения линии персоналом (полуавтоматическая синхронизация).

    3.3.14. На линиях, оборудованных трансформаторами напряжения, для контроля отсутствия напряжения (КОН) и контроля наличия напряжения (КНН) на линии при различных видах ТАПВ рекомендуется использовать органы, реагирующие на линейное (фазное) напряжение и на напряжения обратной и нулевой последовательностей. В некоторых случаях, например на линиях без шунтирующих реакторов, можно не использовать напряжение нулевой последовательности.

    3.3.15. Однофазное автоматическое повторное включение (ОАПВ) может применяться только в сетях с большим током замыкания на землю. ОАПВ без автоматического перевода линии на длительный неполнофазный режим при устойчивом повреждении фазы следует применять:

    а) на одиночных сильно нагруженных межсистемных или внутрисистемных линиях электропередачи;

    б) на сильно нагруженных межсистемных линиях 220 кВ и выше с двумя и более обходными связями при условии, что отключение одной из них может привести к нарушению динамической устойчивости энергосистемы;

    в) на межсистемных и внутрисистемных линиях разных классов напряжения, если трехфазное отключение линии высшего напряжения может привести к недопустимой перегрузке линий низшего напряжения с возможностью нарушения устойчивости энергосистемы;

    г) на линиях, связывающих с системой крупные блочные электростанции без значительной местной нагрузки;

    д) на линиях электропередачи, где осуществление ТАПВ сопряжено со значительным сбросом нагрузки вследствие понижения напряжения.

    Устройство ОАПВ должно выполняться так, чтобы при выводе его из работы или исчезновении питания автоматически осуществлялся перевод действия защит линии на отключение трех фаз помимо устройства.

    Выбор поврежденных фаз при КЗ на землю должен осуществляться при помощи избирательных органов, которые могут быть также использованы в качестве дополнительной быстродействующей защиты линии в цикле ОАПВ, при ТАПВ, БАПВ и одностороннем включении линии оперативным персоналом.

    Выдержка временем ОАПВ должна отстраиваться от времени погасания дуги и деионизации среды в месте однофазного КЗ в неполнофазном режиме с учетом возможности неодновременного срабатывания защиты по концам линии, а также каскадного действия избирательных органов.

    3.3.16. На линиях по 3.3.15 ОАПВ должно применяться в сочетании с различными видами ТАПВ. При этом должна быть предусмотрена возможность запрета ТАПВ во всех случаях ОАПВ или только при неуспешном ОАПВ. В зависимости от конкретных условий допускается осуществление ТАПВ после неуспешного ОАПВ. В этих случаях предусматривается действие ТАПВ сначала на одном конце линии с контролем отсутствия напряжения на линии и с увеличенной выдержкой времени.

    3.3.17. На одиночных линиях с двусторонним питанием, связывающих систему с электростанцией небольшой мощности, могут применяться ТАПВ с автоматической самосинхронизацией (АПВС) гидрогенераторов для гидроэлектростанций и ТАПВ в сочетании с делительными устройствами - для гидро- и теплоэлектростанций.

    3.3.18. На линиях с двусторонним питанием при наличии нескольких обходных связей следует применять:

    1) при наличии двух связей, а также при наличии трех связей, если вероятно одновременное длительное отключение двух из этих связей (например, двухцепной линии):

    несинхронное АПВ (в основном для линий 110-220 кВ и при соблюдении условий, указанных в 3.3.12, но для случая отключения всех связей);

    АПВ с проверкой синхронизма (при невозможности выполнения несинхронного АПВ по причинам, указанным в 3.3.12, но для случая отключения всех связей).

    Для ответственных линий при наличии двух связей, а также при наличии трех связей, две из которых - двухцепная линия, при невозможности применения НАПВ по причинам, указанным в 3.3.12, разрешается применять устройства ОАПВ, БАПВ или АПВ УС (см. 3.3.11, 3.3.13, 3.3.15). При этом устройства ОАПВ и БАПВ следует дополнять устройством АПВ с проверкой синхронизма;

    2) при наличии четырех и более связей, а также при наличии трех связей, если в последнем случае одновременное длительное отключение двух из этих связей маловероятно (например, если все линии одноцепные), - АПВ без проверки синхронизма.

    3.3.19. Устройства АПВ с проверкой синхронизма следует выполнять на одном конце линии с контролем отсутствия напряжения на линии и с контролем наличия синхронизма, на другом конце - только с контролем наличия синхронизма. Схемы устройства АПВ с проверкой синхронизма линии должны выполняться одинаковыми на обоих концах с учетом возможности изменения очередности включения выключателей линии при АПВ.

    Рекомендуется использовать устройство АПВ с проверкой синхронизма для проверки синхронизма соединяемых систем при включении линии персоналом.

    3.3.20. Допускается совместное применение нескольких видов трехфазного АПВ на линии, например БАПВ и ТАПВ с проверкой синхронизма. Допускается также использовать различные виды устройств АПВ на разных концах линии, например УТАПВ БК (см. 3.3.13) на одном конце линии и ТАПВ с контролем наличия напряжения и синхронизма на другом.

    3.3.21. Допускается сочетание ТАПВ с неселективными быстродействующими защитами для исправления неселективного действия последних. В сетях, состоящих из ряда последовательно включенных линий, при применении для них неселективных быстродействующих защит для исправления их действия рекомендуется применять поочередное АПВ; могут также применяться устройства АПВ с ускорением защиты до АПВ или с кратностью действия (не более трех), возрастающей по направлению к источнику питания.

    3.3.22. При применении трехфазного однократного АПВ линий, питающих трансформаторы, со стороны высшего напряжения которых устанавливаются короткозамыкатели и отделители, для отключения отделителя в бестоковую паузу время действия устройства АПВ должно быть отстроено от суммарного времени включения короткозамыкателя и отключения отделителя. При применении трехфазного АПВ двукратного действия (см. 3.3.6) время действия АПВ в первом цикле по указанному условию не должно увеличиваться, если отключение отделителя предусматривается в бестоковую паузу второго цикла АПВ.

