Перевод: с английского на русский

с русского на английский

тест-порт

  • 1 TAP

    English-Russian information technology > TAP

  • 2 test access port

    English-Russian information technology > test access port

  • 3 test port

    1. тест-порт
    2. контрольное отверстие

     

    тест-порт
    Порт, позволяющий подключать зонд к оконечному проводнику либо через незащищенную концевую муфту, либо через гнездо с гелем, не снимая проводник и не нарушая изоляцию проводника (МСЭ-Т K.65).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

    3.8 контрольное отверстие (test port): Отверстие, обеспечивающее возможность испытания целостности оборудования с ограниченным пропуском газов после установки при проведении первичной проверки и технического обслуживания.

    Источник: ГОСТ Р МЭК 60079-15-2010: Взрывоопасные среды. Часть 15. Оборудование с видом взрывозащиты «n» оригинал документа

    Англо-русский словарь нормативно-технической терминологии > test port

  • 4 TAP

    1) порт доступа к [встроенным аппаратным] средствам тестирования ( СБИС), тест-порт
    согласно требованиям стандарта JTAG (IEEE 1149.1-1990), содержит пять внешних выводов: TDI (test data input) - вход тестовых данных, TDO (test data output) - выход тестовых данных, TMS (test mode select) - выбор тестового режима, ТСК (test clock) - тестовая синхронизация и необязательный (факультативный) вывод TRST (test reset) - асинхронный сброс
    см. тж. BSA, SAP
    2) порт доступа к сети для тестирования, сетевой тест-порт - см. network tap

    Англо-русский толковый словарь терминов и сокращений по ВТ, Интернету и программированию. > TAP

  • 5 test access port

    Универсальный англо-русский словарь > test access port

  • 6 TAP

    1. target acquisition panel - пульт управления аппаратурой обнаружения целей;
    2. telemetry acceptance pattern - диаграмма направленности телеметрической приёмной антенны;
    3. telemetry antenna pedestal - стойка телеметрической антенны;
    4. terminal access point - пункт терминального доступа;
    5. test access port - порт доступа к средствам тестирования интегральной схемы; тест-порт;
    6. thermally activated polarization - термовозбуждённая поляризация;
    7. time-sharing assembly program - ассемблер с разделением времени;
    8. tracking alarms processor - процессор ложных тревог системы слежения;
    9. transistor analysis program - программа анализа транзисторных схем;
    10. triammonium phosphate - триаммоний фосфат

    Англо-русский словарь технических аббревиатур > TAP

  • 7 TAP

    сокр. от Test Access Port

    English-Russian dictionary of computer science and programming > TAP

  • 8 network tap

    сетевой отвод, перехватчик трафика; сетевой тест-порт
    аппаратное устройство, подсоединяемое непосредственно к кабелю компьютерной сети и передающее копию сетевого трафика другому устройству; перехватчики трафика обычно использовались в системах обнаружения сетевых атак (NIDS), системах предотвращения вторжений (IPS), в сетевых пробниках и анализаторах (network analyzer). Сейчас подобное дублирование трафика делается анализатором портов коммутаторов (SPAN) и называется зеркалированием портов (port mirroring).
    Syn:

    Англо-русский толковый словарь терминов и сокращений по ВТ, Интернету и программированию. > network tap

  • 9 termination module

    1. оконечный модуль

     

    оконечный модуль
    Элемент, служащий для заканчивания кабельных проводников, и содержащий один или несколько следующих элементов:
    (1) разъем со снятой изоляцией или контакт проводника,
    (2) контакты,
    (3) тест-порт,
    (4) контакты по крайней мере для одного SPD.
    Оконечные модули могут быть "сухими" или "заполненными". В заполненном оконечном модуле находится смазка или гель для придания ему водостойкости.
    (МСЭ-Т K.65).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

    Англо-русский словарь нормативно-технической терминологии > termination module

  • 10 test system

    1. тест-система
    2. тест - система
    3. система технического диагностирования (контроля технического состояния)
    4. Система технического диагностирования
    5. система самоконтроля магнитного дефектоскопа
    6. система испытаний
    7. сигнальный и контрольный порт ( signal and control port)
    8. режим трафика
    9. режим ожидания
    10. порт сигналов и управления
    11. оборудование пользователя
    12. неречевое оборудование
    13. канал трафика
    14. испытательная система
    15. RXQUAL

     

    испытательная система
    испытательный комплекс


    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    Синонимы

    EN

     

