Перевод: со всех языков на все языки

со всех языков на все языки

(year+1958)

  • 41 Kompfner, Rudolph

    [br]
    b. 16 May 1909 Vienna, Austria
    d. 3 December 1977 Stanford, California, USA
    [br]
    Austrian (naturalized English in 1949, American in 1957) electrical engineer primarily known for his invention of the travelling-wave tube.
    [br]
    Kompfner obtained a degree in engineering from the Vienna Technische Hochschule in 1931 and qualified as a Diplom-Ingenieur in Architecture two years later. The following year, with a worsening political situation in Austria, he moved to England and became an architectural apprentice. In 1936 he became Managing Director of a building firm owned by a relative, but at the same time he was avidly studying physics and electronics. His first patent, for a television pick-up device, was filed in 1935 and granted in 1937, but was not in fact taken up. In June 1940 he was interned on the Isle of Man, but as a result of a paper previously sent by him to the Editor of Wireless Engineer he was released the following December and sent to join the group at Birmingham University working on centimetric radar. There he worked on klystrons, with little success, but as a result of the experience gained he eventually invented the travelling-wave tube (TWT), which was based on a helical transmission line. After disbandment of the Birmingham team, in 1946 Kompfner moved to the Clarendon Laboratory at Oxford and in 1947 he became a British subject. At the Clarendon Laboratory he met J.R. Pierce of Bell Laboratories, who worked out the theory of operation of the TWT. After gaining his DPhil at Oxford in 1951, Kompfner accepted a post as Principal Scientific Officer at Signals Electronic Research Laboratories, Baldock, but very soon after that he was invited by Pierce to work at Bell on microwave tubes. There, in 1952, he invented the backward-wave oscillator (BWO). He was appointed Director of Electronics Research in 1955 and Director of Communications Research in 1962, having become a US citizen in 1957. In 1958, with Pierce, he designed Echo 1, the first (passive) satellite, which was launched in August 1960. He was also involved with the development of Telstar, the first active communications satellite, which was launched in 1962. Following his retirement from Bell in 1973, he continued to pursue research, alternately at Stanford, California, and Oxford, England.
    [br]
    Principal Honours and Distinctions
    Physical Society Duddell Medal 1955. Franklin Institute Stuart Ballantine Medal 1960. Institute of Electrical and Electronics Engineers David Sarnoff Award 1960. Member of the National Academy of Engineering 1966. Member of the National Academy of Science 1968. Institute of Electrical and Electronics Engineers Medal of Honour 1973. City of Philadelphia John Scott Award 1974. Roentgen Society Silvanus Thompson Medal 1974. President's National medal of Science 1974. Honorary doctorates Vienna 1965, Oxford 1969.
    Bibliography
    1944, "Velocity modulated beams", Wireless Engineer 17:262.
    1942, "Transit time phenomena in electronic tubes", Wireless Engineer 19:3. 1942, "Velocity modulating grids", Wireless Engineer 19:158.
    1946, "The travelling-wave tube", Wireless Engineer 42:369.
    1964, The Invention of the TWT, San Francisco: San Francisco Press.
    Further Reading
    J.R.Pierce, 1992, "History of the microwave tube art", Proceedings of the Institute of Radio Engineers: 980.
    KF

    Biographical history of technology > Kompfner, Rudolph

  • 42 Moxon, Joseph

    SUBJECT AREA: Paper and printing
    [br]
    b. 8 August 1627 Wakefield, Yorkshire, England d. 1700
    [br]
    English publisher of mathematical and technical books.
    [br]
    Moxon acquired a knowledge of mathematics, map making and many technical arts, to which, as a result of some time spent in Holland, he added a knowledge of languages. By 1657 he was established in Cornhill in London, "at the sign of Atlas", where he published and sold "all manner of mathematical books or instruments and maps whatsoever". Soon after 1660, Moxon was appointed Hydrographer to King Charles II, i.e. map and chart printer and seller. By this time his shop was on Ludgate Hill, and in 1683 it had moved to the west side of Fleet Ditch, but retained its name "at the sign of Atlas". Moxon's most important publishing venture was a series of handbooks, never completed, entitled Mechanick Exercises or the Doctrine of Handy- Works. It was begun in 1677 and was intended to be published monthly and cover the whole range of practical techniques, such as metal-turning and woodworking. However, the series was suspended after a year or so due to the effects of the Popish Plot, which "took off the minds of my few customers from buying". He resumed publication with the most important of these works, Mechanick Exercises on the Whole Art of Printing, which appeared in 1683–4. Although printing had been invented more than two centuries earlier, this is the first detailed account in any language of printing, and includes all aspects of the process: type casting, setting, and construction and operation of the press itself, together with the organization of the printing shop. It served as the basis of future handbooks throughout the age of the hand press.
    [br]
    Principal Honours and Distinctions
    FRS 1678.
    Bibliography
    1683–4, Mechanick Exercises on the Whole Art of Printing, reprinted 1958, eds H.Davies and H.Carter, London: Oxford University Press (this facsimile reprint includes the most detailed account of Moxon's life and work, with full bibliographical details of the book itself).
    LRD

    Biographical history of technology > Moxon, Joseph

  • 43 Northrop, James H.

