Перевод: с русского на английский

с английского на русский

данные+в+эвм

  • 81 ввод по запросу

    1. request input mode

     

    ввод по запросу
    Способ организации взаимодействия с вводным устройством, при котором устройство выдает данные по запросу программы.
    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > ввод по запросу

  • 82 ввод с буферизацией

    1. event input mode

     

    ввод с буферизацией
    В машинной графике – способ организации взаимодействия с устройством ввода, при котором оно выдает данные независимо от программы, буферизующей их до фактической обработки.
    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > ввод с буферизацией

  • 83 затирать

    1. overwrite

     

    затирать
    Записывать данные в область носителя, занятую другими данными.
    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > затирать

  • 84 интегрированная система обработки данных

    1. integrated data system
    2. integrated data processing system
    3. IDS

     

    интегрированная система обработки данных

    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    интегрированная система обработки данных
    ИСОД
    Система организации сбора, обработки и выдачи информации в автоматизированных системах управления. В ИСОД интегрируются сама информация, каналы информации, память системы. При этом для решения разных задач используются общие нормативно-справочные и частично общие исходные данные. Интегрированные системы упорядочивают потоки информации, повышают эффективность ее использования. Важно, что собранная из разных источников в единой памяти системы (в ее базе данных) информация может быть затем многократно переработана и приспособлена к конкретным потребностям любого звена управления.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > интегрированная система обработки данных

  • 85 интерфейс, предназначенный для построения недорогих мультипроцессорных систем на основе 32-разрядных микропроцессоров

    1. RESYM
    2. reduced synchronous multiprocessor

     

    интерфейс, предназначенный для построения недорогих мультипроцессорных систем на основе 32-разрядных микропроцессоров
    В интерфейсе реализованы: 8-разрядная мультиплексированная шина «адрес/данные», распределенный арбитраж, синхронный протокол; тактовая частота 20–40 МГц, конвейерная передача сигналов управления, блочная передача данных длиной 60–160 разрядов. Драйверы магистрали реализованы на быстродействующих КМОП-схемах.
    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > интерфейс, предназначенный для построения недорогих мультипроцессорных систем на основе 32-разрядных микропроцессоров

  • 86 КД-ПЗУ расширенно архитектуры

    1. CD-ROM XA
    2. CD ROM extended Architecture

     

    КД-ПЗУ расширенно архитектуры
    Формат для компакт-дисков, позволяющий интегрировать звуковые данные с данными, находящимися в обычном CD-формате.
    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > КД-ПЗУ расширенно архитектуры

  • 87 классификатор

    1. classifier

     

