Перевод: с английского на русский

с русского на английский

текущее+значение

  • 101 instantaneous altitude rate

    мгновенно измеряемая вертикальная скорость, текущее значение вертикальной скорости

    Englsh-Russian aviation and space dictionary > instantaneous altitude rate

  • 102 instantaneous failure rate

    мгновенное [текущее] значение интенсивности отказов

    The English-Russian dictionary on reliability and quality control > instantaneous failure rate

  • 103 error

    [ˈerə]
    absolute error абсолютная ошибка accidental error случайная ошибка accounting error ошибка бухгалтерского учета accuracy error постоянная ошибка addressing error вчт. ошибка адресации alignment error погрешность юстировки altering error нерегулярная ошибка analytic truncation error ошибка аналитического усечения average error средняя ошибка bad call format error вчт. ошибка из-за неправильного вызова bad command error вчт. ошибка из-за неправильной команды balancing error сбалансированная ошибка error ошибка, заблуждение; to make an error совершить ошибку, ошибиться; in error по ошибке, ошибочно; to be in error заблуждаться bias error постоянная ошибка biased error постоянная ошибка biased error систематическая ошибка burst error вчт. пакет ошибок calculating error погрешность расчета call error вчт. ошибка вызова chance error случайная ошибка checksum error вчт. ошибка в контрольной сумме code error вчт. ошибка в коде coincidence error вчт. ошибка совпадения common error вчт. обычная ошибка compensating error вчт. компенсирующая ошибка compensating error компенсирующая ошибка compile-time error вчт. ошибка при трансляции completeness error вчт. ошибка завершения configuration error вчт. ошибка компоновки configuration error вчт. ошибка конфигурации connection error вчт. ошибка монтажа consistency error вчт. ошибка из-за несовместимости constant error постоянная ошибка constant error систематическая ошибка constructional error вчт. ошибка монтажа contributory error вчт. внесенная ошибка control error вчт. ошибка регулирования critical error вчт. неустранимая ошибка crude error вчт. грубая ошибка cumulative error накопленная ошибка data error вчт. ошибка в данных data-bit error вчт. ошибка в битах данных deletion error вчт. ложное исключение design error ошибка проектирования detectable error вчт. обнаруживаемая ошибка detectable error вчт. обнаружимая ошибка difficult-to-locate error вчт. труднообнаружимая ошибка displacement error вчт. ошибка из-за смещения documentation error ошибка в документации double-bit error вчт. двухбитовая ошибка dropout error вчт. ошибка из-за выпадения error поэт. блуждание error грех error заблуждение error ложное представление error отклонение, уклонение, погрешность error отклонение от номинала error ошибка, заблуждение; to make an error совершить ошибку, ошибиться; in error по ошибке, ошибочно; to be in error заблуждаться error вчт. ошибка error ошибка error вчт. погрешность error погрешность error потеря точности error "приказ об ошибке" (т.е. о передаче материалов по делу в апелляционный суд для пересмотра вынесенного судебного решения на основании ошибки, допущенной при рассмотрении дела) error радио рассогласование error рассогласование error due to sampling вчт. ошибка выборки error frequency limit вчт. максимальная частота однобитовых ошибок error in addition мат. ошибка сложения error in standard deviation ошибка среднего квадратического отклонения error in subtraction мат. ошибка вычитания error of estimation ошибка оценивания error of judgment неверное суждение error of judgment ошибочная оценка error of posting ошибка бухгалтерской проводки error status flag вчт. флаг состояния ошибки estimated error оцениваемая ошибка estimation error ошибка оценивания estimation error ошибка оценки execution error вчт. ошибка выполнения experimental error погрешность эксперемента factual error фактическая ошибка fatal error вчт. неисправимая ошибка fatal hard error вчт. неисправимая аппаратная ошибка file error вчт. ошибка при работе с файлом fixed error постоянная ошибка fixed error систематическая ошибка following error ошибка слежения formal error формальная ошибка framing error ошибка кадровой синхронизации frequency error погрешность частоты general error вчт. ошибка общего характера gross error грубая ошибка hardware error вчт. аппаратная ошибка human error вчт. ошибка оператора error ошибка, заблуждение; to make an error совершить ошибку, ошибиться; in error по ошибке, ошибочно; to be in error заблуждаться in-process error ошибка изготовления inherent error вчт. унаследованная ошибка inherited error вчт. предвнесенная ошибка inherited error вчт. унаследованная ошибка initial error вчт. начальная ошибка input error вчт. ошибка на входе insertion error вчт. ошибка ложного восприятия instantaneous error вчт. текущее значение ошибки intentional error вчт. умышленная ошибка intermediate error вчт. нерегулярная ошибка intermittent error случайная ошибка interpolation error ошибка интерполяции intrinsic error вчт. исходная ошибка introduced error вчт. внесенная ошибка introduced error вчт. допущенная ошибка irrecoverable error непоправимая ошибка isolated error вчт. локализованная ошибка isolated error вчт. одиночная ошибка judicial error судебная ошибка limiting error предел точности literal error полигр. опечатка literal: error буквенный; literal error опечатка error ошибка, заблуждение; to make an error совершить ошибку, ошибиться; in error по ошибке, ошибочно; to be in error заблуждаться marginal error вчт. краевая ошибка matching error вчт. ошибка неточного согласования material error существенная ошибка maximum error максимальная ошибка maximum error предельная ошибка maximum permissible error максимальная допустимая ошибка mean error средняя ошибка mean probable error средняя вероятная ошибка metering error ошибка измерения missing error вчт. ошибка из-за отсутствия данных nautical error навигационная ошибка no-paper error вчт. ошибка из-за отсутствия бумаги nonsampling error постоянная ошибка nonsampling error систематическая ошибка observation error ошибка наблюдения observational error ошибка наблюдения offsetting error компенсирующая ошибка operating error ошибка в процессе работы operating error ошибка из-за нарушения правил эксплуатации operation error ошибка в работе operational error ошибка из-за нарушения правил эксплуатации operator error вчт. ошибка оператора output error вчт. ошибка выхода parity error ошибка, выявленная контролем по четности parity error вчт. ошибка четности pattern-sensitive error вчт. кодочувствительная ошибка percentage error ошибка в процентах permissible error допустимая ошибка posting error ошибка при переносе в бухгалтерскую книгу precautionary error подозреваемая ошибка predictable error предсказуемая ошибка probable error вероятная ошибка probable error стат. вероятная ошибка procedural error процедурная ошибка procedural error процеждурная ошибка professional error профессиональная ошибка program error вчт. ошибка в программе program error вчт. программная ошибка propagated error накапливаемая ошибка propagated error вчт. распространяющаяся ошибка propagation error вчт. накапливающаяся ошибка pure error вчт. истинная ошибка quantitative error количественная ошибка quantization error вчт. ошибка дискретизации quiet error вчт. исправимая ошибка quite error вчт. исправимая ошибка random error случайная ошибка random sampling error ошибка случайной выборки read fault error вчт. сбой при чтении reasonable error допустимая ошибка recoverable error вчт. исправимая ошибка recoverable error исправимая ошибка recurrent error вчт. повторяющаяся ошибка reduced error приведенная погрешность relative error относительная ошибка remediable error поправимая ошибка residual error остаточная ошибка responce error вчт. ошибка ответной реакции resultant error суммарная ошибка return an error code вчт. выдавать код ошибки root-mean-square error среднеквадратичная ошибка round error вчт. ошибка округления round-off error вчт. ошибка округления rounding error вчт. ошибка округления rounding error ошибка округления run-time error вчт. ошибка при выполнении runtime error вчт. ошибка при выполнении sample error вчт. ошибка выборки sampling error вчт. ошибка выборки sampling error stat. ошибка выборки sampling error stat. ошибка выборочного обследования sampling error вчт. ошибка квантования seek error вчт. ошибка при поиске дорожки select error вчт. ошибка выборки select error вчт. ошибка отсутствия связи semantic error вчт. семантическая ошибка sequence error вчт. неправильный порядок setup error вчт. ошибка настройки severe error серьезная ошибка size error вчт. переполнение размера сетки smoothing error ошибка сглаживания soft error нерегулярная ошибка soft error вчт. случайный сбой software error comp. ошибка в системе программного обеспечения software error вчт. программная ошибка solid burst error вчт. плотный пакет ошибок solid error вчт. постоянная ошибка spelling error орфографическая ошибка srecification error ошибка в описании standard error среднеквадратическая ошибка standard error (SE) stat. среднеквадратическая ошибка steady-state error статическая ошибка stored error вчт. накопленная ошибка substantial error существенная ошибка substitution error вчт. ошибка замещения subtle error неявная ошибка syntactical error синтаксическая ошибка syntax error вчт. синтаксическая ошибка system error вчт. ошибка системы systematic error stat. систематическая ошибка tabulation error вчт. неправильная классификация technical error формальная ошибка technical error формально-юридическая ошибка time-base error вчт. ошибка синхронизации timing error вчт. ошибка синхронизации total error накопленная ошибка total error общая ошибка transient error вчт. перемежающая ошибка translation error ошибка в переводе transmission error вчт. ошибка передачи true error вчт. истинная ошибка truncation error вчт. ошибка отбрасывания членов ряда truncation error вчт. ошибка усечения typing error опечатка unbiased error случайная ошибка uncompensated error нескомпенсированная ошибка underflow error вчт. ошибка обнаружения undetectable error вчт. необнаруживаемая ошибка undetectable error вчт. необнаружимая ошибка unexpected error occured вчт. произошла непредвиденная ошибка unrecoverable error вчт. неисправимая ошибка wiring error ошибка монтажа write fault error вчт. сбой при записи write protect error вчт. ошибка в связи с защитой от записи zero error сдвиг нуля

