-
1 голосующий против предложения
Русско-английский синонимический словарь > голосующий против предложения
-
2 голос против
2) Law: nay, nay vote, negative vote, non-content, not content3) Diplomatic term: dissenting vote4) Makarov: non-content (в палате лордов), non-content (напр. в палате лордов), not content (в палате лордов) -
3 голос против
2) Law: nay, nay vote, negative vote, non-content, not content3) Diplomatic term: dissenting vote4) Makarov: non-content (в палате лордов), non-content (напр. в палате лордов), not content (в палате лордов) -
4 голосующий против
1) Law: non-content (в палате лордов), not content (в палате лордов)2) Makarov: non-content (напр. в палате лордов) -
5 голосующий против предложения
General subject: non content, non-content (в палате лордов)Универсальный русско-английский словарь > голосующий против предложения
-
6 недовольный
1) General subject: acidulated, acidulous, angry, annoyed, crabbed, disaffected, (в знач. сущ.) discontent, discontented, disgruntled, disgruntled at (smth.) (чем-л.), displeased, dissatisfied, dissatisfied with, grieving, grumbler (человек), grumbletonian (человек), malcontent, non content, out of humor, out of humor with (smb.) (кем-л.), out of humour with, querulous, sorehead, stroppy, (общественными порядками-контекстуально) maladjusted, (чем-л.) unhappy (with), (contEntless) contentless4) Bookish: non-content5) Diplomatic term: disaffected (особ. правительством)6) Jargon: browned off, browned-off, chuffed7) Mass media: soured8) Psychoanalysis: uncontented9) Makarov: out of humour with (smb.) (кем-л.) -
7 несогласный
1) General subject: absonant (from, to), discordant, disharmonious, dissentient, dissident, inconsistent, non content, objector (с предложением, мерами), opponent, unconsonant, unharmonious2) Geology: discordance, transgressive (об интрузии)3) Bookish: non-content4) Politics: 31er5) Oil: discordant (о характере залегания), unconformable (о характере залегания)6) Drilling: incompatible7) Psychoanalysis: unagreeable -
8 недовольный
(кем-л./чем-л.)
dissatisfied, discontented, displeased; malcontent* * ** * *dissatisfied, discontented, displeased* * *acidulatedchuffeddisaffecteddiscontentmalcontentnon-contentpoutersnuffyungladunjoyfulunsatisfied -
9 несогласен
-
10 несогласный
1) (с кем-л./чем-л.)
discordant (with); not agreeing (to, with)
2) (о звуках)
discordant* * ** * *(с кем-л./чем-л.) discordant (with)* * *discordantnon-contentunagreeable -
11 недовольный
dissatisfied имя прилагательное:discontented (недовольный, раздосадованный)malcontent (недовольный, находящийся в оппозиции)uncontented (недовольный, неудовлетворенный) -
12 несогласный
discordant имя прилагательное: имя существительное:non-content (несогласный, голосующий против предложения) -
13 внештатный корреспондент
non-staff correspondent, free-lancerС целью увеличения информационной наполняемости газеты посредством рекламных объявлений в местных газетах, на радио и выездов в деревни для личных контактов была начата работа по созданию новой сети внештатных корреспондентов. — With the purpose of increase of informational content of the newspaper by the means of advertisements in the local newspapers, on the radio and trips to villages for personal contacts, we began the work on creation of a new network of non-staff correspondents.
Дополнительный универсальный русско-английский словарь > внештатный корреспондент
-
14 коэффициент искажения синусоидальности кривой напряжения (тока)
- total harmonic distortions
- THD
- distortion factor (of a non-sinusoidal alternating voltage or current)
коэффициент искажения синусоидальности кривой напряжения (тока)
Величина, равная отношению действующего значения суммы гармонических составляющих к действующему значению основной составляющей переменного напряжения (тока).
Примечание. Для целей стандартизации допускается относить к номинальному напряжению (току).
[ ГОСТ 23875-88]
коэффициент нелинейных искажений
коэффициент несинусоидальности
КНИ
Определяет веса высших гармоник переменного напряжения по отношению к основной гармонике. Чем КНИ меньше, тем ближе форма напряжения к чистой синусоиде. Например: синусоидальная форма сигнала (КНИ=0), форма сигнала отлична от синусоидальной, но искажения не заметны на глаз (КНИ<3%), отклонение формы сигнала от синусоидальной заметно на глаз (КНИ>5%), сигнал имеет трапецеидальную или ступенчатую форму (КНИ<21%), сигнал имеет прямоугольную форму (КНИ=43%)
[ http://www.radistr.ru/misc/document423.phtml]
(полный) коэффициент гармоник
—
[Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва]EN
total harmonic distortions
THD
RMS value of all harmonics in a waveform (excluding fundamental) divided by RMS value of fundamental. THDV refers to Voltage waveform. THDI refers to Current waveform.
[ http://www.upsonnet.com/UPS-Glossary/]total 3rd order harmonic distortion
коэффициент искажения синусоидальности, вызванный гармоническими составляющими третьего порядка
total harmonic distortion; THD
коэффициент искажения синусоидальности
общий коэффициент несинусоидальностиtotal harmonic current distortion; THDI
коэффициент искажения синусоидальности кривой тока
обшее гармоническое искажение токаtotal harmonic voltage distortion; THDV, THDU
коэффициент искажения синусоидальности кривой напряжения
обшее гармоническое искажение напряженияПараллельные тексты EN-RU
THD is the ratio of harmonic content to the fundamental and provides a general indication of the quality of a waveform.