    классификатор
    Аппарат для разделения смесей минеральных частиц на классы по крупности, форме, плотности
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    классификатор
    В информатике — систематический свод, перечень каких-либо объектов, позволяющий находить каждому из них свое место и определенное (обычно числовое) обозначение. Признаком классификации является свойство (характеристика) объекта, дающее возможность установить его сходство и различие с другими объектами классификации. Существуют различные К. — продукции, предприятий, технических систем, книг и статей и многие другие. К. бывают локальные, скажем, для отдельных предприятий, и общие. К. необходимы для обработки экономических данных на ЭВМ. Вместе с дескрипторами (точными обозначениями) они составляют язык автоматизированной системы. Это означает, что с помощью К. экономические данные кодируются, т.е. представляются в форме, которая удобна для переработки средствами вычислительной техники. Классификатор видов экономической деятельности (classification of economic activities) - классификатор, используемый в разных странах в целях государственного статистического наблюдения за развитием экономических процессов, подготовки статистической информации для международных экономических сопоставлений. Используется также при регистрации фирм, компаний и других юридических лиц. В России действует Общероссийский классификатор видов деятельности, ОКВЭД, один из комплекса подобных документов, типа Классификатора товаров, Классификатора государственных услуг населению, Таможенного классификатора. Он создан на основе официальной русской версии Статистической классификации видов экономической деятельности в Европейском экономическом сообществе (КДЕС) (англ. Statistical classification of economic activities in the European Community). В США аналогичный классификатор называется SIC, Standard Industrial Classification — Стандартная промышленная классификация. ОКВЭД состоит из 17 разделов: А. «Сельское хозяйство, охота и лесное хозяйство», B. Рыболовство, рыбоводство, С. Добыча полезных ископаемых, D. Обрабатывающие производства, E. Производство и распределение электроэнергии, газа и воды, F. Строительство, G. Оптовая и розничная торговля; ремонт автотранспортных средств, мотоциклов, бытовых изделий и предметов личного пользования, H. Гостиницы и рестораны, I. Транспорт и связь J. Финансовая деятельность, K. Операции с недвижимым имуществом, аренда и предоставление услуг, L. Государственное управление и обеспечение военной безопасности; обязательное социальное обеспечение, M. Образование, N. Здравоохранение и предоставление социальных услуг, O. Предоставление прочих коммунальных, социальных и персональных услуг, P. Предоставление услуг по ведению домашнего хозяйства, Q. Деятельность экстерриториальных организаций. Код группировок видов экономической деятельности в Общероссийском классификаторе состоит из двух — шести цифровых знаков, и его структура может быть представлена в следующем виде: XX. — класс; ХХ.Х — подкласс; ХХ.ХХ — группа; ХХ.ХХ.Х — подгруппа; ХХ.ХХ.ХХ — вид. При этом в качестве классификационных признаков (см. Классификатор) видов экономической деятельности в ОКВЭД используются признаки, характеризующие сферу деятельности, процесс (технологию) производства и т.п. В качестве дополнительного (в пределах одного и того же процесса производства) может выделяться признак «используемые сырье и материалы». См. также Экономическая деятельность.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    • строит. машины, оборуд., инструмент прочие
    • экономика

    EN

    DE

    FR

    3.1.16 классификатор (classifier): Оборудование, предназначенное для разделения кусков шины слишком большого размера и кусков шины желаемого размера.

    Источник: ГОСТ Р 54260-2010: Ресурсосбережение. Обращение с отходами. Стандартное руководство по использованию топлива, полученного из отходов шин оригинал документа

    3.41 классификатор (classifier): механизм, который характеризует поведенческие и структурные свойства.

    Примечание - Классификаторы включают в себя интерфейсы, классы, типы данных и компоненты.

    Источник: ГОСТ Р 54136-2010: Системы промышленной автоматизации и интеграция. Руководство по применению стандартов, структура и словарь оригинал документа

    Русско-английский словарь нормативно-технической терминологии > классификатор

  • 88 кольцевая ЛВС с квантованной передачей

    1. SRN
    2. slotted-ring network

     

    кольцевая ЛВС с квантованной передачей
    Использует однонаправленную передачу данных между станциями, в которой данные передаются в определенные интервалы времени по одной передающей среде и обеспечивается возврат данных на передающую станцию.
    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > кольцевая ЛВС с квантованной передачей

  • 89 Лисп

    1. list processing
    2. LISP

     

    Лисп
    Язык программирования, предназначенный для задач обработки нецифровых данных. Основной структурой данных и программ в языке является список, т. е. программы и данные, которые они обрабатывают, имеют одинаковую структуру. Язык Лисп широко используется для программирования научно-исследовательских задач в области искусственного интеллекта.
    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > Лисп

  • 90 линейное программирование

    1. linear programming

     

