Перевод: со всех языков на английский

с английского на все языки

Maudslay

  • 1 Maudslay, Henry

    [br]
    b. 22 August 1771 Woolwich, Kent, England
    d. 15 February 1831 Lambeth, London, England
    [br]
    English precision toolmaker and engineer.
    [br]
    Henry Maudslay was the third son of an ex-soldier and storekeeper at Woolwich Arsenal. At the age of 12 he was employed at the Arsenal filling cartridges; two years later he was transferred to the woodworking department, adjacent to the smithy, to which he moved when 15 years old. He was a rapid learner, and three years later Joseph Bramah took him on for the construction of special tools required for the mass-production of his locks. Maudslay was thus employed for the next eight years. He became Bramah's foreman, married his housekeeper, Sarah Tindale, and, unable to better himself, decided to leave and set up on his own. He soon outgrew his first premises in Wells Street and moved to Margaret Street, off Oxford Street, where some examples of his workmanship were displayed in the window. These caught the attention of a visiting Frenchman, de Bacquancourt; he was a friend of Marc Isambard Brunel, who was then in the early stages of designing the block-making machinery later installed at Portsmouth dockyard.
    Brunel wanted first a set of working models, as he did not think that the Lords of the Admiralty would be capable of understanding engineering drawings; Maudslay made these for him within the next two years. Sir Samuel Bentham, Inspector-General of Naval Works, agreed that Brunel's system was superior to the one that he had gone some way in developing; the Admiralty approved, and an order was placed for the complete plant. The manufacture of the machinery occupied Maudslay for the next six years; he was assisted by a draughtsman whom he took on from Portsmouth dockyard, Joshua Field (1786–1863), who became his partner in Maudslay, Son and Field. There were as many as eighty employees at Margaret Street until, in 1810, larger premises became necessary and a new works was built at Lambeth Marsh where, eventually, there were up to two hundred workers. The new factory was flanked by two houses, one of which was occupied by Maudslay, the other by Field. The firm became noted for its production of marine steam-engines, notably Maudslay's table engine which was first introduced in 1807.
    Maudslay was a consummate craftsman who was never happier than when working at his bench or at a machine tool; he was also one of the first engineers to appreciate the virtues of standardization. Evidence of this appreciation is to be found in his work in the development of the Bramah lock and then on the machine tools for the manufacture of ship's blocks to Marc Brunel's designs; possibly his most important contribution was the invention in 1797 of the metal lathe. He made a number of surface plates of the finest quality. The most celebrated of his numerous measuring devices was a micrometer-based machine which he termed his "Lord Chancellor" because, in the machine shop, it represented the "final court of appeal", measuring to one-thousandth of an inch.
    [br]
    Further Reading
    1934–5, "Maudslay, Sons \& Field as general engineers", Transactions of the Newcomen Society 15, London.
    1963, Engineering Heritage, Vol. 1, London: Institution of Mechanical Engineers. L.T.C.Rolt, 1965, Tools for the Job, London: Batsford.
    W.Steeds, 1969, A History of Machine Tools 1700–1910, Oxford: Oxford University Press.
    IMcN

    Biographical history of technology > Maudslay, Henry

  • 2 Field, Joshua

    [br]
    b. 1786 Hackney, London, England
    d. 11 August 1863 Balham Hill, Surrey, England
    [br]
    English mechanical engineer, co-founder of the Institution of Civil Engineers.
    [br]
    Joshua Field was educated at a boarding school in Essex until the age of 16, when he obtained employment at the Royal Dockyards at Portsmouth under the Chief Mechanical Superintendent, Simon Goodrich (1773–1847), and later in the drawing office at the Admiralty in Whitehall. At this time, machinery for the manufacture of ships' blocks was being made for the Admiralty by Henry Maudslay, who was in need of a competent draughtsman, and Goodrich recommended Joshua Field. This was the beginning of Field's long association with Maudslay; he later became a partner in the firm which was for many years known as Maudslay, Sons \& Field. They undertook a variety of mechanical engineering work but were renowned for marine steam engines, with Field being responsible for much of the design work in the early years. Joshua Field was the eldest of the eight young men who in 1818 founded the Institution of Civil Engineers; he was the first Chairman of the Institution and later became a vice-president. He was the only one of the founders to be elected President and was the first mechanical engineer to hold that office. James Nasmyth in his autobiography relates that Joshua Field kept a methodical account of his technical discussions in a series of note books which were later indexed. Some of these diaries have survived, and extracts from the notes he made on a tour of the industrial areas of the Midlands and the North West in 1821 have been published.
    [br]
    Principal Honours and Distinctions
    FRS 1836. President, Institution of Civil Engineers 1848–9. Member, Smeatonian Society of Civil Engineers 1835; President 1848.
    Bibliography
    1925–6, "Joshua Field's diary of a tour in 1821 through the Midlands", introd. and notes J.W.Hall, Transactions of the Newcomen Society 6:1–41.
    1932–3, "Joshua Field's diary of a tour in 1821 through the provinces", introd. and notes E.C. Smith, Transactions of the Newcomen Society 13:15–50.
    RTS