[Schneider Electric]Коэффициент искажения синусоидальности (THD) представляет собой отношение суммы гармонических составляющих к значению основной составляющей и является основным индикатором качества формы электрического сигнала.
[Перевод Интент]
Тематики
Синонимы
- КНИ
- коэффициент гармоник
- коэффициент искажения
- коэффициент нелинейных искажений
- коэффициент несинусоидальности
- полный коэффициент гармоник
EN
- distortion factor (of a non-sinusoidal alternating voltage or current)
- THD
- total harmonic distortions
DE
FR
- facteur de distortion (d’une tension ou d’un courant alternatif non sinusoïdal)
Смотри также
55. Коэффициент искажения синусоидальности кривой напряжения (тока)
Коэффициент искажения
D. Klirrfaktor
E. Distortion factor (of a non-sinusoidal alternating voltage or current)
F. Facteur de distortion (d’une tension ou d’un courant alternative non sinusoïdal)
Величина, равная отношению действующего значения суммы гармонических составляющих к действующему значению основной составляющей переменного напряжения (тока).
Примечание. Для целей стандартизации допускается относить к номинальному напряжению (току)
Источник: ГОСТ 23875-88: Качество электрической энергии. Термины и определения оригинал документа
Русско-английский словарь нормативно-технической терминологии > коэффициент искажения синусоидальности кривой напряжения (тока)
15 технология коммутации
технология коммутации
-
[Интент]Современные технологии коммутации
[ http://www.xnets.ru/plugins/content/content.php?content.84]Статья подготовлена на основании материалов опубликованных в журналах "LAN", "Сети и системы связи", в книге В.Олифер и Н.Олифер "Новые технологии и оборудование IP-сетей", на сайтах www.citforum.ru и опубликована в журнале "Компьютерные решения" NN4-6 за 2000 год.
- Введение
- Коммутация первого уровня.
- Коммутация второго уровня.
- Коммутация третьего уровня.
- Коммутация четвертого уровня.
- Критерии выбора оборудования, физическая и логическая структура сети
- Качество обслуживания (QoS) и принципы задания приоритетов
- Заключение
Введение
На сегодня практически все организации, имеющие локальные сети, остановили свой выбор на сетях типа Ethernet. Данный выбор оправдан тем, что начало внедрения такой сети сопряжено с низкой стоимостью и простотой реализации, а развитие - с хорошей масштабируемостью и экономичностью.
Бросив взгляд назад - увидим, что развитие активного оборудования сетей шло в соответствии с требованиями к полосе пропускания и надежности. Требования, предъявляемые к большей надежности, привели к отказу от применения в качестве среды передачи коаксиального кабеля и перевода сетей на витую пару. В результате такого перехода отказ работы соединения между одной из рабочих станций и концентратором перестал сказываться на работе других рабочих станций сети. Но увеличения производительности данный переход не принес, так как концентраторы используют разделяемую (на всех пользователей в сегменте) полосу пропускания. По сути, изменилась только физическая топология сети - с общей шины на звезду, а логическая топология по-прежнему осталась - общей шиной.
Дальнейшее развитие сетей шло по нескольким путям:- увеличение скорости,
- внедрение сегментирования на основе коммутации,
- объединение сетей при помощи маршрутизации.
Увеличение скорости при прежней логической топологии - общая шина, привело к незначительному росту производительности в случае большого числа портов.
Большую эффективность в работе сети принесло сегментирование сетей с использованием технология коммутации пакетов. Коммутация наиболее действенна в следующих вариантах:
Вариант 1, именуемый связью "многие со многими" – это одноранговые сети, когда одновременно существуют потоки данных между парами рабочих станций. При этом предпочтительнее иметь коммутатор, у которого все порты имеют одинаковую скорость, (см. Рисунок 1).Вариант 2, именуемый связью "один со многими" – это сети клиент-сервер, когда все рабочие станции работают с файлами или базой данных сервера. В данном случае предпочтительнее иметь коммутатор, у которого порты для подключения рабочих станций имеют одинаковую небольшую скорость, а порт, к которому подключается сервер, имеет большую скорость,(см. Рисунок 2).
Когда компании начали связывать разрозненные системы друг с другом, маршрутизация обеспечивала максимально возможную целостность и надежность передачи трафика из одной сети в другую. Но с ростом размера и сложности сети, а также в связи со все более широким применением коммутаторов в локальных сетях, базовые маршрутизаторы (зачастую они получали все данные, посылаемые коммутаторами) стали с трудом справляться со своими задачами.
Проблемы с трафиком, связанные с маршрутизацией, проявляются наиболее остро в средних и крупных компаниях, а также в деятельности операторов Internet, так как они вынуждены иметь дело с большими объемами IP-трафика, причем этот трафик должен передаваться своевременно и эффективно.
С подключением настольных систем непосредственно к коммутаторам на 10/100 Мбит/с между ними и магистралью оказывается все меньше промежуточных устройств. Чем выше скорость подключения настольных систем, тем более скоростной должна быть магистраль. Кроме того, на каждом уровне устройства должны справляться с приходящим трафиком, иначе возникновения заторов не избежать.
Рассмотрению технологий коммутации и посвящена данная статья.Коммутация первого уровня
Термин "коммутация первого уровня" в современной технической литературе практически не описывается. Для начала дадим определение, с какими характеристиками имеет дело физический или первый уровень модели OSI:
физический уровень определяет электротехнические, механические, процедурные и функциональные характеристики активации, поддержания и дезактивации физического канала между конечными системами. Спецификации физического уровня определяют такие характеристики, как уровни напряжений, синхронизацию изменения напряжений, скорость передачи физической информации, максимальные расстояния передачи информации, физические соединители и другие аналогичные характеристики.