    линейное программирование

    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    линейное программирование
    Область математического программирования, посвященная теории и методам решения экстремальных задач, характеризующихся линейной зависимостью между переменными. В самом общем виде задачу Л.п. можно записать так. Даны ограничения типа или в так называемой канонической форме, к которой можно привести все три указанных случая Требуется найти неотрицательные числа xj (j = 1, 2, …, n), которые минимизируют (или максимизируют) линейную форму Неотрицательность искомых чисел записывается так: Таким образом, здесь представлена общая задача математического программирования с теми оговорками, что как ограничения, так и целевая функция — линейные, а искомые переменные — неотрицательны. Обозначения можно трактовать следующим образом: bi — количество ресурса вида i; m — количество видов этих ресурсов; aij — норма расхода ресурса вида i на единицу продукции вида j; xj — количество продукции вида j, причем таких видов — n; cj — доход (или другой выигрыш) от единицы этой продукции, а в случае задачи на минимум — затраты на единицу продукции; нумерация ресурсов разделена на три части: от 1 до m1, от m1 + 1 до m2 и от m2 + 1 до m в зависимости от того, какие ставятся ограничения на расходование этих ресурсов; в первом случае — «не больше», во втором — «столько же», в третьем — «не меньше»; Z — в случае максимизации, например, объем продукции или дохода, в случае же минимизации — себестоимость, расход сырья и т.п. Добавим еще одно обозначение, оно появится несколько ниже; vi — оптимальная оценка i-го ресурса. Слово «программирование» объясняется здесь тем, что неизвестные переменные, которые отыскиваются в процессе решения задачи, обычно в совокупности определяют программу (план) работы некоторого экономического объекта. Слово, «линейное» отражает факт линейной зависимости между переменными. При этом, как указано, задача обязательно имеет экстремальный характер, т.е. состоит в отыскании экстремума (максимума или минимума) целевой функции. Следует с самого начала предупредить: предпосылка линейности, когда в реальной экономике подавляющее большинство зависимостей носит более сложный нелинейный характер, есть огрубление, упрощение действительности. В некоторых случаях оно достаточно реалистично, в других же выводы, получаемые с помощью решения задач Л.п. оказываются весьма несовершенными. Рассмотрим две задачи Л.п. — на максимум и на минимум — на упрощенных примерах. Предположим, требуется разработать план производства двух видов продукции (объем первого — x1; второго — x2) с наиболее выгодным использованием трех видов ресурсов (наилучшим в смысле максимума общей прибыли от реализации плана). Условия задачи можно записать в виде таблицы (матрицы). Исходя из норм, зафиксированных в таблице, запишем неравенства (ограничения): a11x1 + a12x2 ? bi a21x1 + a22x2 ? b2 a31x1 + a32x2 ? b3 Это означает, что общий расход каждого из трех видов ресурсов не может быть больше его наличия. Поскольку выпуск продукции не может быть отрицательным, добавим еще два ограничения: x1? 0, x2? 0. Требуется найти такие значения x1 и x2, при которых общая сумма прибыли, т.е. величина c1 x1 + c2 x2 будет наибольшей, или короче: Удобно показать условия задачи на графике (рис. Л.2). Рис. Л.2 Линейное программирование, I (штриховкой окантована область допустимых решений) Любая точка здесь, обозначаемая координатами x1 и x2, составляет вариант искомого плана. Очевидно, что, например, все точки, находящиеся в области, ограниченной осями координат и прямой AA, удовлетворяют тому условию, что не может быть израсходовано первого ресурса больше, чем его у нас имеется в наличии (в случае, если точка находится на самой прямой, ресурс используется полностью). Если то же рассуждение отнести к остальным ограничениям, то станет ясно, что всем условиям задачи удовлетворяет любая точка, находящаяся в пределах области, края которой заштрихованы, — она называется областью допустимых решений (или областью допустимых значений, допустимым множеством). Остается найти ту из них, которая даст наибольшую прибыль, т.е. максимум целевой функции. Выбрав произвольно прямую c1x1 + c2x2 = П и обозначив ее MM, находим на чертеже все точки (варианты планов), где прибыль одинакова при любом сочетании x1 и x2 (см. Линия уровня). Перемещая эту линию параллельно ее исходному положению, найдем точку, которая в наибольшей мере удалена от начала координат, однако не вышла за пределы области допустимых значений. (Перемещая линию уровня еще дальше, уже выходим из нее и, следовательно, нарушаем ограничения задачи). Точка M0 и будет искомым оптимальным планом. Она находится в одной из вершин многоугольника. Может быть и такой случай, когда линия уровня совпадает с одной из прямых, ограничивающих область допустимых значений, тогда оптимальным будет любой план, находящийся на соответствующем отрезке. Координаты точки M0 (т.е. оптимальный план) можно найти, решая совместно уравнения тех прямых, на пересечении которых она находится. Противоположна изложенной другая задача Л.п.: поиск минимума функции при заданных ограничениях. Такая задача возникает, например, когда требуется найти наиболее дешевую смесь некоторых продуктов, содержащих необходимые компоненты (см. Задача о диете). При этом известно содержание каждого компонента в единице исходного продукта — aij, ее себестоимость — cj ; задается потребность в искомых компонентах — bi. Эти данные можно записать в таблице (матрице), сходной с той, которая приведена выше, а затем построить уравнения как ограничений, так и целевой функции. Предыдущая задача решалась графически. Рассуждая аналогично, можно построить график (рис. Л.3), каждая точка которого — вариант искомого плана: сочетания разных количеств продуктов x1 и x2. Рис.