    Для линий, на которые вместо выключателей устанавливаются отделители, отключение отделителей в случае неуспешного АПВ в первом цикле должно производиться в бестоковую паузу второго цикла АПВ.

    3.3.23. Если в результате действия АПВ возможно несинхронное включение синхронных компенсаторов или синхронных электродвигателей и если такое включение для них недопустимо, а также для исключения подпитки от этих машин места повреждения следует предусматривать автоматическое отключение этих синхронных машин при исчезновении питания или переводить их в асинхронный режим отключением АГП с последующим автоматическим включением или ресинхронизацией после восстановления напряжения в результате успешного АПВ.

    Для подстанций с синхронными компенсаторами или синхронными электродвигателями должны применяться меры, предотвращающие излишние срабатывания АЧР при действии АПВ.

    3.3.24. АПВ шин электростанций и подстанций при наличии специальной защиты шин и выключателей, допускающих АПВ, должно выполняться по одному из двух вариантов:

    1) автоматическим опробованием (постановка шин под напряжение выключателем от АПВ одного из питающих элементов);

    2) автоматической сборкой схемы; при этом первым от устройства АПВ включается один из питающих элементов (например, линия, трансформатор), при успешном включении этого элемента производится последующее, возможно более полное автоматическое восстановление схемы доаварийного режима путем включения других элементов. АПВ шин по этому варианту рекомендуется применять в первую очередь для подстанций без постоянного дежурства персонала.

    При выполнении АПВ шин должны применяться меры, исключающие несинхронное включение (если оно является недопустимым).

    Должна обеспечиваться достаточная чувствительность защиты шин на случай неуспешного АПВ.

    3.3.25. На двухтрансформаторных понижающих подстанциях при раздельной работе трансформаторов, как правило, должны предусматриваться устройства АПВ шин среднего и низшего напряжений в сочетании с устройствами АВР; при внутренних повреждениях трансформаторов должно действовать АВР, при прочих повреждениях - АПВ (см. 3.3.42).

    Допускается для двухтрансформаторной подстанции, в нормальном режиме которой предусматривается параллельная работа трансформаторов на шинах данного напряжения, устанавливать дополнительно к устройству АПВ устройство АВР, предназначенное для режима, когда один из трансформаторов выведен в резерв.

    3.3.26. Устройствами АПВ должны быть оборудованы все одиночные понижающие трансформаторы мощностью более 1 MB·А на подстанциях энергосистем, имеющие выключатель и максимальную токовую защиту с питающей стороны, когда отключение трансформатора приводит к обесточению электроустановок потребителей. Допускается в отдельных случаях действие АПВ и при отключении трансформатора защитой от внутренних повреждений.

    3.3.27. При неуспешном АПВ включаемого первым выключателем элемента, присоединенного двумя или более выключателями, АПВ остальных выключателей этого элемента, как правило, должно запрещаться.

    3.3.28. При наличии на подстанции или электростанции выключателей с электромагнитным приводом, если от устройства АПВ могут быть одновременно включены два или более выключателей, для обеспечения необходимого уровня напряжения аккумуляторной батареи при включении и для снижения сечения кабелей цепей питания электромагнитов включения следует, как правило, выполнять АПВ так, чтобы одновременное включение нескольких выключателей было исключено (например, применением на присоединениях АПВ с различными выдержками времени).

    Допускается в отдельных случаях (преимущественно при напряжении 110 кВ и большом числе присоединений, оборудованных АПВ) одновременное включение от АПВ двух выключателей.

    3.3.29. Действие устройств АПВ должно фиксироваться указательными реле, встроенными в реле указателями срабатывания, счетчиками числа срабатываний или другими устройствами аналогичного назначения.
    [ ПУЭ]

    Тематики

    Обобщающие термины

    Синонимы

    Сопутствующие термины

    EN

    DE

    FR

    Франко-русский словарь нормативно-технической терминологии > réenclenchement automatique

  • 29 double isolation

    1. двойная изоляция

     

    двойная изоляция
    Система изоляции, состоящая как из основной, так и дополнительной изоляции.
    [ ГОСТ Р 52161. 1-2004 ( МЭК 60335-1: 2001)]


    двойная изоляция
    Изоляция, включающая в себя как основную, так и дополнительную изоляцию.
    [ ГОСТ Р 52319-2005( МЭК 61010-1: 2001)]

    двойная изоляция
    Изоляция, включающая в себя основную и дополнительную изоляцию.
    [ ГОСТ Р МЭК 60050-195-2005]
    [ ГОСТ Р МЭК 60050-826-2009]

    двойная изоляция
    изоляция, содержащая как основную, так и дополнительную изоляции.
    [ ГОСТ 6570-96]

    EN

    double insulation
    insulation comprising both basic insulation and supplementary insulation
    Source: 826-03-19
    [IEV number 195-06-08]
    [IEC 60335-1, ed. 4.0 (2001-05)]

    FR

    double isolation
    isolation comprenant à la fois une isolation principale et une isolation supplémentaire
    Source: 826-03-19
    [IEV number 195-06-08]
    [IEC 60335-1, ed. 4.0 (2001-05)]

    Тематики

    EN

    DE

    FR

    Франко-русский словарь нормативно-технической терминологии > double isolation

  • 30 isolant d’un connecteur

    1. изолятор

     

    изолятор
    Изделие, служащее для электрической изоляции и механического крепления частей электрических устройств, находящихся под разными потенциалами
    [ ГОСТ 21962-76]

    изолятор
    Электротехническое устройство, предназначенное для электрической изоляции и механического крепления электроустановок или их отдельных частей, находящихся под разными электрическими потенциалами.
    [ ГОСТ 27744-88]

    изолятор
    Изоляторы предназначены для создания электрической изоляции между контактами и между контактами и металлическим корпусом в заданных условиях работы. Изоляторы служат также для закрепления и фиксации контактов и передачи механических сил контактам при сочленении и расчленении вилок и розеток соединителей.
    В цилиндрических соединителях для крепления изоляторов в корпусе применяют пружинные кольца, в прямоугольных соединителях - винтовые зажимы.
    [В. Ф. Лярский, О. Б. Мурадян. Электрические соединители. Справочник. Радио и связь, 1988]