    система испытаний
    Совокупность средств испытаний, исполнителей и определенных объектов испытаний, взаимодействующих по правилам, установленным соответствующей нормативной документацией.
    Пояснения
    Главным характерным признаком любой системы испытаний является наличие некоторой организованной совокупности исполнителей (организаций или отдельных лиц), располагающих необходимыми средствами испытаний и взаимодействующих с определенными объектами испытаний по установленным правилам. В этом смысле говорят, например, о системе испытании сельскохозяйственных машин, базирующейся на машиноиспытательных станциях Госкомсельхозтехники; о системе государственных испытаний средств измерений, базирующейся на метрологических институтах и регламентируемой соответствующими государственными стандартами; о системе государственных испытаний важнейших видов продукции, базирующейся на головных организациях по государственным испытаниям и регламентируемой соответствующим комплексом нормативных документов.
    [ ГОСТ 16504-81]

    EN


    FR


    Тематики

    EN

    FR

    • systeme d’essais

     

    система самоконтроля магнитного дефектоскопа
    Встроенная система, предназначенная для определения технического состояния и работоспособности магнитного дефектоскопа с помощью специальной программы.
    [Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения (справочное пособие). Москва 2003 г.]

    Тематики

    • виды (методы) и технология неразр. контроля

    EN

     

    система технического диагностирования (контроля технического состояния)
    система диагностирования (контроля)

    Совокупность средств, объекта и исполнителей, необходимая для проведения диагностирования (контроля) по правилам, установленным в технической документации.
    [ ГОСТ 20911-89]
    [РД 01.120.00-КТН-228-06]

    Тематики

    Синонимы

    EN

     

    тест-система
    тест-набор

    См. Diagnostic kit (набор диагностикумов).
    [Англо-русский глоссарий основных терминов по вакцинологии и иммунизации. Всемирная организация здравоохранения, 2009 г.]

    Тематики

    • вакцинология, иммунизация

    Синонимы

    EN

    19. Система испытаний*

    E. Test system

    F. Système d’essais

    Совокупность средств испытаний, исполнителей и определенных объектов испытаний, взаимодействующих по правилам, установленным соответствующей нормативной документацией

    Источник: ГОСТ 16504-81: Система государственных испытаний продукции. Испытания и контроль качества продукции. Основные термины и определения оригинал документа

    2.3.6 тест - система (test system): Биологическая, химическая или физическая система в отдельности или в комбинации, используемая в исследованиях.

    Источник: ГОСТ Р 53434-2009: Принципы надлежащей лабораторной практики оригинал документа

    5. Система технического диагностирования

    Система диагностирования Ндп. Диагностическая система

    D.    System der technischen Diagnose

    E.    Test system

    F.    Systeme diagnostique

    Совокупность средств и объекта диагностирования и, при необходимости, исполнителей, подготовленная к диагностированию или осуществляющая его по правилам. установленным соответствующей документацией

    Источник: ГОСТ 20911-75: Техническая диагностика. Основные термины и определения оригинал документа

    3.2 порт сигналов и управления (signal and control port): Порт, через который передаются информационные сигналы и сигналы управления, исключая сигналы, передаваемые через порт антенны и порт связи.

    3.3 испытательная система (test system): Аппаратура (имитатор подвижной станции), обеспечивающая установление линии связи с испытуемым оборудованием.

    3.4 линия «вниз» (downlink): Линия связи от базовой станции к подвижной (портативной) радиостанции.

    3.5 линия «вверх» (uplink): Линия связи от подвижной (портативной) радиостанции к базовой станции.

    Источник: ГОСТ Р 52459.23-2009: Совместимость технических средств электромагнитная. Технические средства радиосвязи. Часть 23. Частные требования к базовым станциям и ретрансляторам IMT-2000 CDMA с прямым расширением спектра и вспомогательному оборудованию оригинал документа

    3.9 режим трафика (traffic mode): Состояние подвижной станции, когда она включена и установлено соединение при использовании радиоконфигурации, поддерживаемой подвижной станцией.

    Примечание - См. [8], подраздел 1.3.

    3.10 испытательная система (test system): Аппаратура (имитатор базовой станции), обеспечивающая установление линии связи с испытуемым оборудованием.

    3.11 прямая линия (forward link): Линия связи от базовой станции к подвижному (портативному) радиооборудованию.

    3.12 обратная линия (reverse link): Линия связи от подвижного (портативного) радиооборудования к базовой станции.