    English-Russian short dictionary > error

  • 104 predictive encoding

    1. кодирование с предсказанием

     

    кодирование с предсказанием
    Метод преобразования сигнала, который обычно включает его сжатие. Текущее значение сигнала предсказывается на основе его предыдущих значений, и в канал связи передается разностный сигнал, равный ошибке предсказания.
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    Тематики

    • электросвязь, основные понятия

    EN

    Англо-русский словарь нормативно-технической терминологии > predictive encoding

  • 105 alarm clock

    1. сигнал тревоги (будильник)

     

    сигнал тревоги (будильник)
    Команда позволяет вывести на экран текущее значение времени в цифровом или аналоговом формате и воспроизводит записанный звуковой сигнал в качестве предупреждения или сигнала тревоги.
    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > alarm clock

  • 106 current average

    Большой англо-русский и русско-английский словарь > current average

  • 107 current average

    текущее среднее (значение)

    Англо-русский словарь по экономике и финансам > current average

  • 108 current ceiling

    Англо-русский словарь по экономике и финансам > current ceiling

  • 109 current average

    Универсальный англо-русский словарь > current average

  • 110 centralized UPS

    1. ИБП для централизованных систем питания

     

    ИБП для централизованных систем питания
    ИБП для централизованного питания нагрузок
    -
    [Интент]

    ИБП для централизованных систем питания

    А. П. Майоров

    Для многих предприятий всесторонняя защита данных имеет жизненно важное значение. Кроме того, есть виды деятельности, в которых прерывания подачи электроэнергии не допускаются даже на доли секунды. Так работают расчетные центры банков, больницы, аэропорты, центры обмена трафиком между различными сетями. В такой же степени критичны к электропитанию телекоммуникационное оборудование, крупные узлы Интернет, число ежедневных обращений к которым исчисляется десятками и сотнями тысяч. Третья часть обзора по ИБП посвящена оборудованию, предназначенному для обеспечения питания особо важных объектов.

    Централизованные системы бесперебойного питания применяют в тех случаях, когда прерывание подачи электроэнергии недопустимо для работы большинства единиц оборудования, составляющих одну информационную или технологическую систему. Как правило, проблемы питания рассматривают в рамках единого проекта наряду со многими другими подсистемами здания, поскольку они требуют вложения значительных средств и увязки с силовой электропроводкой, коммутационным электрооборудованием и аппаратурой кондиционирования. Изначально системы бесперебойного питания рассчитаны на долгие годы эксплуатации, их срок службы можно сравнить со сроком службы кабельных подсистем здания и основного компьютерного оборудования. За 15—20 лет функционирования предприятия оснащение его рабочих станций обновляется три-четыре раза, несколько раз изменяется планировка помещений и производится их ремонт, но все эти годы система бесперебойного питания должна работать безотказно. Для ИБП такого класса долговечность превыше всего, поэтому в их технических спецификациях часто приводят значение важнейшего технического показателя надежности — среднего времени наработки на отказ (Mean Time Before Failure — MTBF). Во многих моделях с ИБП оно превышает 100 тыс. ч, в некоторых из них достигает 250 тыс. ч (т. е. 27 лет непрерывной работы). Правда, сравнивая различные системы, нужно учитывать условия, для которых этот показатель задан, и к предоставленным цифрам относиться осторожно, поскольку условия работы оборудования разных производителей неодинаковы.

    Батареи аккумуляторов

    К сожалению, наиболее дорогостоящий компонент ИБП — батарея аккумуляторов так долго работать не может. Существует несколько градаций качества батарей, которые различаются сроком службы и, естественно, ценой. В соответствии с принятой два года назад конвенцией EUROBAT по среднему сроку службы батареи разделены на четыре группы:

    10+ — высоконадежные,
    10 — высокоэффективные,
    5—8 — общего назначения,
    3—5 — стандартные коммерческие.

    Учитывая исключительно жесткую конкуренцию на рынке ИБП малой мощности, производители стремятся снизить до минимума начальную стоимость своих моделей, поэтому часто комплектуют их самыми простыми батареями. Применительно к этой группе продуктов такой подход оправдан, поскольку упрощенные ИБП изымают из обращения вместе с защищаемыми ими персональными компьютерами. Впервые вступающие на этот рынок производители, пытаясь оттеснить конкурентов, часто используют в своих интересах неосведомленность покупателей о проблеме качества батарей и предлагают им сравнимые по остальным показателям модели за более низкую цену. Имеются случаи, когда партнеры крупной фирмы комплектуют ее проверенные временем и признанные рынком модели ИБП батареями, произведенными в развивающихся странах, где контроль за технологическим процессом ослаблен, а, значит, срок службы батарей меньше по сравнению с "кондиционными" изделиями. Поэтому, подбирая для себя ИБП, обязательно поинтересуйтесь качеством батареи и ее производителем, избегайте продукции неизвестных фирм. Следование этим рекомендациям сэкономит вам значительные средства при эксплуатации ИБП.

    Все сказанное еще в большей степени относится к ИБП высокой мощности. Как уже отмечалось, срок службы таких систем исчисляется многими годами. И все же за это время приходится несколько раз заменять батареи. Как это ни покажется странным, но расчеты, основанные на ценовых и качественных параметрах батарей, показывают, что в долгосрочной перспективе наиболее выгодны именно батареи высшего качества, несмотря на их первоначальную стоимость. Поэтому, имея возможность выбора, устанавливайте батареи только "высшей пробы". Гарантированный срок службы таких батарей приближается к 15 годам.

    Не менее важный аспект долговечности мощных систем бесперебойного питания — условия эксплуатации аккумуляторных батарей. Чтобы исключить непредсказуемые, а следовательно, часто приводящие к аварии перерывы в подаче электропитания, абсолютно все включенные в приведенную в статье таблицу модели оснащены самыми совершенными схемами контроля за состоянием батарей. Не мешая выполнению основной функции ИБП, схемы мониторинга, как правило, контролируют следующие параметры батареи: зарядный и разрядный токи, возможность избыточного заряда, рабочую температуру, емкость.

    Кроме того, с их помощью рассчитываются такие переменные, как реальное время автономной работы, конечное напряжение зарядки в зависимости от реальной температуры внутри батареи и др.

    Подзарядка батареи происходит по мере необходимости и в наиболее оптимальном режиме для ее текущего состояния. Когда емкость батареи снижается ниже допустимого предела, система контроля автоматически посылает предупреждающий сигнал о необходимости ее скорой замены.

    Топологические изыски

    Долгое время специалисты по системам электропитания руководствовались аксиомой, что мощные системы бесперебойного питания должны иметь топологию on-line. Считается, что именно такая топология гарантирует защиту от всех нарушений на линиях силового питания, позволяет фильтровать помехи во всем частотном диапазоне, обеспечивает на выходе чистое синусоидальное напряжение с номинальными параметрами. Однако за качество электропитания приходится платить повышенным выделением тепловой энергии, сложностью электронных схем, а следовательно, потенциальным снижением надежности. Но, несмотря на это, за многолетнюю историю выпуска мощных ИБП были разработаны исключительно надежные аппараты, способные работать в самых невероятных условиях, когда возможен отказ одного или даже нескольких узлов одновременно. Наиболее важным и полезным элементом мощных ИБП является так называемый байпас. Это обходной путь подачи энергии на выход в случае ремонтных и профилактических работ, вызванных отказом некоторых компонентов систем или возникновением перегрузки на выходе. Байпасы бывают ручными и автоматическими. Они формируются несколькими переключателями, поэтому для их активизации требуется некоторое время, которое инженеры постарались снизить до минимума. И раз уж такой переключатель был создан, то почему бы не использовать его для снижения тепловыделения в то время, когда питающая сеть пребывает в нормальном рабочем состоянии. Так появились первые признаки отступления от "истинного" режима on-line.