    SUBJECT AREA: Textiles
    [br]
    fl. 1890s Keighley, Yorkshire, England
    [br]
    English-born American inventor of the first successful loom to change the shuttles automatically when the weft ran out.
    [br]
    Although attempts had been continuing since about 1840 to develop a loom on which the shuttles were changed automatically when the weft was exhausted, it was not until J.H.Northrop invented his cop-changer and patented it in the United States in 1894 that the automatic loom really became a serious competitor to the ordinary power loom. Northrop was born at Keighley in Yorkshire but emigrated to America, where he developed his loom. In about 1891 he appears to have been undecided whether to work on the shuttle-changing system or the copchanging system, for in that year he took out three patents, one of which was for a shuttle changer and the other two for cop-changers.
    A communication from W.F.Draper, Northrop's employer, was used in 1894 as a patent in Britain for a cop-or bobbin-changing automatic loom, which was in fact the Northrop loom. A further five patents for stop motions were taken out in 1895, and yet another in 1896. In one shuttle-box, a feeler was pushed through a hole in the side of the shuttle each time the shuttle entered the box. When the cop of weft was full, the loom carried on working normally. If lack of weft enabled the feeler to enter beyond a certain point, a device was activated which pushed a full cop down into the place of the old one. The full cops were contained in a rotary magazine, ready for insertion.
    The full Northrop loom comprised several basic inventions in addition to the cop-changer, namely a self-threading shuttle, a weft-fork mechanism to stop the loom, a warp let-off mechanism and a warp-stop motion. The Northrop loom revolutionized cotton weaving in America and the Northrop system became the basis for most later automatic looms. While Northrop looms were made in America and on the European continent, they never achieved much popularity in Britain, where finer cloth was usually woven.
    [br]
    Further Reading
    W.A.Hanton, 1929, Automatic Weaving, London (describes the Northrop loom and has good illustrations of the mechanism).
    W.English, 1969, The Textile Industry, London (explains the Northrop system). C.Singer (ed.), 1958, A History of Technology, Vol. V, Oxford: Clarendon Press.
    RLH

    Biographical history of technology > Northrop, James H.

  • 44 Noyce, Robert

    [br]
    b. 12 December 1927 Burlington, Iowa, USA
    [br]
    American engineer responsible for the development of integrated circuits and the microprocessor chip.
    [br]
    Noyce was the son of a Congregational minister whose family, after a number of moves, finally settled in Grinnell, some 50 miles (80 km) east of Des Moines, Iowa. Encouraged to follow his interest in science, in his teens he worked as a baby-sitter and mower of lawns to earn money for his hobby. One of his clients was Professor of Physics at Grinnell College, where Noyce enrolled to study mathematics and physics and eventually gained a top-grade BA. It was while there that he learned of the invention of the transistor by the team at Bell Laboratories, which included John Bardeen, a former fellow student of his professor. After taking a PhD in physical electronics at the Massachusetts Institute of Technology in 1953, he joined the Philco Corporation in Philadelphia to work on the development of transistors. Then in January 1956 he accepted an invitation from William Shockley, another of the Bell transistor team, to join the newly formed Shockley Transistor Company, the first electronic firm to set up shop in Palo Alto, California, in what later became known as "Silicon Valley".
    From the start things at the company did not go well and eventually Noyce and Gordon Moore and six colleagues decided to offer themselves as a complete development team; with the aid of the Fairchild Camera and Instrument Company, the Fairchild Semiconductor Corporation was born. It was there that in 1958, contemporaneously with Jack K. Wilby at Texas Instruments, Noyce had the idea for monolithic integration of transistor circuits. Eventually, after extended patent litigation involving study of laboratory notebooks and careful examination of the original claims, priority was assigned to Noyce. The invention was most timely. The Apollo Moon-landing programme announced by President Kennedy in May 1961 called for lightweight sophisticated navigation and control computer systems, which could only be met by the rapid development of the new technology, and Fairchild was well placed to deliver the micrologic chips required by NASA.
    In 1968 the founders sold Fairchild Semicon-ductors to the parent company. Noyce and Moore promptly found new backers and set up the Intel Corporation, primarily to make high-density memory chips. The first product was a 1,024-bit random access memory (1 K RAM) and by 1973 sales had reached $60 million. However, Noyce and Moore had already realized that it was possible to make a complete microcomputer by putting all the logic needed to go with the memory chip(s) on a single integrated circuit (1C) chip in the form of a general purpose central processing unit (CPU). By 1971 they had produced the Intel 4004 microprocessor, which sold for US$200, and within a year the 8008 followed. The personal computer (PC) revolution had begun! Noyce eventually left Intel, but he remained active in microchip technology and subsequently founded Sematech Inc.
    [br]
    Principal Honours and Distinctions
    Franklin Institute Stuart Ballantine Medal 1966. National Academy of Engineering 1969. National Academy of Science. Institute of Electrical and Electronics Engineers Medal of Honour 1978; Cledo Brunetti Award (jointly with Kilby) 1978. Institution of Electrical Engineers Faraday Medal 1979. National Medal of Science 1979. National Medal of Engineering 1987.
    Bibliography
    1955, "Base-widening punch-through", Proceedings of the American Physical Society.
    30 July 1959, US patent no. 2,981,877.
    Further Reading
    T.R.Reid, 1985, Microchip: The Story of a Revolution and the Men Who Made It, London: Pan Books.
    KF