    Biographical history of technology > Field, Joshua

  • 3 Nasmyth, James Hall

    [br]
    b. 19 August 1808 Edinburgh, Scotland
    d. 7 May 1890 London, England
    [br]
    Scottish mechanical engineer and inventor of the steam-hammer.
    [br]
    James Nasmyth was the youngest son of Alexander Nasmyth (1758–1840), the portrait and landscape painter. According to his autobiography he was named James Hall after his father's friend, the geologist Sir James Hall (1761–1832), but he seems never to have used his second name in official documents. He received an elementary education at Edinburgh High School, but left at the age of 12. He attended evening classes at the Edinburgh School of Arts for the instruction of Mechanics between 1821 and 1825, and gained experience as a mechanic at an early age in his father's workshop. He shared these early experiences with his brother George, who was only a year or so older, and in the 1820s the brothers built several model steam engines and a steam-carriage capable of carrying eight passengers on the public roads. In 1829 Nasmyth obtained a position in London as personal assistant to Henry Maudslay, and after Maudslay's death in February 1831 he remained with Maudslay's partner, Joshua Field, for a short time. He then returned to Edinburgh, where he and his brother George started in a small way as general engineers. In 1834 they moved to a small workshop in Manchester, and in 1836, with the aid of financial backing from some Manchester businessmen, they established on a site at Patricroft, a few miles from the city, the works which became known as the Bridgewater Foundry. They were soon joined by a third partner, Holbrook Gaskell (1813–1909), who looked after the administration of the business, the firm then being known as Nasmyths Gaskell \& Co. They specialized in making machine tools, and Nasmyth invented many improvements so that they soon became one of the leading manufacturers in this field. They also made steam locomotives for the rapidly developing railways. James Nasmyth's best-known invention was the steam-hammer, which dates from 1839 but was not patented until 1842. The self-acting control gear was probably the work of Robert Wilson and ensured the commercial success of the invention. George Nasmyth resigned from the partnership in 1843 and in 1850 Gaskell also resigned, after which the firm continued as James Nasmyth \& Co. James Nasmyth himself retired at the end of 1856 and went to live at Penshurst, Kent, in a house which he named "Hammerfield" where he devoted his time mainly to his hobby of astronomy. Robert Wilson returned to become Managing Partner of the firm, which later became Nasmyth, Wilson \& Co. and retained that style until its closure in 1940. Nasmyth's claim to be the sole inventor of the steam-hammer has been disputed, but his patent of 1842 was not challenged and the fourteen-year monopoly ensured the prosperity of the business so that he was able to retire at the age of 48. At his death in 1890 he left an estate valued at £243,805.
    [br]
    Bibliography
    1874, with J.Carpenter, The Moon Considered as a Planet, a World, and a Satellite, London.
    1883, Autobiography, ed. Samuel Smiles, London.
    Further Reading
    R.Wailes, 1963, "James Nasmyth—Artist's Son", Engineering Heritage, vol. I, London, 106–11 (a short account).
    J.A.Cantrell, 1984, James Nasmyth and the Bridgewater Foundry: A Study of Entrepreneurship in the Early Engineering Industry, Manchester (a full-length critical study).
    ——1984–5, "James Nasmyth and the steam hammer", Transactions of the Newcomen Society 56:133–8.
    RTS

    Biographical history of technology > Nasmyth, James Hall

  • 4 Bramah, Joseph

    [br]
    b. 2 April 1749 Stainborough, Yorkshire, England
    d. 9 December 1814 Pimlico, London, England
    [br]
    English inventor of the second patented water-closet, the beer-engine, the Bramah lock and, most important, the hydraulic press.
    [br]
    Bramah was the son of a tenant farmer and was educated at the village school before being apprenticed to a local carpenter, Thomas Allot. He walked to London c.1773 and found work with a Mr Allen that included the repair of some of the comparatively rare water-closets of the period. He invented and patented one of his own, which was followed by a water cock in 1783. His next invention, a greatly improved lock, involved the devising of a number of special machine tools, for it was one of the first devices involving interchangeable components in its manufacture. In this he had the help of Henry Maudslay, then a young and unknown engineer, who became Bramah's foreman before setting up business on his own. In 1784 he moved his premises from Denmark Street, St Giles, to 124 Piccadilly, which was later used as a showroom when he set up a factory in Pimlico. He invented an engine for putting out fires in 1785 and 1793, in effect a reciprocating rotary-vane pump. He undertook the refurbishment and modernization of Norwich waterworks c.1793, but fell out with Robert Mylne, who was acting as Consultant to the Norwich Corporation and had produced a remarkably vague specification. This was Bramah's only venture into the field of civil engineering.
    In 1797 he acted as an expert witness for Hornblower \& Maberley in the patent infringement case brought against them by Boulton and Watt. Having been cut short by the judge, he published his proposed evidence in "Letter to the Rt Hon. Sir James Eyre, Lord Chief Justice of the Common Pleas…etc". In 1795 he was granted his most important patent, based on Pascal's Hydrostatic Paradox, for the hydraulic press which also incorporated the concept of hydraulics for the transmission of both power and motion and was the foundation of the whole subsequent hydraulic industry. There is no truth in the oft-repeated assertion originating from Samuel Smiles's Industrial Biography (1863) that the hydraulic press could not be made to work until Henry Maudslay invented the self-sealing neck leather. Bramah used a single-acting upstroking ram, sealed only at its base with a U-leather. There was no need for a neck leather.
    He also used the concept of the weight-loaded, in this case as a public-house beer-engine. He devised machinery for carbonating soda water. The first banknote-numbering machine was of his design and was bought by the Bank of England. His development of a machine to cut twelve nibs from one goose quill started a patent specification which ended with the invention of the fountain pen, patented in 1809. His coach brakes were an innovation that was followed bv a form of hydropneumatic carriage suspension that was somewhat in advance of its time, as was his patent of 1812. This foresaw the introduction of hydraulic power mains in major cities and included the telescopic ram and the air-loaded accumulator.
    In all Joseph Bramah was granted eighteen patents. On 22 March 1813 he demonstrated a hydraulic machine for pulling up trees by the roots in Hyde Park before a large crowd headed by the Duke of York. Using the same machine in Alice Holt Forest in Hampshire to fell timber for ships for the Navy, he caught a chill and died soon after at his home in Pimlico.
    [br]
    Bibliography
    1778, British patent no. 1177 (water-closet). 1784, British patent no. 1430 (Bramah Lock). 1795, British patent no. 2045 (hydraulic press). 1809, British patent no. 3260 (fountain pen). 1812, British patent no. 3611.
    Further Reading
    I.McNeil, 1968, Joseph Bramah, a Century of Invention.
    S.Smiles, 1863, Industrial Biography.
    H.W.Dickinson, 1942, "Joseph Bramah and his inventions", Transactions of the Newcomen Society 22:169–86.
    IMcN