Смысл коммутации на первом уровне модели OSI означает физическое (по названию уровня) соединение. Из примеров коммутации первого уровня можно привести релейные коммутаторы некоторых старых телефонных и селекторных систем. В более новых телефонных системах коммутация первого уровня применяется совместно с различными способами сигнализации вызовов и усиления сигналов. В сетях передачи данных данная технология применяется в полностью оптических коммутаторах.Коммутация второго уровня
Рассматривая свойства второго уровня модели OSI и его классическое определение, увидим, что данному уровню принадлежит основная доля коммутирующих свойств.
Определение. Канальный уровень (формально называемый информационно-канальным уровнем) обеспечивает надежный транзит данных через физический канал. Канальный уровень решает вопросы физической адресации (в противоположность сетевой или логической адресации), топологии сети, линейной дисциплины (каким образом конечной системе использовать сетевой канал), уведомления о неисправностях, упорядоченной доставки блоков данных и управления потоком информации.
На самом деле, определяемая канальным уровнем модели OSI функциональность служит платформой для некоторых из сегодняшних наиболее эффективных технологий. Большое значение функциональности второго уровня подчеркивает тот факт, что производители оборудования продолжают вкладывать значительные средства в разработку устройств с такими функциями.
С технологической точки зрения, коммутатор локальных сетей представляет собой устройство, основное назначение которого - максимальное ускорение передачи данных за счет параллельно существующих потоков между узлами сети. В этом - его главное отличие от других традиционных устройств локальных сетей – концентраторов (Hub), предоставляющих всем потокам данных сети всего один канал передачи данных.
Коммутатор позволяет передавать параллельно несколько потоков данных c максимально возможной для каждого потока скоростью. Эта скорость ограничена физической спецификацией протокола, которую также часто называют "скоростью провода". Это возможно благодаря наличию в коммутаторе большого числа центров обработки и продвижения кадров и шин передачи данных.
Коммутаторы локальных сетей в своем основном варианте, ставшем классическим уже с начала 90-х годов, работают на втором уровне модели OSI, применяя свою высокопроизводительную параллельную архитектуру для продвижения кадров канальных протоколов. Другими словами, ими выполняются алгоритмы работы моста, описанные в стандартах IEEE 802.1D и 802.1H. Также они имеют и много других дополнительных функций, часть которых вошла в новую редакцию стандарта 802.1D-1998, а часть остается пока не стандартизованной.
Коммутаторы ЛВС отличаются большим разнообразием возможностей и, следовательно, цен - стоимость 1 порта колеблется в диапазоне от 50 до 1000 долларов. Одной из причин столь больших различий является то, что они предназначены для решения различных классов задач. Коммутаторы высокого класса должны обеспечивать высокую производительность и плотность портов, а также поддерживать широкий спектр функций управления. Простые и дешевые коммутаторы имеют обычно небольшое число портов и не способны поддерживать функции управления. Одним из основных различий является используемая в коммутаторе архитектура. Поскольку большинство современных коммутаторов работают на основе патентованных контроллеров ASIC, устройство этих микросхем и их интеграция с остальными модулями коммутатора (включая буферы ввода-вывода) играет важнейшую роль. Контроллеры ASIC для коммутаторов ЛВС делятся на 2 класса - большие ASIC, способные обслуживать множество коммутируемых портов (один контроллер на устройство) и небольшие ASIC, обслуживающие по несколько портов и объединяемые в матрицы коммутации.
Существует 3 варианта архитектуры коммутаторов:
- переключение (cross-bar) с буферизацией на входе,
- самомаршрутизация (self-route) с разделяемой памятью
- высокоскоростная шина.
На рисунке 3 показана блок-схема коммутатора с архитектурой, используемой для поочередного соединения пар портов. В любой момент такой коммутатор может обеспечить организацию только одного соединения (пара портов). При невысоком уровне трафика не требуется хранение данных в памяти перед отправкой в порт назначения - такой вариант называется коммутацией на лету cut-through. Однако, коммутаторы cross-bar требуют буферизации на входе от каждого порта, поскольку в случае использования единственно возможного соединения коммутатор блокируется (рисунок 4). Несмотря на малую стоимость и высокую скорость продвижения на рынок, коммутаторы класса cross-bar слишком примитивны для эффективной трансляции между низкоскоростными интерфейсами Ethernet или token ring и высокоскоростными портами ATM и FDDI.
Коммутаторы с разделяемой памятью имеют общий входной буфер для всех портов, используемый как внутренняя магистраль устройства (backplane). Буферизагия данных перед их рассылкой (store-and-forward - сохранить и переслать) приводит к возникновению задержки. Однако, коммутаторы с разделяемой памятью, как показано на рисунке 5 не требуют организации специальной внутренней магистрали для передачи данных между портами, что обеспечивает им более низкую цену по сравнению с коммутаторами на базе высокоскоростной внутренней шины.
На рисунке 6 показана блок-схема коммутатора с высокоскоростной шиной, связывающей контроллеры ASIC. После того, как данные преобразуются в приемлемый для передачи по шине формат, они помещаются на шину и далее передаются в порт назначения. Поскольку шина может обеспечивать одновременную (паралельную) передачу потока данных от всех портов, такие коммутаторы часто называют "неблокируемыми" (non-blocking) - они не создают пробок на пути передачи данных.
Применение аналогичной параллельной архитектуры для продвижения пакетов сетевых протоколов привело к появлению коммутаторов третьего уровня модели OSI.