Л.3 Линейное программирование, II Область допустимых решений здесь ничем сверху не ограничена: нужное количество заданных компонентов тем легче получить, чем больше исходных продуктов. Но требуется найти наиболее выгодное их сочетание. Пунктирные линии, как и в предыдущем примере, — линии уровня. Здесь они соединяют планы, при которых себестоимость смесей исходных продуктов одинакова. Линия, соответствующая наименьшему ее значению при заданных требованиях, — линия MM. Искомый оптимальный план — в точке M0. Приведенные крайне упрощенные примеры демонстрируют основные особенности задачи Л.п. Реальные задачи, насчитывающие много переменных, нельзя изобразить на плоскости — для их геометрической интерпретации используются абстрактные многомерные пространства. При этом допустимое решение задачи — точка в n-мерном пространстве, множество всех допустимых решений — выпуклое множество в этом пространстве (выпуклый многогранник). Задачи Л.п., в которых нормативы (или коэффициенты), объемы ресурсов («константы ограничений«) или коэффициенты целевой функции содержат случайные элементы, называются задачами линейного стохастического программирования; когда же одна или несколько независимых переменных могут принимать только целочисленные значения, то перед нами задача линейного целочисленного программирования. В экономике широко применяются линейно-программные методы решения задач размещения производства (см. Транспортная задача), расчета рационов для скота (см. Задача диеты), наилучшего использования материалов (см. Задача о раскрое), распределения ресурсов по работам, которые надо выполнять (см. Распределительная задача) и т.д. Разработан целый ряд вычислительных приемов, позволяющих решать на ЭВМ задачи линейного программирования, насчитывающие сотни и тысячи переменных, неравенств и уравнений. Среди них наибольшее распространение приобрели методы последовательного улучшения допустимого решения (см. Симплексный метод, Базисное решение), а также декомпозиционные методы решения крупноразмерных задач, методы динамического программирования и др. Сама разработка и исследование таких методов — развитая область вычислительной математики. Один из видов решения имеет особое значение для экономической интерпретации задачи Л.п. Он связан с тем, что каждой прямой задаче Л.п. соответствует другая, симметричная ей двойственная задача (подробнее см. также Двойственность в линейном программировании). Если в качестве прямой принять задачу максимизации выпуска продукции (или объема реализации, прибыли и т.д.), то двойственная задача заключается, наоборот, в нахождении таких оценок ресурсов, которые минимизируют затраты. В случае оптимального решения ее целевая функция — сумма произведений оценки (цены) vi каждого ресурса на его количество bi— то есть равна целевой функции прямой задачи. Эта цена называется объективно обусловленной, или оптимальной оценкой, или разрешающим множителем. Основополагающий принцип Л.п. состоит в том, что в оптимальном плане и при оптимальных оценках всех ресурсов затраты и результаты равны. Оценки двойственной задачи обладают замечательными свойствами: они показывают, насколько возрастет (или уменьшится) целевая функция прямой задачи при увеличении (или уменьшении) запаса соответствующего вида ресурсов на единицу. В частности, чем больше в нашем распоряжении данного ресурса по сравнению с потребностью в нем, тем ниже будет оценка, и наоборот. Не решая прямую задачу, по оценкам ресурсов, полученных в двойственной задаче, можно найти оптимальный план: в него войдут все технологические способы, которые оправдывают затраты, исчисленные в этих оценках (см. Объективно обусловленные (оптимальные) оценки). Первооткрыватель Л.п. — советский ученый, академик, лауреат Ленинской, Государственной и Нобелевской премий Л.В.Канторович. В 1939 г. он решил математически несколько задач: о наилучшей загрузке машин, о раскрое материалов с наименьшими расходами, о распределении грузов по нескольким видам транспорта и др., при этом разработав универсальный метод решения этих задач, а также различные алгоритмы, реализующие его. Л.В.Канторович впервые точно сформулировал такие важные и теперь широко принятые экономико-математические понятия, как оптимальность плана, оптимальное распределение ресурсов, объективно обусловленные (оптимальные) оценки, указав многочисленные области экономики, где могут быть применены экономико-математические методы принятия оптимальных решений. Позднее, в 40—50-х годах, многое сделали в этой области американские ученые — экономист Т.Купманс и математик Дж. Данциг. Последнему принадлежит термин «линейное программирование». См. также: Ассортиментные задачи, Базисное решение, Блочное программирование, Булево линейное программирование, Ведущий столбец, Ведущая строка, Вершина допустимого многогранника, Вырожденная задача, Гомори способ, Граничная точка, Двойственная задача, Двойственность в линейном программировании, Дифференциальные ренты, Дополняющая нежесткость, Жесткость и нежесткость ограничений ЛП, Задача диеты, Задача о назначениях, Задача о раскрое, Задачи размещения, Исходные уравнения, Куна — Таккера условия, Множители Лагранжа, Область допустимых решений, Опорная прямая, Распределительные задачи, Седловая точка, Симплексная таблица, Симплексный метод, Транспортная задача.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > линейное программирование