    Biographical history of technology > Bramah, Joseph

  • 5 Brunel, Sir Marc Isambard

    [br]
    b. 26 April 1769 Hacqueville, Normandy, France
    d. 12 December 1849 London, England
    [br]
    French (naturalized American) engineer of the first Thames Tunnel.
    [br]
    His mother died when he was 7 years old, a year later he went to college in Gisors and later to the Seminary of Sainte-Nicaise at Rouen. From 1786 to 1792 he followed a career in the French navy as a junior officer. In Rouen he met Sophie Kingdom, daughter of a British Navy contractor, whom he was later to marry. In July 1793 Marc sailed for America from Le Havre. He was to remain there for six years, and became an American citizen, occupying himself as a land surveyor and as an architect. He became Chief Engineer to the City of New York. At General Hamilton's dinner table he learned that the British Navy used over 100,000 ship's blocks every year; this started him thinking how the manufacture of blocks could be mechanized. He roughed out a set of machines to do the job, resigned his post as Chief Engineer and sailed for England in February 1799.
    In London he was shortly introduced to Henry Maudslay, to whom he showed the drawings of his proposed machines and with whom he placed an order for their manufacture. The first machines were completed by mid-1803. Altogether Maudslay produced twenty-one machines for preparing the shells, sixteen for preparing the sheaves and eight other machines.
    In February 1809 he saw troops at Portsmouth returning from Corunna, the victors, with their lacerated feet bound in rags. He resolved to mechanize the production of boots for the Army and, within a few months, had twenty-four disabled soldiers working the machinery he had invented and installed near his Battersea sawmill. The plant could produce 400 pairs of boots and shoes a day, selling at between 9s. 6d. and 20s. a pair. One day in 1817 at Chatham dockyard he observed a piece of scrap keel timber, showing the ravages wrought by the shipworm, Teredo navalis, which, with its proboscis protected by two jagged concave triangular shells, consumes, digests and finally excretes the ship's timbers as it gnaws its way through them. The excreted material provided material for lining the walls of the tunnel the worm had drilled. Brunel decided to imitate the action of the shipworm on a large scale: the Thames Tunnel was to occupy Marc Brunel for most of the remainder of his life. Boring started in March 1825 and was completed by March 1843. The project lay dormant for long periods, but eventually the 1,200 ft (366 m)-long tunnel was completed. Marc Isambard Brunel died at the age of 80 and was buried at Kensal Green cemetery.
    [br]
    Principal Honours and Distinctions
    FRS 1814. Vice-President, Royal Society 1832.
    Further Reading
    P.Clements, 1970, Marc Isambard Brunel, London: Longmans Green.
    IMcN