    Источник: ГОСТ Р 52459.25-2009: Совместимость технических средств электромагнитная. Технические средства радиосвязи. Часть 25. Частные требования к подвижным станциям CDMA 1х с расширенным спектром и вспомогательному оборудованию оригинал документа

    3.8 канал трафика (traffic channel): Канал связи между подвижной станцией и базовой станцией, используемый для передачи пользовательского и сигнального трафика.

    3.9 испытательная система (test system): Аппаратура (имитатор подвижной станции), обеспечивающая установление линии связи с испытуемым оборудованием.

    3.10 прямая линия (forward link): Линия связи от базовой станции к подвижному (портативному) радиооборудованию.

    3.11 обратная линия (reverse link): Линия связи от подвижного (портативного) радиооборудования к базовой станции.

    Источник: ГОСТ Р 52459.26-2009: Совместимость технических средств электромагнитная. Технические средства радиосвязи. Часть 26. Частные требования к базовым станциям и ретрансляторам CDMA 1x с расширенным спектром и вспомогательному оборудованию оригинал документа

    3.1 режим ожидания (idle mode): Режим работы радиоприемника или приемопередатчика, когда радиостанция подключена к источнику питания, подготовлена к работе и готова реагировать на сигнал вызова.

    3.2 линия «вниз» (downlink): Линия связи от базовой станции к подвижной (портативной) радиостанции.

    3.3 линия «вверх» (uplink): Линия связи от подвижной (портативной) радиостанции к базовой станции.

    3.4 испытательная система (test system): Аппаратура (имитатор базовой станции, системный имитатор, тестер подвижных радиостанций), обеспечивающая установление линии связи с испытуемой радиостанцией.

    Источник: ГОСТ Р 52459.16-2009: Совместимость технических средств электромагнитная. Технические средства радиосвязи. Часть 16. Частные требования к подвижному и портативному радиооборудованию аналоговой сотовой связи оригинал документа

    3.3 неречевое оборудование (non-speech equipment): Оборудование, не имеющее входных/выходных портов звукового сигнала и не оснащенное микрофоном и/или громкоговорителем (наушниками).

    Примечание - В данную категорию входит только оборудование передачи данных, применяемое в составе базовых станций и терминалов (например, оборудование базовых станций, предназначенных для передачи речи и данных (V + D) и только для передачи данных (PDO), а также ретрансляторов DMO, у которых нет прямой функции передачи аналогового звукового сигнала).

    3.4 линия «вниз» (downlink): Линия связи от базовой станции к подвижной (портативной) радиостанции.

    3.5 линия «вверх» (uplink): Линия связи от подвижной (портативной) радиостанции к базовой станции.

    3.6 испытательная система (test system): Аппаратура (имитатор приемопередатчика TETRA или испытательная установка), обеспечивающая установление линии связи с испытуемым оборудованием.

    Источник: ГОСТ Р 52459.18-2009: Совместимость технических средств электромагнитная. Технические средства радиосвязи. Часть 18. Частные требования к оборудованию наземной системы транкинговой радиосвязи (TETRA) оригинал документа

    3.2 RXQUAL (receiver quality): Принятая в системе цифровой сотовой связи мера качества сигнала, принимаемого от подвижного или портативного оборудования, которая используется в качестве критерия при управлении мощностью передатчика радиостанции и процессами связи (см. также [6], [7], [8], [9]).

    3.3 линия «вниз» (downlink): Линия связи от базовой станции к подвижной (портативной) радиостанции.

    3.4 линия «вверх» (uplink): Линия связи от подвижной (портативной) радиостанции к базовой станции.

    3.5 испытательная система (test system): Специально применяемая аппаратура (имитатор базовой станции), обеспечивающая установление линии связи с испытуемой радиостанцией.

    Источник: ГОСТ Р 52459.7-2009: Совместимость технических средств электромагнитная. Технические средства радиосвязи. Часть 7. Частные требования к подвижному и портативному радиооборудованию и вспомогательному оборудованию систем цифровой сотовой связи (GSM и DCS) оригинал документа

    3.9 сигнальный и контрольный порт ( signal and control port): Порт, через который осуществляется передача данных или сигналов управления, исключая антенные порты.

    3.10 испытательная система (test system): Аппаратура (имитатор подвижной станции или базовой станции), обеспечивающая установление линии связи с испытуемой базовой станцией.

    3.11 линия «вниз» (downlink): Линия связи от базовой станции к подвижной (портативной) радиостанции.

    3.12 линия «вверх» (uplink): Линия связи от подвижной (портативной) радиостанции к базовой станции.

