Перевод: со всех языков на английский

с английского на все языки

в+случае+задержки

  • 1 в случае задержки

    Универсальный русско-английский словарь > в случае задержки

  • 2 в случае задержки

    Banks. Exchanges. Accounting. (Russian-English) > в случае задержки

  • 3 задержка

    задержка сущ
    delay
    время задержки
    1. dwell-time
    2. delay time в случае задержки
    in the case of delay
    задержка в базовом аэропорту
    terminal delay
    задержка вызова
    clamp-on
    задержка вылета с целью стыковки
    layover
    задержка на маршруте
    delay en-route
    избегать задержки
    avoid a delay
    устанавливать время задержки
    determine the delay
    устранять любую задержку
    obviate any delay

    Русско-английский авиационный словарь > задержка

  • 4 задержка

    Banks. Exchanges. Accounting. (Russian-English) > задержка

  • 5 случай

    сущ.
    1. occurrence; 2. case; 3. incident; 4. accident; 5. affair; 6. chance
    Русское существительное случай обозначает любое происшествие, независимо от его характера и обстоятельств, при которых оно происходит. Английские эквиваленты, в отличие от русского существительного случай, различают разные виды событий, происшествий и обстоятельств их совершения.
    1. occurrence — случай, явление (обозначает лишь факт происшествия, и поэтому чаще всего употребляется с определением): a happy occurrence — счастливый случай; a rare occurrence — редкое явление; an everyday/a common occurrence — обычное явление/обычный случай
    2. case — случай, происшествие, дело (чаще всего обозначает совершившееся, фактическое событие; часто употребляется с определением, которое занимает позицию после существительного case и выражено другим существительным с предлогом of): a case of no importance — несущественное происшествие/мелкое происшествие/несущественный случай; a case of principle — дело принципа/принципиальное дело; cases of robbery (murder, illness) — случаи ограбления (убийства, заболевания); in this case — в таком случае; in any case — в любом случае/при любых обстоятельствах; in your case — в вашем случае/положении; in case of delay — в случае задержки/если произойдет задержка; just in case — на всякий случай/на случай, если…/а вдруг It is sunny now, but take your umbrella jusl in case, our weather is so changeable. — Хотя сейчас и солнечно, возьмите зонтик на всякий случай, погода так переменчива. The cafe is closed in (hat case allow me lo invite you to my place. — Кафе закрыто, а раз так, разрешите пригласить вас ко мне домой.
    3. incident — случай, эпизод, инцидент (обозначает единичное событие или один из многих эпизодов, не имеющих серьезного значении; употребляется в повседневной разговорной речи): a strange incident — странный случай; an incident from the life of a writer случай из жизни писателя Nobody knew anything about this incident. — Никто ничего не знал об этом случае/инциденте. It was a funny (a very unpleasant) incident. — Это была смешная истории (неприятная) история.
    4. accident — случай, происшествие, несчастный случай, авария, катастрофа: a car accident — автомобильная катастрофа; road accidents — дорожные происшествия/аварии; to have an accident — попасть в аварию All victims of this accident were taken to hospital, their lives are fortunately out of danger. — Всех пострадавших в этой аварии отправили в больницу, жизнь каждого из них, к счастью, вне опасности. He was killed in an accident. — Он погиб в аварии. He is such a careless driver, I would not wonder if he gets into an accident. — Он так неосторожно ездит, я не удивлюсь, если он попадет в аварию.
    5. affair — случай, дело, событие, обстоятельства дела (в отличие от incident, affair обычно относится не к одному отдельному эпизоду, а к целому ряду мелких эпизодов одного события, к суммированию этих черт, дающих общее представление о событии): a strange (funny, an unpleasant) affair — странный (смешной, неприятный) случай/странное (смешное, неприятное) дело/странное (смешное, неприятное) событие They decided lo consider the whole affair. — Они решили рассмотреть все обстоятельства этого дела./Они решили рассмотреть все обстоятельства этого события./Они решили рассмотреть все обстоятельства этого случая.
    6. chance — случай, случайность (какое-либо незапланированное происшествие, что-либо маловероятное): а rаrе chance — редкий случай; an unexpected chance — неожиданный случай; by chance — случайно; by a lucky chance — по счастливой случайности; quite by chance — совершенно случайно; on the off chance — на случай/а вдруг/непредвиденный случай; chance meetings — случайные встречи; chance visitors — случайные посетители; a chance talk — случайный разговор; to hear smth by chance — услышать что-либо случайно; to leave things to chance — предоставить все делу случая/положиться на волю случая; to leave nothing to chance — все предусмотреть I didn't expect to catch her at home and called on the off chance. — Я не ожидал застать ее дома и зашел на всякий случай./Я не надеялся застать ее дома и зашел на всякий случай. I waited for a chance to introduce myself. — Я ждал случая представиться. it was a mere chance that me met. — Мы познакомились совершенно случайно.