    Новая топология отдаленно напоминает линейно-интерактивную. Устанавливаемый пользователем системы порог срабатывания определяет момент перехода системы в так называемый экономный режим. При этом напряжение из первичной сети поступает на выход системы через байпас, однако электронная схема постоянно следит за состоянием первичной сети и в случае недопустимых отклонений мгновенно переключается на работу в основном режиме on-line.

    Подобная схема применена в ИБП серии Synthesis фирмы Chloride (Сети и системы связи, 1996. № 10. С. 131), механизм переключения в этих устройствах назван "интеллектуальным" ключом. Если качество входной линии укладывается в пределы, определяемые самим пользователем системы, аппарат работает в линейно-интерактивном режиме. При достижении одним из контролируемых параметров граничного значения система начинает работать в нормальном режиме on-line. Конечно, в этом режиме система может работать и постоянно.

    За время эксплуатации системы отход от исходной аксиомы позволяет экономить весьма значительные средства за счет сокращения тепловыделения. Сумма экономии оказывается сопоставимой со стоимостью оборудования.

    Надо отметить, что от своих исходных принципов отошла еще одна фирма, ранее выпускавшая только линейно-интерактивные ИБП и ИБП типа off-line сравнительно небольшой мощности. Теперь она превысила прежний верхний предел мощности своих ИБП (5 кВА) и построила новую систему по топологии on-line. Я имею в виду фирму АРС и ее массив электропитания Simmetra (Сети и системы связи. 1997. № 4. С. 132). Создатели попытались заложить в систему питания те же принципы повышения надежности, которые применяют при построении особо надежной компьютерной техники. В модульную конструкцию введена избыточность по отношению к управляющим модулям и батареям. В любом из трех выпускаемых шасси из отдельных модулей можно сформировать нужную на текущий момент систему и в будущем наращивать ее по мере надобности. Суммарная мощность самого большого шасси достигает 16 кВА. Еще рано сравнивать эту только что появившуюся систему с другими включенными в таблицу. Однако факт появления нового продукта в этом исключительно устоявшемся секторе рынка сам по себе интересен.

    Архитектура

    Суммарная выходная мощность централизованных систем бесперебойного питания может составлять от 10—20 кВА до 200—300 МВА и более. Соответственно видоизменяется и структура систем. Как правило, она включают в себя несколько источников, соединенных параллельно тем или иным способом. Аппаратные шкафы устанавливают в специально оборудованных помещениях, где уже находятся распределительные шкафы выходного напряжения и куда подводят мощные входные силовые линии электропитания. В аппаратных помещениях поддерживается определенная температура, а за функционированием оборудования наблюдают специалисты.

    Многие реализации системы питания для достижения необходимой надежности требуют совместной работы нескольких ИБП. Существует ряд конфигураций, где работают сразу несколько блоков. В одних случаях блоки можно добавлять постепенно, по мере необходимости, а в других — системы приходится комплектовать в самом начале проекта.

    Для повышения суммарной выходной мощности используют два варианта объединения систем: распределенный и централизованный. Последний обеспечивает более высокую надежность, но первый более универсален. Блоки серии EDP-90 фирмы Chloride допускают объединение двумя способами: и просто параллельно (распределенный вариант), и с помощью общего распределительного блока (централизованный вариант). При выборе способа объединения отдельных ИБП необходим тщательный анализ структуры нагрузки, и в этом случае лучше всего обратиться за помощью к специалистам.

    Применяют параллельное соединение блоков с централизованным байпасом, которое используют для повышения общей надежности или увеличения общей выходной мощности. Число объединяемых блоков не должно превышать шести. Существуют и более сложные схемы с избыточностью. Так, например, чтобы исключить прерывание подачи питания во время профилактических и ремонтных работ, соединяют параллельно несколько блоков с подключенными к отдельному ИБП входными линиями байпасов.

    Особо следует отметить сверхмощные ИБП серии 3000 фирмы Exide. Суммарная мощность системы питания, построенная на модульных элементах этой серии, может достигать нескольких миллионов вольт-ампер, что сравнимо с номинальной мощностью генераторов некоторых электростанций. Все компоненты серии 3000 без исключения построены на модульном принципе. На их основе можно создать особо мощные системы питания, в точности соответствующие исходным требованиям. В процессе эксплуатации суммарную мощность систем можно наращивать по мере увеличения нагрузки. Однако следует признать, что систем бесперебойного питания такой мощности в мире не так уж много, их строят по специальным контрактам. Поэтому серия 3000 не включена в общую таблицу. Более подробные данные о ней можно получить на Web-узле фирмы Exide по адресу http://www.exide.com или в ее московском представительстве.

    Важнейшие параметры

    Для систем с высокой выходной мощностью очень важны показатели, которые для менее мощных систем не имеют первостепенного значения. Это, например, КПД — коэффициент полезного действия (выражается либо действительным числом меньше единицы, либо в процентах), показывающий, какая часть активной входной мощности поступает к нагрузке. Разница значений входной и выходной мощности рассеивается в виде тепла. Чем выше КПД, тем меньше тепловой энергии выделяется в аппаратной комнате и, значит, для поддержания нормальных рабочих условий требуется менее мощная система кондиционирования.

    Чтобы представить себе, о каких величинах идет речь, рассчитаем мощность, "распыляемую" ИБП с номинальным значением на выходе 8 МВт и с КПД, равным 95%. Такая система будет потреблять от первичной силовой сети 8,421 МВт — следовательно, превращать в тепло 0,421 МВт или 421 кВт. При повышении КПД до 98% при той же выходной мощности рассеиванию подлежат "всего" 163 кВт. Напомним, что в данном случае нужно оперировать активными мощностями, измеряемыми в ваттах.

    Задача поставщиков электроэнергии — подавать требуемую мощность ее потребителям наиболее экономным способом. Как правило, в цепях переменного тока максимальные значения напряжения и силы тока из-за особенностей нагрузки не совпадают. Из-за этого смещения по фазе снижается эффективность доставки электроэнергии, поскольку при передаче заданной мощности по линиям электропередач, через трансформаторы и прочие элементы систем протекают токи большей силы, чем в случае отсутствия такого смещения. Это приводит к огромным дополнительным потерям энергии, возникающим по пути ее следования. Степень сдвига по фазе измеряется не менее важным, чем КПД, параметром систем питания — коэффициентом мощности.

    Во многих странах мира существуют нормы на допустимое значение коэффициента мощности систем питания и тарифы за электроэнергию нередко зависят от коэффициента мощности потребителя. Суммы штрафов за нарушение нормы оказываются настольно внушительными, что приходится заботиться о повышении коэффициента мощности. С этой целью в ИБП встраивают схемы, которые компенсируют сдвиг по фазе и приближают значение коэффициента мощности к единице.

    На распределительную силовую сеть отрицательно влияют и нелинейные искажения, возникающие на входе блоков ИБП. Почти всегда их подавляют с помощью фильтров. Однако стандартные фильтры, как правило, уменьшают искажения только до уровня 20—30%. Для более значительного подавления искажений на входе систем ставят дополнительные фильтры, которые, помимо снижения величины искажений до нескольких процентов, повышают коэффициент мощности до 0,9—0,95. С 1998 г. встраивание средств компенсации сдвига по фазе во все источники электропитания компьютерной техники в Европе становится обязательным.

    Еще один важный параметр мощных систем питания — уровень шума, создаваемый такими компонентами ИБП, как, например, трансформаторы и вентиляторы, поскольку их часто размещают вместе в одном помещении с другим оборудованием — там где работает и персонал.

    Чтобы представить себе, о каких значениях интенсивности шума идет речь, приведем для сравнения такие примеры: уровень шума, производимый шелестом листвы и щебетанием птиц, равен 40 дБ, уровень шума на центральной улице большого города может достигать 80 дБ, а взлетающий реактивный самолет создает шум около 100 дБ.