    изолятор (электрического соединителя)
    Часть соединителя, удерживающая контакт-детали в требуемом положении и обеспечивающая их электрическую изоляцию друг от друга и от корпуса
    [Интент]

    EN

    connector insert
    insulating element designed to support and position contacts in a connector housing
    [IEV number 581-27-11]

    insulator
    device intended for electrical insulation and mechanical fixing of equipment or conductors which are subject to electric potential differences
    [IEV number 471-01-10]

    insulator
    device designed to support and insulate a conductive element
    [IEV number 151-15-39]

    FR

    isolant d’un connecteur
    elément isolant conçu pour tenir et positionner les contacts dans le boîtier du connecteur
    [IEV number 581-27-11]


    isolateur
    dispositif destiné à isoler électriquement et à maintenir mécaniquement un matériel ou des conducteurs soumis à des potentiels électriques différents
    [IEV number 471-01-10]

    isolateur, m
    dispositif destiné à maintenir et à isoler un élément conducteur
    [IEV number 151-15-39]

    0239_1

    1. Монтажная сторона
    2. Изолятор
    3. Контактная сторона

    Тематики

    Классификация

    >>>

    EN

    DE

    FR

    Франко-русский словарь нормативно-технической терминологии > isolant d’un connecteur

  • 31 isolateur

    1. изолятор

     

    изолятор
    Изделие, служащее для электрической изоляции и механического крепления частей электрических устройств, находящихся под разными потенциалами
    [ ГОСТ 21962-76]

    изолятор
    Электротехническое устройство, предназначенное для электрической изоляции и механического крепления электроустановок или их отдельных частей, находящихся под разными электрическими потенциалами.
    [ ГОСТ 27744-88]

    изолятор
    Изоляторы предназначены для создания электрической изоляции между контактами и между контактами и металлическим корпусом в заданных условиях работы. Изоляторы служат также для закрепления и фиксации контактов и передачи механических сил контактам при сочленении и расчленении вилок и розеток соединителей.
    В цилиндрических соединителях для крепления изоляторов в корпусе применяют пружинные кольца, в прямоугольных соединителях - винтовые зажимы.
    [В. Ф. Лярский, О. Б. Мурадян. Электрические соединители. Справочник. Радио и связь, 1988]

    изолятор (электрического соединителя)
    Часть соединителя, удерживающая контакт-детали в требуемом положении и обеспечивающая их электрическую изоляцию друг от друга и от корпуса
    [Интент]

    EN

    connector insert
    insulating element designed to support and position contacts in a connector housing
    [IEV number 581-27-11]

    insulator
    device intended for electrical insulation and mechanical fixing of equipment or conductors which are subject to electric potential differences
    [IEV number 471-01-10]

    insulator
    device designed to support and insulate a conductive element
    [IEV number 151-15-39]

    FR

    isolant d’un connecteur
    elément isolant conçu pour tenir et positionner les contacts dans le boîtier du connecteur
    [IEV number 581-27-11]


    isolateur
    dispositif destiné à isoler électriquement et à maintenir mécaniquement un matériel ou des conducteurs soumis à des potentiels électriques différents
    [IEV number 471-01-10]

    isolateur, m
    dispositif destiné à maintenir et à isoler un élément conducteur
    [IEV number 151-15-39]

    0239_1

    1. Монтажная сторона
    2. Изолятор
    3. Контактная сторона

    Тематики

    Классификация

    >>>

    EN

    DE

    FR

    Франко-русский словарь нормативно-технической терминологии > isolateur

  • 32 poste compact

    1. комплектное распределительное устройство

     

    комплектное распределительное устройство
    Электрическое распределительное устройство, состоящее из шкафов или блоков со встроенным в них оборудованием, устройствами управления, контроля, защиты, автоматики и сигнализации, поставляемое в собранном или подготовленном для сборки виде.
    Примечание. Комплектное распределительное устройство может выполняться, например, как комплектное распределительное устройство для наружной установки (КРУН), комплектное распределительное устройство с элегазовой изоляцией (КРУЭ) и проч.
    [ ГОСТ 24291-90]

    распределительное устройство комплектное
    Распределительное устройство, состоящее из полностью или частично закрытых шкафов или блоков со встроенными в них аппаратами, устройствами защиты и электроавтоматики, поставляемое в собранном или полностью подготовленном для сборки виде.
    [ПОТ Р М-016-2001]
    [РД 153-34.0-03.150-00]

    устройство распределительное комплектное
    Распределительное устройство, все элементы которого поставляются в полностью подготовленном для сборки или собранном виде
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    EN

    kiosk substation
    a compact substation, often prefabricated and used only for distribution purposes
    [IEV number 605-02-17]

    FR

    poste en cabine
    poste compact

    poste de faibles dimensions, le plus souvent préfabriqué et destiné essentiellement à la distribution
    [IEV number 605-02-17]


    Комплектное распределительное устройство (КРУ) — распределительное устройство, собранное из типовых унифицированных блоков (т. н. ячеек) высокой степени готовности, собранных в заводских условиях. На напряжении до 35 кВ ячейки изготовляют в виде шкафов, соединяемых боковыми стенками в общий ряд. В таких шкафах элементы с напряжением до 1 кВ выполняют проводами в твердой изоляции, а элементы от 1 до 35 кВ — проводниками с воздушной изоляцией.
    Для напряжений выше 35 кВ воздушная изоляция не применима, поэтому элементы, находящиеся под высоким напряжением помещают в герметичные камеры, заполненные элегазом. Ячейки с элегазовыми камерами имеют сложную конструкцию, внешне похожую на сеть трубопроводов. КРУ с элегазовой изоляцией сокращённо обозначают КРУЭ.
      Как правило, шкаф КРУ разделён на 4 основных отсека: 3 высоковольтных — кабельный отсек (ввода или линии), отсек выключателя и отсек сборных шин и 1 низковольтный — релейный шкаф.