  • 91 локальная сеть основной полосы частот

    1. baseband LAN

     

    локальная сеть основной полосы частот
    Локальная сеть, в которой данные кодируются и передаются без несущей частоты.
    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > локальная сеть основной полосы частот

  • 92 магнитооптический накопитель (дисковод)

    1. magneto-optical drive

     

    магнитооптический накопитель (дисковод)
    Дисководы этого типа записывают информацию на диск с помощью магнитного поля, называемого полем смещения, и луча лазера. Рабочий слой диска сохраняет данные в виде участков намагниченности разной полярности (доменов).
    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > магнитооптический накопитель (дисковод)

  • 93 машинная имитация

    1. simulation

     

    машинная имитация
    имитация на компьютере

    Экспериментальный метод изучения экономики с помощью электронной вычислительной техники. (В литературе часто в том же смысле применяется термин «имитационное моделирование«, однако, по-видимому, лучше разделить значения: моделирование есть разработка, конструирование модели некоторого объекта для его исследования, а имитация — один из возможных способов использования модели). Для имитации формируется имитационная система, включающая имитационную модель, а также программное обеспечение. В машину вводятся необходимые данные и ведется наблюдение за тем, как изменяются интересующие исследователя показатели; они подвергаются анализу, в частности, статистической обработке данных. С одной стороны, имитация применяется в тех случаях, когда модель (а значит, отражаемые ею система, процесс, явление) слишком сложна, чтобы можно было использовать аналитические методы решения. Для многих проблем управления и экономики такая ситуация неизбежна: например, даже столь отработанные методы, как линейное программирование, в ряде случаев слишком сильно огрубляют действительность, чтобы по полученным решениям можно было делать обоснованные выводы. А если изучаемые процессы имеют нелинейный характер и еще осложнены разного рода вероятностными характеристиками, то вопрос об аналитическом решении вообще не возникает. Сам выбор между имитационным (численным) или аналитическим решением той или иной экономической задачи не всегда легкая проблема. С другой стороны, имитация применяется тогда, когда реальный экономический эксперимент по тем или иным соображениям невозможен или слишком сложен. Тогда она выступает в качестве замены такого эксперимента. Но еще более ценна ее роль как предварительного этапа, «прикидки», которая помогает принять решение о необходимости и возможности проведения самого реального эксперимента. С помощью статической имитации можно выявить, при каких сочетаниях экзогенных (вводимых) факторов достигается оптимальный результат изучаемого процесса, установить относительное значение тех или иных факторов. Это полезно, например, при изучении различных методов и средств экономического стимулирования на производстве. М.и. в форме проигрывания динамических моделей (динамической имитации) применяется также в прогнозировании,. С его помощью изучают возможные последствия крупных структурных сдвигов в экономике, внедрения важнейших научно-технических достижений, принятия плановых решений. Если имитация организуется в форме диалога человека и машины, то у экспериментатора появляется возможность, анализируя на ходу промежуточные результаты, менять те или иные управляющие параметры и тем самым — направление изучаемого процесса. В последнее время широко применяется имитация экономических процессов, в которых сталкиваются различные интересы типа конкуренции на рынке. При этом управляют «проигрыванием» люди, принимающие по ходу деловой игры те или иные решения, например: «снизить цены», «увеличить или уменьшить выпуск продукции» и т.д., и ЭВМ показывает, у кого из «конкурирующих» сторон дело идет лучше, у кого — хуже (см. также Деловые игры, Олигопольные эксперименты). Таким образом, машинное имитирование экономических процессов — это, по существу эксперимент, но не в реальных, а в искусственных условиях. Для повышения его эффективости разрабатываются методы планирования эксперимента, проверки имитационной модели (см. Верификация моделей, Валидация модели), методы анализа функции отклика и т.д.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > машинная имитация