    Достижения в электронике

    Мощные системы бесперебойного электропитания выпускаются уже более 30 лет. За это время бесполезное тепловыделение, объем и масса их сократились в несколько раз. Во всех подсистемах произошли и значительные технологические изменения. Если раньше в инверторах использовались ртутные выпрямители, а затем кремниевые тиристоры и биполярные транзисторы, то теперь в них применяются высокоскоростные мощные биполярные транзисторы с изолированным затвором (IGBT). В управляющих блоках аналоговые схемы на дискретных компонентах сначала были заменены на цифровые микросхемы малой степени интеграции, затем — микропроцессорами, а теперь в них установлены цифровые сигнальные процессоры (Digital Signal Processor — DSP).

    В системах питания 60-х годов для индикации их состояния использовались многочисленные аналоговые измерительные приборы. Позднее их заменили более надежными и информативными цифровыми панелями из светоизлучающих диодов и жидкокристаллических индикаторов. В наше время повсеместно используют программное управление системами питания.

    Еще большее сокращение тепловых потерь и общей массы ИБП дает замена массивных трансформаторов, работающих на частоте промышленной сети (50 или 60 Гц), высокочастотными трансформаторами, работающими на ультразвуковых частотах. Между прочим, высокочастотные трансформаторы давно применяются во внутренних источниках питания компьютеров, а вот в ИБП их стали устанавливать сравнительно недавно. Применение IGBT-приборов позволяет строить и бестрансформаторные инверторы, при этом внутреннее построение ИБП существенно меняется. Два последних усовершенствования применены в ИБП серии Synthesis фирмы Chloride, отличающихся уменьшенным объемом и массой.

    Поскольку электронная начинка ИБП становится все сложнее, значительную долю их внутреннего объема теперь занимают процессорные платы. Для радикального уменьшения суммарной площади плат и изоляции их от вредных воздействий электромагнитных полей и теплового излучения используют электронные компоненты для так называемой технологии поверхностного монтажа (Surface Mounted Devices — SMD) — той самой, которую давно применяют в производстве компьютеров. Для защиты электронных и электротехнических компонентов имеются специальные внутренние экраны.

    ***

    Со временем серьезный системный подход к проектированию материальной базы предприятия дает значительную экономию не только благодаря увеличению срока службы всех компонентов "интегрированного интеллектуального" здания, но и за счет сокращения расходов на электроэнергию и текущее обслуживание. Использование централизованных систем бесперебойного питания в пересчете на стоимость одного рабочего места дешевле, чем использование маломощных ИБП для рабочих станций и даже ИБП для серверных комнат. Однако, чтобы оценить это, нужно учесть все факторы установки таких систем.

    Предположим, что предприятие свое помещение арендует. Тогда нет никакого смысла разворачивать дорогостоящую систему централизованного питания. Если через пять лет руководство предприятия не намерено заниматься тем же, чем занимается сегодня, то даже ИБП для серверных комнат обзаводиться нецелесообразно. Но если оно рассчитывает на то, что производство будет держаться на плаву долгие годы и решило оснастить принадлежащее им здание системой бесперебойного питания, то для выбора такой системы нужно воспользоваться услугами специализированных фирм. Сейчас их немало и в России. От этих же фирм можно получить информацию о так называемых системах гарантированного электропитания, в которые включены дизельные электрогенераторы и прочие, более экзотические источники энергии.

    Нам же осталось рассмотреть лишь методы управления ИБП, что мы и сделаем в одном из следующих номеров нашего журнала

    [ http://www.ccc.ru/magazine/depot/97_07/read.html?0502.htm]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > centralized UPS

  • 111 maintenance

    ˈmeɪntənəns сущ.
    1) поддержание;
    сохранение the maintenance of peace and stability in Asia ≈ сохранение мира и стабильности в Азии the importance of natural food to the maintenance of health ≈ значение естественных продуктов питания для поддержания (сохранения) здоровья
    2) содержание( детей, семьи и т. п.) ;
    средства к существованию the government's plan to make absent fathers pay maintenance for their childrenправительственный план, обязывающий отсутствующих отцов содержать своих детей separate maintenance ≈ содержание, назначаемое жене при разводе
    3) содержание и техническое обслуживание, уход;
    текущий ремонт maintenance work on government buildingsработы по содержанию и уходу за государственными строениями maintenance crew maintenance command
    4) а) юр. поддержка (одной из тяжущихся сторон в корыстных целях) б) поддержка (чьего-л. мнения, просьбы и т. п.) He could never have appealed, as he did, to the authority of Paul in maintenance of his own peculiar opinions. ≈ Он никогда не использовал авторитет Пола для поддержки своего особого мнения, что он делал в других случаях.
    5) тех. эксплуатация;
    эксплуатационные расходы (включая текущий ремонт) поддержание, сохранение;
    продолжение - the * of friendly relations with all countries поддержание дружеских отношений /отношений дружбы/ со всеми странами - * of contact( военное) поддержание соприкосновения с противником - * of observation( военное) непрерывное ведение наблюдения содержание, выплачиваемое мужем жене в случае соглашения о раздельном проживании;
    алименты - to provide for smb.'s * обеспечить кого-л. средствами к существованию - he pays $15 per week * он платит пятнадцать долларов в неделю алиментов, он выплачивает алименты - пятнадцать долларов в неделю поддержка, защита (юридическое) поддержка (одной из тяжущихся сторон в корыстных целях) (техническое) уход, ремонт (текущий) ;
    содержание и техническое обслуживание;
    материально-техническое обеспечение( компьютерное) сопровождение, обслуживание;
    ведение (файла и т. п.) (техническое) эксплуатационные расходы, стоимость содержания режим( ледника) (книжное) утверждение advance payment of ~ сем. право удержание алиментов building ~ материально-техническое обеспечение строительства child ~ сем.право алименты на ребенка child ~ сем.право денежное пособие на содержание ребенка conservation and ~ works природоохранные и реставрационные работы corrective ~ внеплановое техническое обслуживание corrective ~ вчт. корректирующее сопровождение corrective ~ техническое обслуживание с устранением неисправностей data ~ вчт. ведение данных database ~ вчт. ведение базы данных deferred ~ отсроченное техническое обслуживание emergency ~ аварийное обслуживание external ~ поддержание внешнего вида file ~ вчт. сопровождение файла machine ~ техническое обслуживание и ремонт оборудования maintenance алименты ~ материально-техническое обеспечение ~ неправомерная поддержка одной из тяжущихся сторон ~ обслуживание ~ поддержание ~ юр. поддержка (одной из тяжущихся сторон в корыстных целях) ~ поддержка, поддержание, сохранение;
    содержание, средства к существованию ~ поддержка, поддержание;
    сохранение ~ профилактический осмотр ~ attr. ремонтный;
    maintenance crew команда технического обслуживания ~ содержание;
    средства к существованию ~ содержание, средства к существованию, алименты ~ содержание в исправности ~ вчт. сопровождение ~ сохранение ~ средства к существованию ~ стоимость содержания ~ техническое обслуживание, уход (за оборудованием), эксплуатация, ремонт ~ техническое обслуживание ~ утверждение ~ утверждение, заявление ~ тех. уход, содержание в исправности;
    текущий ремонт ~ уход, содержание в исправности ~ эксплуатационные расходы ~ тех. эксплуатация;
    эксплуатационные расходы (включая текущий ремонт) ~ эксплуатация ~ attr. ремонтный;
    maintenance crew команда технического обслуживания ~ of factory buildings содержание производственных зданий ~ of family содержание семьи ~ of order поддержание порядка ~ of public service obligation выполнение обязательств по коммунальным услугам ~ of user enthusiasm вчт. поддержание заинтересованности пользователя ~ of value obligation выполнение валютного обязательства on-call ~ обслуживание по вызову on-line ~ вчт. оперативное техническое оборудование operating ~ вчт. текущее сопровождение preventive ~ профилактика preventive ~ профилактический ремонт price ~ поддержание минимальной цены price: ~ formation эк. ценообразование;
    price maintenance эк. установление и поддержание цен price ~ agreement договор об установлении и поддержании цен program ~ вчт. сопровождение программы remedial ~ ремонт resale price ~ поддержание цены товара при перепродаже road ~ содержание дорог routine ~ профилактика routine ~ профилактическое техническое обслуживание routine ~ текущее техническое обслуживание separate ~ содержание, выплачиваемое мужем жене в случае соглашения о раздельном жительстве separate: ~ отдельный;
    cut it into four separate parts разрежьте это на четыре части;
    separate maintenance содержание, назначаемое жене при разводе software ~ вчт. сопровождение программного обеспечения software product ~ вчт. сопровождение программного изделия truth ~ поддержка достоверности unsheduled ~ внеплановое обслуживание widow ~ пособие вдове