    Русско-английский объяснительный словарь > случай

  • 6 в

    аварийная ситуация в полете
    in-flight emergency
    аварийное табло в кабине экипажа
    cabin emergency light
    аварийный клапан сброса давления в системе кондиционирования
    conditioned air emergency valve
    автоматическая информация в районе аэродрома
    automatic terminal information
    автомат тяги в системе автопилота
    autopilot auto throttle
    аэровокзал в форме полумесяца
    crescent-shaped terminal
    аэродинамическая труба для испытаний на сваливание в штопор
    spin wind tunnel
    аэродинамическая труба для испытания моделей в натуральную величину
    full-scale wind tunnel
    балансировка в горизонтальном полете
    horizontal trim
    балансировка в полете
    operational trim
    безопасная дистанция в полете
    in-flight safe distance
    билет в одном направлении
    one-way ticket
    билет на полет в одном направлении
    single ticket
    боковой обзор в полете
    sideway inflight view
    в аварийной обстановке
    in emergency
    введение в вираж
    banking
    введение в действие пассажирских и грузовых тарифов
    fares and rates enforcement
    ввод в эксплуатацию
    introduction into service
    вводить воздушное судно в крен
    roll in the aircraft
    вводить в штопор
    put into the spin
    вводить в эксплуатацию
    1. go into service
    2. come into operation 3. place in service 4. enter service 5. introduce into service 6. put in service 7. put in operation вводить шестерни в зацепление
    mesh gears
    в воздухе
    1. up
    2. aloft вентилятор в кольцевом обтекателе
    duct fan
    вертолет в режиме висения
    hovering helicopter
    верхний обзор в полете
    upward inflight view
    ветер в верхних слоях атмосферы
    1. upper wind
    2. aloft wind ветер в направлении курса полета
    tailwind
    в заданном диапазоне
    within the range
    в западном направлении
    westward
    взлет в условиях плохой видимости
    low visibility takeoff
    в зоне влияния земли
    in ground effect
    в зоне действия луча
    on the beam
    видимость в полете
    flight visibility
    видимость в пределах допуска
    marginal visibility
    видимость у земли в зоне аэродрома
    aerodrome ground visibility
    визуальная оценка расстояния в полете
    distance assessment
    визуальный контакт в полете
    flight visual contact
    визуальный ориентир в полете
    flight visual cue
    в интересах безопасности
    in interests of safety
    висение в зоне влияния земли
    hovering in the ground effect
    вихрь в направлении линии полета
    line vortex
    в конце участка
    at the end of segment
    (полета) в конце хода
    at the end of stroke
    (поршня) в конце цикла
    at the end of
    в начале участка
    at the start of segment
    (полета) в начале цикла
    at the start of cycle
    в обратном направлении
    backward
    в ожидании разрешения
    pending clearance
    возвращаться в пункт вылета
    fly back
    воздух в пограничном слое
    boundary-layer air
    воздух в турбулентном состоянии
    rough air
    воздухозаборник в нижней части фюзеляжа
    belly intake
    воздушная обстановка в зоне аэродрома
    aerodrome air picture
    воздушное судно в зоне ожидания
    holding aircraft
    воздушное судно в полете
    1. making way aircraft
    2. aircraft on flight 3. in-flight aircraft воздушное судно, дозаправляемое в полете
    receiver aircraft
    воздушное судно, занесенное в реестр
    aircraft on register
    воздушное судно, находящееся в воздухе
    airborne aircraft
    воздушное судно, находящееся в эксплуатации владельца
    owner-operated aircraft
    воздушное судно, нуждающееся в помощи
    aircraft requiring assistance
    воздушное судно, прибывающее в конечный аэропорт
    terminating aircraft
    в подветренную сторону
    alee
    в поле зрения
    in sight
    в пределах
    within the frame of
    в процессе взлета
    during takeoff
    в процессе полета
    1. while in flight
    2. in flight в процессе руления
    while taxiing
    в рабочем состоянии
    operational
    в режиме
    in mode
    в режиме большого шага
    in coarse pitch
    в режиме готовности
    in alert
    в режиме малого шага
    in fine pitch
    в режиме самоориентирования
    when castoring
    время в рейсе
    1. chock-to-chock time
    2. ramp-to-ramp time 3. block-to-block hours 4. block-to-block time 5. ramp-to-ramp hours время налета в ночных условиях
    night flying time
    время налета в часах
    hour's flying time
    время фактического нахождения в воздухе
    actual airborne time
    в ряд
    abreast
    в случае задержки
    in the case of delay
    в случае происшествия
    in the event of a mishap
    в случая отказа
    in the event of malfunction
    в соответствии с техническими условиями
    in conformity with the specifications
    в состоянии бедствия
    in distress
    в состоянии готовности
    when under way
    в условиях обтекания
    airflow conditions
    в хвостовой части
    1. abaft
    2. aft вход в зону аэродрома
    1. entry into the aerodrome zone
    2. inward flight входить в глиссаду
    gain the glide path
    входить в зону глиссады
    reach the glide path
    входить в круг движения
    enter the traffic circuit
    входить в облачность
    enter clouds
    входить в разворот
    1. roll into the turn
    2. initiate the turn 3. enter the turn входить в условия
    penetrate conditions
    входить в штопор
    enter the spin
    входить в этап выравнивания
    entry into the flare
    вхожу в круг
    on the upwind leg
    в целях безопасности
    for reasons of safety
    выполнять полет в зоне ожидания
    hold over the aids
    выполнять полет в определенных условиях
    fly under conditions
    выполнять полет в режиме ожидания над аэродромом
    hold over the beacon
    выполнять установленный порядок действий в аварийной ситуации
    execute an emergency procedure
    выравнивание в линию горизонта
    levelling-off
    выравнивание при входе в створ ВПП
    runway alignment
    высота в зоне ожидания
    holding altitude
    высота в кабине
    cabin pressure
    высота плоскости ограничения препятствий в зоне взлета
    takeoff surface level
    высота полета в зоне ожидания
    holding flight level
    высотомер, показания которого выведены в ответчик
    squawk altimeter
    выход в равносигнальную зону
    bracketing
    в эксплуатации
    in service
    в эксплуатацию
    in operation
    гасить скорость в полете
    decelerate in the flight
    головокружение при полете в сплошной облачности
    cloud vertigo
    горизонт, видимый в полете
    in-flight apparent horizon
    господство в воздухе
    air supremacy
    граница высот повторного запуска в полете
    inflight restart envelope
    грубая ошибка в процессе полета
    in flight blunder
    груз, сброшенный в полете
    jettisoned load in flight
    давление в аэродинамической трубе
    wind-tunnel pressure
    давление в кабине
    cabin pressure
    давление в невозмущенном потоке
    undisturbed pressure
    давление в свободном потоке
    free-stream pressure
    давление в системе подачи топлива
    fuel supply pressure
    давление в системе стояночного тормоза
    perking pressure
    давление в скачке уплотнения
    shock pressure
    давление в спутной струе
    wake pressure
    давление в топливном баке
    tank pressure
    давление в тормозной системе
    brake pressure
    давление в точке отбора
    tapping pressure
    давление на входе в воздухозаборник
    air intake pressure
    дальность видимости в полете
    flight visual range
    дальность полета в невозмущенной атмосфере
    still-air flight range
    данные в узлах координатной сетки
    grid-point data
    данные о результатах испытания в воздухе
    air data
    двигатель, расположенный в крыле
    in-wing mounted
    двигатель, установленный в мотогондоле
    naccele-mounted engine
    двигатель, установленный в отдельной гондоле
    podded engine
    двигатель, установленный в фюзеляже
    in-board engine
    движение в зоне аэродрома
    aerodrome traffic
    движение в зоне аэропорта
    airport traffic
    действия в момент касания ВПП
    touchdown operations
    делать отметку в свидетельстве
    endorse the license
    делитель потока в заборном устройстве
    inlet splitter
    держать шарик в центре
    keep the ball centered
    дозаправка топливом в полете
    air refuelling
    дозаправлять топливом в полете
    refuel in flight
    допуск к работе в качестве пилота
    act as a pilot authority
    доставка пассажиров в аэропорт вылета
    pickup service
    единый тариф на полет в двух направлениях
    two-way fare
    завоевывать господство в воздухе
    gain the air supremacy
    задатчик высоты в кабине
    cabin altitude selector
    задержка в базовом аэропорту
    terminal delay
    зал таможенного досмотра в аэропорту
    airport customs room
    замер в полете
    inflight measurement
    заносить воздушное судно в реестр
    enter the aircraft
    запись вибрации в полете
    inflight vibration recording
    запись в формуляре
    log book entry
    запись переговоров в кабине экипажа
    cockpit voice recording
    запускать воздушное судно в производство
    put the aircraft into production
    запускать двигатель в полете
    restart the engine in flight
    запуск в воздухе
    1. air starting
    2. airstart запуск в полете
    inflight starting
    запуск в полете без включения стартера
    inflight nonassisted starting
    запуск в режиме авторотации
    windmill starting
    заход на посадку в режиме планирования
    gliding approach
    заход на посадку в условиях ограниченной видимости
    low-visibility approach
    зона движения в районе аэродрома
    aerodrome traffic zone
    изменение направления ветра в районе аэродрома
    aerodrome wind shift
    измерение шума в процессе летных испытаний
    flight test noise measurement
    иметь место в полете
    be experienced in flight
    имитация в полете
    inflight simulation
    имитация полета в натуральных условиях
    full-scale flight
    индекс опознавания в коде ответчика
    squawk ident
    индикатор обстановки в вертикальной плоскости
    vertical-situation indicator
    инструктаж при аварийной обстановке в полете
    inflight emergency instruction
    искусственные сооружения в районе аэродрома
    aerodrome culture
    испытание в аэродинамической трубе
    wind-tunnel test
    испытание в воздухе
    air trial
    испытание в гидроканале
    towing basing test
    испытание в двухмерном потоке
    two-dimensional flow test
    испытание вертолета в условиях снежного и пыльного вихрей
    rotocraft snow and dust test
    испытание воздушного судна в термобарокамере
    aircraft environmental test
    испытание в реальных условиях
    direct test
    испытание в режиме висения
    hovering test
    испытание в свободном полете
    free-flight test
    испытание двигателя в полете
    inflight engine test
    испытания в барокамере
    altitude-chamber test
    испытания по замеру нагрузки в полете
    flight stress measurement tests
    испытываемый в полете
    under flight test
    испытывать в полете
    test in flight
    исследование конфликтной ситуации в воздушном движении
    air conflict search
    канал в ступице турбины
    turbine bore
    канал передачи данных в полете
    flight data link
    карта особых явлений погоды в верхних слоях атмосферы
    high level significant weather chart
    кнопка запуска двигателя в воздухе
    flight restart button
    кок винта в сборе
    cone assy
    компенсация за отказ в перевозке
    denied boarding compensation
    компоновка кресел в салоне первого класса
    first-class seating
    компоновка кресел в салоне смешанного класса
    mixed-class seating
    компоновка кресел в салоне туристического класса
    economy-class seating
    компоновка приборной доски в кабине экипажа
    cockpit panel layout
    контракт на обслуживание в аэропорту
    airport handling contract
    контроль в зоне
    area watch
    контур уровня шума в районе аэропорта
    airport noise contour
    концевой выключатель в системе воздушного судна
    aircraft limit switch
    кривая в полярной системе координат
    polar curve
    крутящий момент воздушного винта в режиме авторотации
    propeller windmill torque
    курс в зоне ожидания
    holding course
    летать в курсовом режиме
    fly heading mode
    летать в режиме бреющего полета
    fly at a low level
    летать в светлое время суток
    fly by day
    летать в строю
    fly in formation
    летать в темное время суток
    fly at night
    летать по приборам в процессе тренировок
    fly under screen
    лететь в северном направлении
    fly northbound
    летная подготовка в условиях, приближенных к реальным
    line oriental flight training
    линия руления воздушного судна в зоне стоянки
    aircraft stand taxilane
    люк в крыле
    wing manhole
    маневр в полете
    inflight manoeuvre
    маршрут перехода в эшелона на участок захода на посадку
    feeder route
    маршрут полета в направлении от вторичных радиосредств
    track from secondary radio facility
    меры безопасности в полете
    flight safety precautions
    метеоусловия в пределах допуска
    marginal weather
    механизм для создания условий полета в нестабильной атмосфере
    rough air mechanism
    механизм открытия защелки в полете
    mechanical flight release latch
    мешать обзору в полете
    obscure inflight view
    набор высоты в крейсерском режиме
    cruise climb
    навигация в зоне подхода
    approach navigation
    нагрузка в полете
    flight load
    нагрузка в полете от поверхности управления
    flight control load
    надежность в полете
    inflight reliability
    направление в сторону подъема
    up-slope direction
    направление в сторону уклона
    down-slope direction
    направляющийся в
    bound for
    наработка в часах
    1. running hours
    2. endurance hours на участке маршрута в восточном направлении
    on the eastbound leg
    необходимые меры предосторожности в полете
    flight reasonable precautions
    неожиданное препятствие в полете
    hidden flight hazard
    неправильно оцененное расстояние в полете
    misjudged flight distance
    неправильно принятое в полете решение
    improper in-flight decision
    нижний обзор в полете
    downward inflight view
    носитель информации в виде металлической ленты
    metal tape medium
    носитель информации в виде пластиковой пленки
    plastic tape medium
    носитель информации в виде фольги
    engraved foil medium
    носитель информации в виде фотопленки
    photographic paper medium
    обзор в полете
    inflight view
    оборудование для полетов в темное время суток
    night-flying equipment
    обслуживание в процессе стоянки
    standing operation
    обслуживание пассажиров в городском аэровокзале
    city-terminal coach service
    обучение в процессе полетов
    flying training
    объем воздушных перевозка в тоннах груза
    airlift tonnage
    обязанности экипажа в аварийной обстановке
    crew emergency duty
    обязательно к выполнению в соответствии со статьей
    be compulsory Article
    ограничения, указанные в свидетельстве
    license limitations
    ожидание в процессе полета
    hold en-route
    опознавание в полете
    aerial identification
    опробование систем управления в кабине экипажа
    cockpit drill
    опыт работы в авиации
    aeronautical experience
    органы управления в кабине экипажа
    flight compartment controls
    осадки в виде крупных хлопьев снега
    snow grains precipitation
    осадки в виде ледяных крупинок
    ice pellets precipitation
    ослабление видимости в атмосфере
    atmospheric attenuation
    ослабление сигналов в атмосфере
    atmospheric loss
    ослаблять давление в пневматике
    deflate the tire
    осмотр в конце рабочего дня
    daily inspection
    особые меры в полете
    in-flight extreme care
    оставаться в горизонтальном положении
    remain level
    отводить воздух в атмосферу
    discharge air overboard
    отказ в перевозке
    1. denial of carriage
    2. denied boarding 3. bumping отработка действий на случай аварийной обстановки в аэропорту
    aerodrome emergency exercise
    отражатель в механизме реверса тяги
    power reversal ejector
    отсутствие ветра в районе
    aerodrome calm
    оценка пилотом ситуации в полете
    pilot judgement
    ошибка в настройке
    alignment error
    падение в перевернутом положении
    tip-over fall
    парить в воздухе
    sail
    перебои в зажигании
    misfire
    перебои в работе двигателя
    1. rough engine operations
    2. engine trouble переводить воздушное судно в горизонтальный полет
    put the aircraft over
    перевозка с оплатой в кредит
    collect transportation
    передача в пункте стыковки авиарейсов
    interline transfer
    передвижной диспетчерский пункт в районе ВПП
    runway control van
    передний обзор в полете
    forward inflight view
    переход в режим горизонтального полета
    puchover
    переходить в режим набора высоты
    entry into climb
    повторный запуск в полете
    flight restart
    подача топлива в систему воздушного судна
    aircraft fuel supply
    подниматься в воздух
    ago aloft
    пожар в отсеке шасси
    wheel-well fire
    поиск в условном квадрате
    square search
    полет в восточном направлении
    eastbound flight
    полет в зоне ожидания
    1. holding
    2. holding flight полет в направлении на станцию
    flight inbound the station
    полет в направлении от станции
    flight outbound the station
    полет в невозмущенной атмосфере
    still-air flight
    полет в нормальных метеоусловиях
    normal weather operation
    полет в обоих направлениях
    back-to-back flight
    полет в одном направлении
    one-way flight
    полет в пределах континента
    coast-to-coast flight
    полет в режиме висения
    hover flight
    полет в режиме ожидания
    holding operation
    полет в режиме ожидания на маршруте
    holding en-route operation
    полет в связи с особыми обстоятельствами
    special event flight
    полет в сложных метеоусловиях
    bad-weather flight
    полет в строю
    formation flight
    полет в условиях болтанки
    1. bumpy-air flight
    2. turbulent flight полет в условиях отсутствия видимости
    nonvisual flight
    полет в условиях плохой видимости
    low-visibility flight
    полет в установленной зоне
    standoff flight
    полет в установленном секторе
    sector flight
    полетное время, продолжительность полета в данный день
    flying time today
    полет по кругу в районе аэродрома
    aerodrome traffic circuit operation
    полет с дозаправкой топлива в воздухе
    refuelling flight
    полеты в районе открытого моря
    off-shore operations
    полеты в светлое время суток
    daylight operations
    полеты в темное время суток
    night operations
    положение амортизатора в обжатом состоянии
    shock strut compressed position
    положение в воздушном пространстве
    air position
    помпаж в воздухозаборнике
    air intake surge
    попадание в порыв ветра
    gust penetration
    попадание в турбулентность
    turbulence penetration
    порядок действий в аварийной обстановке
    emergency procedure
    порядок эксплуатации в зимних условиях
    snow plan
    посадка в режиме авторотации в выключенным двигателем
    power-off autorotative landing
    посадка в светлое время суток
    day landing
    посадка в сложных метеоусловиях
    bad weather landing
    посадка в темное время суток
    night landing
    потери в воздухозаборнике
    intake losses
    поток в промежуточных аэродромах
    pick-up traffic
    потолок в режиме висения
    hovering ceiling
    правила полета в аварийной обстановке
    emergency flight procedures
    представлять в закодированном виде
    submit in code
    предупреждение столкновений в воздухе
    mid air collision control
    препятствие в зоне захода на посадку
    approach area hazard
    препятствие в районе аэропорта
    airport hazard
    прибывать в зону аэродрома
    arrive over the aerodrome
    приведение в действие
    actuation
    приведение эшелонов в соответствие
    correlation of levels
    приводить в действие
    actuate
    приводить воздушное судно в состояние летной годности
    return an aircraft to flyable status
    приводить в рабочее состояние
    prepare for service
    приводить в состояние готовности
    alert to
    пригодный для полета только в светлое время суток
    available for daylight operation
    приспособление для захвата объектов в процессе полета
    flight pick-up equipment
    проверено в полете
    flight checked
    проверка в кабине экипажа
    cockpit check
    проверка в полете
    flight check
    проверка в процессе облета
    flyby check
    прогноз в графическом изображении
    pictorial forecast
    продолжительность в режиме висения
    hovering endurance
    продувать в аэродинамической трубе
    test in the wind tunnel
    производить посадку в самолет
    emplane
    происшествие в районе аэропорта
    airport-related accident
    прокладка в системе двигателя
    engine gasket
    прокладка маршрута в районе аэродрома
    terminal routing
    пропуск на вход в аэропорт
    airport laissez-passer
    просвет в облачности
    cloud gap
    пространственная ориентация в полете
    inflight spatial orientation
    пространственное положение в момент удара
    attitude at impact
    противобликовая защита в кабине
    cabin glare protection
    профиль волны в свободном поле
    free-field signature
    профиль местности в районе аэродрома
    aerodrome ground profile
    пружина распора в выпущенном положении
    downlock bungee spring
    (опоры шасси) пункт назначения, указанный в авиабилете
    ticketed destination
    пункт назначения, указанный в купоне авиабилета
    coupon destination
    работа в режиме запуска двигателя
    engine start mode
    работа только в режиме приема
    receiving only
    радиолокационный обзор в полете
    inflight radar scanning
    радиус действия радиолокатора в режиме поиска
    radar search range
    разворот в процессе планирования
    gliding turn
    разворот в режиме висения
    hovering turn
    разворот в сторону приближения
    inbound turn
    разворот в сторону удаления
    outbound turn
    размещать в воздушном судне
    fill an aircraft with
    разница в тарифах по классам
    class differential
    разрешение в процессе полета по маршруту
    en-route clearance
    разрешение на полет в зоне ожидания
    holding clearance
    расстояние в милях
    mileage
    расстояние в милях между указанными в билете пунктами
    ticketed point mileage
    расчетное время в пути
    estimated time en-route
    регистрация в зале ожидания
    concourse check
    регулятор давления в кабине
    cabin pressure regulator
    режим воздушного потока в заборнике воздуха
    inlet airflow schedule
    режим малого газа в заданных пределах
    deadband idle
    речевой регистратор переговоров в кабине экипажа
    cockpit voice recorder
    руководство по производству полетов в зоне аэродрома
    aerodrome rules
    рулежная дорожка в районе аэровокзала
    terminal taxiway
    сближение в полете
    air miss
    сваливание в штопор
    spin stall
    сдавать в багаж
    park in the baggage
    сдвиг ветра в зоне полета
    flight wind shear
    сигнал бедствия в коде ответчика
    squawk mayday
    сигнал входа в глиссаду
    on-slope signal
    сигнал действий в полете
    flight urgency signal
    сигнализация аварийной обстановки в полете
    air alert warning
    сигнал между воздушными судами в полете
    air-to-air signal
    сигнальные огни входа в створ ВПП
    runway alignment indicator lights
    система предупреждения конфликтных ситуаций в полете
    conflict alert system
    система распространения информации в определенные интервалы времени
    fixed-time dissemination system
    система регулирования температуры воздуха в кабине
    cabin temperature control system
    скольжение в направлении полета
    forwardslip
    скорость в условиях турбулентности
    1. rough-air speed
    2. rough airspeed скрытое препятствие в районе ВПП
    runway hidden hazard
    сложные метеоусловия в районе аэродрома
    aerodrome adverse weather
    служба управления движением в зоне аэродрома
    aerodrome control service
    служба управления движением в зоне аэропорта
    airport traffic service
    смесеобразование в карбюраторе
    carburetion
    с момента ввода в эксплуатацию
    since placed in service
    снежный заряд в зоне полета
    inflight snow showers
    снижение в режиме авторотации
    autorotative descent
    снижение в режиме планирования
    gliding descent
    снижение в режиме торможения
    braked descent
    снимать груз в контейнере
    discharge the cargo
    событие в результате непреднамеренных действий
    unintentional occurrence
    совершать посадку в направлении ветра
    land downwind
    согласованность в действиях
    coherence
    списание девиации в полете
    airswinging
    списание девиации компаса в полете
    air compass swinging
    списание радиодевиации в полете
    airborne error measurement
    способность выполнять посадку в сложных метеорологических условиях
    all-weather landing capability
    срок службы в часах налета
    flying life
    срываться в штопор
    1. fall into the spin
    2. fail into the spin ставить в определенное положение
    pose
    столкновение в воздухе
    1. mid-air collision
    2. aerial collision схема в зоне ожидания
    holding pattern
    схема входа в диспетчерскую зону
    entry procedure
    схема входа в зону ожидания
    holding entry procedure
    схема движения в зоне аэродрома
    aerodrome traffic pattern
    схема полета в зоне ожидания
    holding procedure
    схема полета по приборам в зоне ожидания
    instrument holding procedure
    счетчик пройденного километража в полете
    air-mileage indicator
    считывание показаний приборов в полете
    flight instrument reading
    тариф в местной валюте
    local currency fare
    тариф в одном направлении
    directional rate
    тариф для полета в одном направлении
    single fare
    тариф за перевозку грузов в специальном приспособлении для комплектования
    unit load device rate
    тариф на полет в ночное время суток
    night fare
    тариф на полет с возвратом в течение суток
    day round trip fare
    телесное повреждение в результате авиационного происшествия
    accident serious injury
    температура в данной точке
    local temperature
    температура воздуха в трубопроводе
    duct air temperature
    температура газов на входе в турбину
    turbine entry temperature
    температура на входе в турбину
    turbine inlet temperature
    траектория полета в зоне ожидания
    holding path
    трение в опорах
    bearing friction
    тренировка в барокамере
    altitude chamber drill
    турбулентность в атмосфере без облаков
    clear air turbulence
    турбулентность в облаках
    turbulence in clouds
    турбулентность в спутном следе
    wake turbulence
    тяга в полете
    flight thrust
    угроза применения взрывчатого устройства в полете
    inflight bomb threat
    удельный расход топлива на кг тяги в час
    thrust specific fuel consumption
    удерживать контакты в замкнутом положении
    hold contacts closed
    удостоверяющая запись в свидетельстве
    licence endorsement
    указания по условиям эксплуатации в полете
    inflight operational instructions
    указатель входа в створ ВПП
    runway alignment indicator
    указатель высоты в кабине
    cabin altitude indicator
    указатель местоположения в полете
    air position indicator
    указатель перепада давления в кабине
    cabin pressure indicator
    указатель уровня в баке
    tank level indicator
    уменьшение ограничений в воздушных перевозках
    air transport facilitation
    упаковывать в контейнере
    containerize
    упаковывать груз в контейнере
    containerize the cargo
    управление в зоне
    area control
    управление в зоне аэродрома
    aerodrome control
    управление в зоне захода на посадку
    approach control
    уровень шума в населенном пункте
    community noise level
    уровень шумового фона в кабине экипажа
    flight deck aural environment
    уровень шумового фона в районе аэропорта
    acoustic airport environment
    уровень электролита в аккумуляторе
    battery electrolyte level
    усилие в системе управления
    control force
    условия в полете
    in-flight conditions
    условия в районе аэродрома
    aerodrome environment
    условия в районе ВПП
    runway environment
    условия нагружения в полете
    flight loading conditions
    условное обозначение в сообщении о ходе полета
    flight report identification
    условное обозначение события в полете
    flight occurrence identification
    устанавливать наличие воздушной пробки в системе
    determine air in a system
    установка в определенное положение
    positioning
    установка в положение для захода на посадку
    approach setting
    установленные обязанности в полете
    prescribed flight duty
    установленный в гондоле
    nacelle-mounted
    устойчивость в полете
    inflight stability
    устройство отображения информации в кабине экипажа
    cockpit display
    устройство разворота в нейтральное положение
    self-centering device
    уточнение плана полета по сведениям, полученным в полете
    inflight operational planning
    ухудшение в полете
    flight deterioration
    участие в расследовании
    participation in the investigation
    форма крыла в плане
    wing planform
    характеристика в зоне ожидания
    holding performance
    цифровая система наведения в полете
    digital flight guidance system
    чартерный рейс в связи с особыми обстоятельствами
    special event charter
    число оборотов в минуту
    revolutions per minute
    чрезвычайное обстоятельство в полете
    flight emergency circumstance
    шаг в режиме торможения
    braking pitch
    шасси, убирающееся в фюзеляж
    inward retracting landing gear
    шлиц в головке винта
    screw head slot
    эксплуатировать в заданных условиях
    operate under the conditions
    эксплуатировать в соответствии с техникой безопасности
    operate safety
    этапа полета в пределах одного государства
    domestic flight stage
    этап входа в глиссаду
    glide capture phase
    этап полета, указанный в полетном купоне
    flight coupon stage
    эшелонирование в зоне ожидание
    holding stack

    Русско-английский авиационный словарь > в

  • 7 случай

    в случае задержки
    in the case of delay
    в случае происшествия
    in the event of a mishap
    в случая отказа
    in the event of malfunction
    меры на случай аварийной посадки
    emergency landing provisions
    меры на случай аварийных ситуаций
    provisions for emergencies
    особые случаи выполнения полетов
    abnormal operations
    отработка действий на случай аварийной обстановки в аэропорту
    aerodrome emergency exercise
    разработка мероприятий на случай аварийной обстановки на аэродроме
    aerodrome emergency planning

    Русско-английский авиационный словарь > случай

  • 8 вплоть до лишения свободы

    General subject: and may be subject to imprisonment (for up to 2 years) (В случае задержки заработной платы более чем на один месяц согласно ст. 175 Уголовного кодекса для руководителей предприятий наступает уголовная ответственность вплоть)

    Универсальный русско-английский словарь > вплоть до лишения свободы

  • 9 руководитель предприятия

    1) General subject: business manager, employer ( по отношению к подчиненным) (В случае задержки заработной платы более чем на один месяц согласно ст. 175 Уголовного кодекса для руководителей предприятий наступает уголовная ответственность вплоть до лишения свободы), head of the enterprise
    2) Economy: control manager, factory manager, head of an enterprise, quality manager, (the) company's chief executive (не просто один из руководителей, а главное должностное лицо компании)
    4) Quality control: operator

    Универсальный русско-английский словарь > руководитель предприятия

  • 10 любовь

    Комплексное аффективное состояние и переживание, связанное с первичным либидинозным катексисом объекта. Чувство характеризуется приподнятым настроением и эйфорией, иногда экстазом, временами болью. Фрейд обозначал любовь как "повторное нахождение объекта", ее можно рассматривать как аффективное воспроизведение состояния симбиотического единства. Вероятно, ребенок впервые переживает любовь в форме привязанности к матери и желания ее во время и после дифференциации репрезентаций себя и объектов.
    Развитие любви в раннем детстве во многом зависит от взаимной любовной привязанности матери или того, кто первым заботится о ребенке. Изначально ребенок любит и нарциссический объект, и себя; ранняя любовь характеризуется выраженными оральными и нарциссическими целями и свойствами.
    Любовь рассматривают в трех основных измерениях: нарциссическая любовь — объектная любовь, инфантильная любовь — зрелая любовь, любовь — ненависть. При этом важным фактором, влияющим на качество и стабильность любви, является степень сопряженной с ней ненависти, агрессивных целей, противостоящих целям привязанности, то есть амбивалентность. Развитие объектного постоянства, необходимого для дальнейшей зрелой любви, зависит от ряда факторов. Среди них: разрешение интенсивной амбивалентности, консолидация стабильных, связных репрезентаций себя и объектов, сопротивление регрессии Я и утрате привязанности в ситуации фрустрации и сепарации от объекта. Для того чтобы почувствовать себя любимым, необходимы постоянство Самости и здоровый вторичный нарциссизм. Важные элементы любовных отношений — способность находить друг в друге средство восполнения прошлых утрат или исцеления травм, а также установление и закрепление чувства уникальной взаимной близости. Стремление к удовлетворению сексуального желания обычно взаимно, но понятие любовь следует отличать от понятия примат генитальности, под которым в настоящее время понимается способность к достижению оргазма независимо от уровня или характера объектных отношений.
    Фрейд обнаружил, что любовь основана на инфантильных прототипах. Любовь-перенос — это оживление реальных и воображаемых инфантильных любовных отношений; ее анализ помогает пациенту понять, как инфантильные цели и привязанности влияют на действия и отношения взрослого. Даже относительно внутренне согласованная и стабильная любовь является объектом регрессии и инфантильной фиксации. При выраженной регрессии или в случае задержки развития индивид может быть не способен к любви. Эта неспособность часто сопровождается примитивной агрессией, ненавистью к себе и объекту.
    После того как устанавливается первичная психосексуальная объектная привязанность, любовь обретает много форм и направлений с запретными целями. С точки зрения структуры, любовь включает Оно, Я и Сверх-Я. Любовь, одобрение, удовольствие родителей интернализируются в зрелое и доброе Сверх-Я; грубое же и жестокое Сверх-Я разрушает способность любить и быть любимым. Любовь может смещаться с первоначальных объектов на коллективные объекты и дела, на религию, на художественную, интеллектуальную или физическую сублимацию, на домашних животных, на личные интересы. Границы понятия любовь определить трудно; взрослая любовь включает как зрелые, так и инфантильные бессознательные черты и всегда предполагает тенденцию к идентификации с любимым объектом и его идеализации.

