Перевод: со всех языков на английский

с английского на все языки

(1851-1865)

  • 1 сборник судебных решений палаты лордов по шотландским апелляциям

    Law: Macqueen's Scotch Appeal Cases (составитель Маккуин, 1851-1865), McQueen's House of Lords Scottish Appeals (составитель Маккуин, 1851-1865)

    Универсальный русско-английский словарь > сборник судебных решений палаты лордов по шотландским апелляциям

  • 2 сборник судебных решений палаты лордов по шотландским апелляциям, составитель Маккуин

    Law: Macqueen's Scotch Appeal Cases, House of Lords (1851-1865), McQueen's House of Lords Scottish Appeals (1851-1865)

    Универсальный русско-английский словарь > сборник судебных решений палаты лордов по шотландским апелляциям, составитель Маккуин

  • 3 Paxton, Sir Joseph

    [br]
    b. 3 August 1801 Milton Bryant, Bedfordshire, England
    d. 8 June 1865 Sydenham, London, England
    [br]
    English designer of the Crystal Palace, the first large-scale prefabricated ferrovitreous structure.
    [br]
    The son of a farmer, he had worked in gardens since boyhood and at the age of 21 was employed as Undergardener at the Horticultural Society Gardens in Chiswick, from where he went on to become Head Gardener for the Duke of Devonshire at Chatsworth. It was there that he developed his methods of glasshouse construction, culminating in the Great Conservatory of 1836–40, an immense structure some 277 ft (84.4 m) long, 123 ft (37.5 m) wide and 67 ft (20.4 m) high. Its framework was of iron and its roof of glass, with wood to contain the glass panels; it is now demolished. Paxton went on to landscape garden design, fountain and waterway engineering, the laying out of the model village of Edensor, and to play a part in railway and country house projects.
    The structure that made Paxton a household name was erected in Hyde Park, London, to house the Great Exhibition of 1851 and was aptly dubbed, by Punch, the Crystal Palace. The idea of holding an international exhibition for industry had been mooted in 1849 and was backed by Prince Albert and Henry Cole. The money for this was to be raised by public subscription and 245 designs were entered into a competition held in 1850; however, most of the concepts, received from many notable architects and engineers, were very costly and unsuitable, and none were accepted. That same year, Paxton published his scheme in the Illustrated London News and it was approved after it received over-whelming public support.
    Paxton's Crystal Palace, designed and erected in association with the engineers Fox and Henderson, was a prefabricated glasshouse of vast dimensions: it was 1,848 ft (563.3 m) long, 408 ft (124.4 m) wide and over 100 ft (30.5 m) high. It contained 3,300 iron columns, 2,150 girders. 24 miles (39 km) of guttering, 600,000 ft3 (17,000 m3) of timber and 900,000 ft2 (84,000 m) of sheet glass made by Chance Bros, of Birmingham. One of the chief reasons why it was accepted by the Royal Commission Committee was that it fulfilled the competition proviso that it should be capable of being erected quickly and subsequently dismantled and re-erected elsewhere. The Crystal Palace was to be erected at a cost of £79,800, much less than the other designs. Building began on 30 July 1850, with a labour force of some 2,000, and was completed on 31 March 1851. It was a landmark in construction at the time, for its size, speed of construction and its non-eclectic design, and, most of all, as the first great prefabricated building: parts were standardized and made in quantity, and were assembled on site. The exhibition was opened by Queen Victoria on 1 May 1851 and had received six million visitors when it closed on 11 October. The building was dismantled in 1852 and reassembled, with variations in design, at Sydenham in south London, where it remained until its spectacular conflagration in 1936.
    [br]
    Principal Honours and Distinctions
    Knighted 1851. MP for Coventry 1854–65. Fellow Linnaean Society 1853; Horticultural Society 1826. Order of St Vladimir, Russia, 1844.
    Further Reading
    P.Beaver, 1986, The Crystal Palace: A Portrait of Victorian Enterprise, Phillimore. George F.Chadwick, 1961, Works of Sir Joseph Paxton 1803–1865, Architectural Press.
    DY