  • 94 метод Монте-Карло

    1. Monte-Carlo technique
    2. Monte Carlo method

     

    метод Монте-Карло

    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    метод Монте-Карло
    метод статистических испытаний
    Один из методов статистического моделирования, основанный на кибернетической идее «черного ящика». Он применяется в тех случаях, когда построение аналитической модели явления трудно или вовсе неосуществимо, например, при решении сложных задач теории массового обслуживания и ряда других задач исследования операций, связанных с изучением случайных процессов. Применение М. М.-К. можно проиллюстрировать примером из области теории очередей. Предположим, надо определить, как часто и как долго придется ждать покупателям в очереди в магазине при заданной его пропускной способности (допустим, для того, чтобы принять решение, следует ли расширять магазин). Подход покупателей носит случайный характер, распределение времени подхода может быть установлено из имеющейся информации. Время обслуживания покупателей тоже носит случайный характер и его распределение тоже может быть выявлено. Таким образом, имеются два стохастических или случайных процесса, взаимодействие которых и создает очередь. Теперь, если наугад перебирать все возможности (например, число покупателей, приходящих за час), сохраняя те же характеристики распределения, можно искусственно воссоздать картину этого процесса. Повторяя такую картину многократно, каждый раз меняя условия (число подходящих покупателей), можно изучать получаемые статистические данные так, как если бы они были получены при наблюдении над реальным потоком покупателей. Точно так же можно воссоздать искусственную картину работы самого магазина: здесь распределение времени подхода покупателей будет взаимодействовать с распределением времени обслуживания отдельного покупателя. Получаются опять два стохастических процесса. Их взаимодействие даст «очередь» с примерно такими же характеристиками (например, средней длиной очереди или средним временем ожидания), какими обладает реальная очередь. Таким образом, смысл М. М.-К. состоит в том, что исследуемый процесс моделируется путем многократных повторений его случайных реализаций. Единичные реализации называются статистическими испытаниями — отсюда второе название метода. Остается сказать, что такое выбор вариантов наугад (или механизм случайного выбора). В простых случаях для этого можно применять бросание игральной кости (классический учебный прием), но на практике используют таблицы случайных чисел либо вырабатывают (генерируют) случайные числа на ЭВМ, для чего имеются специальные программы, которые называются генераторами случайных чисел.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > метод Монте-Карло

  • 95 непосредственная передача

    1. flyby

     

    непосредственная передача
    Тип высокоскоростной передачи данных, при которой данные пересылаются из источника в приемник непосредственно (без передачи в контроллер).
    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > непосредственная передача

  • 96 оптическая головка

    1. optical head

     

    оптическая головка
    Блок чтения-записи в магнитооптических накопителях. Представляет собой систему линз, зеркал и призм, обеспечивающих передачу лазерного луча в точку чтения записи и обратно. Источником света является лазерный диод. Свет в электрические сигналы преобразуют фотодетекторы. Электронные элементы интерпретируют эти сигналы как данные, а также используют их для обеспечения фокусировки и позиционирования.
    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > оптическая головка

  • 97 ошибка шины

    1. error bus

     