    Словарь психоаналитических терминов и понятий > любовь

  • 11 поставить на счетчик

    ПОСТАВИТЬ НА СЧЁТЧИК разг.-сленг
    TO TURN ON THE METER / THE METER IS RUNNING дать в долг на определённое время с угрозой расправы в случае задержки возврата долга to lend money for an agreed period of time with the threat of punishment if the debt is not repaid on time

    Дополнение к русско-английским словарям > поставить на счетчик

  • 12 синхронизация времени

    1. time synchronization
    2. clock synchronization

     

    синхронизация времени
    -
    [ ГОСТ Р МЭК 60870-5-103-2005]

    Также нормированы допустимые временные задержки для различных видов сигналов, включая дискретные сигналы, оцифрованные мгновенные значения токов и напряжений, сигналы синхронизации времени и т.п.
    [Новости Электротехники №4(76) | СТАНДАРТ МЭК 61850]

    Широковещательное сообщение, как правило, содержит адрес отправителя и глобальный адрес получателя. Примером широковещательного сообщения служит синхронизация времени.
    [ ГОСТ Р 54325-2011 (IEC/TS 61850-2:2003)]

    Устройства последних поколений дают возможность синхронизации времени с точностью до микросекунд с помощью GPS.

    С помощью этого интерфейса сигнал синхронизации времени (от радиоприемника DCF77 сигнал точного времени из Braunschweig, либо от радиоприемника iRiG-B сигнал точного времени  глобальной спутниковой системы GPS) может быть передан в терминал для точной синхронизации времени.

    [Герхард Циглер. ЦИФРОВАЯ ДИСТАНЦИОННАЯ ЗАЩИТА. ПРИНЦИПЫ И ПРИМЕНЕНИЕ
    Перевод с английского ]

    В  том  случае  если  принятое  сообщение  искажено ( повреждено)  в  результате неисправности  канала  связи  или  в  результате  потери  синхронизации  времени, пользователь имеет возможность...

    2.13 Синхронизация часов реального времени сигналом по оптовходу 
    В современных системах релейной защиты зачастую требуется синхронизированная работа часов всех реле в системе для восстановления хронологии работы разных реле.
    Это может быть выполнено с использованием сигналов синхронизации времени   по интерфейсу IRIG-B, если  реле  оснащено  таким  входом  или  сигналом  от  системы OP

    [Дистанционная защита линии MiCOM P443/ ПРИНЦИП  РАБОТЫ]


    СИНХРОНИЗАЦИЯ ВРЕМЕНИ СОГЛАСНО СТАНДАРТУ IEEE 1588

    Автор: Андреас Дреер (Hirschmann Automation and Control)

    Вопрос синхронизации устройств по времени важен для многих распределенных систем промышленной автоматизации. При использовании протокола Precision Time Protocol (PTP), описанного стандартом IEEE 1588, становится возможным выполнение синхронизации внутренних часов устройств, объединенных по сети Ethernet, с погрешностями, не превышающими 1 микросекунду. При этом к вычислительной способности устройств и пропускной способности сети предъявляются относительно низкие требования. В 2008 году была утверждена вторая редакция стандарта (IEEE 1588-2008 – PTP версия 2) с рядом внесенных усовершенствований по сравнению с первой его редакцией.

    ЗАЧЕМ НЕОБХОДИМА СИНХРОНИЗАЦИЯ УСТРОЙСТВ ПО ВРЕМЕНИ?

    Во многих системах должен производиться отсчет времени. О неявной системе отсчета времени можно говорить тогда, когда в системе отсутствуют часы и ход времени определяется процессами, протекающими в аппаратном и программном обеспечении. Этого оказывается достаточно во многих случаях. Неявная система отсчета времени реализуется, к примеру, передачей сигналов, инициирующих начало отсчета времени и затем выполнение определенных действий, от одних устройств другим.

    Система отсчета времени считается явной, если показания времени в ней определяются часами. Указанное необходимо для сложных систем. Таким образом, осуществляется разделение процедур передачи данных о времени и данных о процессе.

    Два эффекта должны быть учтены при настройке или синхронизации часов в отдельных устройствах. Первое – показания часов в отдельных устройствах изначально отличаются друг от друга (смещение показаний времени друг относительно друга). Второе – реальные часы не производят отсчет времени с одинаковой скоростью. Таким образом, требуется проводить постоянную корректировку хода самых неточных часов.

    ПРЕДЫДУЩИЕ РЕШЕНИЯ

    Существуют различные способы синхронизации часов в составе отдельных устройств, объединенных в одну информационную сеть. Наиболее известные способы – это использование протокола NTP (Network Time Protocol), а также более простого протокола, который образован от него – протокола SNTP (Simple Network Time Protocol). Данные методы широко распространены для использования в локальных сетях и сети Интернет и позволяют обеспечивать синхронизацию времени с погрешностями в диапазоне миллисекунд. Другой вариант – использование радиосигналов с GPS спутников. Однако при использовании данного способа требуется наличие достаточно дорогих GPS-приемников для каждого из устройств, а также GPS-антенн. Данный способ теоретически может обеспечить высокую точность синхронизации времени, однако материальные затраты и трудозатраты обычно препятствуют реализации такого метода синхронизации.

    Другим решением является передача высокоточного временного импульса (например, одного импульса в секунду) каждому отдельному устройству по выделенной линии. Реализация данного метода влечет за собой необходимость создания выделенной линии связи к каждому устройству.

    Последним методом, который может быть использован, является протокол PTP (Precision Time Protocol), описанный стандартом IEEE 1588. Протокол был разработан со следующими целями:

    • Обеспечение синхронизация времени с погрешностью, не превышающей 1 микросекунды.
    • Предъявление минимальных требований к производительности процессоров устройств и к пропускной способности линии связи, что позволило бы обеспечить реализацию протокола в простых и дешевых устройствах.
      • Предъявление невысоких требований к обслуживающему персоналу.
      • Возможность использования в сетях Ethernet, а также в других сетях.
      • Спецификация его как международного стандарта.

    ОБЛАСТИ ПРИМЕНЕНИЯ ПРОТОКОЛА PTP

    Протокол PTP может быть применен в различного рода системах. В системах автоматизации, протокол PTP востребован везде, где требуется точная синхронизация устройств по времени. Протокол позволяет синхронизировать устройства в робототехнике или печатной промышленности, в системах осуществляющих обработку бумаги и упаковку продукции и других областях.

    В общем и целом в любых системах, где осуществляется измерение тех или иных величин и их сравнение с величинами, измеренными другими устройствами, использование протокола PTP является популярным решением. Системы управления турбинами используют протокол PTP для обеспечения более эффективной работы станций. События, происходящие в различных частях распределенных в пространстве систем, определяются метками точного времени и затем для целей архивирования и анализа осуществляется их передача на центры управления. Геоученые используют протокол PTP для синхронизации установок мониторинга сейсмической активности, удаленных друг от друга на значительные расстояния, что предоставляет возможность более точным образом определять эпицентры землетрясений. В области телекоммуникаций рассматривают возможность использования протокола PTP для целей синхронизации сетей и базовых станций. Также синхронизация времени согласно стандарту IEEE 1588 представляет интерес для разработчиков систем обеспечения жизнедеятельности, систем передачи аудио и видео потоков и может быть использована в военной промышленности.

    В электроэнергетике протокол PTPv2 (протокол PTP версии 2) определен для синхронизации интеллектуальных электронных устройств (IED) по времени. Например, при реализации шины процесса, с передачей мгновенных значений тока и напряжения согласно стандарту МЭК 61850-9-2, требуется точная синхронизация полевых устройств по времени. Для реализации систем защиты и автоматики с использованием сети Ethernet погрешность синхронизации данных различных устройств по времени должна лежать в микросекундном диапазоне.

    Также для реализации функций синхронизированного распределенного векторного измерения электрических величин согласно стандарту IEEE C37.118, учета, оценки качества электрической энергии или анализа аварийных событий необходимо наличие устройств, синхронизированных по времени с максимальной точностью, для чего может быть использован протокол PTP.

    Вторая редакция стандарта МЭК 61850 определяет использование в системах синхронизации времени протокола PTP. Детализация профиля протокола PTP для использования на объектах электроэнергетики (IEEE Standard Profile for Use of IEEE 1588 Precision Time Protocol in Power System Applications) в настоящее время осуществляется рабочей группой комитета по релейной защите и автоматике организации (PSRC) IEEE.

    ПРОТОКОЛ PTP ВЕРСИИ 2

    В 2005 году была начата работа по изменению стандарта IEEE1588-2002 с целью расширения возможных областей его применения (телекоммуникации, беспроводная связь и в др.). Результатом работы стало новое издание IEEE1588-2008, которое доступно с марта 2008 со следующими новыми особенностями:

    • Усовершенствованные алгоритмы для обеспечения погрешностей в наносекундном диапазоне.
    • Повышенное быстродействие синхронизации времени (возможна более частая передача сообщений синхронизации Sync).
    • Поддержка новых типов сообщений.
    • Ввод однорежимного принципа работы (не требуется передачи сообщений типа FollowUp).
    • Ввод поддержки функции т.н. прозрачных часов для предотвращения накопления погрешностей измерения при каскадной схеме соединения коммутаторов.
    • Ввод профилей, определяющих настройки для новых областей применения.
    • Возможность назначения на такие транспортные механизмы как DeviceNet, PROFInet и IEEE802.3/Ethernet (прямое назначение).
    • Ввод структуры TLV (тип, длина, значение) для расширения возможных областей применения стандарта и удовлетворения будущих потребностей.
    • Ввод дополнительных опциональных расширений стандарта.

    ПРИНЦИП ФУНКЦИОНИРОВАНИЯ СИСТЕМ НА ОСНОВЕ ПРОТОКОЛА PTP

    В системах, где используется протокол PTP, различают два вида часов: ведущие часы и ведомые часы. Ведущие часы, в идеале, контролируются либо радиочасами, либо GPS-приемниками и осуществляют синхронизацию ведомых часов. Часы в конечном устройстве, неважно ведущие ли они или ведомые, считаются обычными часами; часы в составе устройств сети, выполняющих функцию передачи и маршрутизации данных (например, в Ethernet-коммутаторах), считаются граничными часами.

    Процедура синхронизации согласно протоколу PTP подразделяется на два этапа. На первом этапе осуществляется коррекция разницы показаний времени между ведущими и ведомыми часами – то есть осуществляется так называемая коррекция смещения показаний времени. Для этого ведущее устройство осуществляет передачу сообщения для целей синхронизации времени Sync ведомому устройству (сообщение типа Sync). Сообщение содержит в себе текущее показание времени ведущих часов и его передача осуществляется периодически через фиксированные интервалы времени. Однако поскольку считывание показаний ведущих часов, обработка данных и передача через контроллер Ethernet занимает некоторое время, информация в передаваемом сообщении к моменту его приема оказывается неактуальной.   Одновременно с этим осуществляется как можно более точная фиксация момента времени, в который сообщение Sync уходит от отправителя, в составе которого находятся ведущие часы (TM1). Затем ведущее устройство осуществляет передачу зафиксированного момента времени передачи сообщения Sync ведомым устройствам (сообщение FollowUp). Те также как можно точнее осуществляют измерение момента времени приема первого сообщения (TS1) и вычисляют величину, на которую необходимо выполнить коррекцию разницы в показаниях времени между собою и ведущим устройством соответственно (O) (см. рис. 1 и рис. 2). Затем непосредственно осуществляется коррекция показаний часов в составе ведомых устройств на величину смещения. Если задержки в передачи сообщений по сети не было, то можно утверждать, что устройства синхронизированы по времени.

    На втором этапе процедуры синхронизации устройств по времени осуществляется определение задержки в передаче упомянутых выше сообщений по сети между устройствами. Указанное выполняется  при использовании сообщений специального типа. Ведомое устройство отправляет так называемое сообщение Delay Request (Запрос задержки в передаче сообщения по сети) ведущему устройству и осуществляет фиксацию момента передачи данного сообщения. Ведущее устройство фиксирует момент приема данного сообщения и отправляет зафиксированное значение в сообщении Delay Response (Ответное сообщение с указанием момента приема сообщения). Исходя из зафиксированных времен передачи сообщения Delay Request ведомым устройством и приема сообщения Delay Response ведущим устройством производится оценка задержки в передачи сообщения между ними по сети. Затем производится соответствующая коррекция показаний часов в ведомом устройстве. Однако все упомянутое выше справедливо, если характерна симметричная задержка в передаче сообщения в обоих направлениях между устройствами (то есть характерны одинаковые значения в задержке передачи сообщений в обоих направлениях).

    Задержка в передачи сообщения в обоих направлениях будет идентичной в том случае, если устройства соединены между собой по одной линии связи и только. Если в сети между устройствами имеются коммутаторы или маршрутизаторы, то симметричной задержка в передачи сообщения между устройствами не будет, поскольку коммутаторы в сети осуществляют сохранение тех пакетов данных, которые проходят через них, и реализуется определенная очередность их передачи. Эта особенность может, в некоторых случаях, значительным образом влиять на величину задержки в передаче сообщений (возможны значительные отличия во временах передачи данных). При низкой информационной загрузке сети этот эффект оказывает малое влияние, однако при высокой информационной загрузке, указанное может значительным образом повлиять на точность синхронизации времени. Для исключения больших погрешностей был предложен специальный метод и введено понятие граничных часов, которые реализуются в составе коммутаторов сети. Данные граничные часы синхронизируются по времени с часами ведущего устройства. Далее коммутатор по каждому порту является ведущим устройством для всех ведомых устройств, подключенных к его портам, в которых осуществляется соответствующая синхронизация часов. Таким образом, синхронизация всегда осуществляется по схеме точка-точка и характерна практически одинаковая задержка в передаче сообщения в прямом и обратном направлении, а также практическая неизменность этой задержки по величине от одной передачи сообщения к другой.

    Хотя принцип, основанный на использовании граничных часов показал свою практическую эффективность, другой механизм был определен во второй  версии протокола PTPv2 – механизм использования т. н. прозрачных часов. Данный механизм  предотвращает накопление погрешности, обусловленной изменением величины задержек в передаче сообщений синхронизации коммутаторами и предотвращает снижение точности синхронизации в случае наличия сети с большим числом каскадно-соединенных коммутаторов. При использовании такого механизма передача сообщений синхронизации осуществляется от ведущего устройства ведомому, как и передача любого другого сообщения в сети. Однако когда сообщение синхронизации проходит через коммутатор фиксируется задержка его передачи коммутатором. Задержка фиксируется в специальном поле коррекции в составе первого сообщения синхронизации Sync или в составе последующего сообщения FollowUp (см. рис. 2). При передаче сообщений Delay Request и Delay Response также осуществляется фиксация времени задержки их в коммутаторе. Таким образом, реализация поддержки т. н. прозрачных часов в составе коммутаторов позволяет компенсировать задержки, возникающие непосредственно в них.

    РЕАЛИЗАЦИЯ ПРОТОКОЛА PTP

    Если необходимо использование протокола PTP в системе, должен быть реализован стек протокола PTP. Это может быть сделано при предъявлении минимальных требований к производительности процессоров устройств и к пропускной способности сети. Это очень важно для реализации стека протокола в простых и дешевых устройствах. Протокол PTP может быть без труда реализован даже в системах, построенных на дешевых контроллерах (32 бита).

    Единственное требование, которое необходимо удовлетворить для обеспечения высокой точности синхронизации, – как можно более точное измерение устройствами момента времени, в который осуществляется передача сообщения, и момента времени, когда осуществляется прием сообщения. Измерение должно производится максимально близко к аппаратной части (например, непосредственно в драйвере) и с максимально возможной точностью. В реализациях исключительно на программном уровне архитектура и производительность системы непосредственно ограничивают максимально допустимую точность.

    При использовании дополнительной поддержки аппаратного обеспечения для присвоения меток времени, точность может быть значительным образом повышена и может быть обеспечена ее виртуальная независимость от программного обеспечения. Для этого необходимо использование дополнительной логики, которая может быть реализована в программируемой логической интегральной схеме или специализированной для решения конкретной задачи интегральной схеме на сетевом входе.

    РЕЗУЛЬТАТЫ

    Компания Hirschmann – один из первых производителей, реализовавших протокол PTP и оптимизировавших его использование. Компанией был разработан стек, максимально эффективно реализующий протокол, а также чип (программируемая интегральная логическая схема), который обеспечивает высокую точность проводимых замеров.

    В системе, в которой несколько обычных часов объединены через Ethernet-коммутатор с функцией граничных часов, была достигнута предельная погрешность +/- 60 нс при практически полной независимости от загрузки сети и загрузки процессора. Также компанией была протестирована система, состоящая из 30 каскадно-соединенных коммутаторов, обладающих функцией поддержки т.н. прозрачных часов и были зафиксированы  погрешности менее в пределах +/- 200 нс.

    Компания Hirschmann Automation and Control реализовала протоколы PTP версии 1 и версии 2 в промышленных коммутаторах серии MICE, а также в серии монтируемых на стойку коммутаторов MACH100.

    ВЫВОДЫ

    Протокол PTP во многих областях уже доказал эффективность своего применения. Можно быть уверенным, что он получит более широкое распространение в течение следующих лет и что многие решения при его использовании смогут быть реализованы более просто и эффективно чем при использовании других технологий.