    Biographical history of technology > Paxton, Sir Joseph

  • 4 Bright, Sir Charles Tilston

    SUBJECT AREA: Telecommunications
    [br]
    b. 8 June 1832 Wanstead, Essex, England
    d. 3 May 1888 Abbey Wood, London, England
    [br]
    English telegraph engineer responsible for laying the first transatlantic cable.
    [br]
    At the age of 15 years Bright left the London Merchant Taylors' School to join the two-year-old Electric Telegraph Company. By 1851 he was in charge of the Birmingham telegraph station. After a short time as Assistant Engineer with the newly formed British Telegraph Company, he joined his brother (who was Manager) as Engineer-in-Chief of the English and Irish Magnetic Telegraph Company in Liverpool, for which he laid thousands of miles of underground cable and developed a number of innovations in telegraphy including a resistance box for locating cable faults and a two-tone bell system for signalling. In 1853 he was responsible for the first successful underwater cable between Scotland and Ireland. Three years later, with the American financier Cyrus Field and John Brett, he founded and was Engineer-in-chief of the Atlantic Telegraph Company, which aimed at laying a cable between Ireland and Newfoundland. After several unsuccessful attempts this was finally completed on 5 August 1858, Bright was knighted a month later, but the cable then failed! In 1860 Bright resigned from the Magnetic Telegraph Company to set up an independent consultancy with another engineer, Joseph Latimer Clark, with whom he invented an improved bituminous cable insulation. Two years later he supervised construction of a telegraph cable to India, and in 1865 a further attempt to lay an Atlantic cable using Brunel's new ship, the Great Eastern. This cable broke during laying, but in 1866 a new cable was at last successfully laid and the 1865 cable recovered and repaired. The year 1878 saw extension of the Atlantic cable system to the West Indies and the invention with his brother of a system of neighbourhood fire alarms and even an automatic fire alarm.
    In 1861 Bright presented a paper to the British Association for the Advancement of Science on the need for electrical standards, leading to the creation of an organization that still exists in the 1990s. From 1865 until 1868 he was Liberal MP for Greenwich, and he later assisted with preparations for the 1881 Paris Exhibition.
    [br]
    Principal Honours and Distinctions
    Knighted 1858. Légion d'honneur. First President, Société Internationale des Electriciens. President, Society of Telegraph Engineers \& Electricians (later the Institution of Electrical Engineers) 1887.
    Bibliography
    1852, British patent (resistance box).
    1855, British patent no. 2,103 (two-tone bell system). 1878, British patent no. 3,801 (area fire alarms).
    1878, British patent no. 596 (automatic fire alarm).
    "The physical \& electrical effects of pressure \& temperature on submarine cable cores", Journal of the Institution of Electrical Engineers XVII (describes some of his investigations of cable characteristics).
    Further Reading
    C.Bright, 1898, Submarine Cables, Their History, Construction \& Working.
    —1910, The Life Story of Sir Charles Tilston Bright, London: Constable \& Co.
    KF

    Biographical history of technology > Bright, Sir Charles Tilston

  • 5 Fox, Sir Charles

    [br]
    b. 11 March 1810 Derby, England
    d. 14 June 1874 Blackheath, London, England
    [br]
    English railway engineer, builder of Crystal Palace, London.
    [br]
    Fox was a pupil of John Ericsson, helped to build the locomotive Novelty, and drove it at the Rainhill Trials in 1829. He became a driver on the Liverpool \& Manchester Railway and then a pupil of Robert Stephenson, who appointed him an assistant engineer for construction of the southern part of the London \& Birmingham Railway, opened in 1837. He was probably responsible for the design of the early bow-string girder bridge which carried the railway over the Regent's Canal. He also invented turnouts with switch blades, i.e. "points". With Robert Stephenson he designed the light iron train sheds at Euston Station, a type of roof that was subsequently much used elsewhere. He then became a partner in Fox, Henderson \& Co., railway contractors and manufacturers of railway equipment and bridges. The firm built the Crystal Palace in London for the Great Exhibition of 1851: Fox did much of the detail design work personally and was subsequently knighted. It also built many station roofs, including that at Paddington. From 1857 Fox was in practice in London as a consulting engineer in partnership with his sons, Charles Douglas Fox and Francis Fox. Sir Charles Fox became an advocate of light and narrow-gauge railways, although he was opposed to break-of-gauge unless it was unavoidable. He was joint Engineer for the Indian Tramway Company, building the first narrow-gauge (3 ft 6 in. or 107 cm) railway in India, opened in 1865, and his firm was Consulting Engineer for the first railways in Queensland, Australia, built to the same gauge at the same period on recommendation of Government Engineer A.C.Fitzgibbon.
    [br]
    Principal Honours and Distinctions
    Knighted 1851.
    Further Reading
    F.Fox, 1904, River, Road, and Rail, John Murray, Ch. 1 (personal reminiscences by his son).
    L.T.C.Rolt, 1970, Victorian Engineering, London: Allen Lane.
    PJGR