    Большой англо-русский и русско-английский словарь > maintenance

  • 112 Show Attribute

    1. атрибут показа

     

    атрибут показа
    Атрибут поведения элементов, которые определяют расширенные ссылки в языке XLink, а также для ссылочных элементов простых ссылок. Относится к числу глобальных атрибутов в языке XLink. Значение этого атрибута определяет способ представления целевого ресурса при активизации ссылки - загрузка его в новое окно, загрузка в текущее окно с замещением уже представленного в нем ресурса, загрузка в текущее окно без замещения представленного в нем ресурса. Язык допускает использование и иных значений этого атрибута, которые будут интерпретироваться приложениями XLink высокого уровня.
    [ http://www.morepc.ru/dict/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > Show Attribute

  • 113 current maintenance

    Универсальный англо-русский словарь > current maintenance

  • 114 import

    ['ɪmpɔːt]
    1) Общая лексика: быть важным, важность, ввезти, ввоз, ввозимые товары, ввозить, ввозный, вкладывать (чувства, мысли и т.п.), вносить, выражать, выразить, значение, значительность, иметь значение, импорт, импортировать, означать, подразумевать, предметы ввоза, привезти, привносить, привозить, смысл, статьи импорта, суть, сущность, извлекать (информацию), завозить со стороны
    2) Компьютерная техника: внести, импорт (загрузка информационного объекта в текущее приложение без удаления его из места хранения, часто с изменением формата;-), импортирование (открытие объекта в текущем приложении)
    5) Железнодорожный термин: импортные товары
    7) Бухгалтерия: ввезённые товары
    8) Автомобильный термин: иномарка (в США, преимущественно по отношению к импортным японским спортивным автомобилям)
    9) Дипломатический термин: пред меты ввоза
    11) Вычислительная техника: импорт (входящих сообщений в сетях), открытие графического или текстового файла (особенно в формате, отличном от CDR) в окне CorelDraw, подразумеваемый смысл
    14) SAP.тех. считывать

    Универсальный англо-русский словарь > import

  • 115 TTCAN

    1. протокол TTCAN

     

    протокол TTCAN
    Протокол высокого уровня, определяющий синхро-временные коммуникационные режимы в сети CAN. При использовании TTCAN протокола CAN контроллеры должны обладать возможностью отключать автоматическую повторную передачу искаженных сообщений. Кроме того, контроллеры должны быть способны захватывать 16-битовое значение таймера при передаче бита начала кадра (SOF) для того, чтобы включать это значение в текущее сообщение.
    [ http://can-cia.com/fileadmin/cia/pdfs/CANdictionary-v2_ru.pdf]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > TTCAN

  • 116 process values

    1. процессные переменные

     

    процессные переменные
    -
    [Интент]

    Процессные переменные.

    Под словосочетанием “процессные переменные” понимаются численные параметры, определяющие текущее состояние технологического процесса. К процессным переменным можно отнести сигналы ввода/вывода, параметры функциональных блоков, локальные и глобальные флаги (переменные), тэги SCADA и т.д.

    Процессные переменные делятся на дискретные и аналоговые. Дискретная переменная может принимать конечное число значений из довольно узкого диапазона. На практике под дискретной переменной чаще всего подразумевают величину булевского типа (двоичную), указывающую на одно их двух возможных состояний объекта (или управляющего сигнала), хотя, формально говоря, это не совсем корректно. В общем же случае дискретная переменная аналогична типу enumeration языка C.

    Аналоговая переменная может принимать любую величину из ограниченного непрерывного диапазона значений. По типу представления аналоговая переменная больше соответствует вещественному числу.

    Как записываются процессные переменные в архив?
    Существуют две технологии регистрации значений процессных переменных в архиве:

    1.    Циклическая запись ( cyclic archiving) подразумевает периодическую запись текущего значения процессной переменной через заданные пользователем интервалы времени вне зависимости от величины и скорости изменения данной переменной (см. рис. 1). Хотя эта техника не очень экономична, она довольно часто используется для архивации аналоговых переменных. Период циклической записи для каждой переменной настраивается индивидуально и, как правило, лежит в диапазоне от 0.5 с до 10 мин. Как для дискретных переменных, так и быстро изменяющихся аналоговых переменных, подобный подход записи в архив явно не оптимален.

    4887
    Рис. 1. Циклическая запись процессной переменной в архив.

    2.    Архивация по изменению переменной (дельта-архивированиe, delta-archiving). Этот подход предполагает запись переменной в архив только тогда, когда изменение ее значения по сравнению с предыдущим записанным значением (абсолютная разность) достигает определенной величины (дельты, см. рис. 2). Дельта настраивается пользователем и может быть выражена как в абсолютных единицах измерения, так и в процентах от шкалы. Безусловно, это техника более экономична, чем циклическая запись, так как она адаптируется к скорости изменения архивируемой величины. Для дискретных величин – этот подход незаменим. Допустим, у нас есть дискретная переменная, которая изменяется, скажем, раз в час. Зачем же ее архивировать каждую секунду или минуту? Ведь гораздо логичнее записывать значение переменной в архив только в те моменты, когда это значение переходит из 1 в 0 или наоборот.

    4888
    Рис. 2. Дельта-архивирование процессной переменной.

    Куда записывается архив процессных переменных?
    Чаще всего используется один из трех вариантов:

    1.    Архив записывается в обычный текстовый файл в формате CSV ( comma separated values). Этот файл может храниться как на локальном, так и на сетевом диске. На самом деле архив состоит из множества последовательно создаваемых файлов: система генерирует новый файл архива каждую рабочую смену или сутки. У такого формата представления архива есть неоспоримое преимущество – его можно просмотреть любым текстовым редактором. Его также можно экспортировать в MS Excel и посмотреть в виде таблицы, применив необходимые сортировки и фильтры. Существенный недостаток – это неэкономичность хранения; накопленный таким образом архив занимает неприлично много места на жестком диске. Для уменьшения объема архива можно применить компрессию по алгоритму ZIP или RAR – благо, что текстовые файлы очень хорошо сжимаются.

    2.    Архив представляет собой двоичный файл, формат которого зависит от используемого ПО визуализации тех. процесса (SCADA). Очевидно, что это более экономичное представление архива, но для работы с ним обычным экселем уже не обойдешься. При этом формат архива у разных производителей SCADA может сильно различаться. Как и в предыдущем случае, архив состоит из последовательно создаваемых файлов. Вообще, хранить архив в одном большом файле – это не очень хорошо с точки зрения скорости доступа к данным.

    3.    Самый прогрессивный способ. Хранение архива в виде реляционной базы данных с поддержкой СУБД SQL. Этот способ позволяет достичь достаточно большой скорости работы с архивом (добавление записей, чтение и обработка данных), при этом сервер SQL может обеспечить оптимальный доступ к истории сразу нескольким десяткам удаленных клиентов. Поскольку доступ к архиву осуществляется по открытому интерфейсу SQL, разработчики имеют возможность создавать клиентские приложения под свои нужды. Но главное преимущество заключается в том, что архив на базе SQL – это отличная возможность для интеграции АСУ ТП с информационными системами более высокого уровня (например, уровня MES). Как правило, для ведения архива SQL и обслуживания клиентов используется достаточно мощная серверная платформа.

    Во всех описанных случаях система архивирования процессных переменных – это неотъемлемая часть ПО визуализации технологического процесса. Разница заключается в формате представления архива и технологии доступа.

    Какие средства служат для отображения архива? Архив можно отобразить несколькими способами. Самый простой – это представить его в табличной форме и экспортировать, например, в Excel, в котором можно строить графики, диаграммы и делать отчеты. Однако это довольно утомительно и требует много ручного труда.

    Более удобный способ – это отображение истории в виде специального динамического (обновляемого автоматически) графика, называемого трендом ( trend). Тренд помещается на мнемосхемы операторского интерфейса в тех места, где это необходимо и удобно оператору. Пример тренда изображен на рисунке ниже.

    4889
    Рис. 3. Пример исторического тренда, отображающего две процессные переменные.

    На тренд можно выводить до 16 переменных одновременно, как дискретных, так и аналоговых. При этом тренд можно строить за произвольный промежуток времени ( time span). Также поддерживается масштабирование ( scaling). Передвигая ползунок ( slider) вдоль шкалы времени можно просматривать точные значения переменных в различные моменты времени в прошлом. Отрезки времени, в течение которых наблюдались аварийные значения переменных, выделяются на тренде контрастным цветом. В общем, тренды – это мощный и очень удобный инструмент, наглядно показывающий поведение переменных в динамике.