    Biographical history of technology > Noyce, Robert

  • 45 Oberth, Hermann Julius

    SUBJECT AREA: Aerospace
    [br]
    b. 25 June 1894 Nagyszeben, Transylvania (now Sibiu, Romania)
    d. 29 December 1989 Nuremberg, Germany
    [br]
    Austro-Hungarian lecturer who is usually regarded, with Robert Goddard, as one of the "fathers" of modern astronautics.
    [br]
    The son of a physician, Oberth originally studied medicine in Munich, but his education was interrupted by the First World War and service in the Austro-Hungarian Army. Wounded, he passed the time by studying astronautics. He apparently simulated weightlessness and worked out the design for a long-range liquid-propelled rocket, but his ideas were rejected by the War Office; after the war he submitted them as a dissertation for a PhD at Heidelberg University, but this was also rejected. Consequently, in 1923, whilst still an unknown mathematics teacher, he published his ideas at his own expense in the book The Rocket into Interplanetary Space. These included a description of how rockets could achieve a sufficient velocity to escape the gravitational field of the earth. As a result he gained international prestige almost overnight and learned of the work of Robert Goddard and Konstantin Tsiolkovsky. After correspondence with the Goddard and Tsiolkovsky, Oberth published a further work in 1929, The Road to Space Travel, in which he acknowledged the priority of Goddard's and Tsiolkovski's calculations relating to space travel; he went on to anticipate by more than thirty years the development of electric and ionic propulsion and to propose the use of giant mirrors to control the weather. For this he was awarded the annual Hirsch Prize of 10,000 francs. From 1925 to 1938 he taught at a college in Mediasch, Transylvania, where he carried out experiments with petroleum and liquid-air rockets. He then obtained a lecturing post at Vienna Technical University, moving two years later to Dresden University and becoming a German citizen. In 1941 he became assistant to the German rocket engineer Werner von Braun at the rocket development centre at Peenemünde, and in 1943 he began work on solid propellants. After the Second World War he spent a year in Switzerland as a consultant, then in 1950 he moved to Italy to develop solid-propellant anti-aircraft rockets for the Italian Navy. Five years later he moved to the USA to carry out advanced rocket research for the US Army at Huntsville, Alabama, and in 1958 he retired to Feucht, near Nuremberg, Germany, where he wrote his autobiography.
    [br]
    Principal Honours and Distinctions
    French Astronautical Society REP-Hirsch Prize 1929. German Society for Space Research Medal 1950. Diesel German Inventors Medal 1954. American Astronautical Society Award 1955. German Federal Republic Award 1961. Institute of Aviation and Astronautics Medal 1969.
    Bibliography
    1923, Die Rakete zu den Planetenraumen; repub. 1934 as The Rocket into Interplanetary Space (autobiography).
    1929, Wege zur Raumschiffahrt [Road to Space Travel].
    1959, Stoff und Leben [Material and Life].
    Further Reading
    R.Spangenburg and D.Moser, 1990, Space People from A to Z, New York: Facts on File. H.Wulforst, 1991, The Rocketmakers: The Dreamers who made Spaceflight a Reality, New York: Crown Publishers.
    KF / IMcN