    В релейном отсеке (3) располагается низковольтное оборудование: устройства РЗиА, переключатели, рубильники. На двери релейного отсека, как правило, располагаются светосигнальная арматура, устройства учёта и измерения электроэнергии, элементы управления ячейкой.
    В отсеке выключателя (4) располагается силовой выключатель или другое высоковольтное оборудование (разъединительные контакты, предохранители, ТН). Чаще всего в КРУ это оборудование размещается на выкатном или выдвижном элементе.
    В отсеке сборных шин (6) располагаются силовые шины (8), соединяющие шкафы секции РУ.
    Отсек ввода (5) служит для размещения кабельной разделки, измерительных трансформаторов тока (7), трансформаторов напряжения, ОПН.
    4567

    Эскиз ячейки КРУ.
    A - вид справа. B - вид спереди. С - вид сзади.
    1 - корпус шкафа.
    2 - выкатной элемент в кассете.
    3 - релейный отсек.
    4 - отсек выкатного элемента.
    5 - линейный отсек.
    6 - отсек сборных шин.
    7 - трансформаторы тока.
    8 - шины.
    9 - опорные изоляторы. [ Википедия]
    Различают:
    0402
    [http://forca.ru/spravka/spravka/kru.html]
    Комплектные распределительные устройства (КРУ)
    предназначены для работы в распределительных устройствах сетей трехфазного переменного тока с изолированной или заземленной через дугогасительный реактор нейтралью. КРУ набираются из отдельных камер, в которые встроены электротехническое оборудование, устройства релейной защиты и автоматики, измерительные приборы и т. п. Камеры определенной серии независимо от схемы электрических соединений главной цепи имеют аналогичную конструкцию основных узлов и, как правило, одинаковые габаритные размеры.
    В зависимости от конструктивного исполнения все КРУ можно разбить на следующие группы:
    • стационарного исполнения;
    • выкатного исполнения;
    • моноблоки, заполненные элегазом.
    В комплектных распределительных устройствах стационарного исполнения коммутационные аппараты, трансформаторы напряжения, трансформаторы собственных нужд небольшой мощности устанавливаются в камерах неподвижно.
    В комплектных распределительных устройствах выкатного исполнения вышеперечисленное оборудование устанавливается на выкатных тележках.
    Моноблок представляет собой компактное распределительное устройство на три—пять присоединений, заполненное элегазом (выпускаются моноблоки с возможностью расширения), предназначенное для небольших распределительных пунктов и РУВН трансформаторных подстанций 6—20 кВ. Моноблоки имеют принципиально новую конструкцию, использующую современные технологии и аппараты. В России первый элегазовый моноблок «Ладога» выпускается с 2004 г. предприятием ПО «Элтехника».
    [Ополева Г. Н. Схемы и подстанции электроснабжения: Справочник: Учеб. пособие. - М.; ФОРУМ: ИНФРА-М, 2006]
    Основные параметры КРУ 1. Номинальное напряжение (линейное), кВ
    2. Наибольшее рабочее напряжение (линейное), кВ
    3. Номинальный ток главных цепей шкафов КРУ, А
    4. Номинальный ток сборных шин, А
    5. Номинальный ток отключения выключателя, встроенного в КРУ, кА
    6. Ток термической стойкости (кратковременный ток), кА
    7. Номинальный ток электродинамической стойкости главных цепей шкафов КРУ (амплитуда), кА
    8. Время протекания тока термической стойкости, с: 1 или 3 [ ГОСТ 14693-90]
    КЛАССИФИКАЦИЯ
    Классификация негерметизированных КРУ в металлической оболочке
    (на основе ГОСТ 14693-90)

    Тематики

    • комплектное распред. устройство (КРУ)

    Синонимы

    EN

    DE

    FR

    Франко-русский словарь нормативно-технической терминологии > poste compact

  • 33 poste de distribution préfabriqué

    1. комплектное распределительное устройство

     

    комплектное распределительное устройство
    Электрическое распределительное устройство, состоящее из шкафов или блоков со встроенным в них оборудованием, устройствами управления, контроля, защиты, автоматики и сигнализации, поставляемое в собранном или подготовленном для сборки виде.
    Примечание. Комплектное распределительное устройство может выполняться, например, как комплектное распределительное устройство для наружной установки (КРУН), комплектное распределительное устройство с элегазовой изоляцией (КРУЭ) и проч.
    [ ГОСТ 24291-90]

    распределительное устройство комплектное
    Распределительное устройство, состоящее из полностью или частично закрытых шкафов или блоков со встроенными в них аппаратами, устройствами защиты и электроавтоматики, поставляемое в собранном или полностью подготовленном для сборки виде.
    [ПОТ Р М-016-2001]
    [РД 153-34.0-03.150-00]

    устройство распределительное комплектное
    Распределительное устройство, все элементы которого поставляются в полностью подготовленном для сборки или собранном виде
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    EN

    kiosk substation
    a compact substation, often prefabricated and used only for distribution purposes
    [IEV number 605-02-17]

    FR

    poste en cabine
    poste compact

    poste de faibles dimensions, le plus souvent préfabriqué et destiné essentiellement à la distribution
    [IEV number 605-02-17]


    Комплектное распределительное устройство (КРУ) — распределительное устройство, собранное из типовых унифицированных блоков (т. н. ячеек) высокой степени готовности, собранных в заводских условиях. На напряжении до 35 кВ ячейки изготовляют в виде шкафов, соединяемых боковыми стенками в общий ряд. В таких шкафах элементы с напряжением до 1 кВ выполняют проводами в твердой изоляции, а элементы от 1 до 35 кВ — проводниками с воздушной изоляцией.
    Для напряжений выше 35 кВ воздушная изоляция не применима, поэтому элементы, находящиеся под высоким напряжением помещают в герметичные камеры, заполненные элегазом. Ячейки с элегазовыми камерами имеют сложную конструкцию, внешне похожую на сеть трубопроводов. КРУ с элегазовой изоляцией сокращённо обозначают КРУЭ.
      Как правило, шкаф КРУ разделён на 4 основных отсека: 3 высоковольтных — кабельный отсек (ввода или линии), отсек выключателя и отсек сборных шин и 1 низковольтный — релейный шкаф.