    Источник: ГОСТ Р 52459.8-2009: Совместимость технических средств электромагнитная. Технические средства радиосвязи. Часть 8. Частные требования к базовым станциям системы цифровой сотовой связи GSM оригинал документа

    3.9 оборудование пользователя (user equipment, UE): Подвижное и портативное оконечное радиооборудование [«подвижная станция» (MS)], способное обеспечить доступ к услугам связи, предоставляемым универсальным наземным радиодоступом, с использованием одного или нескольких радиоинтерфейсов.

    Примечание - Оборудование пользователя может размещаться в определенном пункте или функционировать в движении в пределах области радиодоступа к службам связи и применяться одним или одновременно несколькими пользователями.

    3.10 испытательная система (test system): Аппаратура (имитатор базовой станции), обеспечивающая установление линии связи с испытуемым оборудованием.

    3.11 линия «вниз» (down link): Линия связи от базовой станции к подвижному (портативному) радиооборудованию.

    3.12 линия «вверх» (up link): Линия связи от подвижного (портативного) радиооборудования к базовой станции.

    Примечание - Более подробные сведения о терминах, относящихся к области применения настоящего стандарта, приведены в [7], [8].

    Источник: ГОСТ Р 52459.24-2009: Совместимость технических средств электромагнитная. Технические средства радиосвязи. Часть 24. Частные требования к подвижному и портативному радиооборудованию. IMT-2000 CDMA с прямым расширением спектра и вспомогательному оборудованию оригинал документа

    Англо-русский словарь нормативно-технической терминологии > test system

  • 11 Link integrity test

    Сетевые технологии: тест целостности соединения (Тест соединения 10BASE-T, при котором порт осуществляет мониторинг соединения, контролируя передачу данных или специальных тестовых импульсов)

    Универсальный англо-русский словарь > Link integrity test

  • 12 power management

    1. энергоменеджмент
    2. управление электропитанием
    3. контроль потребления электроэнергии

     

    контроль потребления электроэнергии
    контроль энергопотребления


    [Интент]

    Тематики

    Синонимы

    EN

     

    управление электропитанием
    -
    [Интент]


    Управление электропитанием ЦОД

    Автор: Жилкина Наталья
    Опубликовано 23 апреля 2009 года


    Источники бесперебойного питания, функционирующие в ЦОД, составляют важный элемент общей системы его энергообеспечения. Вписываясь в контур управления ЦОД, система мониторинга и управления ИБП становится ядром для реализации эксплуатационных функций.

    Три задачи

    Системы мониторинга, диагностики и управления питанием нагрузки решают три основные задачи: позволяют ИБП выполнять свои функции, оповещать персонал о происходящих с ними событиях и посылать команды для автоматического завершения работы защищаемого устройства.

    Мониторинг параметров ИБП предполагает отображение и протоколирование состояния устройства и всех событий, связанных с его изменением. Диагностика реализуется функциями самотестирования системы. Управляющие же функции предполагают активное вмешательство в логику работы устройства.

    Многие специалисты этого рынка, отмечая важность процедуры мониторинга, считают, что управление должно быть сведено к минимуму. «Функция управления ИБП тоже нужна, но скорее факультативно, — говорит Сергей Ермаков, технический директор компании Inelt и эксперт в области систем Chloride. — Я глубоко убежден, что решения об активном управляющем вмешательстве в работу систем защиты электропитания ответственной нагрузки должен принимать человек, а не автоматизированная система. Завершение работы современных мощных серверов, на которых функционируют ответственные приложения, — это, как правило, весьма длительный процесс. ИБП зачастую не способны обеспечивать необходимое для него время, не говоря уж о времени запуска какого-то сервиса». Функция же мониторинга позволяет предотвратить наступление нежелательного события — либо, если таковое произошло, проанализировать его причины, опираясь не на слова, а на запротоколированные данные, хранящиеся в памяти адаптера или файлах на рабочей станции мониторинга.

    Эту точку зрения поддерживает и Алексей Сарыгин, технический директор компании Radius Group: «Дистанционное управление мощных ИБП — это вопрос, к которому надо подходить чрезвычайно аккуратно. Если функции дистанционного мониторинга и диспетчеризации необходимы, то практика предоставления доступа персоналу к функциям дистанционного управления представляется радикально неверной. Доступность модулей управления извне потенциально несет в себе риск нарушения безопасности и категорически снижает надежность системы. Если существует физическая возможность дистанционно воздействовать на ИБП, на его параметры, отключение, снятие нагрузки, закрытие выходных тиристорных ключей или блокирование цепи байпаса, то это чревато потерей питания всего ЦОД».