    Biographical history of technology > Oberth, Hermann Julius

  • 46 Randall, Sir John Turton

    SUBJECT AREA: Medical technology
    [br]
    b. 23 March 1905 Newton-le-Willows, Lancashire, England
    d. 16 June 1984 Edinburgh, Scotland
    [br]
    English physicist and biophysicist, primarily known for the development, with Boot of the cavity magnetron.
    [br]
    Following secondary education at Ashton-inMakerfield Grammar School, Randall entered Manchester University to read physics, gaining a first class BSc in 1925 and his MSc in 1926. From 1926 to 1937 he was a research physicist at the General Electric Company (GEC) laboratories, where he worked on luminescent powders, following which he became Warren Research Fellow of the Royal Society at Birmingham University, studying electronic processes in luminescent solids. With the outbreak of the Second World War he became an honorary member of the university staff and transferred to a group working on the development of centrimetric radar. With Boot he was responsible for the development of the cavity magnetron, which had a major impact on the development of radar.
    When Birmingham resumed its atomic research programme in 1943, Randall became a temporary lecturer at the Cavendish Laboratory in Cambridge. The following year he was appointed Professor of Natural Philosophy at the University of St Andrews, but in 1946 he moved again to the Wheatstone Chair of Physics at King's College, London. There his developing interest in biophysical research led to the setting up of a multi-disciplinary group in 1951 to study connective tissues and other biological components, and in 1950– 5 he was joint Editor of Progress in Biophysics. From 1961 until his retirement in 1970 he was Professor of Biophysics at King's College and for most of that time he was also Chairman of the School of Biological Sciences. In addition, for many years he was honorary Director of the Medical Research Council Biophysics Research Unit.
    After he retired he returned to Edinburgh and continued to study biological problems in the university zoology laboratory.
    [br]
    Principal Honours and Distinctions
    Knighted 1962. FRS 1946. FRS Edinburgh 1972. DSc Manchester 1938. Royal Society of Arts Thomas Gray Memorial Prize 1943. Royal Society Hughes Medal 1946. Franklin Institute John Price Wetherill Medal 1958. City of Pennsylvania John Scott Award 1959. (All jointly with Boot for the cavity magnetron.)
    Bibliography
    1934, Diffraction of X-Rays by Amorphous Solids, Liquids \& Gases (describes his early work).
    1953, editor, Nature \& Structure of Collagen.
    1976, with H.Boot, "Historical notes on the cavity magnetron", Transactions of the Institute of Electrical and Electronics Engineers ED-23: 724 (gives an account of the cavity-magnetron development at Birmingham).
    Further Reading
    M.H.F.Wilkins, "John Turton Randall"—Bio-graphical Memoirs of Fellows of the Royal Society, London: Royal Society.
    KF