    В релейном отсеке (3) располагается низковольтное оборудование: устройства РЗиА, переключатели, рубильники. На двери релейного отсека, как правило, располагаются светосигнальная арматура, устройства учёта и измерения электроэнергии, элементы управления ячейкой.
    В отсеке выключателя (4) располагается силовой выключатель или другое высоковольтное оборудование (разъединительные контакты, предохранители, ТН). Чаще всего в КРУ это оборудование размещается на выкатном или выдвижном элементе.
    В отсеке сборных шин (6) располагаются силовые шины (8), соединяющие шкафы секции РУ.
    Отсек ввода (5) служит для размещения кабельной разделки, измерительных трансформаторов тока (7), трансформаторов напряжения, ОПН.
    4567

    Эскиз ячейки КРУ.
    A - вид справа. B - вид спереди. С - вид сзади.
    1 - корпус шкафа.
    2 - выкатной элемент в кассете.
    3 - релейный отсек.
    4 - отсек выкатного элемента.
    5 - линейный отсек.
    6 - отсек сборных шин.
    7 - трансформаторы тока.
    8 - шины.
    9 - опорные изоляторы. [ Википедия]
    Различают:
    0402
    [http://forca.ru/spravka/spravka/kru.html]
    Комплектные распределительные устройства (КРУ)
    предназначены для работы в распределительных устройствах сетей трехфазного переменного тока с изолированной или заземленной через дугогасительный реактор нейтралью. КРУ набираются из отдельных камер, в которые встроены электротехническое оборудование, устройства релейной защиты и автоматики, измерительные приборы и т. п. Камеры определенной серии независимо от схемы электрических соединений главной цепи имеют аналогичную конструкцию основных узлов и, как правило, одинаковые габаритные размеры.
    В зависимости от конструктивного исполнения все КРУ можно разбить на следующие группы:
    • стационарного исполнения;
    • выкатного исполнения;
    • моноблоки, заполненные элегазом.
    В комплектных распределительных устройствах стационарного исполнения коммутационные аппараты, трансформаторы напряжения, трансформаторы собственных нужд небольшой мощности устанавливаются в камерах неподвижно.
    В комплектных распределительных устройствах выкатного исполнения вышеперечисленное оборудование устанавливается на выкатных тележках.
    Моноблок представляет собой компактное распределительное устройство на три—пять присоединений, заполненное элегазом (выпускаются моноблоки с возможностью расширения), предназначенное для небольших распределительных пунктов и РУВН трансформаторных подстанций 6—20 кВ. Моноблоки имеют принципиально новую конструкцию, использующую современные технологии и аппараты. В России первый элегазовый моноблок «Ладога» выпускается с 2004 г. предприятием ПО «Элтехника».
    [Ополева Г. Н. Схемы и подстанции электроснабжения: Справочник: Учеб. пособие. - М.; ФОРУМ: ИНФРА-М, 2006]
    Основные параметры КРУ 1. Номинальное напряжение (линейное), кВ
    2. Наибольшее рабочее напряжение (линейное), кВ
    3. Номинальный ток главных цепей шкафов КРУ, А
    4. Номинальный ток сборных шин, А
    5. Номинальный ток отключения выключателя, встроенного в КРУ, кА
    6. Ток термической стойкости (кратковременный ток), кА
    7. Номинальный ток электродинамической стойкости главных цепей шкафов КРУ (амплитуда), кА
    8. Время протекания тока термической стойкости, с: 1 или 3 [ ГОСТ 14693-90]
    КЛАССИФИКАЦИЯ
    Классификация негерметизированных КРУ в металлической оболочке
    (на основе ГОСТ 14693-90)

    Тематики

    • комплектное распред. устройство (КРУ)

    Синонимы

    EN

    DE

    FR

    Франко-русский словарь нормативно-технической терминологии > poste de distribution préfabriqué

  • 34 poste en cabine

    1. комплектное распределительное устройство

     

    комплектное распределительное устройство
    Электрическое распределительное устройство, состоящее из шкафов или блоков со встроенным в них оборудованием, устройствами управления, контроля, защиты, автоматики и сигнализации, поставляемое в собранном или подготовленном для сборки виде.
    Примечание. Комплектное распределительное устройство может выполняться, например, как комплектное распределительное устройство для наружной установки (КРУН), комплектное распределительное устройство с элегазовой изоляцией (КРУЭ) и проч.
    [ ГОСТ 24291-90]

    распределительное устройство комплектное
    Распределительное устройство, состоящее из полностью или частично закрытых шкафов или блоков со встроенными в них аппаратами, устройствами защиты и электроавтоматики, поставляемое в собранном или полностью подготовленном для сборки виде.
    [ПОТ Р М-016-2001]
    [РД 153-34.0-03.150-00]

    устройство распределительное комплектное
    Распределительное устройство, все элементы которого поставляются в полностью подготовленном для сборки или собранном виде
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    EN

    kiosk substation
    a compact substation, often prefabricated and used only for distribution purposes
    [IEV number 605-02-17]

    FR

    poste en cabine
    poste compact

    poste de faibles dimensions, le plus souvent préfabriqué et destiné essentiellement à la distribution
    [IEV number 605-02-17]


    Комплектное распределительное устройство (КРУ) — распределительное устройство, собранное из типовых унифицированных блоков (т. н. ячеек) высокой степени готовности, собранных в заводских условиях. На напряжении до 35 кВ ячейки изготовляют в виде шкафов, соединяемых боковыми стенками в общий ряд. В таких шкафах элементы с напряжением до 1 кВ выполняют проводами в твердой изоляции, а элементы от 1 до 35 кВ — проводниками с воздушной изоляцией.
    Для напряжений выше 35 кВ воздушная изоляция не применима, поэтому элементы, находящиеся под высоким напряжением помещают в герметичные камеры, заполненные элегазом. Ячейки с элегазовыми камерами имеют сложную конструкцию, внешне похожую на сеть трубопроводов. КРУ с элегазовой изоляцией сокращённо обозначают КРУЭ.
      Как правило, шкаф КРУ разделён на 4 основных отсека: 3 высоковольтных — кабельный отсек (ввода или линии), отсек выключателя и отсек сборных шин и 1 низковольтный — релейный шкаф.