    Практически на всех трехфазных ИБП предусмотрена кнопка E.P.O. (Emergency Power Off), дублер которой может быть выведен на пульт управления диспетчерской. Она обеспечивает аварийное дистанционное отключение блоков ИБП при наступлении аварийных событий. Это, пожалуй, единственная возможность обесточить нагрузку, питаемую от трехфазного аппарата, но реализуется она в исключительных случаях.

    Что же касается диагностики электропитания, то, как отмечает Юрий Копылов, технический директор московского офиса корпорации Eaton, в последнее время характерной тенденцией в управляющем программном обеспечении стал отказ от предоставления функций удаленного тестирования батарей даже системному администратору.

    — Адекватно сравнивать состояние батарей необходимо под нагрузкой, — говорит он, — сам тест запускать не чаще чем раз в два дня, а разряжать батареи надо при одном и том же токе и уровне нагрузки. К тому же процесс заряда — довольно долгий. Все это не идет батареям на пользу.

    Средства мониторинга

    Производители ИБП предоставляют, как правило, сразу несколько средств мониторинга и в некоторых случаях даже управления ИБП — все они основаны на трех основных методах.

    В первом случае устройство подключается напрямую через интерфейс RS-232 (Com-порт) к консоли администратора. Дальность такого подключения не превышает 15 метров, но может быть увеличена с помощью конверторов RS-232/485 и RS-485/232 на концах провода, связывающего ИБП с консолью администратора. Такой способ обеспечивает низкую скорость обмена информацией и пригоден лишь для топологии «точка — точка».

    Второй способ предполагает использование SNMP-адаптера — встроенной или внешней интерфейсной карты, позволяющей из любой точки локальной сети получить информацию об основных параметрах ИБП. В принципе, для доступа к ИБП через SNMP достаточно веб-браузера. Однако для большего комфорта производители оснащают свои системы более развитым графическим интерфейсом, обеспечивающим функции мониторинга и корректного завершения работы. На базе SNMP-протокола функционируют все основные системы мониторинга и управления ИБП, поставляемые штатно или опционально вместе с ИБП.

    Стандартные SNMP-адаптеры поддерживают подключение нескольких аналоговых или пороговых устройств — датчик температуры, движения, открытия двери и проч. Интеграция таких устройств в общую систему мониторинга крупного объекта (например, дата-центра) позволяет охватить огромное количество точек наблюдения и отразить эту информацию на экране диспетчера.

    Большое удобство предоставляет метод эксплуатационного удаленного контроля T.SERVICE, позволяющий отследить работу оборудования посредством телефонной линии (через модем GSM) или через Интернет (с помощью интерфейса Net Vision путем рассылки e-mail на электронный адрес потребителя). T.SERVICE обеспечивает диагностирование оборудования в режиме реального времени в течение 24 часов в сутки 365 дней в году. ИБП автоматически отправляет в центр технического обслуживания регулярные отчеты или отчеты при обнаружении неисправности. В зависимости от контролируемых параметров могут отправляться уведомления о неправильной эксплуатации (с пользователем связывается опытный специалист и рекомендует выполнить простые операции для предотвращения ухудшения рабочих характеристик оборудования) или о наличии отказа (пользователь информируется о состоянии устройства, а на место установки немедленно отправляется технический специалист).

    Профессиональное мнение

    Наталья Маркина, коммерческий директор представительства компании SOCOMEC

    Управляющее ПО фирмы SOCOMEC легко интегрируется в общий контур управления инженерной инфраструктурой ЦОД посредством разнообразных интерфейсов передачи данных ИБП. Установленное в аппаратной или ЦОД оборудование SOCOMEC может дистанционно обмениваться информацией о своих рабочих параметрах с системами централизованного управления и компьютерными сетями посредством сухих контактов, последовательных портов RS232, RS422, RS485, а также через интерфейс MODBUS TCP и GSS.

    Интерфейс GSS предназначен для коммуникации с генераторными установками и включает в себя 4 входа (внешние контакты) и 1 выход (60 В). Это позволяет программировать особые процедуры управления, Global Supply System, которые обеспечивают полную совместимость ИБП с генераторными установками.