    ошибка шины
    Сигнал от исполнителя, обнаружившего ошибку в операции на шине. Во время операции чтения или чтения блока наличие этого сигнала индицирует недействительность данных чтения. В течение операции типа записи ошибки указывает, что данные записи могут быть неправильными.
    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > ошибка шины

  • 98 последовательно-параллельная магистраль

    1. bit-serial highway

     

    последовательно-параллельная магистраль
    Последовательная магистраль, в которой данные, команды и другая информация передаются в последовательно-поразрядном режиме.
    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > последовательно-параллельная магистраль

  • 99 последовательно-побайтовая магистраль

    1. byte-serial highway

     

    последовательно-побайтовая магистраль
    Последовательная магистраль, в которой данные, команды и другая информация передаются по байтам.
    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > последовательно-побайтовая магистраль

  • 100 потоковый ввод

    1. stream input

     

    потоковый ввод
    Способ ввода, при котором вводимые данные интерпретируются как последовательность (символов), представляющих различные значения.
    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > потоковый ввод

См. также в других словарях:

  • ЭВМ — в физике. Используется в следующих осн. направлениях: автоматизация эксперимента и управление процессами в реальном времени (см. Автоматизация эксперимента), численный анализ, аналитич. вычисления, компьютерный эксперимент, визуализация данных… …   Физическая энциклопедия

  • данные в памяти ВС (доступные в интерактивном режиме) — — [Е.С.Алексеев, А.А.Мячев. Англо русский толковый словарь по системотехнике ЭВМ. Москва 1993] Тематики информационные технологии в целом EN on line data …   Справочник технического переводчика

  • данные о голубом, красном, желтом и черном цветах для цветоделения — — [Е.С.Алексеев, А.А.Мячев. Англо русский толковый словарь по системотехнике ЭВМ. Москва 1993] Тематики информационные технологии в целом EN cyan, margenta, yellow, blackCMYB …   Справочник технического переводчика

  • данные последнего изменения — — [Е.С.Алексеев, А.А.Мячев. Англо русский толковый словарь по системотехнике ЭВМ. Москва 1993] Тематики информационные технологии в целом EN reverse data …   Справочник технического переводчика

  • данные проверки безопасности — — [Е.С.Алексеев, А.А.Мячев. Англо русский толковый словарь по системотехнике ЭВМ. Москва 1993] Тематики информационные технологии в целом EN security audit trail …   Справочник технического переводчика

  • ДАННЫЕ — совокупность информации, представленной в формальном виде, который обеспечивает возможность её хранения, обработки или передачи; обычно это хранящиеся в ЭВМ, пересылаемые и обрабатываемые тексты, таблицы, инструкции, сведения о фактах, явлениях,… …   Большая политехническая энциклопедия

  • ЭВМ В ИНЖЕНЕРНО-ПСИХОЛОГИЧЕСКОМ ИССЛЕДОВАНИИ — применяется для решения следующих основных задач. 1. Обработка результатов инженерно психологических исследований. Это освобождает исследователя от рутинного, непроизводительного труда по выполнению расчетов и вычислений. Кроме того, машинная… …   Энциклопедический словарь по психологии и педагогике

  • данные — 3.4 данные (data): Совокупность значений, присвоенных для основных мер измерений, производных мер измерений и (или) показателей. [ИСО/МЭК 15939:2007] Источник …   Словарь-справочник терминов нормативно-технической документации

  • данные — ых; мн. 1. Сведения, показатели, характеризующие кого , что л. как основа каких л. выводов, решений. Анкетные, архивные, научные д. Статистические д. Д. эксперимента, разведки. По агентурным данным. Получить новые д. о падении национального… …   Энциклопедический словарь

  • ДАННЫЕ — в информатике, информация, представленная в формализов. виде, что обеспечивает возможность её хранения, автоматич. обработки и передачи с помощью техн. средств (напр., ЭВМ) …   Естествознание. Энциклопедический словарь

  • Данные — 1. Информация, представленная в виде, пригодном для обработки автоматическими средствами (например, электронной вычислительной машиной (ЭВМ)) при возможном участии человека Употребляется в документе: РД 45.298 2002 Оборудование аналоговых… …   Телекоммуникационный словарь

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»