    [ http://kazanets.narod.ru/AlarmsArchive.htm]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > process values

  • 117 clock synchronization

    1. синхронизация по тактам
    2. синхронизация времени

     

    синхронизация времени
    -
    [ ГОСТ Р МЭК 60870-5-103-2005]

    Также нормированы допустимые временные задержки для различных видов сигналов, включая дискретные сигналы, оцифрованные мгновенные значения токов и напряжений, сигналы синхронизации времени и т.п.
    [Новости Электротехники №4(76) | СТАНДАРТ МЭК 61850]

    Широковещательное сообщение, как правило, содержит адрес отправителя и глобальный адрес получателя. Примером широковещательного сообщения служит синхронизация времени.
    [ ГОСТ Р 54325-2011 (IEC/TS 61850-2:2003)]

    Устройства последних поколений дают возможность синхронизации времени с точностью до микросекунд с помощью GPS.

    С помощью этого интерфейса сигнал синхронизации времени (от радиоприемника DCF77 сигнал точного времени из Braunschweig, либо от радиоприемника iRiG-B сигнал точного времени  глобальной спутниковой системы GPS) может быть передан в терминал для точной синхронизации времени.

    [Герхард Циглер. ЦИФРОВАЯ ДИСТАНЦИОННАЯ ЗАЩИТА. ПРИНЦИПЫ И ПРИМЕНЕНИЕ
    Перевод с английского ]

    В  том  случае  если  принятое  сообщение  искажено ( повреждено)  в  результате неисправности  канала  связи  или  в  результате  потери  синхронизации  времени, пользователь имеет возможность...

    2.13 Синхронизация часов реального времени сигналом по оптовходу 
    В современных системах релейной защиты зачастую требуется синхронизированная работа часов всех реле в системе для восстановления хронологии работы разных реле.
    Это может быть выполнено с использованием сигналов синхронизации времени   по интерфейсу IRIG-B, если  реле  оснащено  таким  входом  или  сигналом  от  системы OP

    [Дистанционная защита линии MiCOM P443/ ПРИНЦИП  РАБОТЫ]


    СИНХРОНИЗАЦИЯ ВРЕМЕНИ СОГЛАСНО СТАНДАРТУ IEEE 1588

    Автор: Андреас Дреер (Hirschmann Automation and Control)

    Вопрос синхронизации устройств по времени важен для многих распределенных систем промышленной автоматизации. При использовании протокола Precision Time Protocol (PTP), описанного стандартом IEEE 1588, становится возможным выполнение синхронизации внутренних часов устройств, объединенных по сети Ethernet, с погрешностями, не превышающими 1 микросекунду. При этом к вычислительной способности устройств и пропускной способности сети предъявляются относительно низкие требования. В 2008 году была утверждена вторая редакция стандарта (IEEE 1588-2008 – PTP версия 2) с рядом внесенных усовершенствований по сравнению с первой его редакцией.

    ЗАЧЕМ НЕОБХОДИМА СИНХРОНИЗАЦИЯ УСТРОЙСТВ ПО ВРЕМЕНИ?

    Во многих системах должен производиться отсчет времени. О неявной системе отсчета времени можно говорить тогда, когда в системе отсутствуют часы и ход времени определяется процессами, протекающими в аппаратном и программном обеспечении. Этого оказывается достаточно во многих случаях. Неявная система отсчета времени реализуется, к примеру, передачей сигналов, инициирующих начало отсчета времени и затем выполнение определенных действий, от одних устройств другим.

    Система отсчета времени считается явной, если показания времени в ней определяются часами. Указанное необходимо для сложных систем. Таким образом, осуществляется разделение процедур передачи данных о времени и данных о процессе.

    Два эффекта должны быть учтены при настройке или синхронизации часов в отдельных устройствах. Первое – показания часов в отдельных устройствах изначально отличаются друг от друга (смещение показаний времени друг относительно друга). Второе – реальные часы не производят отсчет времени с одинаковой скоростью. Таким образом, требуется проводить постоянную корректировку хода самых неточных часов.

    ПРЕДЫДУЩИЕ РЕШЕНИЯ

    Существуют различные способы синхронизации часов в составе отдельных устройств, объединенных в одну информационную сеть. Наиболее известные способы – это использование протокола NTP (Network Time Protocol), а также более простого протокола, который образован от него – протокола SNTP (Simple Network Time Protocol). Данные методы широко распространены для использования в локальных сетях и сети Интернет и позволяют обеспечивать синхронизацию времени с погрешностями в диапазоне миллисекунд. Другой вариант – использование радиосигналов с GPS спутников. Однако при использовании данного способа требуется наличие достаточно дорогих GPS-приемников для каждого из устройств, а также GPS-антенн. Данный способ теоретически может обеспечить высокую точность синхронизации времени, однако материальные затраты и трудозатраты обычно препятствуют реализации такого метода синхронизации.

    Другим решением является передача высокоточного временного импульса (например, одного импульса в секунду) каждому отдельному устройству по выделенной линии. Реализация данного метода влечет за собой необходимость создания выделенной линии связи к каждому устройству.

    Последним методом, который может быть использован, является протокол PTP (Precision Time Protocol), описанный стандартом IEEE 1588. Протокол был разработан со следующими целями:

    • Обеспечение синхронизация времени с погрешностью, не превышающей 1 микросекунды.
    • Предъявление минимальных требований к производительности процессоров устройств и к пропускной способности линии связи, что позволило бы обеспечить реализацию протокола в простых и дешевых устройствах.
      • Предъявление невысоких требований к обслуживающему персоналу.
      • Возможность использования в сетях Ethernet, а также в других сетях.
      • Спецификация его как международного стандарта.

    ОБЛАСТИ ПРИМЕНЕНИЯ ПРОТОКОЛА PTP

    Протокол PTP может быть применен в различного рода системах. В системах автоматизации, протокол PTP востребован везде, где требуется точная синхронизация устройств по времени. Протокол позволяет синхронизировать устройства в робототехнике или печатной промышленности, в системах осуществляющих обработку бумаги и упаковку продукции и других областях.

    В общем и целом в любых системах, где осуществляется измерение тех или иных величин и их сравнение с величинами, измеренными другими устройствами, использование протокола PTP является популярным решением. Системы управления турбинами используют протокол PTP для обеспечения более эффективной работы станций. События, происходящие в различных частях распределенных в пространстве систем, определяются метками точного времени и затем для целей архивирования и анализа осуществляется их передача на центры управления. Геоученые используют протокол PTP для синхронизации установок мониторинга сейсмической активности, удаленных друг от друга на значительные расстояния, что предоставляет возможность более точным образом определять эпицентры землетрясений. В области телекоммуникаций рассматривают возможность использования протокола PTP для целей синхронизации сетей и базовых станций. Также синхронизация времени согласно стандарту IEEE 1588 представляет интерес для разработчиков систем обеспечения жизнедеятельности, систем передачи аудио и видео потоков и может быть использована в военной промышленности.

    В электроэнергетике протокол PTPv2 (протокол PTP версии 2) определен для синхронизации интеллектуальных электронных устройств (IED) по времени. Например, при реализации шины процесса, с передачей мгновенных значений тока и напряжения согласно стандарту МЭК 61850-9-2, требуется точная синхронизация полевых устройств по времени. Для реализации систем защиты и автоматики с использованием сети Ethernet погрешность синхронизации данных различных устройств по времени должна лежать в микросекундном диапазоне.

    Также для реализации функций синхронизированного распределенного векторного измерения электрических величин согласно стандарту IEEE C37.118, учета, оценки качества электрической энергии или анализа аварийных событий необходимо наличие устройств, синхронизированных по времени с максимальной точностью, для чего может быть использован протокол PTP.

    Вторая редакция стандарта МЭК 61850 определяет использование в системах синхронизации времени протокола PTP. Детализация профиля протокола PTP для использования на объектах электроэнергетики (IEEE Standard Profile for Use of IEEE 1588 Precision Time Protocol in Power System Applications) в настоящее время осуществляется рабочей группой комитета по релейной защите и автоматике организации (PSRC) IEEE.