    Biographical history of technology > Brunel, Sir Marc Isambard

  • 6 Izod, Edwin Gilbert

    SUBJECT AREA: Metallurgy
    [br]
    b. 17 July 1876 Portsmouth, England
    d. 2 October 1946 England
    [br]
    English engineer who devised the notched-bar impact test named after him.
    [br]
    After a general education at Vickery's School at Southsea, Izod (who pronounced his name Izzod, not Izod) started his career as a premium apprentice at the works of Maudslay, Sons and Field at Lambeth in January 1893. When in 1995 he was engaged in the installation of machinery in HMS Renown at Pembroke, he gained some notoriety for his temerity in ordering Rear Admiral J.A.Fisher, who had no pass, out of the main engine room. He subsequently worked at Portsmouth Dockyard where the battleships Caesar and Gladiator were being engined by Maudslay's. From 1898 to 1900 Izod worked as a Demonstrator in the laboratories of University College London, and he was then engaged by Captain H. Riall Sankey as his Personal Assistant at the Rugby works of Willans and Robinson. Soon after going to Rugby, Izod was asked by Sankey to examine a failed gun barrel and try to ascertain why it burst in testing. Conventional mechanical testing did not reveal any significant differences in the properties of good and bad material. Izod found, however, that, when specimens from the burst barrel were notched, gripped in a vice, and then struck with a hammer they broke in a brittle manner, whereas sounder material merely bent plastically. From these findings his well-known notched-bar impact test emerged. His address to the British Association in September 1903 described the test and his testing machine, and was subsequently published in Engineering. Izod never claimed any priority for this method of test, and generously acknowledged his predecessors in this field, Swedenborg, Fremont, Arnold and Bent Russell. The Izod Test was rapidly adopted by the English-speaking world, although Izod himself, being a busy man, did little to publicize his work, which was introduced to the engineering world largely through the efforts of Captain Sankey. Izod became Assistant Managing Director at Willans, and in 1910 was appointed Chief Consulting Mechanical and Electrical Engineer to the Central Mining Corporation at Johannesburg. He became Managing Director of the Rand Mines in 1918, and returned to the UK in 1927 to become the Managing Director of Weymann Motor Bodies Ltd of Addlestone. As Chairman of this company he extended its activitiesconsiderably.
    [br]
    Principal Honours and Distinctions
    MBE. Member of the Iron and Steel Institute.
    Further Reading
    1903, "Testing brittleness of steel", Engineering (25 September): 431–2.
    ASD

    Biographical history of technology > Izod, Edwin Gilbert

  • 7 Brunel, Isambard Kingdom

    [br]
    b. 9 April 1806 Portsea, Hampshire, England
    d. 15 September 1859 18 Duke Street, St James's, London, England
    [br]
    English civil and mechanical engineer.
    [br]
    The son of Marc Isambard Brunel and Sophia Kingdom, he was educated at a private boarding-school in Hove. At the age of 14 he went to the College of Caen and then to the Lycée Henri-Quatre in Paris, after which he was apprenticed to Louis Breguet. In 1822 he returned from France and started working in his father's office, while spending much of his time at the works of Maudslay, Sons \& Field.
    From 1825 to 1828 he worked under his father on the construction of the latter's Thames Tunnel, occupying the position of Engineer-in-Charge, exhibiting great courage and presence of mind in the emergencies which occurred not infrequently. These culminated in January 1828 in the flooding of the tunnel and work was suspended for seven years. For the next five years the young engineer made abortive attempts to find a suitable outlet for his talents, but to little avail. Eventually, in 1831, his design for a suspension bridge over the River Avon at Clifton Gorge was accepted and he was appointed Engineer. (The bridge was eventually finished five years after Brunel's death, as a memorial to him, the delay being due to inadequate financing.) He next planned and supervised improvements to the Bristol docks. In March 1833 he was appointed Engineer of the Bristol Railway, later called the Great Western Railway. He immediately started to survey the route between London and Bristol that was completed by late August that year. On 5 July 1836 he married Mary Horsley and settled into 18 Duke Street, Westminster, London, where he also had his office. Work on the Bristol Railway started in 1836. The foundation stone of the Clifton Suspension Bridge was laid the same year. Whereas George Stephenson had based his standard railway gauge as 4 ft 8½ in (1.44 m), that or a similar gauge being usual for colliery wagonways in the Newcastle area, Brunel adopted the broader gauge of 7 ft (2.13 m). The first stretch of the line, from Paddington to Maidenhead, was opened to traffic on 4 June 1838, and the whole line from London to Bristol was opened in June 1841. The continuation of the line through to Exeter was completed and opened on 1 May 1844. The normal time for the 194-mile (312 km) run from Paddington to Exeter was 5 hours, at an average speed of 38.8 mph (62.4 km/h) including stops. The Great Western line included the Box Tunnel, the longest tunnel to that date at nearly two miles (3.2 km).
    Brunel was the engineer of most of the railways in the West Country, in South Wales and much of Southern Ireland. As railway networks developed, the frequent break of gauge became more of a problem and on 9 July 1845 a Royal Commission was appointed to look into it. In spite of comparative tests, run between Paddington-Didcot and Darlington-York, which showed in favour of Brunel's arrangement, the enquiry ruled in favour of the narrow gauge, 274 miles (441 km) of the former having been built against 1,901 miles (3,059 km) of the latter to that date. The Gauge Act of 1846 forbade the building of any further railways in Britain to any gauge other than 4 ft 8 1/2 in (1.44 m).
    The existence of long and severe gradients on the South Devon Railway led to Brunel's adoption of the atmospheric railway developed by Samuel Clegg and later by the Samuda brothers. In this a pipe of 9 in. (23 cm) or more in diameter was laid between the rails, along the top of which ran a continuous hinged flap of leather backed with iron. At intervals of about 3 miles (4.8 km) were pumping stations to exhaust the pipe. Much trouble was experienced with the flap valve and its lubrication—freezing of the leather in winter, the lubricant being sucked into the pipe or eaten by rats at other times—and the experiment was abandoned at considerable cost.
    Brunel is to be remembered for his two great West Country tubular bridges, the Chepstow and the Tamar Bridge at Saltash, with the latter opened in May 1859, having two main spans of 465 ft (142 m) and a central pier extending 80 ft (24 m) below high water mark and allowing 100 ft (30 m) of headroom above the same. His timber viaducts throughout Devon and Cornwall became a feature of the landscape. The line was extended ultimately to Penzance.
    As early as 1835 Brunel had the idea of extending the line westwards across the Atlantic from Bristol to New York by means of a steamship. In 1836 building commenced and the hull left Bristol in July 1837 for fitting out at Wapping. On 31 March 1838 the ship left again for Bristol but the boiler lagging caught fire and Brunel was injured in the subsequent confusion. On 8 April the ship set sail for New York (under steam), its rival, the 703-ton Sirius, having left four days earlier. The 1,340-ton Great Western arrived only a few hours after the Sirius. The hull was of wood, and was copper-sheathed. In 1838 Brunel planned a larger ship, some 3,000 tons, the Great Britain, which was to have an iron hull.
    The Great Britain was screwdriven and was launched on 19 July 1843,289 ft (88 m) long by 51 ft (15.5 m) at its widest. The ship's first voyage, from Liverpool to New York, began on 26 August 1845. In 1846 it ran aground in Dundrum Bay, County Down, and was later sold for use on the Australian run, on which it sailed no fewer than thirty-two times in twenty-three years, also serving as a troop-ship in the Crimean War. During this war, Brunel designed a 1,000-bed hospital which was shipped out to Renkioi ready for assembly and complete with shower-baths and vapour-baths with printed instructions on how to use them, beds and bedding and water closets with a supply of toilet paper! Brunel's last, largest and most extravagantly conceived ship was the Great Leviathan, eventually named The Great Eastern, which had a double-skinned iron hull, together with both paddles and screw propeller. Brunel designed the ship to carry sufficient coal for the round trip to Australia without refuelling, thus saving the need for and the cost of bunkering, as there were then few bunkering ports throughout the world. The ship's construction was started by John Scott Russell in his yard at Millwall on the Thames, but the building was completed by Brunel due to Russell's bankruptcy in 1856. The hull of the huge vessel was laid down so as to be launched sideways into the river and then to be floated on the tide. Brunel's plan for hydraulic launching gear had been turned down by the directors on the grounds of cost, an economy that proved false in the event. The sideways launch with over 4,000 tons of hydraulic power together with steam winches and floating tugs on the river took over two months, from 3 November 1857 until 13 January 1858. The ship was 680 ft (207 m) long, 83 ft (25 m) beam and 58 ft (18 m) deep; the screw was 24 ft (7.3 m) in diameter and paddles 60 ft (18.3 m) in diameter. Its displacement was 32,000 tons (32,500 tonnes).
    The strain of overwork and the huge responsibilities that lay on Brunel began to tell. He was diagnosed as suffering from Bright's disease, or nephritis, and spent the winter travelling in the Mediterranean and Egypt, returning to England in May 1859. On 5 September he suffered a stroke which left him partially paralysed, and he died ten days later at his Duke Street home.
    [br]
    Further Reading
    L.T.C.Rolt, 1957, Isambard Kingdom Brunel, London: Longmans Green. J.Dugan, 1953, The Great Iron Ship, Hamish Hamilton.
    IMcN