Коммутация третьего уровня
В продолжении темы о технологиях коммутации рассмотренных в предыдущем номера повторим, что применение параллельной архитектуры для продвижения пакетов сетевых протоколов привело к появлению коммутаторов третьего уровня. Это позволило существенно, в 10-100 раз повысить скорость маршрутизации по сравнению с традиционными маршрутизаторами, в которых один центральный универсальный процессор выполняет программное обеспечение маршрутизации.
По определению Сетевой уровень (третий) - это комплексный уровень, который обеспечивает возможность соединения и выбор маршрута между двумя конечными системами, подключенными к разным "подсетям", которые могут находиться в разных географических пунктах. В данном случае "подсеть" это, по сути, независимый сетевой кабель (иногда называемый сегментом).
Коммутация на третьем уровне - это аппаратная маршрутизация. Традиционные маршрутизаторы реализуют свои функции с помощью программно-управляемых процессоров, что будем называть программной маршрутизацией. Традиционные маршрутизаторы обычно продвигают пакеты со скоростью около 500000 пакетов в секунду. Коммутаторы третьего уровня сегодня работают со скоростью до 50 миллионов пакетов в секунду. Возможно и дальнейшее ее повышение, так как каждый интерфейсный модуль, как и в коммутаторе второго уровня, оснащен собственным процессором продвижения пакетов на основе ASIC. Так что наращивание количества модулей ведет к наращиванию производительности маршрутизации. Использование высокоскоростной технологии больших заказных интегральных схем (ASIC) является главной характеристикой, отличающей коммутаторы третьего уровня от традиционных маршрутизаторов. Коммутаторы 3-го уровня делятся на две категории: пакетные (Packet-by-Packet Layer 3 Switches, PPL3) и сквозные (Cut-Through Layer 3 Switches, CTL3). PPL3 - означает просто быструю маршрутизацию (Рисунок_7). CTL3 – маршрутизацию первого пакета и коммутацию всех остальных (Рисунок 8).У коммутатора третьего уровня, кроме реализации функций маршрутизации в специализированных интегральных схемах, имеется несколько особенностей, отличающих их от традиционных маршрутизаторов. Эти особенности отражают ориентацию коммутаторов 3-го уровня на работу, в основном, в локальных сетях, а также последствия совмещения в одном устройстве коммутации на 2-м и 3-м уровнях:
- поддержка интерфейсов и протоколов, применяемых в локальных сетях,
- усеченные функции маршрутизации,
- обязательная поддержка механизма виртуальных сетей,
- тесная интеграция функций коммутации и маршрутизации, наличие удобных для администратора операций по заданию маршрутизации между виртуальными сетями.
Наиболее "коммутаторная" версия высокоскоростной маршрутизации выглядит следующим образом (рисунок 9). Пусть коммутатор третьего уровня построен так, что в нем имеется информация о соответствии сетевых адресов (например, IP-адресов) адресам физического уровня (например, MAC-адресам) Все эти МАС-адреса обычным образом отображены в коммутационной таблице, независимо от того, принадлежат ли они данной сети или другим сетям.
Первый коммутатор, на который поступает пакет, частично выполняет функции маршрутизатора, а именно, функции фильтрации, обеспечивающие безопасность. Он решает, пропускать или нет данный пакет в другую сеть Если пакет пропускать нужно, то коммутатор по IP-адресу назначения определяет МАС-адрес узла назначения и формирует новый заголовок второго уровня с найденным МАС-адресом. Затем выполняется обычная процедура коммутации по данному МАС-адресу с просмотром адресной таблицы коммутатора. Все последующие коммутаторы, построенные по этому же принципу, обрабатывают данный кадр как обычные коммутаторы второго уровня, не привлекая функций маршрутизации, что значительно ускоряет его обработку. Однако функции маршрутизации не являются для них избыточными, поскольку и на эти коммутаторы могут поступать первичные пакеты (непосредственно от рабочих станций), для которых необходимо выполнять фильтрацию и подстановку МАС-адресов.
Это описание носит схематический характер и не раскрывает способов решения возникающих при этом многочисленных проблем, например, проблемы построения таблицы соответствия IP-адресов и МАС-адресов
Примерами коммутаторов третьего уровня, работающих по этой схеме, являются коммутаторы SmartSwitch компании Cabletron. Компания Cabletron реализовала в них свой протокол ускоренной маршрутизации SecureFast Virtual Network, SFVN.
Для организации непосредственного взаимодействия рабочих станций без промежуточного маршрутизатора необходимо сконфигурировать каждую из них так, чтобы она считала собственный интерфейс маршрутизатором по умолчанию. При такой конфигурации станция пытается самостоятельно отправить любой пакет конечному узлу, даже если этот узел находится в другой сети. Так как в общем случае (см. рисунок 10) станции неизвестен МАС-адрес узла назначения, то она генерирует соответствующий ARP-запрос, который перехватывает коммутатор, поддерживающий протокол SFVN. В сети предполагается наличие сервера SFVN Server, являющегося полноценным маршрутизатором и поддерживающего общую ARP-таблицу всех узлов SFVN-сети. Сервер возвращает коммутатору МАС-адрес узла назначения, а коммутатор, в свою очередь, передает его исходной станции. Одновременно сервер SFVN передает коммутаторам сети инструкции о разрешении прохождения пакета с МАС-адресом узла назначения через границы виртуальных сетей. Затем исходная станция передает пакет в кадре, содержащем МАС-адрес узла назначения. Этот кадр проходит через коммутаторы, не вызывая обращения к их блокам маршрутизации. Отличие протокола SFVN компании Cabletron от - описанной выше общей схемы в том, что для нахождения МАС-адреса по IP-адресу в сети используется выделенный сервер.Протокол Fast IP компании 3Com является еще одним примером реализации подхода с отображением IP-адреса на МАС-адрес. В этом протоколе основными действующими лицами являются сетевые адаптеры (что не удивительно, так как компания 3Com является признанным лидером в производстве сетевых адаптеров Ethernet) С одной стороны, такой подход требует изменения программного обеспечения драйверов сетевых адаптеров, и это минус Но зато не требуется изменять все остальное сетевое оборудование.