    ПРОТОКОЛ PTP ВЕРСИИ 2

    В 2005 году была начата работа по изменению стандарта IEEE1588-2002 с целью расширения возможных областей его применения (телекоммуникации, беспроводная связь и в др.). Результатом работы стало новое издание IEEE1588-2008, которое доступно с марта 2008 со следующими новыми особенностями:

    • Усовершенствованные алгоритмы для обеспечения погрешностей в наносекундном диапазоне.
    • Повышенное быстродействие синхронизации времени (возможна более частая передача сообщений синхронизации Sync).
    • Поддержка новых типов сообщений.
    • Ввод однорежимного принципа работы (не требуется передачи сообщений типа FollowUp).
    • Ввод поддержки функции т.н. прозрачных часов для предотвращения накопления погрешностей измерения при каскадной схеме соединения коммутаторов.
    • Ввод профилей, определяющих настройки для новых областей применения.
    • Возможность назначения на такие транспортные механизмы как DeviceNet, PROFInet и IEEE802.3/Ethernet (прямое назначение).
    • Ввод структуры TLV (тип, длина, значение) для расширения возможных областей применения стандарта и удовлетворения будущих потребностей.
    • Ввод дополнительных опциональных расширений стандарта.

    ПРИНЦИП ФУНКЦИОНИРОВАНИЯ СИСТЕМ НА ОСНОВЕ ПРОТОКОЛА PTP

    В системах, где используется протокол PTP, различают два вида часов: ведущие часы и ведомые часы. Ведущие часы, в идеале, контролируются либо радиочасами, либо GPS-приемниками и осуществляют синхронизацию ведомых часов. Часы в конечном устройстве, неважно ведущие ли они или ведомые, считаются обычными часами; часы в составе устройств сети, выполняющих функцию передачи и маршрутизации данных (например, в Ethernet-коммутаторах), считаются граничными часами.

    Процедура синхронизации согласно протоколу PTP подразделяется на два этапа. На первом этапе осуществляется коррекция разницы показаний времени между ведущими и ведомыми часами – то есть осуществляется так называемая коррекция смещения показаний времени. Для этого ведущее устройство осуществляет передачу сообщения для целей синхронизации времени Sync ведомому устройству (сообщение типа Sync). Сообщение содержит в себе текущее показание времени ведущих часов и его передача осуществляется периодически через фиксированные интервалы времени. Однако поскольку считывание показаний ведущих часов, обработка данных и передача через контроллер Ethernet занимает некоторое время, информация в передаваемом сообщении к моменту его приема оказывается неактуальной.   Одновременно с этим осуществляется как можно более точная фиксация момента времени, в который сообщение Sync уходит от отправителя, в составе которого находятся ведущие часы (TM1). Затем ведущее устройство осуществляет передачу зафиксированного момента времени передачи сообщения Sync ведомым устройствам (сообщение FollowUp). Те также как можно точнее осуществляют измерение момента времени приема первого сообщения (TS1) и вычисляют величину, на которую необходимо выполнить коррекцию разницы в показаниях времени между собою и ведущим устройством соответственно (O) (см. рис. 1 и рис. 2). Затем непосредственно осуществляется коррекция показаний часов в составе ведомых устройств на величину смещения. Если задержки в передачи сообщений по сети не было, то можно утверждать, что устройства синхронизированы по времени.

    На втором этапе процедуры синхронизации устройств по времени осуществляется определение задержки в передаче упомянутых выше сообщений по сети между устройствами. Указанное выполняется  при использовании сообщений специального типа. Ведомое устройство отправляет так называемое сообщение Delay Request (Запрос задержки в передаче сообщения по сети) ведущему устройству и осуществляет фиксацию момента передачи данного сообщения. Ведущее устройство фиксирует момент приема данного сообщения и отправляет зафиксированное значение в сообщении Delay Response (Ответное сообщение с указанием момента приема сообщения). Исходя из зафиксированных времен передачи сообщения Delay Request ведомым устройством и приема сообщения Delay Response ведущим устройством производится оценка задержки в передачи сообщения между ними по сети. Затем производится соответствующая коррекция показаний часов в ведомом устройстве. Однако все упомянутое выше справедливо, если характерна симметричная задержка в передаче сообщения в обоих направлениях между устройствами (то есть характерны одинаковые значения в задержке передачи сообщений в обоих направлениях).

    Задержка в передачи сообщения в обоих направлениях будет идентичной в том случае, если устройства соединены между собой по одной линии связи и только. Если в сети между устройствами имеются коммутаторы или маршрутизаторы, то симметричной задержка в передачи сообщения между устройствами не будет, поскольку коммутаторы в сети осуществляют сохранение тех пакетов данных, которые проходят через них, и реализуется определенная очередность их передачи. Эта особенность может, в некоторых случаях, значительным образом влиять на величину задержки в передаче сообщений (возможны значительные отличия во временах передачи данных). При низкой информационной загрузке сети этот эффект оказывает малое влияние, однако при высокой информационной загрузке, указанное может значительным образом повлиять на точность синхронизации времени. Для исключения больших погрешностей был предложен специальный метод и введено понятие граничных часов, которые реализуются в составе коммутаторов сети. Данные граничные часы синхронизируются по времени с часами ведущего устройства. Далее коммутатор по каждому порту является ведущим устройством для всех ведомых устройств, подключенных к его портам, в которых осуществляется соответствующая синхронизация часов. Таким образом, синхронизация всегда осуществляется по схеме точка-точка и характерна практически одинаковая задержка в передаче сообщения в прямом и обратном направлении, а также практическая неизменность этой задержки по величине от одной передачи сообщения к другой.

    Хотя принцип, основанный на использовании граничных часов показал свою практическую эффективность, другой механизм был определен во второй  версии протокола PTPv2 – механизм использования т. н. прозрачных часов. Данный механизм  предотвращает накопление погрешности, обусловленной изменением величины задержек в передаче сообщений синхронизации коммутаторами и предотвращает снижение точности синхронизации в случае наличия сети с большим числом каскадно-соединенных коммутаторов. При использовании такого механизма передача сообщений синхронизации осуществляется от ведущего устройства ведомому, как и передача любого другого сообщения в сети. Однако когда сообщение синхронизации проходит через коммутатор фиксируется задержка его передачи коммутатором. Задержка фиксируется в специальном поле коррекции в составе первого сообщения синхронизации Sync или в составе последующего сообщения FollowUp (см. рис. 2). При передаче сообщений Delay Request и Delay Response также осуществляется фиксация времени задержки их в коммутаторе. Таким образом, реализация поддержки т. н. прозрачных часов в составе коммутаторов позволяет компенсировать задержки, возникающие непосредственно в них.

    РЕАЛИЗАЦИЯ ПРОТОКОЛА PTP

    Если необходимо использование протокола PTP в системе, должен быть реализован стек протокола PTP. Это может быть сделано при предъявлении минимальных требований к производительности процессоров устройств и к пропускной способности сети. Это очень важно для реализации стека протокола в простых и дешевых устройствах. Протокол PTP может быть без труда реализован даже в системах, построенных на дешевых контроллерах (32 бита).

    Единственное требование, которое необходимо удовлетворить для обеспечения высокой точности синхронизации, – как можно более точное измерение устройствами момента времени, в который осуществляется передача сообщения, и момента времени, когда осуществляется прием сообщения. Измерение должно производится максимально близко к аппаратной части (например, непосредственно в драйвере) и с максимально возможной точностью. В реализациях исключительно на программном уровне архитектура и производительность системы непосредственно ограничивают максимально допустимую точность.

    При использовании дополнительной поддержки аппаратного обеспечения для присвоения меток времени, точность может быть значительным образом повышена и может быть обеспечена ее виртуальная независимость от программного обеспечения. Для этого необходимо использование дополнительной логики, которая может быть реализована в программируемой логической интегральной схеме или специализированной для решения конкретной задачи интегральной схеме на сетевом входе.

    РЕЗУЛЬТАТЫ

    Компания Hirschmann – один из первых производителей, реализовавших протокол PTP и оптимизировавших его использование. Компанией был разработан стек, максимально эффективно реализующий протокол, а также чип (программируемая интегральная логическая схема), который обеспечивает высокую точность проводимых замеров.

    В системе, в которой несколько обычных часов объединены через Ethernet-коммутатор с функцией граничных часов, была достигнута предельная погрешность +/- 60 нс при практически полной независимости от загрузки сети и загрузки процессора. Также компанией была протестирована система, состоящая из 30 каскадно-соединенных коммутаторов, обладающих функцией поддержки т.н. прозрачных часов и были зафиксированы  погрешности менее в пределах +/- 200 нс.

    Компания Hirschmann Automation and Control реализовала протоколы PTP версии 1 и версии 2 в промышленных коммутаторах серии MICE, а также в серии монтируемых на стойку коммутаторов MACH100.