    В релейном отсеке (3) располагается низковольтное оборудование: устройства РЗиА, переключатели, рубильники. На двери релейного отсека, как правило, располагаются светосигнальная арматура, устройства учёта и измерения электроэнергии, элементы управления ячейкой.
    В отсеке выключателя (4) располагается силовой выключатель или другое высоковольтное оборудование (разъединительные контакты, предохранители, ТН). Чаще всего в КРУ это оборудование размещается на выкатном или выдвижном элементе.
    В отсеке сборных шин (6) располагаются силовые шины (8), соединяющие шкафы секции РУ.
    Отсек ввода (5) служит для размещения кабельной разделки, измерительных трансформаторов тока (7), трансформаторов напряжения, ОПН.
    4567

    Эскиз ячейки КРУ.
    A - вид справа. B - вид спереди. С - вид сзади.
    1 - корпус шкафа.
    2 - выкатной элемент в кассете.
    3 - релейный отсек.
    4 - отсек выкатного элемента.
    5 - линейный отсек.
    6 - отсек сборных шин.
    7 - трансформаторы тока.
    8 - шины.
    9 - опорные изоляторы. [ Википедия]
    Различают:
    0402
    [http://forca.ru/spravka/spravka/kru.html]
    Комплектные распределительные устройства (КРУ)
    предназначены для работы в распределительных устройствах сетей трехфазного переменного тока с изолированной или заземленной через дугогасительный реактор нейтралью. КРУ набираются из отдельных камер, в которые встроены электротехническое оборудование, устройства релейной защиты и автоматики, измерительные приборы и т. п. Камеры определенной серии независимо от схемы электрических соединений главной цепи имеют аналогичную конструкцию основных узлов и, как правило, одинаковые габаритные размеры.
    В зависимости от конструктивного исполнения все КРУ можно разбить на следующие группы:
    • стационарного исполнения;
    • выкатного исполнения;
    • моноблоки, заполненные элегазом.
    В комплектных распределительных устройствах стационарного исполнения коммутационные аппараты, трансформаторы напряжения, трансформаторы собственных нужд небольшой мощности устанавливаются в камерах неподвижно.
    В комплектных распределительных устройствах выкатного исполнения вышеперечисленное оборудование устанавливается на выкатных тележках.
    Моноблок представляет собой компактное распределительное устройство на три—пять присоединений, заполненное элегазом (выпускаются моноблоки с возможностью расширения), предназначенное для небольших распределительных пунктов и РУВН трансформаторных подстанций 6—20 кВ. Моноблоки имеют принципиально новую конструкцию, использующую современные технологии и аппараты. В России первый элегазовый моноблок «Ладога» выпускается с 2004 г. предприятием ПО «Элтехника».
    [Ополева Г. Н. Схемы и подстанции электроснабжения: Справочник: Учеб. пособие. - М.; ФОРУМ: ИНФРА-М, 2006]
    Основные параметры КРУ 1. Номинальное напряжение (линейное), кВ
    2. Наибольшее рабочее напряжение (линейное), кВ
    3. Номинальный ток главных цепей шкафов КРУ, А
    4. Номинальный ток сборных шин, А
    5. Номинальный ток отключения выключателя, встроенного в КРУ, кА
    6. Ток термической стойкости (кратковременный ток), кА
    7. Номинальный ток электродинамической стойкости главных цепей шкафов КРУ (амплитуда), кА
    8. Время протекания тока термической стойкости, с: 1 или 3 [ ГОСТ 14693-90]
    КЛАССИФИКАЦИЯ
    Классификация негерметизированных КРУ в металлической оболочке
    (на основе ГОСТ 14693-90)

    Тематики

    • комплектное распред. устройство (КРУ)

    Синонимы

    EN

    DE

    FR

    Франко-русский словарь нормативно-технической терминологии > poste en cabine

  • 35 connexion à percement d’isolant

    1. контактное соединение с прокалыванием изоляции

     

    контактное соединение с прокалыванием изоляции
    -

    EN

    insulation piercing connection (of electronic equipment)
    solderless connection made by metallic protruding elements which pierce the insulation and are intended to provide contact with the conductor by deforming or penetrating it
    [IEV number 581-23-34]

    FR

    connexion à percement d’isolant (dans l’équipement électronique)
    connexion sans soudure obtenue au moyen d'éléments perforants métalliques, qui percent l'isolant et établissent le contact par déformation ou pénétration du conducteur
    [IEV number 581-23-34]

    0320

    [http://www.energosever.ru/armatura_sip-simel.html]
    Контактные пластины прокалывают изоляцию и обеспечивают надежный контакт с жилой

    0372
    [В. Ф. Лярский, О. Б. Мурадян. Электрические соединители. Справочник. Радио и связь, 1988]

    Присоединение кабеля к контактам способом прокалывания изоляции

     


     

    Тематики

    EN

    DE

    • Durchdringverbindung, f
    • Schneidklemmverbindung, f

    FR

    • connexion à percement d’isolant

    Франко-русский словарь нормативно-технической терминологии > connexion à percement d’isolant

  • 36 parafoudre à oxyde métallique sans éclateur

    1. ограничитель перенапряжений

     

    ограничитель перенапряжений нелинейный
    ОПН

    Аппарат, предназначенный для защиты изоляции электрооборудования от грозовых и коммутационных перенапряжений, представляющий собой последовательно и/или параллельно соединенные металлооксидные варисторы без каких-либо последовательных или параллельных искровых промежутков, заключенные в изоляционный корпус
    [ ГОСТ Р 52725-2007]

    EN

    metal-oxide surge arrester without gaps
    arrester having non-linear metal-oxide resistors connected in series and/or in parallel without any integrated series or parallel spark gaps
    [IEC 60099-4, ed. 2.0 (2004-05)]

    FR

    parafoudre à oxyde métallique sans éclateur
    parafoudre à résistances variables à oxyde métallique connectées en série et/ou en parallèle, ne comportant pas d'éclateurs en série ou en parallèle
    [IEC 60099-4, ed. 2.0 (2004-05)]