При необходимости передать пакет узлу назначения другой сети, исходный узел в соответствии с технологией Fast IP должен передать запрос по протоколу NHRP (Next Hop Routing Protocol) маршрутизатору сети. Маршрутизатор переправляет этот запрос узлу назначения, как обычный пакет Узел назначения, который также поддерживает Fast IP и NHRP, получив запрос, отвечает кадром, отсылаемым уже не маршрутизатору, а непосредственно узлу-источнику (по его МАС-адресу, содержащемуся в NHRP-запросе). После этого обмен идет на канальном уровне на основе известных МАС-адресов. Таким образом, снова маршрутизировался только первый пакет потока (как на рисунке 9 кратковременный поток), а все остальные коммутировались (как на рисунке 9 долговременный поток).
Еще один тип коммутаторов третьего уровня — это коммутаторы, работающие с протоколами локальных сетей типа Ethernet и FDDI. Эти коммутаторы выполняют функции маршрутизации не так, как классические маршрутизаторы. Они маршрутизируют не отдельные пакеты, а потоки пакетов.
Поток — это последовательность пакетов, имеющих некоторые общие свойства. По меньшей мере, у них должны совпадать адрес отправителя и адрес получателя, и тогда их можно отправлять по одному и тому же маршруту. Если классический способ маршрутизации использовать только для первого пакета потока, а все остальные обрабатывать на основании опыта первого (или нескольких первых) пакетов, то можно значительно ускорить маршрутизацию всего потока.
Рассмотрим этот подход на примере технологии NetFlow компании Cisco, реализованной в ее маршрутизаторах и коммутаторах. Для каждого пакета, поступающего на порт маршрутизатора, вычисляется хэш-функция от IP-адресов источника, назначения, портов UDP или TCP и поля TOS, характеризующего требуемое качество обслуживания. Во всех маршрутизаторах, поддерживающих данную технологию, через которые проходит данный пакет, в кэш-памяти портов запоминается соответствие значения хэш-функции и адресной информации, необходимой для быстрой передачи пакета следующему маршрутизатору. Таким образом, образуется квазивиртуальный канал (см. Рисунок 11), который позволяет быстро передавать по сети маршрутизаторов все последующие пакеты этого потока. При этом ускорение достигается за счет упрощения процедуры обработки пакета маршрутизатором - не просматриваются таблицы маршрутизации, не выполняются ARP-запросы.Этот прием может использоваться в маршрутизаторах, вообще не поддерживающих коммутацию, а может быть перенесен в коммутаторы. В этом случае такие коммутаторы тоже называют коммутаторами третьего уровня. Примеров маршрутизаторов, использующих данный подход, являются маршрутизаторы Cisco 7500, а коммутаторов третьего уровня — коммутаторы Catalyst 5000 и 5500. Коммутаторы Catalyst выполняют усеченные функции описанной схемы, они не могут обрабатывать первые пакеты потоков и создавать новые записи о хэш-функциях и адресной информации потоков. Они просто получают данную информацию от маршрутизаторов 7500 и обрабатывают пакеты уже распознанных маршрутизаторами потоков.
Выше был рассмотрен способ ускоренной маршрутизации, основанный на концепции потока. Его сущность заключается в создании квазивиртуальных каналов в сетях, которые не поддерживают виртуальные каналы в обычном понимании этого термина, то есть сетях Ethernet, FDDI, Token Ring и т п. Следует отличать этот способ от способа ускоренной работы маршрутизаторов в сетях, поддерживающих технологию виртуальных каналов — АТМ, frame relay, X 25. В таких сетях создание виртуального канала является штатным режимом работы сетевых устройств. Виртуальные каналы создаются между двумя конечными точками, причем для потоков данных, требующих разного качества обслуживания (например, для данных разных приложений) может создаваться отдельный виртуальный канал. Хотя время создания виртуального канала существенно превышает время маршрутизации одного пакета, выигрыш достигается за счет последующей быстрой передачи потока данных по виртуальному каналу. Но в таких сетях возникает другая проблема — неэффективная передача коротких потоков, то есть потоков, состоящих из небольшого количества пакетов (классический пример — пакеты протокола DNS).
Накладные расходы, связанные с созданием виртуального канала, приходящиеся на один пакет, снижаются при передаче объемных потоков данных. Однако они становятся неприемлемо высокими при передаче коротких потоков. Для того чтобы эффективно передавать короткие потоки, предлагается следующий вариант, при передаче нескольких первых пакетов выполняется обычная маршрутизация. Затем, после того как распознается устойчивый поток, для него строится виртуальный канал, и дальнейшая передача данных происходит с высокой скоростью по этому виртуальному каналу. Таким образом, для коротких потоков виртуальный канал вообще не создается, что и повышает эффективность передачи.