    Biographical history of technology > Fox, Sir Charles

  • 6 Lister, Samuel Cunliffe, 1st Baron Masham

    SUBJECT AREA: Textiles
    [br]
    b. 1 January 1815 Calverly Hall, Bradford, England
    d. 2 February 1906 Swinton Park, near Bradford, England
    [br]
    English inventor of successful wool-combing and waste-silk spinning machines.
    [br]
    Lister was descended from one of the old Yorkshire families, the Cunliffe Listers of Manningham, and was the fourth son of his father Ellis. After attending a school on Clapham Common, Lister would not go to university; his family hoped he would enter the Church, but instead he started work with the Liverpool merchants Sands, Turner \& Co., who frequently sent him to America. In 1837 his father built for him and his brother a worsted mill at Manningham, where Samuel invented a swivel shuttle and a machine for making fringes on shawls. It was here that he first became aware of the unhealthy occupation of combing wool by hand. Four years later, after seeing the machine that G.E. Donisthorpe was trying to work out, he turned his attention to mechanizing wool-combing. Lister took Donisthorpe into partnership after paying him £12,000 for his patent, and developed the Lister-Cartwright "square nip" comber. Until this time, combing machines were little different from Cartwright's original, but Lister was able to improve on this with continuous operation and by 1843 was combing the first fine botany wool that had ever been combed by machinery. In the following year he received an order for fifty machines to comb all qualities of wool. Further combing patents were taken out with Donisthorpe in 1849, 1850, 1851 and 1852, the last two being in Lister's name only. One of the important features of these patents was the provision of a gripping device or "nip" which held the wool fibres at one end while the rest of the tuft was being combed. Lister was soon running nine combing mills. In the 1850s Lister had become involved in disputes with others who held combing patents, such as his associate Isaac Holden and the Frenchman Josué Heilmann. Lister bought up the Heilmann machine patents and afterwards other types until he obtained a complete monopoly of combing machines before the patents expired. His invention stimulated demand for wool by cheapening the product and gave a vital boost to the Australian wool trade. By 1856 he was at the head of a wool-combing business such as had never been seen before, with mills at Manningham, Bradford, Halifax, Keighley and other places in the West Riding, as well as abroad.
    His inventive genius also extended to other fields. In 1848 he patented automatic compressed air brakes for railways, and in 1853 alone he took out twelve patents for various textile machines. He then tried to spin waste silk and made a second commercial career, turning what was called "chassum" and hitherto regarded as refuse into beautiful velvets, silks, plush and other fine materials. Waste silk consisted of cocoon remnants from the reeling process, damaged cocoons and fibres rejected from other processes. There was also wild silk obtained from uncultivated worms. This is what Lister saw in a London warehouse as a mass of knotty, dirty, impure stuff, full of bits of stick and dead mulberry leaves, which he bought for a halfpenny a pound. He spent ten years trying to solve the problems, but after a loss of £250,000 and desertion by his partner his machine caught on in 1865 and brought Lister another fortune. Having failed to comb this waste silk, Lister turned his attention to the idea of "dressing" it and separating the qualities automatically. He patented a machine in 1877 that gave a graduated combing. To weave his new silk, he imported from Spain to Bradford, together with its inventor Jose Reixach, a velvet loom that was still giving trouble. It wove two fabrics face to face, but the problem lay in separating the layers so that the pile remained regular in length. Eventually Lister was inspired by watching a scissors grinder in the street to use small emery wheels to sharpen the cutters that divided the layers of fabric. Lister took out several patents for this loom in his own name in 1868 and 1869, while in 1871 he took out one jointly with Reixach. It is said that he spent £29,000 over an eleven-year period on this loom, but this was more than recouped from the sale of reasonably priced high-quality velvets and plushes once success was achieved. Manningham mills were greatly enlarged to accommodate this new manufacture.
    In later years Lister had an annual profit from his mills of £250,000, much of which was presented to Bradford city in gifts such as Lister Park, the original home of the Listers. He was connected with the Bradford Chamber of Commerce for many years and held the position of President of the Fair Trade League for some time. In 1887 he became High Sheriff of Yorkshire, and in 1891 he was made 1st Baron Masham. He was also Deputy Lieutenant in North and West Riding.
    [br]
    Principal Honours and Distinctions
    Created 1st Baron Masham 1891.
    Bibliography
    1849, with G.E.Donisthorpe, British patent no. 12,712. 1850, with G.E. Donisthorpe, British patent no. 13,009. 1851, British patent no. 13,532.
    1852, British patent no. 14,135.
    1877, British patent no. 3,600 (combing machine). 1868, British patent no. 470.
    1868, British patent no. 2,386.
    1868, British patent no. 2,429.
    1868, British patent no. 3,669.
    1868, British patent no. 1,549.
    1871, with J.Reixach, British patent no. 1,117. 1905, Lord Masham's Inventions (autobiography).
    Further Reading
    J.Hogg (ed.), c. 1888, Fortunes Made in Business, London (biography).
    W.English, 1969, The Textile Industry, London; and C.Singer (ed.), 1958, A History of Technology, Vol. IV, Oxford: Clarendon Press (both cover the technical details of Lister's invention).
    RLH