    В электрических сетях часто возникают импульсные всплески напряжения, вызванные коммутациями электроаппаратов, атмосферными разрядами или иными причинами. Несмотря на кратковременность такого перенапряжения, его может быть достаточно для пробоя изоляции и, как следствие, короткого замыкания, приводящего к разрушительным последствиям.Для того, чтобы устранить вероятность короткого замыкания, можно применять более надежную изоляцию, но это приводит к значительному увеличению стоимости оборудования. В связи с этим в электрических сетях целесообразно применять разрядники.
    Ограничитель перенапряжения нелинейный (ОПН) — это элемент защиты без искровых промежутков. Активная часть ОПН состоит из легированного металла, при подаче напряжения он ведет себя как множество последовательно соединенных варисторов. Принцип действия ОПН основан на том, что проводимость варисторов нелинейно зависит от приложенного напряжения. При отсутствии перенапряжений ОПН не пропускает ток, но как только на участке сети возникает перенапряжение, сопротивление ОПН резко снижается, чем и обуславливается эффект защиты от перенапряжения. После окончания действия перенапряжения на выводах ОПН, его сопротивление опять возрастает. Переход из «закрытого» в «открытое» состояние занимает единицы наносекунд (в отличие от разрядников с искровыми промежутками, у которых это время срабатывания может достигать единиц микросекунд). Кроме высокой скорости срабатывания ОПН обладает еще рядом преимуществ. Одним из них является стабильность характеристики варисторов после неоднократного срабатывания вплоть до окончания указанного времени эксплуатации, что, кроме прочего, устраняет необходимость в эксплуатационном обслуживании

    0706

    На электрических принципиальных схемах в России разрядники обозначаются согласно ГОСТ 2.727—68.
    1. Общее обозначение разрядника
    2. Разрядник трубчатый
    3. Разрядник вентильный и магнитовентильный
    4. ОПН

    [http://ru.wikipedia.org/wiki/%D0%9E%D0%9F%D0%9D]

    Параллельные тексты EN-RU

    Surge arresters

    To limit the occurrence of over voltages, an over voltage arrester is available upon request.

    The encapsulated surge arrester is designed on the basis of metallic oxide conductive resistors.

    These blow out if there is an overload, and the system protection turns off the faulty electrical circuit in a controlled manner.

    The surge arrester is in single-pole design.

    It has its own enclosure sealed by a sealed bushing.

    Connections for equipment to monitor the arrester.


    [Siemens]

    Ограничитель перенапряжений

    По запросу КРУЭ оснащается ограничителями перенапряжений.

    Ограничитель перенапряжений выполнен на базе металлооксидных варисторов и помещен в оболочку.

    При возникновении перенапряжения варисторы переходят в проводящее состояние, в результате чего система защиты отключает неисправную электрическую цепь.

    Ограничитель перенапряжений выполнен в виде однополюсного модуля.

    Ограничитель имеет собственную оболочку, герметично закрытую проходным изолятором.

    Ограничитель перенапряжений имеет выводы для подключения приборов контроля его состояния.


    [Перевод Интент]

    The GIS lay out in option of zinc oxide lightning arrester under metal enclosure insulated with gas SF6.

    The zinc oxide lightning arrester earths currents of considerable amplitude injected by accidental phenomena: lightning and operating overvoltages.

    The non-linear resistance of the zinc oxide maintains a residual voltage lower than the GIS insulation voltage during the flow of high currents.

    An impulse counter records the number of times high current passes through the conductor and the maximum amplitude attained.


    [Siemens]

    В КРУЭ может быть установлен ограничитель перенапряжений, выполненный на основе оксидноцинковых варисторов, размещенных в металлической оболочке, заполненной элегазом.

    Оксидноцинковый ограничитель перенапряжений отводит на землю значительные по амплитуде токи, которые могут появиться в результате атмосферных и коммутационных перенапряжений.

    При протекании значительного тока значение поддерживаемого нелинейным оксидноцинковым варистором остающегося напряжения ниже напряжения изоляции КРУЭ.

    Отдельный счетчик подсчитывает каждый проход тока через ограничитель и его амплитуду.


    [Перевод Интент]

    Transport and storage

    Lightning arresters are filled with SF6 or nitrogen gas under pressure in the factory.

    They are also fitted with a moisture filter.

    Maintain the lightning arrester in a vertical position during transport and storage.


    [Siemens]

    Транспортирование и хранение

    Ограничители перенапряжений
    заправлены на заводе-изготовителе элегазом или азотом под давлением.

    Ограничители оснащены фильтром-осушителем.

    При транспортировании и хранении ограничители перенапряжений должны находиться в вертикальном положении.


    [Перевод Интент]

     

    Недопустимые, нерекомендуемые

    Примечание(1)- Мнение автора карточки

    Тематики

    Синонимы

    EN

    FR

    Франко-русский словарь нормативно-технической терминологии > parafoudre à oxyde métallique sans éclateur

  • 37 isolation renforcée

    1. усиленная изоляция

     

    усиленная изоляция
    Единая система изоляции токоведущих частей, которая в условиях, предусмотренных настоящим стандартом, обеспечивает такую же степень защиты от поражения электрическим током, как и двойная изоляция.
    Примечание. Это не означает, что усиленная изоляция является только однородной частью. Она может состоять из нескольких слоев, которые нельзя испытать отдельно как дополнительную или основную изоляцию.
    [ ГОСТ Р 52161. 1-2004 ( МЭК 60335-1: 2001)]


    усиленная изоляция
    Изоляция, обеспечивающая защиту от поражения электрическим током не в меньшей степени, чем двойная изоляция. Она может содержать несколько слоев, которые не могут быть испытаны раздельно как дополнительная или основная изоляция.
    [ ГОСТ Р 52319-2005( МЭК 61010-1: 2001)]

    усиленная изоляция
    Изоляция опасных токоведущих частей, обеспечивающая степень защиты от поражения электрическим током, эквивалентную степени защиты, обеспечиваемой двойной изоляцией.
    Примечание - Усиленная изоляция может состоять из нескольких слоев, каждый из которых не может быть испытан отдельно как основная и дополнительная изоляция.
    [ ГОСТ Р МЭК 60050-195-2005]
    [ ГОСТ Р МЭК 60050-826-2009]