По такой схеме работает ставшая уже классической технология IP Switching компании Ipsilon. Для того чтобы сети коммутаторов АТМ передавали бы пакеты коротких потоков без установления виртуального канала, компания Ipsilon предложила встроить во все коммутаторы АТМ блоки IP-маршрутизации (рисунок 12), строящие обычные таблицы маршрутизации по обычным протоколам RIP и OSPF.Компания Cisco Systems выдвинула в качестве альтернативы технологии IP Switching свою собственную технологию Tag Switching, но она не стала стандартной. В настоящее время IETF работает над стандартным протоколом обмена метками MPLS (Multi-Protocol Label Switching), который обобщает предложение компаний Ipsilon и Cisco, а также вносит некоторые новые детали и механизмы. Этот протокол ориентирован на поддержку качества обслуживания для виртуальных каналов, образованных метками.
Коммутация четвертого уровня
Свойства четвертого или транспортного уровня модели OSI следующие: транспортный уровень обеспечивает услуги по транспортировке данных. В частности, заботой транспортного уровня является решение таких вопросов, как выполнение надежной транспортировки данных через объединенную сеть. Предоставляя надежные услуги, транспортный уровень обеспечивает механизмы для установки, поддержания и упорядоченного завершения действия виртуальных каналов, систем обнаружения и устранения неисправностей транспортировки и управления информационным потоком (с целью предотвращения переполнения данными из другой системы).
Некоторые производители заявляют, что их системы могут работать на втором, третьем и даже четвертом уровнях. Однако рассмотрение описания стека TCP/IP (рисунок 1), а также структуры пакетов IP и TCP (рисунки 2, 3), показывает, что коммутация четвертого уровня является фикцией, так как все относящиеся к коммутации функции осуществляются на уровне не выше третьего. А именно, термин коммутация четвертого уровня с точки зрения описания стека TCP/IP противоречий не имеет, за исключением того, что при коммутации должны указываться адреса компьютера (маршрутизатора) источника и компьютера (маршрутизатора) получателя. Пакеты TCP имеют поля локальный порт отправителя и локальный порт получателя (рисунок 3), несущие смысл точек входа в приложение (в программу), например Telnet с одной стороны, и точки входа (в данном контексте инкапсуляции) в уровень IP. Кроме того, в стеке TCP/IP именно уровень TCP занимается формированием пакетов из потока данных идущих от приложения. Пакеты IP (рисунок 2) имеют поля адреса компьютера (маршрутизатора) источника и компьютера (маршрутизатора) получателя и следовательно могут наряду с MAC адресами использоваться для коммутации. Тем не менее, название прижилось, к тому же практика показывает, что способность системы анализировать информацию прикладного уровня может оказаться полезной — в частности для управления трафиком. Таким образом, термин "зависимый от приложения" более точно отражает функции так называемых коммутаторов четвертого уровня.Тематики
EN
Русско-английский словарь нормативно-технической терминологии > технология коммутации
16 бумага
* * *бума́га ж.
paperгумми́ровать бума́гу ( для последующего смачивания и наклеивания) — gum the paperнакле́ивать бума́гу на (что-л. [m2]) — paste the paper to (smth.)прокле́ивать бума́гу — size the paperабрази́вная бума́га — abrasive paperавтогра́фская бума́га — autographic paperакваре́льная бума́га ( для акварельной живописи и гравюр) — aquarel [water colour] paperалександри́йская бума́га — royal paperарми́рованная бума́га — reinforced paperасбе́стовая бума́га — asbestos paperасбе́стовая, электроизоляцио́нная бума́га — asbestos insulating paperафи́шная бума́га — posterацетили́рованная бума́га — acetylated paperбакелизи́рованная бума́га — bakelized paperбактерици́дная бума́га — desinfectant [antiseptic] paperбандеро́льная бума́га — band stockбарити́рованная бума́га — baryta [coated] paperба́рхатная бума́га — velour paperбума́га без отде́лки — unfinished paperбе́лая переводна́я бума́га — transfer paperбиле́тная бума́га — ticket paperбоби́нная бума́га — coil paperбристо́льская бума́га — Bristol paperбуты́лочная бума́га — bottle packing [wrapping] paperвеле́невая бума́га — vellum paperвлагопро́чная бума́га — wet strength paperводонепроница́емая бума́га — waterproof paperбума́га воско́вка — stencil paperвпи́тывающая бума́га — absorbent paperвсходозащи́тная бума́га — sprout [young-growth] protection paperвысокозо́льная бума́га — high-ash content paperвысококле́еная бума́га — hard-sized paperгазе́тная бума́га — newsprintгигиени́ческая бума́га — toilet paperглазиро́ванная бума́га — glazed paperгрунто́ванная бума́га — pre-coated paperгумми́рованная бума́га — gummed paperдиагра́ммная бума́га — chart paperдиагра́ммная бума́га, сло́женная гармо́шкой — Z-fold, chart paperдиазоти́пная бума́га — diazo-type paperдлинноволокни́стая бума́га — long-fibred paperбума́га для глубо́кой печа́ти — copper printing paperбума́га для мно́жительных аппара́тов — duplication paperбума́га для мульчи́рования — mulch paperбума́га для обо́ев — wall-paperбума́га для печа́ти — printing paper, printingsдолева́я бума́га — grain long paperзерни́стая бума́га — grained paperизоляцио́нная бума́га — insulating paperиндика́торная бума́га — test [indicator] paperинсектици́дная бума́га — insecticide paperка́бельная бума́га — cable(-insulating) paperкала́ндровая бума́га — calender bowl paperкартографи́ческая бума́га — map [chart] paperкартона́жная бума́га — pasteboard paperклеё́ная бума́га — sized paper«ко́жаная» бума́га — leather-imitation paperконденса́торная бума́га — capacitor paperкопирова́льная бума́га — carbon paperкрепи́рованная бума́га — crepe paperла́кмусовая бума́га — litmus paperлистова́я бума́га — sheet paperлитогра́фская бума́га — lithographic paperлогарифми́ческая бума́га — logarithmic paperлощё́ная бума́га — supercalendered paperмалозо́льная бума́га — low-ash content paperма́товая бума́га — mat paperмашинопи́сная бума́га — copying paperмело́ванная бума́га — chalk-overlay [chalk-coated] paperметаллизи́рованная бума́га — metallized paperмешо́чная бума́га — bag [sack] paperмикани́товая бума́га — micanite paperмоноти́пная бума́га — keyboard paperнажда́чная бума́га — abrasive [emery] paperобё́рточная бума́га — wrapping paperобло́жечная бума́га — cover paperофсе́тная бума́га — offset paperпапиро́сная бума́га — cigarette [tissue] paperпарафини́рованная бума́га — paraffined [wax(ed) ] paperпа́чечная бума́га — box-cover paperпи́счая бума́га — writing paperбума́га попере́чной ре́зки — cross direction paperпочто́вая бума́га — post [letter] paperбума́га продо́льной ре́зки — machine direction paperпромока́тельная бума́га — blotting paperпропи́точная бума́га — impregnated paperравнопро́чная бума́га — square paperреакти́вная бума́га — reagent paperреакти́вная, курку́мовая бума́га — turmeric (test) paperрисова́льная бума́га — drawing paperро́левая бума́га — web paperрота́торная бума́га — mimeo paperруло́нная бума́га — web paperсветокопирова́льная бума́га — heliographic paperсветочувстви́тельная бума́га — light-sensitive [sensitized] paperслабокле́еная бума́га — semi-sized paperслюдяна́я бума́га — mica(-loaded) paperспи́чечная бума́га — match box paperтелефо́нная бума́га — telephone cable paperтеплочувстви́тельная бума́га — heat-sensitive paperтехни́ческая бума́га — non-printing paperтокопроводна́я бума́га ( для аналоговых моделей) — resistance paperтипогра́фская бума́га — letterpress paperтиснё́ная бума́га — embossed paperупако́вочная бума́га — packaging paperупако́вочная, антикоррози́йная бума́га — anti-corrosive [anti-rust] packaging paperупако́вочная, битуми́рованная бума́га — bituminized packaging paperупако́вочная, двухсло́йная бума́га — double layer packaging bituminized paperупако́вочная, жиронепроница́емая бума́га — grease-proof packaging paperфильтрова́льная бума́га — filter paperфла́товая бума́га — flat paperфотографи́ческая бума́га — photographic paperфототи́пная бума́га — phototype paperцветна́я бума́га — coloured paperчертё́жная бума́га — drawing paperчертё́жная, прозра́чная бума́га — tracing paperчертё́жно-копирова́льная бума́га — tracing paperшлифова́льная бума́га — abrasive paperшлифова́льная бума́га забива́ется — abrasive paper fills upшпага́тная бума́га — thread [twisting, cord] paperщёлочесто́йкая бума́га — alkali-proof paperэлектроизоляцио́нная бума́га — electrical insulating paperэлектропроводя́щая бума́га — electrical conductive paperэтике́точная бума́га — label paper17 бумага
18 память
* * *па́мять ж. вчт.
memory, storage (см. тж. запоминающее устройство)быстроде́йствие па́мяти — access timeвыводи́ть [переключа́ть] па́мять с режи́ма операти́вной ра́боты — remove a storage device from on-line computer operationвыделя́ть па́мять — assign storage (space)па́мять заби́та [стано́вится заби́той] — the memory is swampedзапра́шивать па́мять — request (an amount of) storageиспо́льзовать па́мять в автоно́мном режи́ме — use off-line memory [storage]обновля́ть (содержи́мое) па́мяти — update memoryосвобожда́ть па́мять — free [release, relinquish] storageпереходи́ть в режи́м рабо́ты по па́мяти [по запо́мненной ско́рости] ав. — go on to memoryраспределя́ть па́мять — allocate storage (space)па́мять храни́т информа́цию вчт. — storage retains informationавтоно́мная па́мять — off-line storageакусти́ческая па́мять — acoustic memoryассоциати́вная па́мять — associative [content-addressable] storageпа́мять большо́й ё́мкости — mass storageбу́ферная па́мять — buffer storageбыстроде́йствующая па́мять — high-speed [fast(-access), quick(-access), rapid(-access) ] memoryвиртуа́льная па́мять — virtual storageвне́шняя па́мять — external memory, external storageвну́тренняя па́мять — internal memory, internal storageгла́вная, а́дресная па́мять — addressable bulk storageгла́вная, беза́дресная па́мять — non-addressable bulk storageдвусторо́нняя па́мять — read-write memoryдинами́ческая па́мять — dynamic storageдолговре́менная па́мять — fixed [read-only] storageкриоэлектро́нная па́мять — cryoelectronic memoryмагази́нная па́мять — stack memory, push-down [push-up] storeмагни́тная па́мять — magnetic memoryмагнитоопти́ческая па́мять — magneto-optical memoryма́тричная па́мять — matrix memoryпа́мять на больши́х интегра́льных схе́мах — large-scale-integration [LSD] memoryпа́мять на конденса́торах — capacitor memoryпа́мять на криотро́нах — cryotron memoryпа́мять на магни́тном бараба́не — magnetic drum memoryпа́мять на магни́тных ди́сках — magnetic disk memoryпа́мять на магни́тных плё́нках — magnetic-film