    Biographical history of technology > Lister, Samuel Cunliffe, 1st Baron Masham

  • 7 сборник решений по уголовным делам

    Law: Bell's Crown Cases (составитель Белл, 1858-1860), Dearsley and Bell's Crown Cases (составители Дирсли и Белл, 1856-1858), Dearsley's Crown Cases (составитель Дирсли), Denison and Pearce's Crown Cases (составители Денисон и Пирс, 1844-1852), Denison's Crown Cases (составитель Денисон, 1844-1852), Foster's Crown Cases (составитель Фостер, 1743-1761), John Kelyng's Crown Cases (составитель Дж. Келинг, 1662-1669), Leach's Crown Cases (составитель Лич, 1730-1815), Leigh and Cave's Crown Cases (составители Лей и Кейв, 1861-1865), Lewin's Crown Cases (составитель Льюин, 1822-1838), Moody's Crown Cases (составитель Муди, 1824-1844), Queensland Criminal Reports (Австралия, 1860-1907), Russei and Ryan's Crown Cases (составители Рассел и Райан, 1799-1823), Russel and Ryan's Crown Cases (составители Рассел и Райан, 1799-1823), Temple and Mew's Crown Cases (составители Темпл и Мью, 1848-1851)

    Универсальный русско-английский словарь > сборник решений по уголовным делам

  • 8 England, George

    [br]
    b. 1811 or 1812 Newcastle upon Tyne, England
    d. 4 March 1878 Cannes, France
    [br]
    English locomotive builder who built the first locomotives for the narrow-gauge Festiniog Railway.
    [br]
    England trained with John Penn \& Sons, marine engine and boilermakers, and set up his own business at Hatcham Iron Works, South London, in about 1840. This was initially a general engineering business and made traversing screw jacks, which England had patented, but by 1850 it was building locomotives. One of these, Little England, a 2–2– 2T light locomotive owing much to the ideas of W.Bridges Adams, was exhibited at the Great Exhibition of 1851, and England then prospered, supplying many railways at home and abroad with small locomotives. In 1863 he built two exceptionally small 0–4–0 tank locomotives for the Festiniog Railway, which enabled the latter's Manager and Engineer C.E. Spooner to introduce steam traction on this line with its gauge of just under 2 ft (60 cm). England's works had a reputation for good workmanship, suggesting he inspired loyalty among his employees, yet he also displayed increasingly tyrannical behaviour towards them: the culmination was a disastrous strike in 1865 that resulted in the loss of a substantial order from the South Eastern Railway. From 1866 George England became associated with development of locomotives to the patent of Robert Fairlie, but in 1869 he retired due to ill health and leased his works to a partnership of his son (also called George England), Robert Fairlie and J.S.Fraser under the title of the Fairlie Engine \& Steam Carriage Company. However, George England junior died within a few months, locomotive production ceased in 1870 and the works was sold off two years later.
    [br]
    Bibliography
    1839, British patent no. 8,058 (traversing screw jack).
    Further Reading
    Aspects of England's life and work are described in: C.H.Dickson, 1961, "Locomotive builders of the past", Stephenson Locomotive Society Journal, p. 138.
    A.R.Bennett, 1907, "Locomotive building in London", Railway Magazine, p. 382.
    R.Weaver, 1983, "English Ponies", Festiniog Railway Magazine (spring): 18.
    PJGR