    Biographical history of technology > Randall, Sir John Turton

  • 47 Stevens, John

    [br]
    b. 1749 New York, New York, USA
    d. 6 March 1838 Hoboken, New Jersey, USA
    [br]
    American pioneer of steamboats and railways.
    [br]
    Stevens, a wealthy landowner with an estate at Hoboken on the Hudson River, had his attention drawn to the steamboat of John Fitch in 1786, and thenceforth devoted much of his time and fortune to developing steamboats and mechanical transport. He also had political influence and it was at his instance that Congress in 1790 passed an Act establishing the first patent laws in the USA. The following year Stevens was one of the first recipients of a US patent. This referred to multi-tubular boilers, of both watertube and firetube types, and antedated by many years the work of both Henry Booth and Marc Seguin on the latter.
    A steamboat built in 1798 by John Stevens, Nicholas J.Roosevelt and Stevens's brother-in-law, Robert R.Livingston, in association was unsuccessful, nor was Stevens satisfied with a boat built in 1802 in which a simple rotary steam-en-gine was mounted on the same shaft as a screw propeller. However, although others had experimented earlier with screw propellers, when John Stevens had the Little Juliana built in 1804 he produced the first practical screw steamboat. Steam at 50 psi (3.5 kg/cm2) pressure was supplied by a watertube boiler to a single-cylinder engine which drove two contra-rotating shafts, upon each of which was mounted a screw propeller. This little boat, less than 25 ft (7.6 m) long, was taken backwards and forwards across the Hudson River by two of Stevens's sons, one of whom, R.L. Stevens, was to help his father with many subsequent experiments. The boat, however, was ahead of its time, and steamships were to be driven by paddle wheels until the late 1830s.
    In 1807 John Stevens declined an invitation to join with Robert Fulton and Robert R.Living-ston in their development work, which culminated in successful operation of the PS Clermont that summer; in 1808, however, he launched his own paddle steamer, the Phoenix. But Fulton and Livingston had obtained an effective monopoly of steamer operation on the Hudson and, unable to reach agreement with them, Stevens sent Phoenix to Philadelphia to operate on the Delaware River. The intervening voyage over 150 miles (240 km) of open sea made Phoenix the first ocean-going steamer.
    From about 1810 John Stevens turned his attention to the possibilities of railways. He was at first considered a visionary, but in 1815, at his instance, the New Jersey Assembly created a company to build a railway between the Delaware and Raritan Rivers. It was the first railway charter granted in the USA, although the line it authorized remained unbuilt. To demonstrate the feasibility of the steam locomotive, Stevens built an experimental locomotive in 1825, at the age of 76. With flangeless wheels, guide rollers and rack-and-pinion drive, it ran on a circular track at his Hoboken home; it was the first steam locomotive to be built in America.
    [br]
    Bibliography
    1812, Documents Tending to Prove the Superior Advantages of Rail-ways and Steam-carriages over Canal Navigation.
    He took out patents relating to steam-engines in the USA in 1791, 1803, and 1810, and in England, through his son John Cox Stevens, in 1805.
    Further Reading
    H.P.Spratt, 1958, The Birth of the Steamboat, Charles Griffin (provides technical details of Stevens's boats).
    J.T.Flexner, 1978, Steamboats Come True, Boston: Little, Brown (describes his work in relation to that of other steamboat pioneers).
    J.R.Stover, 1961, American Railroads, Chicago: University of Chicago Press.
    Transactions of the Newcomen Society (1927) 7: 114 (discusses tubular boilers).
    J.R.Day and B.G.Wilson, 1957, Unusual Railways, F.Muller (discusses Stevens's locomotive).
    PJGR

    Biographical history of technology > Stevens, John

  • 48 Townes, Charles Hard

    [br]
    b. 28 July 1915 Greenville, South Carolina, USA
    [br]
    American physicist who developed the maser and contributed to the development of the laser.
    [br]
    Charles H.Townes entered Furman University, Greenville, at the early age of 16 and in 1935 obtained a BA in modern languages and a BS in physics. After a year of postgraduate study at Duke University, he received a master's degree in physics in 1936. He then went on to the California Institute of Technology, where he obtained a PhD in 1939. From 1939 to 1947 he worked at the Bell Telephone Laboratories, mainly on airborne radar, although he also did some work on radio astronomy. In 1948 he joined Columbia University as Associate Professor of Physics and in 1950 was appointed a full professor. He was Director of the University's Radiation Laboratory from 1950 to 1952, and from 1952 to 1955 he was Chairman of the Physics Department.
    To meet the need for an oscillator generating very short wavelength electromagnetic radiation, Townes in 1951 realized that use could be made of the different natural energy levels of atoms and molecules. The practical application of this idea was achieved in his laboratory in 1953 using ammonia gas to make the device known as a maser (an acronym of microwave amplification by stimulated emission of radiation). The maser was developed in the next few years and in 1958, in a joint paper with his brother-in-law Arthur L. Schawlow, Townes suggested the possibility of a further development into optical frequencies or an optical maser, later known as a laser (an acronym of light amplification by stimulated emission of radiation). Two years later the first such device was made by Theodore H. Maiman.
    In 1959 Townes was given leave from Columbia University to serve as Vice-President and Director of Research at the Institute for Defense Analyses until 1961. He was then appointed Provost and Professor of Physics at the Massachusetts Institute of Technology. In 1967 he became University Professor of Physics at the University of California, where he has extended his research interests in the field of microwave and infra-red astronomy. He is a member of the National Academy of Sciences, the Institute of Electrical and Electronics Engineers and the American Astronomical Society.
    [br]
    Principal Honours and Distinctions
    Nobel Prize for Physics 1964. Foreign Member, Royal Society of London. President, American Physical Society 1967. Townes has received many awards from American and other scientific societies and institutions and honorary degrees from more than twenty universities.
    Bibliography
    Townes is the author of many scientific papers and, with Arthur L.Schawlow, of
    Microwave Spectroscopy (1955).
    1980, entry, McGraw-Hill Modern Scientists and Engineers, Part 3, New York, pp. 227– 8 (autobiography).
    1991, entry, The Nobel Century, London, p. 106 (autobiography).
    Further Reading
    T.Wasson (ed.), 1987, Nobel Prize Winners, New York, pp. 1,071–3 (contains a short biography).
    RTS