    Biographical history of technology > Brunel, Isambard Kingdom

  • 8 Clement (Clemmet), Joseph

    [br]
    bapt. 13 June 1779 Great Asby, Westmoreland, England
    d. 28 February 1844 London, England
    [br]
    English machine tool builder and inventor.
    [br]
    Although known as Clement in his professional life, his baptism at Asby and his death were registered under the name of Joseph Clemmet. He worked as a slater until the age of 23, but his interest in mechanics led him to spend much of his spare time in the local blacksmith's shop. By studying books on mechanics borrowed from his cousin, a watchmaker, he taught himself and with the aid of the village blacksmith made his own lathe. By 1805 he was able to give up the slating trade and find employment as a mechanic in a small factory at Kirkby Stephen. From there he moved to Carlisle for two years, and then to Glasgow where, while working as a turner, he took lessons in drawing; he had a natural talent and soon became an expert draughtsman. From about 1809 he was employed by Leys, Mason \& Co. of Aberdeen designing and making power looms. For this work he built a screw-cutting lathe and continued his self-education. At the end of 1813, having saved about £100, he made his way to London, where he soon found employment as a mechanic and draughtsman. Within a few months he was engaged by Joseph Bramah, and after a trial period a formal agreement dated 1 April 1814 was made by which Clement was to be Chief Draughtsman and Superintendent of Bramah's Pimlico works for five years. However, Bramah died in December 1814 and after his sons took over the business it was agreed that Clement should leave before the expiry of the five-year period. He soon found employment as Chief Draughtsman with Henry Maudslay \& Co. By 1817 Clement had saved about £500, which enabled him to establish his own business at Prospect Place, Newington Butts, as a mechanical draughtsman and manufacturer of high-class machinery. For this purpose he built lathes for his own use and invented various improvements in their detailed design. In 1827 he designed and built a facing lathe which incorporated an ingenious system of infinitely variable belt gearing. He had also built his own planing machine by 1820 and another, much larger one in 1825. In 1828 Clement began making fluted taps and dies and standardized the screw threads, thus anticipating on a small scale the national standards later established by Sir Joseph Whitworth. Because of his reputation for first-class workmanship, Clement was in the 1820s engaged by Charles Babbage to carry out the construction of his first Difference Engine.
    [br]
    Principal Honours and Distinctions
    Society of Arts Gold Medal 1818 (for straightline mechanism), 1827 (for facing lathe); Silver Medal 1828 (for lathe-driving device).
    Bibliography
    Further Reading
    S.Smiles, 1863, Industrial Biography, London, reprinted 1967, Newton Abbot (virtually the only source of biographical information on Clement).
    L.T.C.Rolt, 1965, Tools for the Job, London (repub. 1986); W.Steeds, 1969, A History of Machine Tools 1700–1910, Oxford (both contain descriptions of his machine tools).
    RTS