    Biographical history of technology > England, George

  • 9 Howe, Frederick Webster

    [br]
    b. 28 August 1822 Danvers, Massachusetts, USA
    d. 25 April 1891 Providence, Rhode Island, USA
    [br]
    American mechanical engineer, machine-tool designer and inventor.
    [br]
    Frederick W.Howe attended local schools until the age of 16 and then entered the machine shop of Gay \& Silver at North Chelmsford, Massachusetts, as an apprentice and remained with that firm for nine years. He then joined Robbins, Kendall \& Lawrence of Windsor, Vermont, as Assistant to Richard S. Lawrence in designing machine tools. A year later (1848) he was made Plant Superintendent. During his time with this firm, Howe designed a profiling machine which was used in all gun shops in the United States: a barrel-drilling and rifling machine, and the first commercially successful milling machine. Robbins \& Lawrence took to the Great Exhibition of 1851 in London, England, a set of rifles built on the interchangeable system. The interest this created resulted in a visit of some members of the British Royal Small Arms Commission to America and subsequently in an order for 150 machine tools, jigs and fixtures from Robbins \& Lawrence, to be installed at the small-arms factory at Enfield. From 1853 to 1856 Howe was in charge of the design and building of these machines. In 1856 he established his own armoury at Newark, New Jersey, but transferred after two years to Middletown, Connecticut, where he continued the manufacture of small arms until the outbreak of the Civil War. He then became Superintendent of the armoury of the Providence Tool Company at Providence, Rhode Island, and served in that capacity until the end of the war. In 1865 he went to Bridgeport, Connecticut, to assist Elias Howe with the manufacture of his sewing machine. After the death of Elias Howe, Frederick Howe returned to Providence to join the Brown \& Sharpe Manufacturing Company. As Superintendent of that establishment he worked with Joseph R. Brown in the development of many of the firm's products, including machinery for the Wilcox \& Gibbs sewing machine then being made by Brown \& Sharpe. From 1876 Howe was in business on his own account as a consulting mechanical engineer and in his later years he was engaged in the development of shoe machinery and in designing a one-finger typewriter, which, however, was never completed. He was granted several patents, mainly in the fields of machine tools and firearms. As a designer, Howe was said to have been a perfectionist, making frequent improvements; when completed, his designs were always sound.
    [br]
    Further Reading
    J.W.Roe, 1916, English and American Tool Builders, New Haven; repub. 1926, New York, and 1987, Bradley, 111. (provides biographical details).
    R.S.Woodbury, 1960, History of the Milling Machine, Cambridge, Mass, (describes Howe's contribution to the development of the milling machine).
    RTS

    Biographical history of technology > Howe, Frederick Webster

  • 10 Le Gray, Gustave

    [br]
    b. 1820 Villiers-le-Bel, France
    d. 1882 Cairo, Egypt
    [br]
    French painter and photographic innovator.
    [br]
    Le Gray studied painting, and to supplement his income as an artist he took up photography in the mid-1840s. He showed remarkable aptitude, and for a time he was at the forefront of innovation in France and pioneered a number of minor improvements. In 1847 he began gold-toning positive-paper prints, a practice widely adopted later. In 1850 independently of Archer in England, he experimented with collodion on glass as a carrying medium for silver salts. It was also in 1850 that Le Gray introduced his waxed-paper process, an improvement of Talbot's calotype process which was favoured by many travelling photographers in the 1850s and 1860s. Le Gray published instruction manuals in photography that were well received. He travelled to Egypt to teach drawing in 1865, but his health deteriorated after a riding accident and he made no further significant contributions to photography.
    [br]
    Bibliography
    1850, Traité pratique de photographier sur papier et sur verre, Paris 1851, 2nd edn, London: T. \& R.Willats (his most significant publication).
    Further Reading
    J.M.Eder, 1945, History of Photography, trans. E.Epstean, New York.
    JW

    Biographical history of technology > Le Gray, Gustave

  • 11 Neilson, James Beaumont

    SUBJECT AREA: Metallurgy
    [br]
    b. 22 June 1792 Shettleston, near Glasgow, Scotland
    d. 18 January 1865 Queenshill, Kirkcudbright-shire, Scotland
    [br]
    Scottish inventor of hot blast in ironmaking.
    [br]
    After leaving school before the age of 14 Neilson followed his father in tending colliery-steam engines. He continued in this line while apprenticed to his elder brother and afterwards rose to engine-wright at Irvine colliery. That failed and Neilson obtained work as Foreman at the first gasworks to be set up in Glasgow. After five years he became Manager and Engineer to the works, remaining there for thirty years. He introduced a number of improvements into gas manufacture, such as the use of clay retorts, iron sulphate as a purifier and the swallow-tail burner. He had meanwhile benefited from studying physics and chemistry at the Andersonian University in Glasgow.
    Neilson is best known for introducing hot blast into ironmaking. At that time, ironmasters believed that cold blast produced the best results, since furnaces seemed to make more and better iron in the winter than the summer. Neilson found that by leading the air blast through an iron chamber heated by a coal fire beneath it, much less fuel was needed to convert the iron ore to iron. He secured a patent in 1828 and managed to persuade Clyde Ironworks in Glasgow to try out the device. The results were immediately favourable, and the use of hot blast spread rapidly throughout the country and abroad. The equipment was improved, raising the blast temperature to around 300°C (572°F), reducing the amount of coal, which was converted into coke, required to produce a tonne of iron from 10 tonnes to about 3. Neilson entered into a partnership with Charles Macintosh and others to patent and promote the process. Successive, and successful, lawsuits against those who infringed the patent demonstrates the general eagerness to adopt hot blast. Beneficial though it was, the process did not become really satisfactory until the introduction of hot-blast stoves by E.A. Cowper in 1857.
    [br]
    Principal Honours and Distinctions
    FRS 1846.
    Further Reading
    S.Smiles, Industrial Biography, Ch. 9 (offers the most detailed account of Neilson's life). Proc. Instn. Civ. Engrs., vol. 30, p. 451.
    J.Percy, 1851, Metallurgy: Iron and Steel (provides a detailed history of hot blast).
    W.K.V.Gale, 1969, Iron and Steel, London: Longmans (provides brief details).
    LRD