    У компании Socomec имеется широкий выбор интерфейсов и коммуникационного программного обеспечения для установки диалога между ИБП и удаленными системами мониторинга промышленного и компьютерного оборудования. Такие опции связи, как панель дистанционного управления, интерфейс ADC (реконфигурируемые сухие контакты), обеспечивающий ввод и вывод данных при помощи сигналов сухих контактов, интерфейсы последовательной передачи данных RS232, RS422, RS485 по протоколам JBUS/MODBUS, PROFIBUS или DEVICENET, MODBUS TCP (JBUS/MODBUS-туннелирование), интерфейс NET VISION для локальной сети Ethernet, программное обеспечение TOP VISION для выполнения мониторинга с помощью рабочей станции Windows XP PRO — все это позволяет контролировать работу ИБП удобным для пользователя способом.

    Весь контроль управления ИБП, ДГУ, контроль окружающей среды сводится в единый диспетчерский пункт посредством протоколов JBUS/MODBUS.
     

    Индустриальный подход

    Третий метод основан на использовании высокоскоростной индустриальной интерфейсной шины: CANBus, JBus, MODBus, PROFIBus и проч. Некоторые модели ИБП поддерживают разновидность универсального smart-слота для установки как карточек SNMP, так и интерфейсной шины. Система мониторинга на базе индустриальной шины может быть интегрирована в уже существующую промышленную SCADA-систему контроля и получения данных либо создана как заказное решение на базе многофункциональных стандартных контроллеров с выходом на шину. Промышленная шина через шлюзы передает информацию на удаленный диспетчерский пункт или в систему управления зданием (Building Management System, BMS). В эту систему могут быть интегрированы и контроллеры, управляющие ИБП.

    Универсальные SCADA-системы поддерживают датчики и контроллеры широкого перечня производителей, но они недешевы и к тому же неудобны для внесения изменений. Но если подобная система уже функционирует на объекте, то интеграция в нее дополнительных ИБП не представляет труда.

    Сергей Ермаков, технический директор компании Inelt, считает, что применение универсальных систем управления на базе промышленных контроллеров нецелесообразно, если используется для мониторинга только ИБП и ДГУ. Один из практичных подходов — создание заказной системы, с удобной для заказчика графической оболочкой и необходимым уровнем детализации — от карты местности до поэтажного плана и погружения в мнемосхему компонентов ИБП.

    — ИБП может передавать одинаковое количество информации о своем состоянии и по прямому соединению, и по SNMP, и по Bus-шине, — говорит Сергей Ермаков. — Применение того или иного метода зависит от конкретной задачи и бюджета. Создав первоначально систему UPS Look для мониторинга ИБП, мы интегрировали в нее систему мониторинга ДГУ на основе SNMP-протокола, после чего по желанию одного из заказчиков конвертировали эту систему на промышленную шину Jbus. Новое ПО JSLook для мониторинга неограниченного количества ИБП и ДГУ по протоколу JBus является полнофункциональным средством мониторинга всей системы электроснабжения объекта.

    Профессиональное мение

    Денис Андреев, руководитель департамента ИБП компании Landata

    Практически все ИБП Eaton позволяют использовать коммуникационную Web-SNMP плату Connect UPS и датчик EMP (Environmental Monitoring Probe). Такой комплект позволяет в числе прочего осуществлять мониторинг температуры, влажности и состояния пары «сухих» контактов, к которым можно подключить внешние датчики.

    Решение Eaton Environmental Rack Monitor представляет собой аналог такой связки, но с существенно более широким функционалом. Внешне эта система мониторинга температуры, влажности и состояния «сухих» контактов выполнена в виде компактного устройства, которое занимает минимум места в шкафу или в помещении.

    Благодаря наличию у Eaton Environmental Rack Monitor (ERM) двух выходов датчики температуры или влажности можно разместить в разных точках стойки или помещения. Поскольку каждый из двух датчиков имеет еще по два сухих контакта, с них дополнительно можно принимать сигналы от датчиков задымления, утечки и проч. В центре обработки данных такая недорогая система ERM, состоящая из неограниченного количества датчиков, может транслировать информацию по протоколу SNMP в HTML-страницу и позволяет, не приобретая специального ПО, получить сводную таблицу измеряемых величин через веб-браузер.

    Проблему дефицита пространства и высокой плотности размещения оборудования в серверных и ЦОД решают системы распределения питания линейки Eaton eDPU, которые можно установить как внутри стойки, так и на группу стоек.

    Все модели этой линейки представляют четыре семейства: системы базового исполнения, системы с индикацией потребляемого тока, с мониторингом (локальным и удаленным, по сети) и управляемые, с возможностью мониторинга и управления электропитанием вплоть до каждой розетки. С помощью этих устройств можно компактным способом увеличить количество розеток в одной стойке, обеспечить контроль уровня тока и напряжения критичной нагрузки.