    Biographical history of technology > Clement (Clemmet), Joseph

  • 9 Kirk, Alexander Carnegie

    [br]
    b. c.1830 Barry, Angus, Scotland
    d. 5 October 1892 Glasgow, Scotland
    [br]
    Scottish marine engineer, advocate of multiple-expansion in steam reciprocating engines.
    [br]
    Kirk was a son of the manse, and after attending school at Arbroath he proceeded to Edinburgh University. Following graduation he served an apprenticeship at the Vulcan Foundry, Glasgow, before serving first as Chief Draughtsman with the Thames shipbuilders and engineers Maudslay Sons \& Field, and later as Engineer of Paraffin Young's Works at Bathgate and West Calder in Lothian. He was credited with the inventions of many ingenious appliances and techniques for improving production in these two establishments. About 1866 Kirk returned to Glasgow as Manager of the Cranstonhill Engine Works, then moved to Elder's Shipyard (later known as the Fairfield Company) as Engineering Manager. There he made history in producing the world's first triple-expansion engines for the single-screw steamship Propontis in 1874. That decade was to confirm the Clyde's leading role as shipbuilders to the world and to establish the iron ship with efficient reciprocating machinery as the workhorse of the British Merchant Marine. Upon the death of the great Clyde shipbuilder Robert Napier in 1876, Kirk and others took over as partners in the shipbuilding yard and engine shops of Robert Napier \& Sons. There in 1881 they built a ship that is acknowledged as one of the masterpieces of British shipbuilding: the SS Aberdeen for George Thompson's Aberdeen Line to the Far East. In this ship the fullest advantage was taken of high steam temperatures and pressures, which were expanded progressively in a three-cylinder configuration. The Aberdeen, in its many voyages from London to China and Japan, was to prove the efficiency of these engines that had been so carefully designed in Glasgow. In the following years Dr Kirk (he has always been known as Doctor, although his honorary LLD was only awarded by Glasgow University in 1888) persuaded the Admiralty and several shipping companies to accept not only triple-expansion machinery but also the use of mild steel in ship construction. The successful SS Parisian, built for the Allan Line of Glasgow, was one of these pioneer ships.
    [br]
    Principal Honours and Distinctions
    Fellow of the Royal Society of Edinburgh.
    FMW

    Biographical history of technology > Kirk, Alexander Carnegie

  • 10 Mechanical, pneumatic and hydraulic engineering

    [br]
    Clement, Joseph
    Du Shi
    Du Yu
    Gongshu Pan
    Li Bing
    Ma Jun
    Murdock, William
    Somerset, Edward

    Biographical history of technology > Mechanical, pneumatic and hydraulic engineering

  • 11 Mitchell, Charles

    SUBJECT AREA: Ports and shipping
    [br]
    b. 20 May 1820 Aberdeen, Scotland
    d. 22 August 1895 Jesmond, Newcastle upon Tyne, England
    [br]
    Scottish industrialist whose Tyneside shipyard was an early constituent of what became the Vickers Shipbuilding Group.
    [br]
    Mitchell's early education commenced at Ledingham's Academy, Correction Wynd, Aberdeen, and from there he became a premium apprentice at the Footdee Engineering Works of Wm Simpson \& Co. Despite being employed for around twelve hours each day, Mitchell matriculated at Marischal College (now merged with King's College to form the University of Aberdeen). He did not graduate, although in 1840 he won the chemistry prize. On the completion of his apprenticeship, like Andrew Leslie (founder of Hawthorn Leslie) and other young Aberdonians he moved to Tyneside, where most of his working life was spent. From 1842 until 1844 he worked as a draughtsman for his friend Coutts, who had a shipyard at Low Walker, before moving on to the drawing offices of Maudslay Sons and Field of London, then one of the leading shipbuilding and engineering establishments in the UK. While in London he studied languages, acquiring a skill that was to stand him in good stead in later years. In 1852 he returned to the North East and set up his own iron-ship building yard at Low Walker near Newcastle. Two years later he married Anne Swan, the sister of the two young men who were to found the company now known as Swan Hunter Ltd. The Mitchell yard grew in size and reputation and by the 1850s he was building for the Russian Navy and Merchant Marine as well as advising the Russians on their shipyards in St Petersburg. In 1867 the first informal business arrangement was concluded with Armstrongs for the supply of armaments for ships; this led to increased co-operation and ultimately in 1882 to the merger of the two shipyards as Sir W.G.Armstrong Mitchell \& Co. At the time of the merger, Mitchell had launched 450 ships in twenty-nine years. In 1886 the new company built the SS Gluckauf, the world's first bulk oil tanker. After ill health in 1865 Mitchell reduced his workload and lived for a while in Surbiton, London, but returned to Tyneside to a new house at Jesmond. In his later years he was a generous benefactor to many good causes in Tyneside and Aberdeen, to the Church and to the University of Aberdeen.
    [br]
    Further Reading
    D.F.McGuire, 1988, Charles Mitchell 1820–1895, Victorian Shipbuilder, Newcastle upon Tyne: City Libraries and Arts.
    J.D.Scott, 1962, Vickers. A History, London: Weidenfeld \& Nicolson (a recommended overview of the Vickers Group).
    FMW