    Biographical history of technology > Neilson, James Beaumont

  • 12 Russell, John Scott

    SUBJECT AREA: Ports and shipping
    [br]
    b. 9 May 1808 Parkhead, near Glasgow, Scotland
    d. 8 June 1882 Isle of Wight, England
    [br]
    Scottish engineer, naval architect and academic.
    [br]
    A son of the manse, Russell was originally destined for the Church and commenced studies at the University of St Andrews, but shortly afterwards he transferred to Glasgow, graduating MA in 1825 when only 17 years old. He began work as a teacher in Edinburgh, working up from a school to the Mechanics Institute and then in 1832 to the University, where he took over the classes in natural philosophy following the death of the professor. During this period he designed and advised on the application of steam power to road transport and to the Forth and Clyde Canal, thereby awakening his interest in ships and naval architecture.
    Russell presented papers to the British Association over several years, and one of them, The Wave Line Theory of Ship Form (although now superseded), had great influence on ship designers of the time and helped to establish the formal study of hydromechanics. With a name that was becoming well known, Russell looked around for better opportunities, and on narrowly missing appointment to the Chair of Mathematics at Edinburgh University he joined the upand-coming Clyde shipyard of Caird \& Co., Greenock, as Manager in 1838.
    Around 1844 Russell and his family moved to London; following some business problems he was in straitened circumstances. However, appointment as Secretary to the Committee setting up the Great Exhibition of 1851 eased his path into London's intellectual society and allowed him to take on tasks such as, in 1847, the purchase of Fairbairn's shipyard on the Isle of Dogs and the subsequent building there of I.K. Brunel's Great Eastern steamship. This unhappy undertaking was a millstone around the necks of Brunel and Russell and broke the health of the former. With the yard failing to secure the order for HMS Warrior, the Royal Navy's first ironclad, Russell pulled out of shipbuilding and for the remainder of his life was a designer, consultant and at times controversial, but at all times polished and urbane, member of many important committees and societies. He is remembered as one of the founders of the Institution of Naval Architects in 1860. His last task was to design a Swiss Lake steamer for Messrs Escher Wyss, a company that coincidentally had previously retained Sir William Fairbairn.
    [br]
    Principal Honours and Distinctions
    FRS 1847.
    Bibliography
    John Scott Russell published many papers under the imprint of the British Association, the Royal Society of Arts and the Institution of Naval Architects. His most impressive work was the mammoth three-volume work on shipbuilding published in London in 1865 entitled The Modern System of Naval Architecture. Full details and plans of the Great Eastern are included.
    Further Reading
    G.S.Emmerson, 1977, John Scott Russell, a Great Victorian Engineer and Naval Architect, London: Murray
    FMW