    Контроль уровня потребляемой мощности может осуществляться с высокой степенью детализации, вплоть до сервера, подключенного к конкретной розетке. Это позволяет выяснить, какой сервер перегревается, где вышел из строя вентилятор, блок питания и т. д. Программным образом можно запустить сервер, подключенный к розетке ePDU. Интеграция системы контроля ePDU в платформу управления Eaton находится в процессе реализации.

    Требование объекта

    Как поясняет Олег Письменский, в критичных объектах, таких как ЦОД, можно условно выделить две области контроля и управления. Первая, Grey Space, — это собственно здание и соответствующая система его энергообеспечения и энергораспределения. Вторая, White Space, — непосредственно машинный зал с его системами.

    Выбор системы управления энергообеспечением ЦОД определяется типом объекта, требуемым функционалом системы управления и отведенным на эти цели бюджетом. В большинстве случаев кратковременная задержка между наступлением события и получением информации о нем системой мониторинга по SNMP-протоколу допустима. Тем не менее в целом ряде случаев, если характеристики объекта подразумевают непрерывность его функционирования, объект является комплексным и содержит большое количество элементов, требующих контроля и управления в реальном времени, ни одна стандартная система SNMP-мониторинга не обеспечит требуемого функционала. Для таких объектов применяют системы управления real-time, построенные на базе программно-аппаратных комплексов сбора данных, в том числе c функциями Softlogic.

    Системы диспетчеризации и управления крупными объектами реализуются SCADA-системами, широкий перечень которых сегодня присутствует на рынке; представлены они и в портфеле решений Schneider Electric. Тип SCADA-системы зависит от класса и размера объекта, от количества его элементов, требующих контроля и управления, от уровня надежности. Частный вид реализации SCADA — это BMS-система(Building Management System).

    «Дата-центры с объемом потребляемой мощности до 1,5 МВт и уровнем надежности Tier I, II и, с оговорками, даже Tier III, могут обслуживаться без дополнительной SCADA-системы, — говорит Олег Письменский. — На таких объектах целесообразно применять ISX Central — программно-аппаратный комплекс, использующий SNMP. Если же категория и мощность однозначно предполагают непрерывность управления, в таких случаях оправданна комбинация SNMP- и SCADA-системы. Например, для машинного зала (White Space) применяется ISX Central с возможными расширениями как Change & Capacity Manager, в комбинации со SCADA-системой, управляющей непосредственно объектом (Grey Space)».

    Профессиональное мнение

    Олег Письменский, директор департамента консалтинга APC by Schneider Electric в России и СНГ

    Подход APC by Schneider Electric к реализации полномасштабного полноуправляемого и надежного ЦОД изначально был основан на базисных принципах управления ИТ-инфраструктурой в рамках концепции ITIL/ITSM. И история развития системы управления инфраструктурой ЦОД ISX Manager, которая затем интегрировалась с программно-аппаратным комплексом NetBotz и трансформировалась в портал диспетчеризации ISX Central, — лучшее тому доказательство.

    Первым итогом поэтапного приближения к намеченной цели стало наращивание функций контроля параметров энергообеспечения. Затем в этот контур подключилась система управления кондиционированием, система контроля параметров окружающей среды. Очередным шагом стало измерение скорости воздуха, влажности, пыли, радиации, интеграция сигналов от камер аудио- и видеонаблюдения, системы управления блоками розеток, завершения работы сервера и т. д.

    Эта система не может и не должна отвечать абсолютно всем принципам ITSM, потому что не все они касаются существа поставленной задачи. Но как только в отношении политик и некоторых тактик управления емкостью и изменениями в ЦОД потребовался соответствующий инструментарий — это нашло отражение в расширении функционала ISX Central, который в настоящее время реализуют ПО APC by Schneider Electric Capacity Manager и APC by Schneider Electric Change Manager. С появлением этих двух решений, интегрированных в систему управления реальным объектом, АРС предоставляет возможность службе эксплуатации оптимально планировать изменения количественного и качественного состава оборудования машинного зала — как на ежедневном оперативном уровне, так и на уровне стратегических задач массовых будущих изменений.