    Biographical history of technology > Townes, Charles Hard

  • 49 Voisin, Gabriel

    SUBJECT AREA: Aerospace
    [br]
    b. 5 February 1880 Belleville-sur-Saône, France
    d. 25 December 1973 Ozenay, France
    [br]
    French manufacturer of aeroplanes in the early years of aviation.
    [br]
    Gabriel Voisin was one of a group of aviation pioneers working in France c. 1905. One of the leaders of this group was a rich lawyer-sportsman, Ernest Archdeacon. For a number of years they had been building gliders based on those of the Wright brothers. Archdeacon's glider of 1904 was flown by Voisin, who went on to assist in the design and manufacture of gliders for Archdeacon and Louis Blériot, including successful float-gliders. Gabriel Voisin was joined by his brother Charles in 1905 and they set up the first commercial aircraft factory. As the Voisins had limited funds, they had to seek customers who could afford to indulge in the fashionable hobby of flying. One was Santos- Dumont, who commissioned Voisin to build his "14 bis" aeroplane in 1906.
    Early in 1907 the Voisins built their first powered aeroplane, but it was not a success.
    Later that year they completed a biplane for a Paris sculptor, Léon Delagrange, and another for Henri Farman. The basic Voisin was a biplane with the engine behind the pilot and a "pusher" propeller. Pitching was controlled by biplane elevators forward of the pilot and rudders were fitted to the box kite tail, but there was no control of roll.
    Improvements were gradually introduced by the Voisins and their customers, such as Farman. Incidentally, to flatter their clients the Voisins often named the aircraft after them, thus causing some confusion to historians. Many Voisins were built up until 1910, when the company's fortunes sank. Competition was growing, the factory was flooded, and Charles left. Gabriel started again, building robust biplanes of steel construction. Voisin bombers were widely used during the First World War, and a subsidiary factory was built in Russia.
    In August 1917, Voisin sold his business when the French Air Ministry decided that Voisin aeroplanes were obsolete and that the factory should be turned over to the building of engines. After the war he started another business making prefabricated houses, and then turned to manufacturing motor cars. From 1919 to 1939 his company produced various models, mainly for the luxury end of the market but also including a few sports and racing cars. In the early 1950s he designed a small two-seater, which was built by the Biscuter company in Spain. The Voisin company finally closed in 1958.
    [br]
    Principal Honours and Distinctions
    Chevalier de la Légion d'honneur 1909. Académie des Sciences Gold Medal 1909.
    Bibliography
    1961, Mes dix milles cerfs-volants, France; repub. 1963 as Men, Women and 10,000 Kites, London (autobiography; an eminent reviewer said, "it contains so many demonstrable absurdities, untruths and misleading statements, that one does not know how much of the rest one can believe").
    1962, Mes Mille et un voitures, France (covers his cars).
    Further Reading
    C.H.Gibbs-Smith, 1965, The Invention of the Aeroplane 1799–1909, London (includes an account of Voisin's contribution to aviation and a list of his early aircraft).
    Jane's Fighting Aircraft of World War I, London; reprinted 1990 (provides details of Voisin's 1914–18 aircraft).
    E.Chadeau, 1987, L'Industrie aéronautique en France 1900–1950, de Blériot à Dassault, Paris.
    G.N.Georgano, 1968, Encyclopedia of Motor Cars 1885 to the Present, New York (includes brief descriptions of Voisin's cars).
    JDS

    Biographical history of technology > Voisin, Gabriel

  • 50 Winsor, Frederick Albert

    SUBJECT AREA: Public utilities
    [br]
    b. 1763 Brunswick, Germany
    d. 11 May 1830 Paris, France
    [br]
    German pioneer of gas lighting,
    [br]
    He was born Frederic Albrecht Winzer but anglicized his name after settling in England. His interest in gas lighting was aroused by the experiments of Philippe Lebon in Paris in 1802. Winsor had little scientific knowledge or engineering ability, but was well endowed with confidence and enterprise. He alone among the early practitioners of gas-making envisaged a central plant supplying a number of users through gas mains. He managed to discover the essentials of Lebon's process and tried without success to exploit it on the European continent. So he moved to England in 1803 and settled first in Grosvenor Square and then in Pall Mall. He gave public demonstrations of gas lighting at the Lyceum Theatre in London and in 1804 took out his first patent. In December he lit Pall Mall, the first street to be illuminated by gas. Winsor then began to promote a grandiose scheme for the formation of a National Light and Heat Company. He struggled against bitter opposition both in and out of Parliament to obtain sanction for his company, and it was only after the third attempt that the Gas Light \& Coke Company received its charter in 1812. However, Winsor lacked the knowledge to devise successful gas-producing plant, even with the help of the German immigrant chemist F.C.Accum. Winsor was dismissed in 1812 and returned to Paris the following year, while the company recovered with the appointment of an able engineer, Samuel Clegg. Winsor formed a company in Paris to install gas lighting, but that failed in 1819.
    [br]
    Further Reading
    W.Matthew, 1827, An Historical Sketch of the Origin, Progress and Present State of Gaslighting, London.
    E.G.Stewart, 1958, Town Gas, Its Manufacture and Distribution, London: Science Museum.
    LRD