    [ Источник]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > синхронизация времени

  • 13 устройство защиты от импульсных перенапряжений

    1. voltage surge protector
    2. surge protector
    3. surge protective device
    4. surge protection device
    5. surge offering
    6. SPD

     

    устройство защиты от импульсных перенапряжений
    УЗИП

    Устройство, которое предназначено для ограничения переходных перенапряжений и отвода импульсных токов. Это устройство содержит по крайней мере один нелинейный элемент.
    [ ГОСТ Р 51992-2011( МЭК 61643-1: 2005)]

    устройство защиты от импульсных разрядов напряжения
    Устройство, используемое для ослабления действия импульсных разрядов перенапряжений и сверхтоков ограниченной длительности. Оно может состоять из одного элемента или иметь более сложную конструкцию. Наиболее распространенный тип SPD - газонаполненные разрядники.
    (МСЭ-Т K.44, МСЭ-Т K.46, МСЭ-Т K.57,, МСЭ-Т K.65, МСЭ-Т K.66)
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    См. также:

    • импульсное перенапряжение
    • ГОСТ Р 51992-2011( МЭК 61643-1: 2005)
      Устройства защиты от импульсных перенапряжений низковольтные.
      Часть 1. Устройства защиты от импульсных перенапряжений в низковольтных силовых распределительных системах.
      Технические требования и методы испытаний

    КЛАССИФИКАЦИЯ  (по ГОСТ Р 51992-2011( МЭК 61643-1: 2005)) 
     


    ВОПРОС: ЧТО ТАКОЕ ТИПЫ И КЛАССЫ УЗИП ?

    Согласно классификации ГОСТ, МЭК а также немецкого стандарта DIN, Устройства Защиты от Импульсных Перенапряжений УЗИП делятся на разные категории по методу испытаний и месту установки.

    Класс 1 испытаний соответствует Типу 1 и Классу Требований B
    Класс 2 испытаний соответствует Типу 2 и Классу Требований C
    Класс 3 испытаний соответствует Типу 3 и Классу Требований D

    ВОПРОС: ЧЕМ УЗИП ТИП 1 ОТЛИЧАЕТСЯ ОТ УЗИП ТИП 2?

    УЗИП тип 1 устанавливаются на вводе в здание при воздушном вводе питания или при наличии системы внешней молниезащиты. УЗИП в схеме включения предназначен для отвода части прямого тока молнии. В соответствии с ГОСТ Р 51992-2002, УЗИП 1-го класса испытаний ( тип 1) испытываются импульсом тока с формой волны 10/350 мкс.
    УЗИП тип 2 служат для защиты от наведённых импульсов тока и устанавливаются либо после УЗИП тип 1, либо на вводе в здание при отсутствии вероятности попадания части тока молнии. УЗИП 2 класса испытаний (тип 2) испытываются импульсом тока с формой 8/20 мкс.
    ВОПРОС: ГДЕ ПРИМЕНЯЕТСЯ УЗИП ТИПА 3 ?

    Устройства для Защиты от Импульсных Перенапряжений Типа 3 предназначены для "тонкой" защиты наиболее ответственного и чувствительного электрооборудования, например медицинской аппаратуры, систем хранения данных и пр. УЗИП Типа 3 необходимо устанавливать не далее 5 метров по кабелю от защищаемого оборудования. Модификации УЗИП Типа 3 могут быть выполнены в виде адаптера сетевой розетки или смонтированы непосредственно в корпусе или на шасси защищаемого прибора. Для бытового применения доступна версия MSB06 скрытого монтажа, за обычной сетевой розеткой.

    ВОПРОС: ЗАЧЕМ НУЖЕН СОГЛАСУЮЩИЙ ДРОССЕЛЬ?

    Для правильного распределения мощности импульса между ступенями защиты ставят линию задержки в виде дросселя индуктивностью 15 мкГн или отрезок кабеля длиной не менее 15 м, имеющего аналогичную индуктивность. В этом случае сначала сработает УЗИП 1-го класса и возьмёт на себя основную энергию импульса, а затем устройство 2-го класса ограничит напряжение до безопасного уровня.

    ВОПРОС: ЗАЧЕМ СТАВИТЬ УЗИП, ЕСЛИ НА ВВОДЕ УЖЕ СТОИТ АВТОМАТ ЗАЩИТЫ И УЗО?

    Вводной автомат (например на 25, 40, 63 А) защищает систему электроснабжения от перегрузки и коротких замыканий со стороны потребителя. Устройство защитного отключения УЗО (например, с током отсечки 30 или 100 мА) защищает человека от случайного поражения электрическим током.
    Но ни одно из этих устройств не может защитить электрическую сеть и оборудование от микросекундных импульсов большой мощности. Такую защиту обеспечивает только Устройство Защиты от Импульсных Перенапряжений УЗИП со временем срабатывания в наносекундном диапазоне.

    ВОПРОС: КАКОЕ УСТРОЙСТВО ЛУЧШЕ ЗАЩИТИТ ОТ ГРОЗЫ: УЗИП ИЛИ ОПН ?

    УЗИП - это официальное (ГОСТ) наименование всего класса устройств для защиты от последствий токов молний и импульсных перенапряжений в сетях до 1000 В. В литературе, в публикациях в интернете до сих пор встречаются названия - ОПН (Ограничитель перенапряжения), Разрядник, Молниеразрядник, Грозоразрядник - которые применительно к сетям до 1000 Вольт означают по сути одно устройство - это УЗИП. Для организации эффективной молниезащиты необходимо обращать внимание не на название устройства, а на его характеристики.

    ВОПРОС: КАК СРАВНИТЬ УЗИП РАЗНЫХ ПРОИЗВОДИТЕЛЕЙ?

    Все УЗИП, продаваемые на территории России, должны производиться и испытываться в соответствии с ГОСТ Р 51992-2002( аналог международного стандарта МЭК 61643-1-98). ГОСТ Р 51992-2002 предусматривает наличие у каждого устройства ряда характеристик, которые производитель обязан указать в паспорте и на самом изделии.

    Класс испытаний (Тип) 1, 2 или 3
    Импульсный ток Iimp (10/350 мкс) для УЗИП 1 класса
    Номинальный импульсный ток In (8/20 мкс)
    Максимальный импульсный ток Imax (8/20 мкс)
    Уровень напряжения защиты Up, измеренный при In

    По этим характеристикам и происходит сравнение. Замечание: некоторые производители указывают значения импульсных токов на фазу (модуль), а другие - на устройство в целом. Для сравнения их надо приводить к одному виду.

    [ http://www.artterm-m.ru/index.php/zashitaseteji1/faquzip]


    ОСОБЕННОСТИ ЭКСПЛУАТАЦИИ УСТРОЙСТВ ЗАЩИТЫ ОТ
    ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ В НИЗКОВОЛЬТНЫХ СИЛОВЫХ РАСПРЕДЕЛИТЕЛЬНЫХ СЕТЯХ
    ЗОРИЧЕВ А.Л.,
    заместитель директора
    ЗАО «Хакель Рос»

    В предыдущих номерах журнала были изложены теоретические основы применения устройств защиты от импульсных перенапряжений (УЗИП) в низковольтных электрических сетях. При этом отмечалась необходимость отдельного более детального рассмотрения некоторых особенностей эксплуатации УЗИП, а также типовых аварийных ситуаций, которые могут возникнуть при этом.

    1. Диагностика устройств защиты от перенапряжения
    Конструкция и параметры устройств защиты от импульсных перенапряжения постоянно совершенствуются, повышается их надежность, снижаются требования по техническому обслуживанию и контролю. Но, не смотря на это, нельзя оставлять без внимания вероятность их повреждения, особенно при интенсивных грозах, когда может произойти несколько ударов молнии непосредственно в защищаемый объект или вблизи от него во время одной грозы. Устройства защиты, применяемые в низковольтных электрических сетях и в сетях передачи информации подвержены так называемому старению (деградации), т.е. постепенной потере своих способностей ограничивать импульсные перенапряжения. Интенсивнее всего процесс старения протекает при повторяющихся грозовых ударах в течении короткого промежутка времени в несколько секунд или минут, когда амплитуды импульсных токов достигают предельных максимальных параметров I max (8/20 мкс) или I imp (10/350 мкс) для конкретных типов защитных устройств.

    Повреждение УЗИП происходит следующим образом. Разрядные токи, протекающие при срабатывании защитных устройств, нагревают корпуса их нелинейных элементов до такой температуры, что при повторных ударах с той же интенсивностью (в не успевшее остыть устройство) происходит:

    −   у варисторов - нарушение структуры кристалла (тепловой пробой) или его полное разрушение;
    −   у металлокерамических газонаполненных разрядников (грозозащитных разрядников) - изменение свойств в результате утечки газов и последующее разрушение керамического корпуса;

    −  у разрядников на основе открытых искровых промежутков -за счет взрывного выброса ионизированных газов во внутреннее пространство распределительного щита могут возникать повреждения изоляции кабелей, клеммных колодок и других элементов электрического шкафа или его внутренней поверхности. На практике известны даже случаи значительной деформации металлических шкафов, сравнимые только с последствиями взрыва ручной гранаты. Важной особенностью при эксплуатации разрядников этого типа в распределительных щитах является также необходимость повышения мер противопожарной безопасности.

    По указанным выше причинам все изготовители устройств защиты от перенапряжения рекомендуют осуществлять их регулярный контроль, особенно после каждой сильной грозы. Проверку необходимо осуществлять с помощью специальных тестеров, которые обычно можно заказать у фирм, занимающихся техникой защиты от перенапряжений. Контроль, осуществляемый другими способами, например, визуально или с помощью универсальных измерительных приборов, в этом случае является неэффективным по следующим причинам:

    −  Варисторное защитное устройство может быть повреждёно, хотя сигнализация о выходе варистора из строя не сработала. Варистор может обладать искажённой вольтамперной характеристикой (более высокая утечка) в области токов до 1 мA (область рабочих токов при рабочем напряжении сети; настоящую область не возможно проверить с помощью обычно применяемых приборов). Проверка осуществляется минимально в 2-х точках характеристики, напр. при 10 и 1000 мкА, с помощью специального источника тока с высоким подъёмом напряжения (1 до 1,5 кВ).

    −    Металлокерамический газонаполненный (грозовой) разрядник - с помощью визуального контроля можно заметить только поврежденный от взрыва внешний декоративный корпус устройства (или его выводы). Что бы выяснить состояние самого разрядника необходимо разобрать внешний корпус, но даже при таком контроле практически нельзя обнаружить утечку его газового заряда. Контроль напряжения зажигания грозового разрядника с помощью обыкновенных измерительных приборов выполнить очень трудно, он осуществляется при помощи специализированных тестеров.

     −   Разрядник с открытым искровым промежутком - проверку исправной работы можно осуществить только после его демонтажа и измерения с помощью генератора грозового тока с характеристикой 10/350 мкс по заказу у изготовителя устройств для защиты от импульсных перенапряжений.
     

    2. Защита от токов утечки и короткого замыкания в устройствах защиты от импульсных перенапряжений

    Основным принципом работы устройства защиты от импульсных перенапряжений является выравнивание потенциалов между двумя проводниками, одним из которых является фазный (L) проводник, а другим нулевой рабочий (N) или (РЕN) проводник, т.е. устройство включается параллельно нагрузке. При этом, в случае выхода из строя УЗИП (пробой изоляции, пробой или разрушение нелинейного элемента) или невозможности гашения сопровождающего тока (в случае применения искровых разрядников или разрядников скользящего разряда) возможно возникновение режима короткого замыкания между данными проводниками, что может привести к повреждению электроустановки и даже возникновению пожара. Стандартами МЭК предусматривается два обязательных способа защиты электроустановок потребителя 220/380 В от подобного рода ситуаций.

    2.1. Устройство теплового отключения в варисторных устройствах защиты от импульсных перенапряжений

    Имеющееся в варисторных ограничителях перенапряжений устройство отключения при перегреве (тепловая защита), как правило, срабатывает в результате процесса старения варистора. Суть явления заключается в том, что при длительной эксплуатации, а также в результате воздействий импульсов тока большой амплитуды происходит постепенное разрушение p-n переходов в структуре варистора, что приводит к снижению значения такого важного параметра, как наибольшее длительно допустимое рабочее напряжение защитного устройства (максимальное рабочее напряжение) Uc. Этот параметр определяется для действующего напряжения электрической сети и указывается производителями защитных устройств в паспортных данных и, как правило, непосредственно на корпусе защитного устройства. Для примера: если на корпусе защитного устройства указано значение Uc = 275 В, это обозначает, что устройство будет нормально функционировать в электропитающей сети номиналом 220 В при увеличении действующего напряжения на его клеммах до 275 В включительно (значение взято с достаточным запасом при условии выполнения электроснабжающей организацией требований ГОСТ 13109 «Нормы качества электрической энергии в системах электроснабжения общего назначения»).

    В результате «старения» варистора значение Uc снижается и в определенный момент времени может оказаться меньше чем действующее напряжение в сети. Это приведет к возрастанию токов утечки через варистор и быстрому повышению его температуры, что может вызвать деформацию корпуса устройства, проплавление фазными клеммами пластмассы и, в конечном итоге, короткое замыкание на DIN-рейку и даже пожар.

    В связи с этим, для применения в электроустановках рекомендуются только те варисторные ограничители перенапряжения, которые имеют в своем составе устройство теплового отключения (терморазмыкатель). Конструкция данного устройства, как правило, очень проста и состоит из подпружиненного контакта, припаянного легкоплавким припоем к одному из выводов варистора, и связанной с ним системы местной сигнализации. В некоторых устройствах дополнительно применяются «сухие» контакты для подключения дистанционной сигнализации о выходе ограничителя перенапряжений из строя, позволяющие с помощью физической линии передавать информацию об этом на пульт диспетчера или на вход какой-либо системы обработки и передачи телеметрических данных. (См. рис. 1).

    5018

    2.2. Применение быстродействующих предохранителей для защиты от токов короткого замыкания

    Несколько другая ситуация возникает в случае установившегося длительного превышения действующего напряжения в сети над наибольшим длительно допустимым рабочим напряжением защитного устройства (Uc), определенным ТУ для данного УЗИП. Примером такой ситуации может быть повышение напряжения по вине поставщика электроэнергии или обрыв (отгорание) нулевого проводника при вводе в электроустановку (в трехфазной сети с глухозаземленной нейтралью трансформатора). Как известно, в последнем случае к нагрузке может оказаться приложенным межфазное напряжение 380 В. При этом устройство защиты от импульсных перенапряжений сработает, и через него начнет протекать ток. Величина этого тока будет стремиться к величине тока короткого замыкания (рассчитывается по общеизвестным методикам для каждой точки электроустановки) и может достигать нескольких сотен ампер. Практика показывает, что устройство тепловой защиты не успевает отреагировать в подобных ситуациях из-за инерционности конструкции. Варистор, как правило, разрушается в течение нескольких секунд, после чего режим короткого замыкания также может сохраняться через дугу (по продуктам разрушения и горения варистора). Как же как и в предыдущем случае, возникает вероятность замыкания клемм устройства на корпус шкафа или DIN-рейку при расплавлении пластмассы корпуса и возможность повреждения изоляции проводников в цепях включения защитных устройств. Сказанное выше относится не только к варисторным ограничителям, но и к УЗИП на базе разрядников, которые не имеют в своем составе устройства теплового отключения. На фотографии (рис. 2) показаны последствия подобной ситуации, в результате которой произошел пожар в распределительном щите.

    5019

    Рис.2 Выход из строя варисторного УЗИП привел к пожару в ГРЩ.

    На рисунке 3 показано варисторное УЗИП, которое в результате аварийной ситуации стало источником пожара в щите.

    5020

    Рис.3

    Для того чтобы предотвратить подобные последствия рекомендуется устанавливать последовательно с устройствами защиты от импульсных перенапряжений предохранители с характеристиками срабатывания gG или gL (классификация согласно требованиям стандартов ГОСТ Р 50339. 0-92 ( МЭК 60269-1-86) или VDE 0636 (Германия) соответственно).

    Практически все производители устройств защиты от импульсных перенапряжений в своих каталогах приводят требования по номинальному значению и типу характеристики срабатывания предохранителей дополнительной защиты от токов короткого замыкания. Как уже указывалось выше, для этих целей используются предохранители типа gG или gL, предназначенные для защиты проводок и распределительных устройств от перегрузок и коротких замыканий. Они обладают значительно меньшим (на 1-2 порядка) временем срабатывания по сравнению с автоматическими выключателями тех же номиналов. При этом предохранители имеют более высокую стойкость к импульсным токам значительных величин. Практический опыт и данные экспериментальных испытаний показывают, что автоматические выключатели очень часто повреждаются при воздействии импульсных перенапряжений. Известны случаи подгорания контактов или приваривания их друг к другу. И в том и в другом случае автоматический выключатель не сможет в дальнейшем выполнять свои функции.

    Возможны различные варианты применения предохранителей и, соответственно, существует ряд особенностей, которые необходимо учитывать еще на этапе проектирования схемы электроснабжения или при изготовлении щитовой продукции. Одна из таких особенностей заключается в том, что в случае, если в качестве защиты от токов короткого замыкания будет использоваться только общая защита (вводные предохранители), то при коротком замыкании в любом УЗИП (первой, второй или третьей ступени) всегда будет обесточиваться вся электроустановка в целом или какая-то ее часть. Применение предохранителей, включенных последовательно с каждым защитным устройством, исключает такую ситуацию. Но при этом встает вопрос подбора предохранителей с точки зрения селективности (очередности) их срабатывания. Решение этого вопроса осуществляется путем применения предохранителей тех типов и номиналов, которые рекомендованы производителем конкретных моделей устройств защиты от перенапряжений.

    Пример установки предохранителей F7-F12 приведен на рисунке 4.

     

    5021

    Рис.4 Установка защитных устройств в TN-S сеть 220/380 В

     

    ПРИМЕР: При использовании в схеме, приведенной на рисунке 4, разрядников HS55 в первой ступени защиты и варисторных УЗИП PIII280 во второй ступени применение предохранителей F5-F7 и F8-F10 будет обусловлено выбором номинального значения предохранителей F1-F3:

    ·         При значении F1-F3 более 315 А gG, значения F7-F9 и F10-F12 выбираются ­315 А gG и 160 А gG соответственно;

    ·         При значении F1-F3 менее 315 А gG, но более 160 А gG, предохранители F7-F9 можно не устанавливать, F10-F12 выбираются - 160 А gG;

    ·         При значении F1-F3 менее 160 А gG, предохранители F7-F12 можно не устанавливать.

     

    Иногда может потребоваться, чтобы в случае возникновения короткого замыкания в защитных устройствах не срабатывал общий предохранитель на вводе электропитающей установки. Для этого необходимо устанавливать в цепи каждого УЗИП предохранители с учетом коэффициента (1,6). Т.е. если предохранитель на входе электроустановки имеет номинальное значение 160 А gG, то предохранитель включенный последовательно с УЗИП должен иметь номинал 100 А gG.