    усиленная изоляция
    одна изоляционная система, примененная к находящимся под напряжением частям, которая обеспечивает степень защиты от поражения электрическим током, эквивалентную двойной изоляции.
    Примечание - Термин "изоляционная система" не означает, что изоляция должна быть одной однородной частью. Она может содержать несколько слоев, которые не могут быть испытаны отдельно в качестве дополнительной или основной изоляции.
    [ ГОСТ 6570-96]

    EN

    reinforced insulation
    single insulation applied to live parts, that provides a degree of protection against electric shock equivalent to double insulation under the conditions specified in this standard
    NOTE - It is not implied that the insulation is one homogeneous piece. The insulation may comprise several layers which cannot be tested singly as supplementary insulation or basic insulation
    [IEC 60335-1, ed. 4.0 (2001-05)]


    reinforced insulation
    insulation of hazardous-live-parts which provides a degree of protection against electric shock equivalent to double insulation
    NOTE – Reinforced insulation may comprise several layers which cannot be tested singly as basic insulation or supplementary insulation.
    Source: 826-03-20 MOD
    [IEV number 195-06-09]

    FR

    isolation renforcée
    isolation unique des parties actives assurant, dans les conditions spécifiées par la présente norme, un degré de protection contre les chocs électriques équivalent à une double isolation
    NOTE - Ceci n'implique pas que l'isolation soit homogène. Elle peut comprendre plusieurs couches qui ne peuvent pas être essayées séparément en tant qu'isolation supplémentaire ou isolation principale.
    [IEC 60335-1, ed. 4.0 (2001-05)]


    isolation renforcée
    isolation des parties actives dangereuses assurant un degré de protection contre les chocs électriques équivalant à celui d'une double isolation
    NOTE – L'isolation renforcée peut comporter plusieurs couches qui ne peuvent pas être essayées séparément en tant qu'isolation principale ou isolation supplémentaire.
    Source: 826-03-20 MOD
    [IEV number 195-06-09]

    Тематики

    EN

    DE

    FR

    Франко-русский словарь нормативно-технической терминологии > isolation renforcée

  • 38 résistance d'isolement

    Франко-русский словарь нормативно-технической терминологии > résistance d'isolement

  • 39 défaut d'isolement

    пробой изоляции, повреждение изоляции

    Dictionnaire polytechnique Français-Russe > défaut d'isolement

  • 40 défaut d'isolement

    сущ.
    тех. повреждение изоляции, пробой изоляции

    Французско-русский универсальный словарь > défaut d'isolement

См. также в других словарях:

  • изоляции — обрамляющей рамкой я элокгрообогрова юшим элементом, между обрамляютей рамкой и измерительным преобразователем между элсктрообогреваюшим элементом и измерительным преобразователем, между металлическими деталями обрамления, стеклом и… …   Словарь-справочник терминов нормативно-технической документации

  • Изоляции индекс і — Изоляции индекс, і * ізаляцыі індэкс, і * isolation index or i. Estimate or і мера определения генетически обусловленной половой изоляции между двумя группами особей (линиями, штаммами). Используют два способа определения И. и. 1. Равное… …   Генетика. Энциклопедический словарь

  • ИЗОЛЯЦИИ, ЭФФЕКТ — См. фон Ресторфа, эффект …   Толковый словарь по психологии

  • сопротивление изоляции — 3.101 сопротивление изоляции (insulation resistance) RF: Сопротивление в системе, подвергаемой мониторингу, включая сопротивление всех подключенных устройств, относительно земли. Источник …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ 1516.3-96: Электрооборудование переменного тока на напряжения от 1 до 750 кВ. Требования к электрической прочности изоляции — Терминология ГОСТ 1516.3 96: Электрооборудование переменного тока на напряжения от 1 до 750 кВ. Требования к электрической прочности изоляции оригинал документа: 3.6. Внешняя изоляция по ГОСТ 1516.2. Определения термина из разных документов: Вне …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ 1516.1-76: Электрооборудование переменного тока на напряжения от 3 до 500 кВ. Требования к электрической прочности изоляции — Терминология ГОСТ 1516.1 76: Электрооборудование переменного тока на напряжения от 3 до 500 кВ. Требования к электрической прочности изоляции оригинал документа: 6. Внешняя изоляция По ГОСТ 1516.2 Определения термина из разных документов: Внешня …   Словарь-справочник терминов нормативно-технической документации

  • РД 34.51.503-93: Инструкция по эксплуатации изоляции в районах с загрязненной атмосферой — Терминология РД 34.51.503 93: Инструкция по эксплуатации изоляции в районах с загрязненной атмосферой: 1.3.3. Гидрофобное покрытие изоляции нанесенная на поверхность изоляторов смазка, препятствующая образованию на этой поверхности сплошной… …   Словарь-справочник терминов нормативно-технической документации

  • электрическая прочность изоляции — 3.1 электрическая прочность изоляции: По ГОСТ 6581. Источник …   Словарь-справочник терминов нормативно-технической документации

  • Измерение сопротивления изоляции — 1. Измерение сопротивления изоляции: а) первичных целей. Производится мегаомметром на напряжение 2,5 кВ. Сопротивление изоляции полностью собранных первичных цепей КРУ с установленными в них узлами и деталями, которые могут оказать влияние на… …   Словарь-справочник терминов нормативно-технической документации

  • Координация изоляции —         мероприятия по согласованию уровня изоляции электротехнического оборудования с размерами действующих на неё перенапряжений и характеристиками устройств защиты (защитных разрядников). Выбор уровня изоляции представляет собой технико… …   Большая советская энциклопедия

  • координация изоляции — 2.9.14 координация изоляции: Корреляция изоляционных свойств электрического оборудования с ожидаемыми перенапряжениями и характеристиками устройств для защиты от перенапряжений, с одной стороны, и с предполагаемой микросредой и способами защиты… …   Словарь-справочник терминов нормативно-технической документации

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»