    Biographical history of technology > Russell, John Scott

  • 13 Siemens, Dr Ernst Werner von

    [br]
    b. 13 December 1816 Lenthe, near Hanover, Germany
    d. 6 December 1892 Berlin, Germany
    [br]
    German pioneer of the dynamo, builder of the first electric railway.
    [br]
    Werner von Siemens was the eldest of a large family and after the early death of his parents took his place at its head. He served in the Prussian artillery, being commissioned in 1839, after which he devoted himself to the study of chemistry and physics. In 1847 Siemens and J.G. Halske formed a company, Telegraphen-Bauanstalt von Siemens und Halske, to manufacture a dial telegraph which they had developed from an earlier instrument produced by Charles Wheatstone. In 1848 Siemens obtained his discharge from the army and he and Halske constructed the first long-distance telegraph line on the European continent, between Berlin and Frankfurt am Main.
    Werner von Siemens's younger brother, William Siemens, had settled in Britain in 1844 and was appointed agent for the Siemens \& Halske company in 1851. Later, an English subsidiary company was formed, known from 1865 as Siemens Brothers. It specialized in manufacturing and laying submarine telegraph cables: the specialist cable-laying ship Faraday, launched for the purpose in 1874, was the prototype of later cable ships and in 1874–5 laid the first cable to run direct from the British Isles to the USA. In charge of Siemens Brothers was another brother, Carl, who had earlier established a telegraph network in Russia.
    In 1866 Werner von Siemens demonstrated the principle of the dynamo in Germany, but it took until 1878 to develop dynamos and electric motors to the point at which they could be produced commercially. The following year, 1879, Werner von Siemens built the first electric railway, and operated it at the Berlin Trades Exhibition. It comprised an oval line, 300 m (985 it) long, with a track gauge of 1 m (3 ft 3 1/2 in.); upon this a small locomotive hauled three small passenger coaches. The locomotive drew current at 150 volts from a third rail between the running rails, through which it was returned. In four months, more than 80,000 passengers were carried. The railway was subsequently demonstrated in Brussels, and in London, in 1881. That same year Siemens built a permanent electric tramway, 1 1/2 miles (2 1/2 km) long, on the outskirts of Berlin. In 1882 in Berlin he tried out a railless electric vehicle which drew electricity from a two-wire overhead line: this was the ancestor of the trolleybus.
    In the British Isles, an Act of Parliament was obtained in 1880 for the Giant's Causeway Railway in Ireland with powers to work it by "animal, mechanical or electrical power"; although Siemens Brothers were electrical engineers to the company, of which William Siemens was a director, delays in construction were to mean that the first railway in the British Isles to operate regular services by electricity was that of Magnus Volk.
    [br]
    Principal Honours and Distinctions
    Honorary doctorate, Berlin University 1860. Ennobled by Kaiser Friedrich III 1880, after which he became known as von Siemens.
    Further Reading
    S.von Weiher, 1972, "The Siemens brothers, pioneers of the electrical age in Europe", Transactions of the Newcomen Society 45 (describes the Siemens's careers). C.E.Lee, 1979, The birth of electric traction', Railway Magazine (May) (describes Werner Siemens's introduction of the electric railway).
    Transactions of the Newcomen Society (1979) 50: 82–3 (describes Siemens's and Halske's early electric telegraph instruments).
    Transactions of the Newcomen Society (1961) 33: 93 (describes the railless electric vehicle).
    PJGR

    Biographical history of technology > Siemens, Dr Ernst Werner von

  • 14 Steinheil, Carl August von

    [br]
    b. 1801 Roppoltsweiler, Alsace
    d. 1870 Munich, Germany
    [br]
    German physicist, founder of electromagnetic telegraphy in Austria, and photographic innovator and lens designer.
    [br]
    Steinheil studied under Gauss at Göttingen and Bessel at Königsberg before jointing his parents at Munich. There he concentrated on optics before being appointed Professor of Physics and Mathematics at the University of Munich in 1832. Immediately after the announcement of the first practicable photographic processes in 1839, he began experiments on photography in association with another professor at the University, Franz von Kobell. Steinheil is reputed to have made the first daguerreotypes in Germany; he certainly constructed several cameras of original design and suggested minor improvements to the daguerreotype process. In 1849 he was employed by the Austrian Government as Head of the Department of Telegraphy in the Ministry of Commerce. Electromagnetic telegraphy was an area in which Steinheil had worked for several years previously, and he was now appointed to supervise the installation of a working telegraphic system for the Austrian monarchy. He is considered to be the founder of electromagnetic telegraphy in Austria and went on to perform a similar role in Switzerland.
    Steinheil's son, Hugo Adolph, was educated in Munich and Augsburg but moved to Austria to be with his parents in 1850. Adolph completed his studies in Vienna and was appointed to the Telegraph Department, headed by his father, in 1851. Adolph returned to Munich in 1852, however, to concentrate on the study of optics. In 1855 the father and son established the optical workshop which was later to become the distinguished lens-manufacturing company C.A. Steinheil Söhne. At first the business confined itself almost entirely to astronomical optics, but in 1865 the two men took out a joint patent for a wide-angle photographic lens claimed to be free of distortion. The lens, called the "periscopic", was not in fact free from flare and not achromatic, although it enjoyed some reputation at the time. Much more important was the achromatic development of this lens that was introduced in 1866 and called the "Aplanet"; almost simultaneously a similar lens, the "Rapid Rentilinear", was introduced by Dallmeyer in England, and for many years lenses of this type were fitted as the standard objective on most photographic cameras. During 1866 the elder Steinheil relinquished his interest in lens manufacturing, and control of the business passed to Adolph, with administrative and financial affairs being looked after by another son, Edward. After Carl Steinheil's death Adolph continued to design and market a series of high-quality photographic lenses until his own death.
    [br]
    Further Reading
    J.M.Eder, 1945, History of Photography, trans. E.Epstean, New York (a general account of the Steinheils's work).
    Most accounts of photographic lens history will give details of the Steinheils's more important work. See, for example, Chapman Jones, 1904, Science and Practice of Photography, 4th edn, London: and Rudolf Kingslake, 1989, A History of the Photographic Lens, Boston.
    JW