    Применение для данных целей автоматических выключателей осложняется причинами, перечисленными выше, а также не соответствием их времятоковых характеристик характеристикам предохранителей.

    3. Часто встречающиеся недостатки в конструктивном исполнении устройств защиты от импульсных перенапряжений

    Многими фирмами-производителями предлагаются защитные устройства классов I и II, состоящие из базы, предназначенной для установки на DIN-рейку, и сменного модуля с нелинейным элементом (разрядником или варистором) с ножевыми вставными контактами. Такое конструктивное исполнение кажется на вид более выгодным и удобным для заказчика, чем монолитный корпус, в виду возможности более простого осуществления измерения сопротивления изоляции электропроводки (при измерениях повышенными напряжениями этот модуль можно просто изъять). Однако способность сконструированных таким способом контактов пропускать импульсные токи не превышает предел Imax = 25 kA для волны (8/20 мкс) и Iimp = 20 kA для волны (10/350 мкс).

    Несмотря на это, некоторые изготовители показывают в рекламных каталогах для таких защитных устройств максимальные разрядные способности величинами до Imax = 100 kA (8/20 мкс) или Iimp = 25 kA (10/350 мкс). К сожалению, это не подтверждается практическими данными. Уже при первом ударе испытательного импульса тока с такой амплитудой произойдут пережоги и разрушение не только ножевых контактов сменного модуля, но также и повреждение контактов клемм в базе. Разрушительное воздействие испытательного импульса тока Imax = 50 kA (8/20 мкс) на механическую часть такой системы и ножевой контакт показано на следующих фотографиях (рис. 5). Очевидно, что после такого воздействия сложным становится, собственно, сам вопрос извлечения вставки из базы, так как их контакты могут привариться друг к другу. Даже если вставку удастся отсоединить от базы, последнюю будет нельзя использовать далее из-за подгоревших контактов, которые приведут к резкому возрастанию переходного сопротивления и, соответственно, уровня защиты данного УЗИП.

    5022

     

    Для того чтобы избежать подобных последствий, защитные устройства модульной конструкции необходимо применять только тогда, когда существует гарантия, что ожидаемые импульсные воздействия не превысят указанных выше значений. Это может быть выполнено в случае правильного выбора типов и классов УЗИП для конкретной электроустановки и согласования их параметров между ступенями защиты.

    4. Использование УЗИП для защиты вторичных источников питания 

    Одним из наиболее часто используемых вторичных источников питания является выпрямитель. Следует отметить, что практика установки элементов защиты от перенапряжений (разрядников, варисторов и т.п.) на платах или внутри блоков выпрямителя, является не правильной с нашей точки зрения. Существующий опыт показывает, что эти варисторы как правило рассчитаны на токи 7 – 10 кА (форма импульса 8/20 мкС) и по своим параметрам соответствуют третьему классу защиты согласно ГОСТ Р 51992-2002( МЭК 61643-1-98). Как правило, эксплуатирующие организации считают данный тип защиты достаточным и никаких дополнительных мер для повышения надежности работы оборудования не принимают. Однако, при отсутствии дополнительных внешних устройств защиты от импульсных перенапряжений более высокого класса, а так же при возникновении длительных превышений рабочего напряжения питающей сети в данной ситуации возможно возникновение двух типовых аварийных ситуаций:

    a) Токи значительных величин, возникающие при срабатывании установленных внутри модуля варисторов, будут протекать по печатным проводникам плат или проводам внутри блоков выпрямителя по кратчайшему пути к заземляющей клемме стойки. Это может вызвать выгорание печатных проводников на платах и возникновению на параллельных незащищенных цепях наводок, которые в свою очередь приведут к выходу из строя электронных элементов блока выпрямителя. При превышении максимальных импульсных токов, определенных для данного варистора изготовителем, возможно, его возгорание и даже разрушение, что может привести к пожару и механическому повреждению самого выпрямителя (более подробно описано в п.п. 2.1).

    b) Несколько другая ситуация возникает в случае длительного установившегося превышения действующего напряжения в сети над максимальным допустимым рабочим напряжением Uc, определенным ТУ для данного варистора (как правило используются варисторы с Uc = 275 В). Подробно данная ситуация была описана выше (см п.п. 2.2). В результате описанного воздействия появляется вероятность возгорания печатных плат и внутренней проводки, а так же возникновения механических повреждений (при взрыве варистора), что подтверждается статистикой организаций, осуществляющих ремонт выпрямителей.

    Пример таких повреждений показан на рисунке 6.

    5023

    Рис.6

     С точки зрения решения проблем описанных в пункте (а), наиболее правильным является вариант установки защитных устройств, при котором они размещаются в отдельном защитном щитке или в штатных силовых и распределительных щитах электроустановки объекта. Применение внешних дополнительных устройств защиты позволяет защитить выпрямитель от импульсных перенапряжений величиной в сотни киловольт и соответственно снизить до допустимого (7 – 10 кА) значения величины импульсных токов, которые будут протекать через варисторы, встроенные в выпрямитель, или практически полностью исключить их.

    Для защиты оборудования от длительного установившегося превышения действующего напряжения в сети (пункт b) можно использовать устройства контроля напряжения фазы или подобные им (см. рис. 7).

    5024

    Рис. 7 Подключение устройства контроля фаз РКФ-3/1

    [ http://www.energo-montage.ru/pages/top/articles/osobennosti_ekspluatacii_uzip/index_76.html]

    Тематики

    Синонимы

    EN

    3.1.45 устройство защиты от импульсных перенапряжений (surge protective device); SPD: Устройство, предназначенное для ограничения перенапряжения и скачков напряжения; устройство содержит, по крайней мере, один нелинейный компонент.

    Источник: ГОСТ Р МЭК 62305-2-2010: Менеджмент риска. Защита от молнии. Часть 2. Оценка риска оригинал документа

    3.53 устройство защиты от импульсных перенапряжений (surge protective device); SPD: Устройство, предназначенное для ограничения перенапряжения и скачков напряжения; устройство содержит по крайней мере один нелинейный компонент.

    Источник: ГОСТ Р МЭК 62305-1-2010: Менеджмент риска. Защита от молнии. Часть 1. Общие принципы оригинал документа

    Русско-английский словарь нормативно-технической терминологии > устройство защиты от импульсных перенапряжений

  • 14 технология коммутации

    1. switching technology

     

    технология коммутации
    -
    [Интент]

    Современные технологии коммутации
    [ http://www.xnets.ru/plugins/content/content.php?content.84]

    Статья подготовлена на основании материалов опубликованных в журналах "LAN", "Сети и системы связи", в книге В.Олифер и Н.Олифер "Новые технологии и оборудование IP-сетей", на сайтах www.citforum.ru и опубликована в журнале "Компьютерные решения" NN4-6 за 2000 год.

    Введение

    На сегодня практически все организации, имеющие локальные сети, остановили свой выбор на сетях типа Ethernet. Данный выбор оправдан тем, что начало внедрения такой сети сопряжено с низкой стоимостью и простотой реализации, а развитие - с хорошей масштабируемостью и экономичностью.

    Бросив взгляд назад - увидим, что развитие активного оборудования сетей шло в соответствии с требованиями к полосе пропускания и надежности. Требования, предъявляемые к большей надежности, привели к отказу от применения в качестве среды передачи коаксиального кабеля и перевода сетей на витую пару. В результате такого перехода отказ работы соединения между одной из рабочих станций и концентратором перестал сказываться на работе других рабочих станций сети. Но увеличения производительности данный переход не принес, так как концентраторы используют разделяемую (на всех пользователей в сегменте) полосу пропускания. По сути, изменилась только физическая топология сети - с общей шины на звезду, а логическая топология по-прежнему осталась - общей шиной.

    Дальнейшее развитие сетей шло по нескольким путям:

    • увеличение скорости,
    • внедрение сегментирования на основе коммутации,
    • объединение сетей при помощи маршрутизации.

    Увеличение скорости при прежней логической топологии - общая шина, привело к незначительному росту производительности в случае большого числа портов.

    Большую эффективность в работе сети принесло сегментирование сетей с использованием технология коммутации пакетов. Коммутация наиболее действенна в следующих вариантах:

    Вариант 1, именуемый связью "многие со многими" – это одноранговые сети, когда одновременно существуют потоки данных между парами рабочих станций. При этом предпочтительнее иметь коммутатор, у которого все порты имеют одинаковую скорость, (см. Рисунок 1).

    5001

    Вариант 2, именуемый связью "один со многими" – это сети клиент-сервер, когда все рабочие станции работают с файлами или базой данных сервера. В данном случае предпочтительнее иметь коммутатор, у которого порты для подключения рабочих станций имеют одинаковую небольшую скорость, а порт, к которому подключается сервер, имеет большую скорость,(см. Рисунок 2).

    5002

    Когда компании начали связывать разрозненные системы друг с другом, маршрутизация обеспечивала максимально возможную целостность и надежность передачи трафика из одной сети в другую. Но с ростом размера и сложности сети, а также в связи со все более широким применением коммутаторов в локальных сетях, базовые маршрутизаторы (зачастую они получали все данные, посылаемые коммутаторами) стали с трудом справляться со своими задачами.

    Проблемы с трафиком, связанные с маршрутизацией, проявляются наиболее остро в средних и крупных компаниях, а также в деятельности операторов Internet, так как они вынуждены иметь дело с большими объемами IP-трафика, причем этот трафик должен передаваться своевременно и эффективно.

    С подключением настольных систем непосредственно к коммутаторам на 10/100 Мбит/с между ними и магистралью оказывается все меньше промежуточных устройств. Чем выше скорость подключения настольных систем, тем более скоростной должна быть магистраль. Кроме того, на каждом уровне устройства должны справляться с приходящим трафиком, иначе возникновения заторов не избежать.

    Рассмотрению технологий коммутации и посвящена данная статья.

    Коммутация первого уровня

    Термин "коммутация первого уровня" в современной технической литературе практически не описывается. Для начала дадим определение, с какими характеристиками имеет дело физический или первый уровень модели OSI:

    физический уровень определяет электротехнические, механические, процедурные и функциональные характеристики активации, поддержания и дезактивации физического канала между конечными системами. Спецификации физического уровня определяют такие характеристики, как уровни напряжений, синхронизацию изменения напряжений, скорость передачи физической информации, максимальные расстояния передачи информации, физические соединители и другие аналогичные характеристики.

    Смысл коммутации на первом уровне модели OSI означает физическое (по названию уровня) соединение. Из примеров коммутации первого уровня можно привести релейные коммутаторы некоторых старых телефонных и селекторных систем. В более новых телефонных системах коммутация первого уровня применяется совместно с различными способами сигнализации вызовов и усиления сигналов. В сетях передачи данных данная технология применяется в полностью оптических коммутаторах.

    Коммутация второго уровня

    Рассматривая свойства второго уровня модели OSI и его классическое определение, увидим, что данному уровню принадлежит основная доля коммутирующих свойств.

    Определение. Канальный уровень (формально называемый информационно-канальным уровнем) обеспечивает надежный транзит данных через физический канал. Канальный уровень решает вопросы физической адресации (в противоположность сетевой или логической адресации), топологии сети, линейной дисциплины (каким образом конечной системе использовать сетевой канал), уведомления о неисправностях, упорядоченной доставки блоков данных и управления потоком информации.

    На самом деле, определяемая канальным уровнем модели OSI функциональность служит платформой для некоторых из сегодняшних наиболее эффективных технологий. Большое значение функциональности второго уровня подчеркивает тот факт, что производители оборудования продолжают вкладывать значительные средства в разработку устройств с такими функциями.

    С технологической точки зрения, коммутатор локальных сетей представляет собой устройство, основное назначение которого - максимальное ускорение передачи данных за счет параллельно существующих потоков между узлами сети. В этом - его главное отличие от других традиционных устройств локальных сетей – концентраторов (Hub), предоставляющих всем потокам данных сети всего один канал передачи данных.

    Коммутатор позволяет передавать параллельно несколько потоков данных c максимально возможной для каждого потока скоростью. Эта скорость ограничена физической спецификацией протокола, которую также часто называют "скоростью провода". Это возможно благодаря наличию в коммутаторе большого числа центров обработки и продвижения кадров и шин передачи данных.

    Коммутаторы локальных сетей в своем основном варианте, ставшем классическим уже с начала 90-х годов, работают на втором уровне модели OSI, применяя свою высокопроизводительную параллельную архитектуру для продвижения кадров канальных протоколов. Другими словами, ими выполняются алгоритмы работы моста, описанные в стандартах IEEE 802.1D и 802.1H. Также они имеют и много других дополнительных функций, часть которых вошла в новую редакцию стандарта 802.1D-1998, а часть остается пока не стандартизованной.

    Коммутаторы ЛВС отличаются большим разнообразием возможностей и, следовательно, цен - стоимость 1 порта колеблется в диапазоне от 50 до 1000 долларов. Одной из причин столь больших различий является то, что они предназначены для решения различных классов задач. Коммутаторы высокого класса должны обеспечивать высокую производительность и плотность портов, а также поддерживать широкий спектр функций управления. Простые и дешевые коммутаторы имеют обычно небольшое число портов и не способны поддерживать функции управления. Одним из основных различий является используемая в коммутаторе архитектура. Поскольку большинство современных коммутаторов работают на основе патентованных контроллеров ASIC, устройство этих микросхем и их интеграция с остальными модулями коммутатора (включая буферы ввода-вывода) играет важнейшую роль. Контроллеры ASIC для коммутаторов ЛВС делятся на 2 класса - большие ASIC, способные обслуживать множество коммутируемых портов (один контроллер на устройство) и небольшие ASIC, обслуживающие по несколько портов и объединяемые в матрицы коммутации.

    Существует 3 варианта архитектуры коммутаторов:
     

    На рисунке 3 показана блок-схема коммутатора с архитектурой, используемой для поочередного соединения пар портов. В любой момент такой коммутатор может обеспечить организацию только одного соединения (пара портов). При невысоком уровне трафика не требуется хранение данных в памяти перед отправкой в порт назначения - такой вариант называется коммутацией на лету cut-through. Однако, коммутаторы cross-bar требуют буферизации на входе от каждого порта, поскольку в случае использования единственно возможного соединения коммутатор блокируется (рисунок 4). Несмотря на малую стоимость и высокую скорость продвижения на рынок, коммутаторы класса cross-bar слишком примитивны для эффективной трансляции между низкоскоростными интерфейсами Ethernet или token ring и высокоскоростными портами ATM и FDDI.

    5003

    5004

    Коммутаторы с разделяемой памятью имеют общий входной буфер для всех портов, используемый как внутренняя магистраль устройства (backplane). Буферизагия данных перед их рассылкой (store-and-forward - сохранить и переслать) приводит к возникновению задержки. Однако, коммутаторы с разделяемой памятью, как показано на рисунке 5 не требуют организации специальной внутренней магистрали для передачи данных между портами, что обеспечивает им более низкую цену по сравнению с коммутаторами на базе высокоскоростной внутренней шины.

    5005

    На рисунке 6 показана блок-схема коммутатора с высокоскоростной шиной, связывающей контроллеры ASIC. После того, как данные преобразуются в приемлемый для передачи по шине формат, они помещаются на шину и далее передаются в порт назначения. Поскольку шина может обеспечивать одновременную (паралельную) передачу потока данных от всех портов, такие коммутаторы часто называют "неблокируемыми" (non-blocking) - они не создают пробок на пути передачи данных.

    5006

    Применение аналогичной параллельной архитектуры для продвижения пакетов сетевых протоколов привело к появлению коммутаторов третьего уровня модели OSI.

    Коммутация третьего уровня

    В продолжении темы о технологиях коммутации рассмотренных в предыдущем номера повторим, что применение параллельной архитектуры для продвижения пакетов сетевых протоколов привело к появлению коммутаторов третьего уровня. Это позволило существенно, в 10-100 раз повысить скорость маршрутизации по сравнению с традиционными маршрутизаторами, в которых один центральный универсальный процессор выполняет программное обеспечение маршрутизации.

    По определению Сетевой уровень (третий) - это комплексный уровень, который обеспечивает возможность соединения и выбор маршрута между двумя конечными системами, подключенными к разным "подсетям", которые могут находиться в разных географических пунктах. В данном случае "подсеть" это, по сути, независимый сетевой кабель (иногда называемый сегментом).

    Коммутация на третьем уровне - это аппаратная маршрутизация. Традиционные маршрутизаторы реализуют свои функции с помощью программно-управляемых процессоров, что будем называть программной маршрутизацией. Традиционные маршрутизаторы обычно продвигают пакеты со скоростью около 500000 пакетов в секунду. Коммутаторы третьего уровня сегодня работают со скоростью до 50 миллионов пакетов в секунду. Возможно и дальнейшее ее повышение, так как каждый интерфейсный модуль, как и в коммутаторе второго уровня, оснащен собственным процессором продвижения пакетов на основе ASIC. Так что наращивание количества модулей ведет к наращиванию производительности маршрутизации. Использование высокоскоростной технологии больших заказных интегральных схем (ASIC) является главной характеристикой, отличающей коммутаторы третьего уровня от традиционных маршрутизаторов. Коммутаторы 3-го уровня делятся на две категории: пакетные (Packet-by-Packet Layer 3 Switches, PPL3) и сквозные (Cut-Through Layer 3 Switches, CTL3). PPL3 - означает просто быструю маршрутизацию (Рисунок_7). CTL3 – маршрутизацию первого пакета и коммутацию всех остальных (Рисунок 8).

    5007

    5008

    У коммутатора третьего уровня, кроме реализации функций маршрутизации в специализированных интегральных схемах, имеется несколько особенностей, отличающих их от традиционных маршрутизаторов. Эти особенности отражают ориентацию коммутаторов 3-го уровня на работу, в основном, в локальных сетях, а также последствия совмещения в одном устройстве коммутации на 2-м и 3-м уровнях:
     

    • поддержка интерфейсов и протоколов, применяемых в локальных сетях,
    • усеченные функции маршрутизации,
    • обязательная поддержка механизма виртуальных сетей,
    • тесная интеграция функций коммутации и маршрутизации, наличие удобных для администратора операций по заданию маршрутизации между виртуальными сетями.