    Biographical history of technology > Winsor, Frederick Albert

  • 51 Worsdell, Nathaniel

    [br]
    b. 10 October 1809 London, England
    d. 24 July 1886 Birkenhead, England
    [br]
    English coachbuilder and inventor.
    [br]
    Worsdell \& Son, Coachbuilders, was set up in Liverpool by Thomas Clarke Worsdell and his son Nathaniel in 1827. They were introduced to George Stephenson and built the tender for Rocket. More importantly, they designed and built for the Liverpool \& Manchester Railway coaches of a type comprising three coach bodies, of contemporary road-coach pattern, mounted together on a rail-wagon underframe. This became the prototype for the conventional, compartment railway coach. Nathaniel Worsdell subsequently became Carriage Superintendent of the Grand Junction Railway and patented the first mail-bag-exchange apparatus early in 1838. The terms he required for its use by the Post Office were too steep, however, and the first bagexchange apparatus of the type subsequently used extensively on British railways was designed later the same year by John Ramsey, a senior Post Office clerk.
    [br]
    Further Reading
    J.Marshall, 1978, A Biographical Dictionary of Railway Engineers, Newton Abbot: David \& Charles (the article on Worsdell is derived from family records).
    C.Hamilton Ellis, 1958, Twenty Locomotive Men, Shepperton: Ian Allan.
    P.J.G.Ransom, 1990, The Victorian Railway and How It Evolved, London: Heinemann.
    PJGR

    Biographical history of technology > Worsdell, Nathaniel

  • 52 Zworykin, Vladimir Kosma

    [br]
    b. 30 July 1889 Mourum (near Moscow), Russia
    d. 29 July 1982 New York City, New York, USA
    [br]
    Russian (naturalized American 1924) television pioneer who invented the iconoscope and kinescope television camera and display tubes.
    [br]
    Zworykin studied engineering at the Institute of Technology in St Petersburg under Boris Rosing, assisting the latter with his early experiments with television. After graduating in 1912, he spent a time doing X-ray research at the Collège de France in Paris before returning to join the Russian Marconi Company, initially in St Petersburg and then in Moscow. On the outbreak of war in 1917, he joined the Russian Army Signal Corps, but when the war ended in the chaos of the Revolution he set off on his travels, ending up in the USA, where he joined the Westinghouse Corporation. There, in 1923, he filed the first of many patents for a complete system of electronic television, including one for an all-electronic scanning pick-up tube that he called the iconoscope. In 1924 he became a US citizen and invented the kinescope, a hard-vacuum cathode ray tube (CRT) for the display of television pictures, and the following year he patented a camera tube with a mosaic of photoelectric elements and gave a demonstration of still-picture TV. In 1926 he was awarded a PhD by the University of Pittsburgh and in 1928 he was granted a patent for a colour TV system.
    In 1929 he embarked on a tour of Europe to study TV developments; on his return he joined the Radio Corporation of America (RCA) as Director of the Electronics Research Group, first at Camden and then Princeton, New Jersey. Securing a budget to develop an improved CRT picture tube, he soon produced a kinescope with a hard vacuum, an indirectly heated cathode, a signal-modulation grid and electrostatic focusing. In 1933 an improved iconoscope camera tube was produced, and under his direction RCA went on to produce other improved types of camera tube, including the image iconoscope, the orthicon and image orthicon and the vidicon. The secondary-emission effect used in many of these tubes was also used in a scintillation radiation counter. In 1941 he was responsible for the development of the first industrial electron microscope, but for most of the Second World War he directed work concerned with radar, aircraft fire-control and TV-guided missiles.
    After the war he worked for a time on high-speed memories and medical electronics, becoming Vice-President and Technical Consultant in 1947. He "retired" from RCA and was made an honorary vice-president in 1954, but he retained an office and continued to work there almost up until his death; he also served as Director of the Rockefeller Institute for Medical Research from 1954 until 1962.
    [br]
    Principal Honours and Distinctions
    Zworykin received some twenty-seven awards and honours for his contributions to television engineering and medical electronics, including the Institution of Electrical Engineers Faraday Medal 1965; US Medal of Science 1966; and the US National Hall of Fame 1977.
    Bibliography
    29 December 1923, US patent no. 2,141, 059 (the original iconoscope patent; finally granted in December 1938!).
    13 July 1925, US patent no. 1,691, 324 (colour television system).
    1930, with D.E.Wilson, Photocells and Their Applications, New York: Wiley. 1934, "The iconoscope. A modern version of the electric eye". Proceedings of the
    Institute of Radio Engineers 22:16.
    1946, Electron Optics and the Electron Microscope.
    1940, with G.A.Morton, Television; revised 1954.
    Further Reading
    J.H.Udelson, 1982, The Great Television Race: History of the Television Industry 1925– 41: University of Alabama Press.
    KF