memoryпа́мять на тви́сторах — twistor memoryпа́мять на то́нких плё́нках — thin film memoryпа́мять на тунне́льных дио́дах — tunnel-diode memoryпа́мять на ферромагни́тных серде́чниках — (magnetic-)core memory, core storageпа́мять на цилиндри́ческих плё́нках — cylindrical film memoryнестира́ющаяся па́мять — non-erasable storageодносторо́нняя па́мять — read-only storageоперати́вная па́мять — on-line [temporary, working] storageоперати́вная па́мять со стира́нием — scratch-pad memoryопти́ческая па́мять — optical memoryосновна́я па́мять — main memory, main storageпаралле́льная па́мять — parallel memory, parallel storageпосле́довательная па́мять — serial storageпостоя́нная па́мять — read-only memory, ROM, fixed [permanent, read-only] storageразруша́ющаяся па́мять — volatile storageразруша́ющаяся па́мять теря́ет храня́щуюся информа́цию при отключе́нии пита́ния — in volatile storage, stored data are lost when the applied power is removedпа́мять сверхбольшо́й ё́мкости — mass memoryпа́мять с ма́лым вре́менем вы́борки — quick-access [fast(-access), rapid(-access) ] memoryпа́мять с произво́льной вы́боркой — random-access memoryстати́ческая па́мять — static storageстира́ющаяся па́мять — erasable storageпа́мять ти́па Z — word-organized [linear-selection, switch-driven] memory19 вода,
distilled water
дистилированная
- для впрыска (в двигатель) — injection water
- для умывальников и туалетов — wash water
-, мыльная (для проверки трубопроводов на герметичность) — suds
-, обессоленная — salt-eliminated water
-, питьевая — potable water
-, техническая — non-potable water
запивка в. — water servicing
заправка в. — water servicing
заправка технической в. (надпись у заправочной точки) — non-potable water servicing point
заправка в. для туалетов — toilet water servicing
заправка в. для туалетов (надпись у заправочной точки) — toilet water servicing point
слив в. из туалетов — waste water drain
содержание в. — water content
садиться на в. — land on water
садиться на в. (аварийно) — ditch
сливать в. — drain waterРусско-английский сборник авиационно-технических терминов > вода,
20 аспекты описания должностей, не связанные с характером работы
Economy: non-job-content aspects of jobУниверсальный русско-английский словарь > аспекты описания должностей, не связанные с характером работы
Страницы- 1
- 2
См. также в других словарях:
Non content de — ● Non content de ne se satisfaisant pas de, ne se contentant pas de : Non content d être riche, il veut aussi être beau … Encyclopédie Universelle
non-content — noun a member of the House of Lords who votes against a particular motion … English new terms dictionary
non-content — n. Brit. a negative voter in the House of Lords … Useful english dictionary
content — content, ente [ kɔ̃tɑ̃, ɑ̃t ] adj. • fin XIIIe; lat. contentus, de continere → contenir ♦ Satisfait. 1 ♦ Content de qqch. Vx Comblé, qui n a plus besoin d autre chose. « Qui vit content de rien possède toute chose » (Boileau). Subst. m. (fin XVe) … Encyclopédie Universelle
content — content, ente (kon tan, tan t ) adj. 1° Qui se contente de, qui s accommode de, se borne à. Content de peu. • Le sage y vit en paix [sous l humble toit] et méprise le reste ; Content de ses douceurs, errant parmi les bois, Il regarde à ses… … Dictionnaire de la Langue Française d'Émile Littré
non — [ nɔ̃ ] adv. de négation • XIe; lat. non « ne » en position accentuée I ♦ Adv. 1 ♦ (Réponse négative, refus) « Je dois bien t ennuyer, Spark ? Non : pourquoi cela ? » (Musset). Non, rien à faire, n insistez pas. Non, non et non ! Mais non ! Non… … Encyclopédie Universelle
CONTENT — ENTE. adj. Qui a l esprit satisfait. Un homme content. Vivre content. Il a le coeur content. Il ne sera content que lorsqu il vous aura vu. Il ne sera pas content qu il ne vous ait vu. On ne l avait jamais vue si contente. Avoir l esprit content … Dictionnaire de l'Academie Francaise, 7eme edition (1835)
CONTENT, ENTE — adj. Qui a l’esprit satisfait. Vivre content. Il a le coeur content. Il ne sera content que lorsqu’il vous aura vu. On ne l’avait jamais vue si contente. Par extension, Avoir l’air content, le visage content. être content de quelqu’un, être… … Dictionnaire de l'Academie Francaise, 8eme edition (1935)
Non-metallic inclusions — are chemical compounds and nonmetals that are present in steel and alloys. They are the product of chemical reactions, physical effects, and contamination that occurs during the melting and pouring process. These inclusions are categorized by… … Wikipedia
Non-nude pornography — Non nude pornography, also called NN or simply non nude , is a genre of photography which contains sexually suggestive images of human subjects intended to arouse, but never complete nudity. The genre is closely tied to certain online communities … Wikipedia
content — Content, AEquus, Contentus. Estre content de ce qu on a, Continere se finibus rerum suarum. Estre content, Magnitudinem animi adhibere rei alicui. Estre content de perdre du sien, Concedere de iure suo. Je suis, ou J en suis content, Per me licet … Thresor de la langue françoyse
Перевод: с русского на английский
с английского на русский- С английского на:
- Русский
- С русского на:
- Все языки
- Английский
- Немецкий
- Французский