    Наиболее "коммутаторная" версия высокоскоростной маршрутизации выглядит следующим образом (рисунок 9). Пусть коммутатор третьего уровня построен так, что в нем имеется информация о соответствии сетевых адресов (например, IP-адресов) адресам физического уровня (например, MAC-адресам) Все эти МАС-адреса обычным образом отображены в коммутационной таблице, независимо от того, принадлежат ли они данной сети или другим сетям.

    5009

    Первый коммутатор, на который поступает пакет, частично выполняет функции маршрутизатора, а именно, функции фильтрации, обеспечивающие безопасность. Он решает, пропускать или нет данный пакет в другую сеть Если пакет пропускать нужно, то коммутатор по IP-адресу назначения определяет МАС-адрес узла назначения и формирует новый заголовок второго уровня с найденным МАС-адресом. Затем выполняется обычная процедура коммутации по данному МАС-адресу с просмотром адресной таблицы коммутатора. Все последующие коммутаторы, построенные по этому же принципу, обрабатывают данный кадр как обычные коммутаторы второго уровня, не привлекая функций маршрутизации, что значительно ускоряет его обработку. Однако функции маршрутизации не являются для них избыточными, поскольку и на эти коммутаторы могут поступать первичные пакеты (непосредственно от рабочих станций), для которых необходимо выполнять фильтрацию и подстановку МАС-адресов.

    Это описание носит схематический характер и не раскрывает способов решения возникающих при этом многочисленных проблем, например, проблемы построения таблицы соответствия IP-адресов и МАС-адресов

    Примерами коммутаторов третьего уровня, работающих по этой схеме, являются коммутаторы SmartSwitch компании Cabletron. Компания Cabletron реализовала в них свой протокол ускоренной маршрутизации SecureFast Virtual Network, SFVN.

    Для организации непосредственного взаимодействия рабочих станций без промежуточного маршрутизатора необходимо сконфигурировать каждую из них так, чтобы она считала собственный интерфейс маршрутизатором по умолчанию. При такой конфигурации станция пытается самостоятельно отправить любой пакет конечному узлу, даже если этот узел находится в другой сети. Так как в общем случае (см. рисунок 10) станции неизвестен МАС-адрес узла назначения, то она генерирует соответствующий ARP-запрос, который перехватывает коммутатор, поддерживающий протокол SFVN. В сети предполагается наличие сервера SFVN Server, являющегося полноценным маршрутизатором и поддерживающего общую ARP-таблицу всех узлов SFVN-сети. Сервер возвращает коммутатору МАС-адрес узла назначения, а коммутатор, в свою очередь, передает его исходной станции. Одновременно сервер SFVN передает коммутаторам сети инструкции о разрешении прохождения пакета с МАС-адресом узла назначения через границы виртуальных сетей. Затем исходная станция передает пакет в кадре, содержащем МАС-адрес узла назначения. Этот кадр проходит через коммутаторы, не вызывая обращения к их блокам маршрутизации. Отличие протокола SFVN компании Cabletron от - описанной выше общей схемы в том, что для нахождения МАС-адреса по IP-адресу в сети используется выделенный сервер.

    5010

    Протокол Fast IP компании 3Com является еще одним примером реализации подхода с отображением IP-адреса на МАС-адрес. В этом протоколе основными действующими лицами являются сетевые адаптеры (что не удивительно, так как компания 3Com является признанным лидером в производстве сетевых адаптеров Ethernet) С одной стороны, такой подход требует изменения программного обеспечения драйверов сетевых адаптеров, и это минус Но зато не требуется изменять все остальное сетевое оборудование.

    При необходимости передать пакет узлу назначения другой сети, исходный узел в соответствии с технологией Fast IP должен передать запрос по протоколу NHRP (Next Hop Routing Protocol) маршрутизатору сети. Маршрутизатор переправляет этот запрос узлу назначения, как обычный пакет Узел назначения, который также поддерживает Fast IP и NHRP, получив запрос, отвечает кадром, отсылаемым уже не маршрутизатору, а непосредственно узлу-источнику (по его МАС-адресу, содержащемуся в NHRP-запросе). После этого обмен идет на канальном уровне на основе известных МАС-адресов. Таким образом, снова маршрутизировался только первый пакет потока (как на рисунке 9 кратковременный поток), а все остальные коммутировались (как на рисунке 9 долговременный поток).

    Еще один тип коммутаторов третьего уровня — это коммутаторы, работающие с протоколами локальных сетей типа Ethernet и FDDI. Эти коммутаторы выполняют функции маршрутизации не так, как классические маршрутизаторы. Они маршрутизируют не отдельные пакеты, а потоки пакетов.

    Поток — это последовательность пакетов, имеющих некоторые общие свойства. По меньшей мере, у них должны совпадать адрес отправителя и адрес получателя, и тогда их можно отправлять по одному и тому же маршруту. Если классический способ маршрутизации использовать только для первого пакета потока, а все остальные обрабатывать на основании опыта первого (или нескольких первых) пакетов, то можно значительно ускорить маршрутизацию всего потока.

    Рассмотрим этот подход на примере технологии NetFlow компании Cisco, реализованной в ее маршрутизаторах и коммутаторах. Для каждого пакета, поступающего на порт маршрутизатора, вычисляется хэш-функция от IP-адресов источника, назначения, портов UDP или TCP и поля TOS, характеризующего требуемое качество обслуживания. Во всех маршрутизаторах, поддерживающих данную технологию, через которые проходит данный пакет, в кэш-памяти портов запоминается соответствие значения хэш-функции и адресной информации, необходимой для быстрой передачи пакета следующему маршрутизатору. Таким образом, образуется квазивиртуальный канал (см. Рисунок 11), который позволяет быстро передавать по сети маршрутизаторов все последующие пакеты этого потока. При этом ускорение достигается за счет упрощения процедуры обработки пакета маршрутизатором - не просматриваются таблицы маршрутизации, не выполняются ARP-запросы.

    5011

    Этот прием может использоваться в маршрутизаторах, вообще не поддерживающих коммутацию, а может быть перенесен в коммутаторы. В этом случае такие коммутаторы тоже называют коммутаторами третьего уровня. Примеров маршрутизаторов, использующих данный подход, являются маршрутизаторы Cisco 7500, а коммутаторов третьего уровня — коммутаторы Catalyst 5000 и 5500. Коммутаторы Catalyst выполняют усеченные функции описанной схемы, они не могут обрабатывать первые пакеты потоков и создавать новые записи о хэш-функциях и адресной информации потоков. Они просто получают данную информацию от маршрутизаторов 7500 и обрабатывают пакеты уже распознанных маршрутизаторами потоков.

    Выше был рассмотрен способ ускоренной маршрутизации, основанный на концепции потока. Его сущность заключается в создании квазивиртуальных каналов в сетях, которые не поддерживают виртуальные каналы в обычном понимании этого термина, то есть сетях Ethernet, FDDI, Token Ring и т п. Следует отличать этот способ от способа ускоренной работы маршрутизаторов в сетях, поддерживающих технологию виртуальных каналов — АТМ, frame relay, X 25. В таких сетях создание виртуального канала является штатным режимом работы сетевых устройств. Виртуальные каналы создаются между двумя конечными точками, причем для потоков данных, требующих разного качества обслуживания (например, для данных разных приложений) может создаваться отдельный виртуальный канал. Хотя время создания виртуального канала существенно превышает время маршрутизации одного пакета, выигрыш достигается за счет последующей быстрой передачи потока данных по виртуальному каналу. Но в таких сетях возникает другая проблема — неэффективная передача коротких потоков, то есть потоков, состоящих из небольшого количества пакетов (классический пример — пакеты протокола DNS).

    Накладные расходы, связанные с созданием виртуального канала, приходящиеся на один пакет, снижаются при передаче объемных потоков данных. Однако они становятся неприемлемо высокими при передаче коротких потоков. Для того чтобы эффективно передавать короткие потоки, предлагается следующий вариант, при передаче нескольких первых пакетов выполняется обычная маршрутизация. Затем, после того как распознается устойчивый поток, для него строится виртуальный канал, и дальнейшая передача данных происходит с высокой скоростью по этому виртуальному каналу. Таким образом, для коротких потоков виртуальный канал вообще не создается, что и повышает эффективность передачи.

    По такой схеме работает ставшая уже классической технология IP Switching компании Ipsilon. Для того чтобы сети коммутаторов АТМ передавали бы пакеты коротких потоков без установления виртуального канала, компания Ipsilon предложила встроить во все коммутаторы АТМ блоки IP-маршрутизации (рисунок 12), строящие обычные таблицы маршрутизации по обычным протоколам RIP и OSPF.

    5012

    Компания Cisco Systems выдвинула в качестве альтернативы технологии IP Switching свою собственную технологию Tag Switching, но она не стала стандартной. В настоящее время IETF работает над стандартным протоколом обмена метками MPLS (Multi-Protocol Label Switching), который обобщает предложение компаний Ipsilon и Cisco, а также вносит некоторые новые детали и механизмы. Этот протокол ориентирован на поддержку качества обслуживания для виртуальных каналов, образованных метками.

    Коммутация четвертого уровня

    Свойства четвертого или транспортного уровня модели OSI следующие: транспортный уровень обеспечивает услуги по транспортировке данных. В частности, заботой транспортного уровня является решение таких вопросов, как выполнение надежной транспортировки данных через объединенную сеть. Предоставляя надежные услуги, транспортный уровень обеспечивает механизмы для установки, поддержания и упорядоченного завершения действия виртуальных каналов, систем обнаружения и устранения неисправностей транспортировки и управления информационным потоком (с целью предотвращения переполнения данными из другой системы).

    Некоторые производители заявляют, что их системы могут работать на втором, третьем и даже четвертом уровнях. Однако рассмотрение описания стека TCP/IP (рисунок 1), а также структуры пакетов IP и TCP (рисунки 2, 3), показывает, что коммутация четвертого уровня является фикцией, так как все относящиеся к коммутации функции осуществляются на уровне не выше третьего. А именно, термин коммутация четвертого уровня с точки зрения описания стека TCP/IP противоречий не имеет, за исключением того, что при коммутации должны указываться адреса компьютера (маршрутизатора) источника и компьютера (маршрутизатора) получателя. Пакеты TCP имеют поля локальный порт отправителя и локальный порт получателя (рисунок 3), несущие смысл точек входа в приложение (в программу), например Telnet с одной стороны, и точки входа (в данном контексте инкапсуляции) в уровень IP. Кроме того, в стеке TCP/IP именно уровень TCP занимается формированием пакетов из потока данных идущих от приложения. Пакеты IP (рисунок 2) имеют поля адреса компьютера (маршрутизатора) источника и компьютера (маршрутизатора) получателя и следовательно могут наряду с MAC адресами использоваться для коммутации. Тем не менее, название прижилось, к тому же практика показывает, что способность системы анализировать информацию прикладного уровня может оказаться полезной — в частности для управления трафиком. Таким образом, термин "зависимый от приложения" более точно отражает функции так называемых коммутаторов четвертого уровня.

    5013

    5014

    5015

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > технология коммутации

  • 15 повторитель (в локальной вычислительной сети)

    1. repeater

     

    ретранслятор
    повторитель

    Устройство для усиления сигнала с целью последующего переизлучения.
    [ http://www.morepc.ru/dict/]

    Повторитель (англ. Repeater) -
    устройство, обеспечивающее сохранение формы и амплитуды сигнала при передаче его на большее, чем предусмотрено данным типом физической передающей среды, расстояние; используется для увеличения протяженности сети.

    В локальных сетях любого класса предусмотрены жесткие ограничения на длину участка сети между двумя точками подключения. Данные ограничения связаны, прежде всего, с коэффициентом затухания сигнала в линии передачи данных, который не должен превышать определенного порогового значения: в противном случае уверенный прием информации станет невозможен. Больше всего в этом случае выигрывают сети, построенные с применением линий из оптического волокна. Поскольку коэффициент затухания в этой среде очень мал, оптоволоконный кабель можно прокладывать на значительные расстояния без потери качества связи.

    Вместе с тем, оптоволоконные линии связи достаточно дороги. Как быть, если на каком-либо предприятии эксплуатируется стандартная локальная сеть с пропускной способностью в 10 Мбит/с, отдельные участки которой, например, сеть бухгалтерии и склада, находятся на значительном удалении друг от друга, а перед руководством фирмы возникла необходимость объединить их между собой? Именно в этом случае и могут использоваться репитеры.

    Репитеры оснащены, как правило, двумя сетевыми портами с одним из стандартных интерфейсов (двумя портами AUI, портами Thinnet и AUI, портами SC и AUI). Присоединяются они непосредственно к локальной сети на максимально возможном расстоянии от ближайшей точки подключения (для сетей класса 10BaseT оно составляет 100 м). Получив сигнал с одного из своих портов, репитер формирует его заново с целью исключить любые потери и искажения, произошедшие в процессе передачи, после чего ретранслирует результирующий сигнал на остальные порты. Таким образом, при прохождении сигнала через репитер происходит его усиление и очистка от посторонних помех.

    В некоторых случаях повторитель выполняет также функцию разделения ретранслируемых сигналов: если на одном из портов постоянно фиксируется поступление данных с ошибками, это означает, что в сегменте сети, подключенном через данный порт, произошла авария, и репитер перестает принимать сигналы с этого порта, чтобы не передавать ошибки всем остальным сетевым сегментам, т.е. не транслировать из на всю сеть.

    Основной недостаток повторителей заключается в том, что в момент прохождения сигналов через это устройство происходит заметная задержка при пересылке данных. Протоколы канального уровня Ethernet, использующие стандарт CSMA/CD, отслеживают сбои в процессе передачи информации, и если коллизия была зафиксирована, передача повторяется через случайный промежуток времени.

    В случае, если число репитеров на участке между двумя компьютерами локальной сети превысит некоторое значение, задержки между моментом отправки и моментом прием данных станут настолько велики, что протокол попросту не сможет проконтролировать правильность пересылки данных, и обмен информацией между этими компьютерами станет невозможен. Отсюда возникло правило, которое принято называть "правилом 5-4-3": на пути следования сигнала в сети Ethernet не должно встречаться более 5 сегментов и более 4 репитеров, причем только к 3 из них могут быть подключены конечные устройства.

    При этом в целом в локальной сети может присутствовать более 4 повторителей, правило регламентирует только количество репитеров между двумя любыми точками подключения. В некоторых случаях повторители устанавливают парами и объединяют между собой проводом, в этом случае между двумя компьютерами в сети не может присутствовать более двух таких пар.

    Конструктивно репитер может быть выполнен либо в виде отдельной конструкции со своим блоком питания, либо в виде платы, вставляемой в слот расширения материнской платы компьютера. Репитер в виде отдельной конструкции стоит дороже, но он может быть использован для соединения сегментов Ethernet, выполненных как на тонком, так и на толстом кабеле, т.к. он имеет и коаксиальные разъемы, и разъемы для подключения трансиверного кабеля. С помощью этого репитера можно даже соединить в единую сеть сегменты, выполненные и на тонком, и на толстом кабеле.

    Репитер в виде платы имеет только коаксиальные разъемы и поэтому может соединять только сегменты на тонком коаксиальном кабеле. Однако он стоит дешевле и не требует отдельной розетки для подключения электропитания. Один из недостатков встраиваемого в рабочую станцию репитера заключается в том, что для обеспечения круглосуточной работы сети станция с репитером также должна работать круглосуточно. При выключении питания связь между сегментами сети будет нарушена.

    [ http://sharovt.narod.ru/l10.htm]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > повторитель (в локальной вычислительной сети)

  • 16 широковещательное объектно-ориентированное сообщение о событии на подстанции

    1. GOOSE
    2. generic object oriented substation event

     

    GOOSE-сообщение
    -

    [Интент]

    широковещательное объектно-ориентированное сообщение о событии на подстанции

    Широковещательный высокоскоростной внеочередной отчет, содержащий статус каждого из входов, устройств пуска, элементов выхода и реле, реальных и виртуальных.
    Примечание. Этот отчет выдается многократно последовательно, как правило, сразу после первого отчета с интервалами 2, 4, 8,…, 60000 мс. Значение задержки первого повторения является конфигурируемым. Такой отчет обеспечивает выдачу высокоскоростных сигналов отключения с высокой вероятностью доставки.
    [ ГОСТ Р 54325-2011 (IEC/TS 61850-2:2003)]

    общие объектно-ориентированные события на подстанции
    -
    [ ГОСТ Р МЭК 61850-7-2-2009]

    GOOSE
    Generic Object Oriented Substation Event
    (стандарт МЭК 61850-8-1)
    Протокол передачи данных о событиях на подстанции.
    Один из трех протоколов передачи данных, предлагаемых к использованию в МЭК 61850.
    Фактически данный протокол служит для замены медных кабельных связей, предназначенных для передачи дискретных сигналов между устройствами.
    [ Цифровые подстанции. Проблемы внедрения устройств РЗА]

    EN

    generic object oriented substation event
    on the occurrence of any change of state, an IED will multicast a high speed, binary object, Generic Object Oriented Substation Event (GOOSE) report by exception, typically containing the double command state of each of its status inputs, starters, output elements and relays, actual and virtual.

    This report is re-issued sequentially, typically after the first report, again at intervals of 2, 4, 8…60000 ms. (The first repetition delay value is an open value it may be either shorter or longer).

    A GOOSE report enables high speed trip signals to be issued with a high probability of delivery
    [IEC 61850-2, ed. 1.0 (2003-08)]

    До недавнего времени для передачи дискретных сигналов между терминалами релейной защиты и автоматики (РЗА) использовались дискретные входы и выходные реле. Передача сигнала при этом осуществляется подачей оперативного напряжения посредством замыкания выходного реле одного терминала на дискретный вход другого терминала (далее такой способ передачи будем называть традиционным).
    Такой способ передачи информации имеет следующие недостатки:

    • необходимо большое количество контрольных кабелей, проложенных между шкафами РЗА,
    • терминалы РЗА должны иметь большое количество дискретных входов и выходных реле,
    • количество передаваемых сигналов ограничивается определенным количеством дискретных входов и выходных реле,
    • отсутствие контроля связи между терминалами РЗА,
    • возможность ложного срабатывания дискретного входа при замыкании на землю в цепи передачи сигнала.