    Biographical history of technology > Zworykin, Vladimir Kosma

См. также в других словарях:

  • FBI Ten Most Wanted Fugitives by year, 1958 — In 1958, the United States FBI, under Director J. Edgar Hoover, continued for a ninth year to maintain a public list of the people it regarded as the Ten Most Wanted Fugitives.As 1958 opened, the FBI had gone for a full ten months through the end …   Wikipedia

  • 1958 in baseball — Year in baseball this year = 1958 ChampionsMajor League Baseball*World Series: New York Yankees over Milwaukee Braves (4 3); Bob Turley, MVP *All Star Game, July 8 at Memorial Stadium: American League, 4 3Other champions*Caribbean World Series:… …   Wikipedia

  • 1958 Pacific typhoon season — Infobox hurricane season Basin=WPac Year=1958 Track=1958 Pacific typhoon season summary.jpg First storm formed=January 7, 1958 Last storm dissipated=December 8, 1958 Strongest storm name=Super Typhoon Ida Strongest storm pressure=877 Total storms …   Wikipedia

  • 1958 — This article is about the year 1958. Millennium: 2nd millennium Centuries: 19th century – 20th century – 21st century Decades: 1920s  1930s  1940s  – 1950s –  1960s   …   Wikipedia

  • 1958 in television — The year 1958 in television involved some significant events.Below is a list of television related events in 1958.Events*January 14 TWW, the first ITV franchise for South Wales and West of England, went on the air. *17 February 1958 Pope Pius XII …   Wikipedia

  • 1958 in the United Kingdom — Events from the year 1958 in the United Kingdom.Incumbents*Monarch HM Queen Elizabeth II *Prime Minister Harold Macmillan, Conservative PartyEvents* 6 January Chancellor of the Exchequer Peter Thorneycroft resigns over opposition to spending cuts …   Wikipedia

  • 1958 год — Годы 1954 · 1955 · 1956 · 1957 1958 1959 · 1960 · 1961 · 1962 Десятилетия 1930 е · 1940 е 1950 е 1960 е · 1970 е …   Википедия

  • 1958 FIFA World Cup — Infobox International Football Competition tourney name = FIFA World Cup year = 1958 other titles = Världsmästerskapet i Fotboll Sverige 1958 size = 150px caption = 1958 FIFA World Cup official logo country = Sweden dates = June 8 – June 29… …   Wikipedia

  • 1958 in poetry — yearbox2 in?=in poetry in2?=in literature cp=19th century c=20th century cf=21st century yp1=1955 yp2=1956 yp3=1957 year=1958 ya1=1959 ya2=1960 ya3=1961 dp3=1920s dp2=1930s dp1=1940s d=1950s da=1960s dn1=1960s dn2=1970s dn3=1980s|Events*… …   Wikipedia

  • 1958 NAIA Men's Division I Basketball Tournament — Infobox NAIA Basketball Tournament Year=1958 ImageSize=150px Caption=1958 NAIA Men s Division I National Basketball Tournament Teams=32 FinalFourArena=Municipal Auditorium FinalFourCity=Kansas City, Missouri Champions= TitleCount= RunnerUp=… …   Wikipedia

  • 1958 World Series — Infobox World Series Expanded year = 1958 champion = New York Yankees (4) champion manager = Casey Stengel champion games = 92 62, .597, GA: 10 runnerup = Milwaukee Braves (3) runnerup manager = Fred Haney runnerup games = 92 62, .597, GA: 8 date …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»