    Решение APC by Schneider Electric Capacity обеспечивает автоматизированную обработку информации о свободных ресурсах инженерной инфраструктуры, реальном потреблении мощности и пространстве в стойках. Обращаясь к серверу ISX Central, системы APC by Schneider Electric Capacity Manager и APC by Schneider Electric Change Manager оценивают степень загрузки ИБП и систем охлаждения InRow, прогнозируют воздействие предполагаемых изменений и предлагают оптимальное место для установки нового или перестановки имеющегося оборудования. Новые решения позволяют, выявив последствия от предполагаемых изменений, правильно спланировать замену оборудования в ЦОД.

    Переход от частного к общему может потребовать интеграции ISX Central в такие, например, порталы управления, как Tivoli или Open View. Возможны и другие сценарии, когда ISX Central вписывается и в SCADA–систему. В этом случае ISX Central выполняет роль диспетчерской настройки, функционал которой распространяется на серверную комнату, но не охватывает целиком периметр объекта.

    Случай из практики

    Решение задачи управления энергообеспечением ЦОД иногда вступает в противоречие с правилами устройств электроустановок (ПУЭ). Может оказаться, что в соответствии с ПУЭ в ряде случаев (например, при компоновке щитов ВРУ) необходимо обеспечить механические блокировки. Однако далеко не всегда это удается сделать. Поэтому такая задача часто требует нетривиального решения.

    — В одном из проектов, — вспоминает Алексей Сарыгин, — где система управления включала большое количество точек со взаимными пересечениями блокировок, требовалось не допустить снижения общей надежности системы. В этом случае мы пришли к осознанному компромиссу, сделали систему полуавтоматической. Там, где это было возможно, присутствовали механические блокировки, за пультом дежурной смены были оставлены функции мониторинга и анализа, куда сводились все данные о положении всех автоматов. Но исполнительную часть вывели на отдельную панель управления уже внутри ВРУ, где были расположены подробные пользовательские инструкции по оперативному переключению. Таким образом мы избавились от излишней автоматизации, но постарались минимизировать потери в надежности и защититься от ошибок персонала.

    [ http://www.computerra.ru/cio/old/products/infrastructure/421312/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > power management

См. также в других словарях:

  • тест-порт — Порт, позволяющий подключать зонд к оконечному проводнику либо через незащищенную концевую муфту, либо через гнездо с гелем, не снимая проводник и не нарушая изоляцию проводника (МСЭ Т K.65). [http://www.iks… …   Справочник технического переводчика

  • оконечный модуль — Элемент, служащий для заканчивания кабельных проводников, и содержащий один или несколько следующих элементов: (1) разъем со снятой изоляцией или контакт проводника, (2) контакты, (3) тест порт, (4) контакты по крайней мере для одного SPD.… …   Справочник технического переводчика

  • Bloomberg — (Блумберг) Блумберг это агенство экономических новостей, поставляющее финансовую информацию для профессиональных участноков финансовых рынков по всему миру. Bloomberg информационное агенство, основныем продуктом компании является bloomberg… …   Энциклопедия инвестора

  • Периферийное сканирование — (англ. Boundary Scan)  вид структурного тестирования печатной платы с установленными на неё компонентами, основанный на применении в некоторых микросхемах стандарта IEEE 1149.1(.4, .6). Широко используется также термин «Граничное… …   Википедия

  • War Thunder — Эта статья описывает компьютерную игру, находящуюся в разработке. После выпуска игры сведения, приведённые здесь, могут оказаться неверными, и содержание статьи может значительно измениться …   Википедия

  • Хронология событий, связанных с крушением теплохода «Булгария» — Крушение теплохода «Булгария»  кораблекрушение, произошедшее 10 июля 2011 года примерно в 13 часов 30 минут по московскому времени в Куйбышевском водохранилище в районе села Сюкеево Камско Устьинского района Республики Татарстан. Крушение… …   Википедия

  • Зонта, Рикардо — Рикардо Зонта  …   Википедия

  • Зонта — Зонта, Рикардо Рикардо Зонта Зонта в 2007, в качестве пилота Stock Car Brasil Гражданство …   Википедия

  • Граничное сканирование — Периферийное сканирование (англ. Boundary Scan)  вид структурного тестирования полупроводниковой печатной платы с установленными на неё компонентами, основанный на применении в некоторых микросхемах стандарта IEEE 1149.1(.4, .6). Широко… …   Википедия

  • Великобритания — (United Kingdom) Государство Великобритания, история и развитие Великобритании, политическое и экономическое устройство Информация о государстве Великобритания, история возникновения и развития Великобритании, политическое и экономическое… …   Энциклопедия инвестора

  • Клоны ZX Spectrum — Содержание 1 Южная Америка 2 Европа 3 СССР/Россия/СНГ …   Википедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»