    Информационные технологии уже давно предоставляли возможность для передачи информации между микропроцессорными терминалами по цифровой сети. Разработанный недавно стандарт МЭК 61850 предоставил такую возможность для передачи сигналов между терминалами РЗА.
    Стандарт МЭК 61850 использует для передачи данных сеть Ethernet. Внутри стандарта МЭК 61850 предусмотрен такой механизм, как GOOSE-сообщения, которые и используются для передачи сообщений между терминалами РЗА.
    Принцип передачи GOOSE-сообщений показан на рис. 1.

    5683

    Устройство-отправитель передает по сети Ethernet информацию в широковещательном диапазоне.
    В сообщении присутствует адрес отправителя и адреса, по которым осуществляется его передача, а также значение сигнала (например «0» или «1»).
    Устройство-получатель получит сообщение, а все остальные устройства его проигнорируют.
    Поскольку передача GOOSE-сообщений осуществляется в широковещательном диапазоне, т.е. нескольким адресатам, подтверждение факта получения адресатами сообщения отсутствует. По этой причине передача GOOSE-сообщений в установившемся режиме производится с определенной периодичностью.
    При наступлении нового события в системе (например, КЗ и, как следствие, пуска измерительных органов защиты) начинается спонтанная передача сообщения через увеличивающиеся интервалы времени (например, 1 мс, 2 мс, 4 мс и т.д.). Интервалы времени между передаваемыми сообщениями увеличиваются, пока не будет достигнуто предельное значение, определяемое пользователем (например, 50 мс). Далее, до момента наступления нового события в системе, передача будет осуществляется именно с таким периодом. Указанное проиллюстрировано на рис. 2.

    5684

    Технология повторной передачи не только гарантирует получение адресатом сообщения, но также обеспечивает контроль исправности линии связи и устройств – любые неисправности будут обнаружены по истечении максимального периода передачи GOOSE-сообщений (с точки зрения эксплуатации практически мгновенно). В случае передачи сигналов традиционным образом неисправность выявляется либо в процессе плановой проверки устройств, либо в случае неправильной работы системы РЗА.

    Еще одной особенностью передачи GOOSE-сообщений является использование функций установки приоритетности передачи телеграмм (priority tagging) стандарта Ethernet IEEE 802.3u, которые не используются в других протоколах, в том числе уровня TCP/IP. То есть GOOSE-сообщения идут в обход «нормальных» телеграмм с более высоким приоритетом (см. рис. 3).

    5685


    Однако стандарт МЭК 61850 декларирует передачу не только дискретной информации между терминалами РЗА, но и аналоговой. Это означает, что в будущем будет иметься возможность передачи аналоговой информации от ТТ и ТН по цифровым каналам связи. На данный момент готовых решений по передаче аналоговой информации для целей РЗА (в рамках стандарта МЭК 61850) ни один из производителей не предоставляет.
    Для того чтобы использовать GOOSE-сообщения для передачи дискретных сигналов между терминалами РЗА необходима достаточная надежность и быстродействие передачи GOOSE-сообщений. Надежность передачи GOOSE-сообщений обеспечивается следующим:

    • Протокол МЭК 61850 использует Ethernet-сеть, за счет этого выход из строя верхнего уровня АСУ ТП и любого из устройств РЗА не отражается на передаче GOOSE-сообщений оставшихся в работе устройств,
    • Терминалы РЗА имеют два независимых Ethernet-порта, при выходе одного из них из строя второй его полностью заменяет,
    • Сетевые коммутаторы, к которым подключаются устройства РЗА, соединяются в два независимых «кольца»,
    • Разные порты одного терминала РЗА подключаются к разным сетевым коммутаторам, подключенным к разным «кольцам»,
    • Каждый сетевой коммутатор имеет дублированное питание от разных источников,
    • Во всех устройствах РЗА осуществляется постоянный контроль возможности прохождения каждого сигнала. Это позволяет автоматически определить не только отказы цифровой связи, но и ошибки параметрирования терминалов.

    5686

    На рис. 4 изображен пример структурной схемы сети Ethernet (100 Мбит/c) подстанции. Отказ в передаче GOOSE-сообщения от одного устройства защиты другому возможен в результате совпадения как минимум двух событий. Например, одновременный отказ двух коммутаторов, к которым подключено одно устройство или одновременный отказ обоих портов одного устройства. Могут быть и более сложные отказы, связанные с одновременным наложением большего количества событий. Таким образом, единичные отказы оборудования не могут привести к отказу передачи GOOSEсообщений. Дополнительно увеличивает надежность то обстоятельство, что даже в случае отказа в передаче GOOSE-сообщения, устройство, принимающее сигнал, выдаст сигнал неисправности, и персонал примет необходимые меры для ее устранения.

    Быстродействие.
    В соответствии с требованиями стандарта МЭК 61850 передача GOOSE-сообщений должна осуществляться со временем не более 4 мс (для сообщений, требующих быстрой передачи, например, для передачи сигналов срабатывания защит, пусков АПВ и УРОВ и т.п.). Вообще говоря, время передачи зависит от топологии сети, количества устройств в ней, загрузки сети и загрузки вычислительных ресурсов терминалов РЗА, версии операционной системы терминала, коммуникационного модуля, типа центрального процессора терминала, количества коммутаторов и некоторых других аспектов. Поэтому время передачи GOOSE-сообщений должно быть подтверждено опытом эксплуатации.
    Используя для передачи дискретных сигналов GOOSE-сообщения необходимо обращать внимание на то обстоятельство, что при использовании аппаратуры некоторых производителей, в случае отказа линии связи, значение передаваемого сигнала может оставаться таким, каким оно было получено в момент приема последнего сообщения.
    Однако при отказе связи бывают случаи, когда сигнал должен принимать определенное значение. Например, значение сигнала блокировки МТЗ ввода 6–10 кВ в логике ЛЗШ при отказе связи целесообразно установить в значение «1», чтобы при КЗ на отходящем присоединении не произошло ложного отключения ввода. Так, к примеру, при проектировании терминалов фирмы Siemens изменить значение сигнала при отказе связи возможно с помощью свободно-программируемой CFCлогики (см. рис. 5).

    5687

    К CFC-блоку SI_GET_STATUS подводится принимаемый сигнал, на выходе блока мы можем получить значение сигнала «Value» и его статус «NV». Если в течение определенного времени не поступит сообщение со значением сигнала, статус сигнала «NV» примет значение «1». Далее статус сигнала и значение сигнала подводятся к элементу «ИЛИ», на выходе которого будет получено значение сигнала при исправности линии связи или «1» при нарушении исправности линии связи. Изменив логику, можно установить значение сигнала равным «0» при обрыве связи.
    Использование GOOSE-сообщений предъявляет специальные требования к наладке и эксплуатации устройств РЗА. Во многом процесс наладки становится проще, однако при выводе устройства из работы необходимо следить не только за выводом традиционных цепей, но и не забывать отключать передачу GOOSE-сообщений.
    При изменении параметрирования одного устройства РЗА необходимо производить загрузку файла параметров во все устройства, с которыми оно было связано.
    В нашей стране имеется опыт внедрения и эксплуатации систем РЗА с передачей дискретных сигналов с использованием GOOSE-сообщений. На первых объектах GOOSE-сообщения использовались ограниченно (ПС 500 кВ «Алюминиевая»).
    На ПС 500 кВ «Воронежская» GOOSEсообщения использовались для передачи сигналов пуска УРОВ, пуска АПВ, запрета АПВ, действия УРОВ на отключение смежного элемента, положения коммутационных аппаратов, наличия/отсутствия напряжения, сигналы ЛЗШ, АВР и т.п. Кроме того, на ОРУ 500 кВ и 110 кВ ПС «Воронежская» были установлены полевые терминалы, в которые собиралась информация с коммутационного оборудования и другая дискретная информация с ОРУ (рис. 6). Далее информация с помощью GOOSE-сообщений передавалась в терминалы РЗА, установленные в ОПУ подстанции (рис. 7, 8).
    GOOSE-сообщения также были использованы при проектировании уже введенных в эксплуатацию ПС 500 кВ «Бескудниково», ПС 750 кВ «Белый Раст», ПС 330кВ «Княжегубская», ПС 220 кВ «Образцово», ПС 330 кВ «Ржевская». Эта технология применяется и при проектировании строящихся и модернизируемых подстанций ПС 500 кВ «Чагино», ПС 330кВ «Восточная», ПС 330 кВ «Южная», ПС 330 кВ «Центральная», ПС
    330 кВ «Завод Ильич» и многих других.
    Основные преимущества использования GOOSE-сообщений:

    • позволяет снизить количество кабелей вторичной коммутации на ПС;
    • обеспечивает лучшую помехозащищенность канала связи;
    • позволяет снизить время монтажных и пусконаладочных работ;
    • исключает проблему излишнего срабатывания дискретных входов терминалов из-за замыканий на землю в цепях оперативного постоянного тока;
    • убирает зависимость количества передаваемых сигналов от количества дискретных входов и выходных реле терминалов;
    • обеспечивает возможность реконструкции и изменения связей между устройствами РЗА без прокладки дополнительных кабельных связей и повторного монтажа в шкафах;
    • позволяет использовать МП терминалы РЗА с меньшим количеством входов и выходов (уменьшение габаритов и стоимости устройства);
    • позволяет контролировать возможность прохождения сигнала (увеличивается надежность).

    Безусловно, для окончательных выводов должен появиться достаточный опыт эксплуатации. В настоящее время большинство производителей устройств РЗА заявили о возможности использования GOOSEсообщений. Стандарт МЭК 61850 определяет передачу GOOSE-сообщений между терминалами разных производителей. Использование GOOSE-сообщений для передачи дискретных сигналов – это качественный скачок в развитии систем РЗА. С развитием стандарта МЭК 61850, переходом на Ethernet 1 Гбит/сек, с появлением новых цифровых ТТ и ТН, новых выключателей с возможностью подключения их блока управления к шине процесса МЭК 61850, эффективность использования GOOSE-сообщений намного увеличится. Облик будущих подстанций представляется с минимальным количеством контрольных кабелей, с передачей всех сообщений между устройствами РЗА, ТТ, ТН, коммутационными аппаратами через цифровую сеть. Устройства РЗА будут иметь минимальное количество выходных реле и дискретных входов

    [ http://romvchvlcomm.pbworks.com/f/goosepaper1.pdf]


    В стандарте определены два способа передачи данных напрямую между устройствами: GOOSE и GSSE. Это тоже пример наличия двух способов для реализации одной функции. GOOSE - более новый способ передачи сообщений, разработан специально для МЭК 61850. Способ передачи сообщений GSSE ранее присутствовал в стандарте UCA 2.0, являющимся одним из предшественников МЭК 61850. По сравнению с GSSE, GOOSE имеет более простой формат (Ethernet против стека OSI протоколов) и возможность передачи различных типов данных. Вероятно, способ GSSE включили в МЭК 61850 для того, чтобы производители, имеющие в своих устройствах протокол UCA 2.0, могли сразу декларировать соответствие МЭК 61850. В настоящее время все производители используют только GOOSE для передачи сообщений между устройствами.
    Для выбора списка передаваемых данных в GOOSE, как и в отчѐтах, используются наборы данных. Однако тут требования уже другие. Время обработки GOOSE-сообщений должно быть минимальным, поэтому логично передавать наиболее простые типы данных. Обычно передаѐтся само значение сигнала и в некоторых случаях добавляется поле качества. Метка времени обычно включается в набор данных.
    ...
    В устройствах серии БЭ2704 в передаваемых GOOSE-сообщениях содержатся данные типа boolean. Приниматься могут данные типа boolean, dbpos, integer.
    Устоявшаяся тенденция существует только для передачи дискретной информации. Аналоговые данные пока передают немногие производители, и поэтому устоявшаяся тенденция в передаче аналоговой информации в данный момент отсутствует.
    [ Источник]


     

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > широковещательное объектно-ориентированное сообщение о событии на подстанции

  • 17 логическая селективность

    1. ZSI protection
    2. ZSI
    3. zone selective interlocking

     

    логическая селективность
    -

    [Интент]

    Параллельные тексты EN-RU

    Zone selective interlocking can be used to obtain total discrimination between circuit breakers using external wiring.
    [Schneider Electric]

    Логическая селективность может использоваться для реализации полной селективности срабатывания автоматических выключателей, оснащенных внешней линией связи.
    [Интент]


    4734
    Рис. Schneider Electric  

    Zone-selective interlocking is used to reduce the electrodynamic forces exerted on the installation by shortening the time required to clear faults, while maintaining time discrimination between the various devices.
    A pilot wire interconnects a number of circuit breakers equipped with ET range of trip system, as illustrated in the diagram above.
    The control unit detecting a fault sends a signal upstream and checks for a signal arriving from downstream.
    If there is a signal from downstream, the circuit breaker remains closed for the full duration of its tripping delay.
    If there is no signal from downstream, the circuit breaker opens immediately, regardless of the tripping-delay setting.

    Fault 1.
    Only circuit breaker A detects the fault. Because it receives no signal from downstream, it opens immediately, regardless of its tripping delay set to 0.3.

    Fault 2.
    Circuit breakers A and B detect the fault. Circuit breaker A receives a signal from B and remains closed for the full duration of its tripping delay set to 0.3. Circuit breaker B does not receive a signal from downstream and opens immediately, in spite of its tripping delay set to 0.2.

    [Schneider Electric]

    Логическая селективность используется для уменьшения электродинамических воздействий на электроустановку, путем сокращения времени, необходимого на определение места возникновения короткого замыкания, при сохранении селективности по времени между отдельными аппаратами защиты.
    Как показано на рисунке выше, автоматические выключатели, оснащенные расцепителем ET, соединяют отдельной сигнальной линией. Микропроцессорный расцепитель, обнаружив короткое замыкание, посылает соответствующий сигнал автоматическому выключателю, расположенному выше (со стороны источника питания), и проверяет, не поступил ли аналогичный сигнал от автоматического выключателя, расположенного ниже (со стороны нагрузки).
    Если сигнал от автоматического выключателя, расположенного ниже, поступил, то рассматриваемый автоматический выключатель остается во включенном положении в течение предусмотренной задержки срабатывания.
    Если сигнал от автоматического выключателя, расположенного ниже, отсутствует, то рассматриваемый автоматический выключатель срабатывает мгновенно, не смотря на то что в его расцепителе предусмотрена задержка срабатывания.

    Короткое замыкание 1
    Короткое замыкание обнаружил только автоматический выключатель А. Поскольку в этом случае он не получает сигнала от автоматического выключателя, расположенного ниже, то он срабатывает мгновенно, не смотря на то, что в его расцепителе предусмотрена задержка срабатывания, равная 0,3.

    Короткое замыкание 2
    Короткое замыкание обнаружили автоматические выключатели А и В. Автоматический выключатель А получает сигнал от автоматического выключателя В и остается во включенном положении в течение всей задержки срабатывания, равной 0,3. Автоматический выключатель В не получает сигнала от автоматического выключателя, расположенного ниже, и срабатывает мгновенно, не смотря на то, что в его расцепителе установлена задержка срабатывания, равная 0,2.


    [Перевод Интент]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > логическая селективность

  • 18 реле (p) (к)