    Biographical history of technology > Mitchell, Charles

  • 12 Roberts, Richard

    [br]
    b. 22 April 1789 Carreghova, Llanymynech, Montgomeryshire, Wales
    d. 11 March 1864 London, England
    [br]
    Welsh mechanical engineer and inventor.
    [br]
    Richard Roberts was the son of a shoemaker and tollkeeper and received only an elementary education at the village school. At the age of 10 his interest in mechanics was stimulated when he was allowed by the Curate, the Revd Griffith Howell, to use his lathe and other tools. As a young man Roberts acquired a considerable local reputation for his mechanical skills, but these were exercised only in his spare time. For many years he worked in the local limestone quarries, until at the age of 20 he obtained employment as a pattern-maker in Staffordshire. In the next few years he worked as a mechanic in Liverpool, Manchester and Salford before moving in 1814 to London, where he obtained employment with Henry Maudslay. In 1816 he set up on his own account in Manchester. He soon established a reputation there for gear-cutting and other general engineering work, especially for the textile industry, and by 1821 he was employing about twelve men. He built machine tools mainly for his own use, including, in 1817, one of the first planing machines.
    One of his first inventions was a gas meter, but his first patent was obtained in 1822 for improvements in looms. His most important contribution to textile technology was his invention of the self-acting spinning mule, patented in 1825. The normal fourteen-year term of this patent was extended in 1839 by a further seven years. Between 1826 and 1828 Roberts paid several visits to Alsace, France, arranging cottonspinning machinery for a new factory at Mulhouse. By 1826 he had become a partner in the firm of Sharp Brothers, the company then becoming Sharp, Roberts \& Co. The firm continued to build textile machinery, and in the 1830s it built locomotive engines for the newly created railways and made one experimental steam-carriage for use on roads. The partnership was dissolved in 1843, the Sharps establishing a new works to continue locomotive building while Roberts retained the existing factory, known as the Globe Works, where he soon after took as partners R.G.Dobinson and Benjamin Fothergill (1802–79). This partnership was dissolved c. 1851, and Roberts continued in business on his own for a few years before moving to London as a consulting engineer.
    During the 1840s and 1850s Roberts produced many new inventions in a variety of fields, including machine tools, clocks and watches, textile machinery, pumps and ships. One of these was a machine controlled by a punched-card system similar to the Jacquard loom for punching rivet holes in plates. This was used in the construction of the Conway and Menai Straits tubular bridges. Roberts was granted twenty-six patents, many of which, before the Patent Law Amendment Act of 1852, covered more than one invention; there were still other inventions he did not patent. He made his contribution to the discussion which led up to the 1852 Act by publishing, in 1830 and 1833, pamphlets suggesting reform of the Patent Law.
    In the early 1820s Roberts helped to establish the Manchester Mechanics' Institute, and in 1823 he was elected a member of the Literary and Philosophical Society of Manchester. He frequently contributed to their proceedings and in 1861 he was made an Honorary Member. He was elected a Member of the Institution of Civil Engineers in 1838. From 1838 to 1843 he served as a councillor of the then-new Municipal Borough of Manchester. In his final years, without the assistance of business partners, Roberts suffered financial difficulties, and at the time of his death a fund for his aid was being raised.
    [br]
    Principal Honours and Distinctions
    Member, Institution of Civil Engineers 1838.
    Further Reading
    There is no full-length biography of Richard Roberts but the best account is H.W.Dickinson, 1945–7, "Richard Roberts, his life and inventions", Transactions of the Newcomen Society 25:123–37.
    W.H.Chaloner, 1968–9, "New light on Richard Roberts, textile engineer (1789–1864)", Transactions of the Newcomen Society 41:27–44.
    RTS