    Biographical history of technology > Steinheil, Carl August von

  • 15 Walter, Thomas Ustick

    [br]
    b. 4 September 1804 Philadelphia, Pennsylvania, USA
    d. 30 October 1887 Philadelphia, Pennsylvania, USA
    [br]
    American architect, best known for his construction of the great iron dome of the United States Capitol in Washington.
    [br]
    Much of Walter's work was in neo-classical style, of which the Founders' Hall at Girard College in Philadelphia, built 1833–47, is a fine example. On the exterior this is a large-scale Corinthian temple of peripteral octastyle form. Inside, Walter showed his awareness of modern needs with his brick fireproof vaulting. In 1851 Walter was appointed by President Millard Fillmore as Architect to the Capitol in Washington, DC, to enlarge the building to accommodate the greater needs of the day. Between this time and 1865 Walter extended the side wings considerably to provide more space for the House of Representatives and the Senate and, to balance the composition of this much longer elevation, built a new great dome. In style, the dome and drum resemble those of Wren's St Paul's Cathedral in London, but the scale is much greater and the internal construction largely of cast iron: internally the dome measures 98 ft (29.9 m) in diameter and has a total height of 222 ft (67.7 m).
    [br]
    Principal Honours and Distinctions
    Founder American Institute of Architects 1857; President from 1876.
    Further Reading
    M.Whiffen and F.Keeper, 1981, American Architecture 1607–1976, Cambridge, Mass.: MIT.
    DY

    Biographical history of technology > Walter, Thomas Ustick

См. также в других словарях:

  • 1851 год в театре — 1849 1850  1851  1852 1853 Портал:Театр См. также: Другие события в 1851 году События в музыке и События в кино Содержание 1 Постановки …   Википедия

  • 1865 год в театре — 1863 1864  1865  1866 1867 Портал:Театр См. также: Другие события в 1865 году События в музыке и События в кино Содержание …   Википедия

  • 1851 год в истории железнодорожного транспорта — 1849 1850 1851 1852 1853 Портал:Железнодорожный транспорт См. также: Другие события в 1851 году …   Википедия

  • 1865 год в истории железнодорожного транспорта — 1863 1864 1865 1866 1867 Портал:Железнодорожный транспорт См. также: Другие события в 1865 году История метрополитена в 1865 году …   Википедия

  • 1851 год в литературе — Годы в литературе XIX века. 1851 год в литературе. 1796 • 1797 • 1798 • 1799 • 1800 ← XVIII век 1801 • 1802 • 1803 • 1804 • 1805 • 1806 • 1807 • 1808 • 1809 • 1810 1811 • 1812 • 1813 • 1814 • 1815 • 1816 • 1817 …   Википедия

  • 1865 год в литературе — Годы в литературе XIX века. 1865 год в литературе. 1796 • 1797 • 1798 • 1799 • 1800 ← XVIII век 1801 • 1802 • 1803 • 1804 • 1805 • 1806 • 1807 • 1808 • 1809 • 1810 1811 • 1812 • 1813 • 1814 • 1815 • 1816 • 1817 …   Википедия

  • 1865 год — Годы 1861 · 1862 · 1863 · 1864 1865 1866 · 1867 · 1868 · 1869 Десятилетия 1840 е · 1850 е 1860 е 1870 е · …   Википедия

  • 1851 год — Годы 1847 · 1848 · 1849 · 1850 1851 1852 · 1853 · 1854 · 1855 Десятилетия 1830 е · 1840 е 1850 е 1860 е · …   Википедия

  • 1851 aux États-Unis — Éphémérides Chronologie des États Unis : 1848 1849 1850 1851  1852 1853 1854 Décennies aux États Unis : 1820 1830 1840  1850  1860 1870 …   Wikipédia en Français

  • 1865 — Años: 1862 1863 1864 – 1865 – 1866 1867 1868 Décadas: Años 1830 Años 1840 Años 1850 – Años 1860 – Años 1870 Años 1880 Años 1890 Siglos: Siglo XVIII – …   Wikipedia Español

  • 1851 en sport — Années : 1848 1849 1850  1851  1852 1853 1854 Décennies : 1820 1830 1840  1850  1860 1870 1880 Siècles : XVIIIe siècle  XIXe siè …   Wikipédia en Français

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»