    relay (к)
    электромеханическое устройство, контакты которого размыкают и /или замыкают управляемую цепь в зависимости от наличия или величины эл. сигналов в управляющей цепи, — an electromechanical device in which contacts are opened and/or closed by variations in the conditions of one electric circuit and thereby affect the operation of other devices in the same or other electric circuits.
    -, арретирующее — latching relay
    -, барометрическое (барореле для раскрытия парашюта) — barometric release (mechanism)
    -, бесконтактное — contactless relay
    - блокировкиblocking relay
    -, биметаллическое — bimetallic relay
    - блокировки (выключения)lockout relay
    - блокировки (выключения) автомата торможенияanti-skid lockout relay
    - блокировки включения систем самолета, двигателя при обжатой передней амортстойке шасси — ground shift relay (actuated with nose oleo compressed)
    -, блокировочное — blocking relay
    реле, связанное с другими устройствами и, служащее для предотвращения срабатывания ипи повторного включения цепи при нарушении нормальной работы. — a relay wtlich со-operates with other devices to block tripping or to block reclosing on an out-of-step condition. or on power swings.
    -, блокировочное — locking-out /lockout/ relay
    реле, служащее для выключения оборудования и удержания его в выключенном состоянии при нарушении нормальной работы.данного оборудования, — an electrically operated hand or electrically reset device which functions to shut down and hold an equipment out of service on occurrence of abnormal conditions.
    - включения (и выключения)switching relay
    реле, включающее или выключающее к-л. устройство или цепь, — the relay which can place another device or circuit in an operating or nonoperating state.
    - включения (одного устройства к другому, напр., преобразователя к шине) — (inverter-to-bus) switching /connection, tie/ relay
    - включения муфты стартераstarter meshing relay
    - включения наземного питанияexternal power relay
    - включения стартерного pежима (стартера-генератора)motorizing relay
    - времениtime relay
    - времени, электромашинное — rotary time-delay relay
    -, вызывающее срабатывание системы (цепи) — system /circuit/ actuating relay
    -, выключающее — cutout /cut-out/ relay
    - выключения (защитного устройства, контактора, оборудования) — tripping relay. used to trip а circuit breaker, contactor, equipment.
    - выключения (блокировки оборудования при нарушении нормальных условий работы) — lock-out relay
    - выключения зажигания (двиг.) — ignition cut-out relay
    -, герметическое — pressure sealed relay
    -, гидравлическое (сигнализатор) — hydraulic pressure switch
    - давления (сигнализатор давления)pressure switch
    реле, срабатывающее при изменении давления подводимого газа или жидкости — a switch actuated by а change in the pressure of a gas or liquid.
    - двухпозиционное (е замыканием контактов в двух крайних положениях) — double-throw relay. а relay which alternately completes а circuit at either of its two extreme positions.
    -, двухполюсное — double pole relay
    динамического торможения (фотокамеры)(camera) dynamic braking relay
    - дифференциальноеdifferential relay
    реле с несколькими обмотками, которое срабатывает, когда разность величин подводимого напряжения или протекающего тока в обмотках достигает определенного уровня. — a relay with multiple windings that functions when the voltage, current, or power difference between the windings reaches а predetermined value.
    -, дифференциально-минимальное (дмр) — differential reverse current cutout relay
    - задержки времениtime delay relay
    реле, обеспечивающее временной интервал между включением и выключением обмотки и перемещением якоря, — a relay in which there is an appreciable interval of time between the energizing or deenergizing of the coil and the movement of the armature.
    -, защитное — protective relay
    реле, служащее для защиты цепей в случае нарушения нормального режима работы, — a relay, the principal function оf which is to protect services from interruption or to prevent or limit damage to apparatus.
    -, защитное дифференциальнoe — differential protective relay
    - защиты от перенапряженияovervoltage relay
    -, командное — control relay
    - контроля нагрузкиload monitor relay (lmr)
    -, максимальное — overload relay
    реле, срабатывающее, если сила тока, протекающего в его обмотке, превышает установленную величину, — a relay designed to operate when its coil current rises above а predetermined value.
    - мгновенного действияinstantaneous relay
    -, минимальное — reverse current (cut-out) relay
    устанавливается в цепи между генератором пост. тока (или выпрямительным устройством) и шиной пост. тока для предотвращения обратного тока в случае, если напряжение на шине превышает выходное напряжение генератора. — reverse current cut-out relays are placed between the dc generator, transformerrectifier, and the dc bus to prevent reverse current flow, if the dc bus potential becomes greater than dc generator or transformerrectifier output.
    - на два направления (двухпозиционное)double-throw relay
    - напряженияvoltage relay
    реле, срабатывающее при заданной величине подаваемого напряжения, — a relay that functions at а predetermined value of voltage.
    - обжатого положения шасси (для включения систем ла)ground shift mechanism relay
    - обратного токаreverse-current relay
    реле, срабатывающее при протекании тока в обратном направлении, — a relay that operates whenever current flows in the reverse direction.
    - объединения шин (подсистем лев. и прав. борта) — bus tie relay (btr)
    - отключения объединения шинtie bus isolation relay
    - перегрузки (максимальное)overload relay
    - переключения потребителей (pпп)load monitor relay (lmr)
    - переключения стартера-генератора на стартерный режимmotorizing relay
    - переключения шин (эл.) — bus tie relay (btr)
    - переменного токаас operated relay
    -, пневматическое (сигнализатор давления) — pneumatic pressure switch
    - подает напряжение на... — relay applies voltage to..., relay energizes...
    - подает (+27 в) на... — relay applies (+27 v) to..., relay makes /closes/ circuit to supply /apply, feed/ +27 v to...
    -, поляризованное — polarized relay
    реле, направление перемещения якоря которого зависит от направления тока в его обмотке. — а relay in which the arma'ture movement depends on the direction of the current. its coil symbol is sometimes marked +.
    - предельного значения скоростиmaximum operating limit speed relay
    - предельного значения числa m. — maximum operating limit mach-number relay
    -, промежуточное (вспомогательное) — auxiliary relay
    - пускового зажигания (двиг.) — starting ignition.relay
    -, развязывающее — decoupling relay
    -, разделительное — isolation relay
    - сигнализатора обледененияice detector pressure switch
    - сигнализации достижения предельной скоростиmaximum operating limit speed (warning) relay
    - сигнализации нарушения (параметров) питания — power relay. it may be an overpower or underpower relay.
    - сигнализации отказа питанияpower fail relay
    - с механической блокировкойlatching relay
    - соединения шинbus tie relay (btr)
    - с самоблокировкойinterlock relay
    реле, в котором один якорь не может изменить свое положение или его обмотка не может оказаться под током, если другой якорь не занимает определенное положение. — a relay in which one armature cannot move or its coil be energized unless the other armature is in a certain position.
    -, стопорное (запорное) — latch-in /latching, locking/ relay
    реле, контакты которого стопорятся (фиксируются) либо в замкнутом или разомкнутом положении до момента расстопорения вручную или электрически. — а relay with contacts that lock in oither the energized or de-energized position until reset either manually or electrlcally.
    - стрельбы — firing control relay, fire relay
    - снимает напряжение с... (обесточивает цепь) — relay de-energizes..., relay removes voltage from...
    - снимает +27 в с... — rela@ removes +27 v from..., relay breakes /opens/ circuit to remove +27 v from...
    - срабатывает (и замыкает цепь)relay operates (and closes circuit)
    - срабатывает и (своими контактами) подает +27 в на клемму 1 — relay operates and applies +27 v to terminal 1
    - срабатывает и приводит в действие эл. мотор — relay actuates electric motor
    -, струйное
    электромагнитное устройство, распределяющее входное давление (воздуха, рабочей жидкости) в двух выходных каналах. — jet relay
    -, тепловое — thermal relay
    реле, срабатывающее под воздействием нагрева, создаваемого протекаемым током. — а relay (hat responds to the heating effect of an energizing current.
    -, управляющее — control relay
    -, чувствительное — sensitive relay
    -, шаговое — stepping relay
    -, электромагнитное — electromagnetic relay
    электромагнитный контактор, имеющий обмотку (обмотки) и подвижный якорь, — an electromagnetically operated switch composed of one or more coils and armatures.
    -, эпектромашинное — rotary relay
    -, электронное — electronic relay
    электронная цепь, выполняющая функцию реле, без наличия подвижных деталей. — an electronic circuit that provides the functional equivalent of a relay, but has no moving parts.
    отпускание p. (на размыкание контактов) — tripping off
    срабатывание р. — operation of relay
    включать р. — energize relay
    выключать (обесточивать) р. — de-energize relay
    переключать(ся) р. — reset relay (manually or electrically)
    - притягивать якорь р. — attract relay armature
    удерживать р. в заданном положении — hold relay in the given position

    Русско-английский сборник авиационно-технических терминов > реле (p) (к)

  • 19 SCADA

    1. Supervisory for Control And Data Acquision
    2. SCADA system
    3. SCADA

     

    SCADA
    SCADA-система
    диспетчерское управление и сбор данных
    ПО, предназначенное для поддержки средств автоматизации и построения систем промышленной автоматизации.
    [ http://www.morepc.ru/dict/]

    SCADA (аббр. от англ. supervisory control and data acquisition, диспетчерское управление и сбор данных) — программный пакет, предназначенный для разработки или обеспечения работы в реальном времени систем сбора, обработки, отображения и архивирования информации об объекте мониторинга или управления. SCADA может являться частью АСУ ТП, АСКУЭ, системы экологического мониторинга, научного эксперимента, автоматизации здания и т. д. SCADA-системы используются во всех отраслях хозяйства, где требуется обеспечивать операторский контроль за технологическими процессами в реальном времени. Данное программное обеспечение устанавливается на компьютеры и, для связи с объектом, использует драйверы ввода-вывода или OPC/DDE серверы. Программный код может быть как написан на языке программирования (например на C++), так и сгенерирован в среде проектирования.

    Иногда SCADA-системы комплектуются дополнительным ПО для программирования промышленных контроллеров. Такие SCADA-системы называются интегрированными и к ним добавляют термин SoftLogic.

    Термин «SCADA» имеет двоякое толкование. Наиболее широко распространено понимание SCADA как приложения[2], то есть программного комплекса, обеспечивающего выполнение указанных функций, а также инструментальных средств для разработки этого программного обеспечения. Однако, часто под SCADA-системой подразумевают программно-аппаратный комплекс. Подобное понимание термина SCADA более характерно для раздела телеметрия.

    Значение термина SCADA претерпело изменения вместе с развитием технологий автоматизации и управления технологическими процессами. В 80-е годы под SCADA-системами чаще понимали программно-аппаратные комплексы сбора данных реального времени. С 90-х годов термин SCADA больше используется для обозначения только программной части человеко-машинного интерфейса АСУ ТП.

    Основные задачи, решаемые SCADA-системами

    SCADA-системы решают следующие задачи:

    • Обмен данными с «устройствами связи с объектом», то есть с промышленными контроллерами и платами ввода/вывода) в реальном времени через драйверы.
    • Обработка информации в реальном времени.
    • Логическое управление.
    • Отображение информации на экране монитора в удобной и понятной для человека форме.
    • Ведение базы данных реального времени с технологической информацией.
    • Аварийная сигнализация и управление тревожными сообщениями.
    • Подготовка и генерирование отчетов о ходе технологического процесса.
    • Осуществление сетевого взаимодействия между SCADA ПК.
    • Обеспечение связи с внешними приложениями (СУБД, электронные таблицы, текстовые процессоры и т. д.). В системе управления предприятием такими приложениями чаще всего являются приложения, относимые к уровню MES.

    SCADA-системы позволяют разрабатывать АСУ ТП в клиент-серверной или в распределённой архитектуре.

    Основные компоненты SCADA

    SCADA—система обычно содержит следующие подсистемы:

    • Драйверы или серверы ввода-вывода — программы, обеспечивающие связь SCADA с промышленными контроллерами, счётчиками, АЦП и другими устройствами ввода-вывода информации.
    • Система реального времени — программа, обеспечивающая обработку данных в пределах заданного временного цикла с учетом приоритетов.
    • Человеко-машинный интерфейс (HMI, англ. Human Machine Interface) — инструмент, который представляет данные о ходе процесса человеку оператору, что позволяет оператору контролировать процесс и управлять им. Программа-редактор для разработки человеко-машинного интерфейса.
    • Система логического управления — программа, обеспечивающая исполнение пользовательских программ (скриптов) логического управления в SCADA-системе. Набор редакторов для их разработки.
    • База данных реального времени — программа, обеспечивающая сохранение истории процесса в режиме реального времени.
    • Система управления тревогами — программа, обеспечивающая автоматический контроль технологических событий, отнесение их к категории нормальных, предупреждающих или аварийных, а также обработку событий оператором или компьютером.
    • Генератор отчетов — программа, обеспечивающая создание пользовательских отчетов о технологических событиях. Набор редакторов для их разработки.
    • Внешние интерфейсы — стандартные интерфейсы обмена данными между SCADA и другими приложениями. Обычно OPC, DDE, ODBC, DLL и т. д.

    Концепции систем
    Термин SCADA обычно относится к централизованным системам контроля и управления всей системой, или комплексами систем, осуществляемого с участием человека. Большинство управляющих воздействий выполняется автоматически RTU или ПЛК. Непосредственное управление процессом обычно обеспечивается RTU или PLC, а SCADA управляет режимами работы. Например, PLC может управлять потоком охлаждающей воды внутри части производственного процесса, а SCADA система может позволить операторам изменять уста для потока, менять маршруты движения жидкости, заполнять те или иные ёмкости, а также следить за тревожными сообщениями (алармами), такими как — потеря потока и высокая температура, которые должны быть отображены, записаны, и на которые оператор должен своевременно реагировать. Цикл управления с обратной связью проходит через RTU или ПЛК, в то время как SCADA система контролирует полное выполнение цикла.

    Сбор данных начинается в RTU или на уровне PLC и включает — показания измерительного прибора. Далее данные собираются и форматируются таким способом, чтобы оператор диспетчерской, используя HMI мог принять контролирующие решения — корректировать или прервать стандартное управление средствами RTU/ПЛК. Данные могут также быть записаны в архив для построения трендов и другой аналитической обработки накопленных данных.

    [ http://ru.wikipedia.org/wiki/SCADA]


    CitectSCADA
    полнофункциональная система мониторинга, управления и сбора данных (SCADA – Supervisory Control And Data Acquisition)

    ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ:

    CitectSCADA построена на базе мультизадачного ядра реального времени, что обеспечивает производительность сбора до 5 000 значений в секунду при работе в сетевом режиме с несколькими станциями. Модульная клиент-серверная архитектура позволяет одинаково эффективно применять CitectSCADA как в малых проектах, с использованием только одного АРМ, так и в больших, с распределением задач на несколько компьютеров.

    В отличие от других SCADA-систем среда разработки CitectSCADA поставляется бесплатно. Оплачивается только среда исполнения (runtime). Это позволяет пользователю разработать и протестировать пробный проект, не вкладывая средств на начальном этапе.

    Схема лицензирования CitectSCADA основана на учете числа одновременно задействованных компьютеров в проекте, а не общего числа компьютеров, на которых установлена CitectSCADA.

    CitectSCADA лицензируется на заданное количество точек (дискретных или аналоговых переменных). При этом учитываются только внешние переменные, считываемые из устройств ввода/вывода, а внутренние переменные, находящиеся в памяти или на диске, бесплатны и не входят в количество лицензируемых точек. Градация количества лицензируемых точек в CitectSCADA более равномерна, чем в других системах: 75, 150, 500, 1 500, 5 000, 15 000, 50 000 и неограниченное количество.

    В CitectSCADA резервирование является встроенным и легко конфигурируемым. Резервирование позволяет защищать все зоны потенциальных отказов как функциональных модулей (серверов и клиентов), так и сетевых соединений между узлами и устройствами ввода/вывода.

    CitectSCADA имеет встроенный язык программирования CiCode, а также поддержку VBA.

    CitectSCADA работает как 32-разрядное приложение Windows 9X/NT/2000/XP/2003. Сбор данных, формирование алармов и построение трендов происходит одновременно с редактированием и компиляцией.

    [ http://www.rtsoft.ru/catalog/soft/scada/detail/343/]

     


    Словесный портрет современной управляющей системы типа SCADA

    Ввод-вывод

    Метки

    Графика

    Действия

    Статистический контроль ( SPC)

    Отчёты

    • Редактор сгенерированных отчётов, редактирование по модели WYSIWYN, отчёты в формате Rich Text
    • Запуск внешними событиями, по расписанию, через высокоуровневые выражения и по команде оператора
    • Вывод на принтер, в файл, по электронной почте, на экран, в формат HTML

    Конфигурирование

    Программное обеспечение

    Безопасность

    Обмен данными

    [ http://www.rtsoft-training.ru/?p=600074]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > SCADA

  • 20 соматическая мутация

    [греч. soma (somatos) — тело; лат. mutatio — изменение]
    ненаследуемая мутация (см. мутация), возникающая в любой соматической клетке (см. соматическая клетка) и ведущая к появлению клеточного клона с генотипом, отличающимся от генотипа соседних нормальных клеток, т.е. к мозаицизму. В клетках развивающегося организма могут возникать С.м. всех тех типов, которые наблюдаются в половых клетках: умножение хромосомного набора в целом в результате нормального деления хромосом без последующего деления ядра и клетки (см. полиплоидия); трисомии и моносомии различных хромосом в результате отхождения двух дочерних хромосом к одному полюсу (вместо расхождения их к разным полюсам); потери хромосомы в одной из дочерних клеток в результате ее задержки в зоне экваториальной пластинки при делении и т.д. В соматических клетках с той или иной частотой происходят инверсии, делеции и транслокации участков хромосом, а также мутации отдельных генов. Чем раньше в процессе развития организма возникает С.м., тем большее количество клеток-потомков ее унаследует при условии, что мутация не убивает клетку-носительницу и не снижает темпов ее размножения. Генные С.м. проявляются относительно редко, т. к. в подавляющем большинстве случаев функция мутантного гена или выпавшего участка хромосомы компенсируется наличием нормального гомологичного гена или нормального участка в партнере — гомологе мутантной хромосомы. Проявление некоторых С.м. подавляется соседством нормальных клеток и тканей. Как исключение наследование С.м. происходит только у растений в случае возникновения мутации в точке роста цветоносного побега, цветка и плода.

    Толковый биотехнологический словарь. Русско-английский. > соматическая мутация

См. также в других словарях:

  • Права авиапассажиров в случае задержки и отмены авиарейсов — Условия воздушной перевозки пассажиров, права и обязанности перевозчика, пассажиров и других лиц, участвующих в организации и обеспечении воздушных перевозок регулируются Федеральными авиационными правилами Общие правила воздушных перевозок… …   Энциклопедия ньюсмейкеров

  • Приостановление работы в случае задержки заработной платы — в случае задержки выплаты заработной платы на срок более 15 дней работник имеет право, известив работодателя в письменной форме, приостановить работу на весь период до выплаты задержанной суммы. В этой связи одновременно напомним и особо… …   Энциклопедический словарь-справочник руководителя предприятия

  • Задержки в развитии специфические — Группа расстройств, основной характеристикой которых является специфическая задержка в развитии. В каждом конкретном случае развитие связано с биологическим созреванием, но на него также влияют другие (не биологические) факторы; в термине не… …   Большая психологическая энциклопедия

  • Задержки умственного развития — Умственная отсталость МКБ 10 F70. F79. МКБ 9 317 …   Википедия

  • ЛИНИИ ЗАДЕРЖКИ — акустические устройства для задержки электрических сигналов на время от долей мкс до десятков мс, основанные на использовании относительно малой скорости распространения упругих волн. Л. з. наз. ультразвуковыми (УЛЗ) при работе на частотах w волн …   Физическая энциклопедия

  • Цифровая линия задержки — Содержание 1 Применение 2 Устройство и принцип действия …   Википедия

  • Линия задержки — Линия задержки  устройство, предназначенное для задержки электромагнитных сигналов на определённый промежуток времени (фиксированный, переключаемый или с плавной регулировкой). Линии задержки (далее ЛЗ) широко применяются в разных областях… …   Википедия

  • Память на линиях задержки — Типы компьютерной памяти Энергозависимая DRAM (в том числе DDR SDRAM) SRAM Перспективные T RAM Z RAM TTRAM Из истории Память на линиях задержки Запоминающая электронстатическая трубка Запоминающая ЭЛТ Энергонезависимая …   Википедия

  • в случае чего — Неизм. Если будет необходимость, если произойдет, случится что либо, если возникнут какие либо затруднения, осложнения. Чаще с глаг. в повел. накл.: в каком случае? в случае чего позвони<те>, передай<те>… В случае чего немедленно… …   Учебный фразеологический словарь

  • Экспорт — (Export) Определение экспорта, виды экспорта, схема экспортной сделки Информация об определении экспорта, виды экспорта, схема экспортной сделки Содержание Экспорт (программирование) Экспорт Экспорт товаров Экспортные ы Экспорт товаров и таможня… …   Энциклопедия инвестора

  • КИШЕЧНИК — КИШЕЧНИК. Сравнительно анатомические данные. Кишечник (enteron) представляет собой б. или м. длинную трубку, начинающуюся ротовым отверстием на переднем конце тела (обычно с брюшной стороны) и кончающуюся у большинства животных особым, анальным… …   Большая медицинская энциклопедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»