    Biographical history of technology > Roberts, Richard

  • 13 Whitworth, Sir Joseph

    [br]
    b. 21 December 1803 Stockport, Cheshire, England
    d. 22 January 1887 Monte Carlo, Monaco
    [br]
    English mechanical engineer and pioneer of precision measurement.
    [br]
    Joseph Whitworth received his early education in a school kept by his father, but from the age of 12 he attended a school near Leeds. At 14 he joined his uncle's mill near Ambergate, Derbyshire, to learn the business of cotton spinning. In the four years he spent there he realized that he was more interested in the machinery than in managing a cotton mill. In 1821 he obtained employment as a mechanic with Crighton \& Co., Manchester. In 1825 he moved to London and worked for Henry Maudslay and later for the Holtzapffels and Joseph Clement. After these years spent gaining experience, he returned to Manchester in 1833 and set up in a small workshop under a sign "Joseph Whitworth, Tool Maker, from London".
    The business expanded steadily and the firm made machine tools of all types and other engineering products including steam engines. From 1834 Whitworth obtained many patents in the fields of machine tools, textile and knitting machinery and road-sweeping machines. By 1851 the company was generally regarded as the leading manufacturer of machine tools in the country. Whitworth was a pioneer of precise measurement and demonstrated the fundamental mode of producing a true plane by making surface plates in sets of three. He advocated the use of the decimal system and made use of limit gauges, and he established a standard screw thread which was adopted as the national standard. In 1853 Whitworth visited America as a member of a Royal Commission and reported on American industry. At the time of the Crimean War in 1854 he was asked to provide machinery for manufacturing rifles and this led him to design an improved rifle of his own. Although tests in 1857 showed this to be much superior to all others, it was not adopted by the War Office. Whitworth's experiments with small arms led on to the construction of big guns and projectiles. To improve the quality of the steel used for these guns, he subjected the molten metal to pressure during its solidification, this fluid-compressed steel being then known as "Whitworth steel".
    In 1868 Whitworth established thirty annual scholarships for engineering students. After his death his executors permanently endowed the Whitworth Scholarships and distributed his estate of nearly half a million pounds to various educational and charitable institutions. Whitworth was elected an Associate of the Institution of Civil Engineers in 1841 and a Member in 1848 and served on its Council for many years. He was elected a Member of the Institution of Mechanical Engineers in 1847, the year of its foundation.
    [br]
    Principal Honours and Distinctions
    Baronet 1869. FRS 1857. President, Institution of Mechanical Engineers 1856, 1857 and 1866. Hon. LLD Trinity College, Dublin, 1863. Hon. DCL Oxford University 1868. Member of the Smeatonian Society of Civil Engineers 1864. Légion d'honneur 1868. Society of Arts Albert Medal 1868.
    Bibliography
    1858, Miscellaneous Papers on Mechanical Subjects, London; 1873, Miscellaneous Papers on Practical Subjects: Guns and Steel, London (both are collections of his papers to technical societies).
    1854, with G.Wallis, The Industry of the United States in Machinery, Manufactures, and
    Useful and Ornamental Arts, London.
    Further Reading
    F.C.Lea, 1946, A Pioneer of Mechanical Engineering: Sir Joseph Whitworth, London (a short biographical account).
    A.E.Musson, 1963, "Joseph Whitworth: toolmaker and manufacturer", Engineering Heritage, Vol. 1, London, 124–9 (a short biography).
    D.J.Jeremy (ed.), 1984–6, Dictionary of Business Biography, Vol. 5, London, 797–802 (a short biography).
    W.Steeds, 1969, A History of Machine Tools 1700–1910, Oxford (describes Whitworth's machine tools).
    RTS

    Biographical history of technology > Whitworth, Sir Joseph

См. также в других словарях:

  • Maudslay — von 1910 Maudslay ist ein ehemaliger britischer Hersteller von Automobilen und Nutzfahrzeugen aus Alcester in der Nähe von Coventry. 1902 gegründet, wurde die Produktion 1954 eingestellt, nachdem das Unternehmen 1948 Teil der Associated… …   Deutsch Wikipedia

  • Maudslay (disambiguation) — Maudslay may refer to: Maudslay Motor Company, a British vehicle maker Maudslay State Park, a Massachusetts state park People with the surname Maudslay: Alfred Maudslay (1850–1931), British colonial diplomat, explorer and archaeologist Algernon… …   Wikipedia

  • Maudslay State Park — For other uses, see Maudslay (disambiguation). Maudslay State Park Massachusetts State Park …   Wikipedia

  • Maudslay Motor Company — The Maudslay Motor Company was a British vehicle maker based in Coventry. It was founded in 1902 and continued until 1948 when it was taken over by the Associated Equipment Company (AEC) and along with Crossley Motors the new group was renamed… …   Wikipedia

  • Maudslay, Henry — born Aug. 22, 1771, Woolwich, Kent, Eng. died Feb. 14, 1831, London British engineer and inventor. The son of a workman, he became the inventor of machines fundamentally important to the Industrial Revolution, most outstandingly the metal lathe.… …   Universalium

  • Maudslay, Henry — (22 ago. 1771, Woolwich, Kent, Inglaterra–14 feb. 1831, Londres). Ingeniero e inventor británico. Hijo de un obrero, se convirtió en inventor de máquinas fundamentales para la Revolución industrial, siendo la más importante el torno para metales …   Enciclopedia Universal

  • Maudslay — /mawdz lee/, n. Henry, 1771 1831, English mechanical engineer. * * * …   Universalium

  • Maudslay — /mawdz lee/, n. Henry, 1771 1831, English mechanical engineer …   Useful english dictionary

  • МÓДСЛИ (Maudslay) Генри — (Maudslay) Генри (1771–1831), англ. механик и промышленник. Создал токарно винторезный станок с механизир. суппортом (1797), механизировал произ во винтов, гаек и др …   Биографический словарь

  • Henry Maudslay — Not to be confused with Henry Maudsley. Maudslay redirects here. For other uses, see Maudslay (disambiguation). Henry Maudslay Portrait by Pierre Louis ( Henri ) Grevedon 1827 Born 22 …   Wikipedia

  • Alfred Maudslay — Alfred Percival Maudslay (March 18, 1850 January 22, 1931) was a British colonial diplomat, explorer and archaeologist. He was one of the first Europeans to study Mayan ruins. Maudslay was born at Lower Norwood Lodge, near London, England into a… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»