    ВЫВОДЫ

    Протокол PTP во многих областях уже доказал эффективность своего применения. Можно быть уверенным, что он получит более широкое распространение в течение следующих лет и что многие решения при его использовании смогут быть реализованы более просто и эффективно чем при использовании других технологий.

    [ Источник]

    Тематики

    EN

     

    синхронизация по тактам
    тактовая синхронизация


    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > clock synchronization

  • 118 time synchronization

    1. синхронизация времени

     

    синхронизация времени
    -
    [ ГОСТ Р МЭК 60870-5-103-2005]

    Также нормированы допустимые временные задержки для различных видов сигналов, включая дискретные сигналы, оцифрованные мгновенные значения токов и напряжений, сигналы синхронизации времени и т.п.
    [Новости Электротехники №4(76) | СТАНДАРТ МЭК 61850]

    Широковещательное сообщение, как правило, содержит адрес отправителя и глобальный адрес получателя. Примером широковещательного сообщения служит синхронизация времени.
    [ ГОСТ Р 54325-2011 (IEC/TS 61850-2:2003)]

    Устройства последних поколений дают возможность синхронизации времени с точностью до микросекунд с помощью GPS.

    С помощью этого интерфейса сигнал синхронизации времени (от радиоприемника DCF77 сигнал точного времени из Braunschweig, либо от радиоприемника iRiG-B сигнал точного времени  глобальной спутниковой системы GPS) может быть передан в терминал для точной синхронизации времени.

    [Герхард Циглер. ЦИФРОВАЯ ДИСТАНЦИОННАЯ ЗАЩИТА. ПРИНЦИПЫ И ПРИМЕНЕНИЕ
    Перевод с английского ]

    В  том  случае  если  принятое  сообщение  искажено ( повреждено)  в  результате неисправности  канала  связи  или  в  результате  потери  синхронизации  времени, пользователь имеет возможность...

    2.13 Синхронизация часов реального времени сигналом по оптовходу 
    В современных системах релейной защиты зачастую требуется синхронизированная работа часов всех реле в системе для восстановления хронологии работы разных реле.
    Это может быть выполнено с использованием сигналов синхронизации времени   по интерфейсу IRIG-B, если  реле  оснащено  таким  входом  или  сигналом  от  системы OP

    [Дистанционная защита линии MiCOM P443/ ПРИНЦИП  РАБОТЫ]


    СИНХРОНИЗАЦИЯ ВРЕМЕНИ СОГЛАСНО СТАНДАРТУ IEEE 1588

    Автор: Андреас Дреер (Hirschmann Automation and Control)

    Вопрос синхронизации устройств по времени важен для многих распределенных систем промышленной автоматизации. При использовании протокола Precision Time Protocol (PTP), описанного стандартом IEEE 1588, становится возможным выполнение синхронизации внутренних часов устройств, объединенных по сети Ethernet, с погрешностями, не превышающими 1 микросекунду. При этом к вычислительной способности устройств и пропускной способности сети предъявляются относительно низкие требования. В 2008 году была утверждена вторая редакция стандарта (IEEE 1588-2008 – PTP версия 2) с рядом внесенных усовершенствований по сравнению с первой его редакцией.

    ЗАЧЕМ НЕОБХОДИМА СИНХРОНИЗАЦИЯ УСТРОЙСТВ ПО ВРЕМЕНИ?

    Во многих системах должен производиться отсчет времени. О неявной системе отсчета времени можно говорить тогда, когда в системе отсутствуют часы и ход времени определяется процессами, протекающими в аппаратном и программном обеспечении. Этого оказывается достаточно во многих случаях. Неявная система отсчета времени реализуется, к примеру, передачей сигналов, инициирующих начало отсчета времени и затем выполнение определенных действий, от одних устройств другим.

    Система отсчета времени считается явной, если показания времени в ней определяются часами. Указанное необходимо для сложных систем. Таким образом, осуществляется разделение процедур передачи данных о времени и данных о процессе.

    Два эффекта должны быть учтены при настройке или синхронизации часов в отдельных устройствах. Первое – показания часов в отдельных устройствах изначально отличаются друг от друга (смещение показаний времени друг относительно друга). Второе – реальные часы не производят отсчет времени с одинаковой скоростью. Таким образом, требуется проводить постоянную корректировку хода самых неточных часов.

    ПРЕДЫДУЩИЕ РЕШЕНИЯ

    Существуют различные способы синхронизации часов в составе отдельных устройств, объединенных в одну информационную сеть. Наиболее известные способы – это использование протокола NTP (Network Time Protocol), а также более простого протокола, который образован от него – протокола SNTP (Simple Network Time Protocol). Данные методы широко распространены для использования в локальных сетях и сети Интернет и позволяют обеспечивать синхронизацию времени с погрешностями в диапазоне миллисекунд. Другой вариант – использование радиосигналов с GPS спутников. Однако при использовании данного способа требуется наличие достаточно дорогих GPS-приемников для каждого из устройств, а также GPS-антенн. Данный способ теоретически может обеспечить высокую точность синхронизации времени, однако материальные затраты и трудозатраты обычно препятствуют реализации такого метода синхронизации.

    Другим решением является передача высокоточного временного импульса (например, одного импульса в секунду) каждому отдельному устройству по выделенной линии. Реализация данного метода влечет за собой необходимость создания выделенной линии связи к каждому устройству.

    Последним методом, который может быть использован, является протокол PTP (Precision Time Protocol), описанный стандартом IEEE 1588. Протокол был разработан со следующими целями:

    • Обеспечение синхронизация времени с погрешностью, не превышающей 1 микросекунды.
    • Предъявление минимальных требований к производительности процессоров устройств и к пропускной способности линии связи, что позволило бы обеспечить реализацию протокола в простых и дешевых устройствах.
      • Предъявление невысоких требований к обслуживающему персоналу.
      • Возможность использования в сетях Ethernet, а также в других сетях.
      • Спецификация его как международного стандарта.

    ОБЛАСТИ ПРИМЕНЕНИЯ ПРОТОКОЛА PTP

    Протокол PTP может быть применен в различного рода системах. В системах автоматизации, протокол PTP востребован везде, где требуется точная синхронизация устройств по времени. Протокол позволяет синхронизировать устройства в робототехнике или печатной промышленности, в системах осуществляющих обработку бумаги и упаковку продукции и других областях.

    В общем и целом в любых системах, где осуществляется измерение тех или иных величин и их сравнение с величинами, измеренными другими устройствами, использование протокола PTP является популярным решением. Системы управления турбинами используют протокол PTP для обеспечения более эффективной работы станций. События, происходящие в различных частях распределенных в пространстве систем, определяются метками точного времени и затем для целей архивирования и анализа осуществляется их передача на центры управления. Геоученые используют протокол PTP для синхронизации установок мониторинга сейсмической активности, удаленных друг от друга на значительные расстояния, что предоставляет возможность более точным образом определять эпицентры землетрясений. В области телекоммуникаций рассматривают возможность использования протокола PTP для целей синхронизации сетей и базовых станций. Также синхронизация времени согласно стандарту IEEE 1588 представляет интерес для разработчиков систем обеспечения жизнедеятельности, систем передачи аудио и видео потоков и может быть использована в военной промышленности.

    В электроэнергетике протокол PTPv2 (протокол PTP версии 2) определен для синхронизации интеллектуальных электронных устройств (IED) по времени. Например, при реализации шины процесса, с передачей мгновенных значений тока и напряжения согласно стандарту МЭК 61850-9-2, требуется точная синхронизация полевых устройств по времени. Для реализации систем защиты и автоматики с использованием сети Ethernet погрешность синхронизации данных различных устройств по времени должна лежать в микросекундном диапазоне.

    Также для реализации функций синхронизированного распределенного векторного измерения электрических величин согласно стандарту IEEE C37.118, учета, оценки качества электрической энергии или анализа аварийных событий необходимо наличие устройств, синхронизированных по времени с максимальной точностью, для чего может быть использован протокол PTP.

    Вторая редакция стандарта МЭК 61850 определяет использование в системах синхронизации времени протокола PTP. Детализация профиля протокола PTP для использования на объектах электроэнергетики (IEEE Standard Profile for Use of IEEE 1588 Precision Time Protocol in Power System Applications) в настоящее время осуществляется рабочей группой комитета по релейной защите и автоматике организации (PSRC) IEEE.

    ПРОТОКОЛ PTP ВЕРСИИ 2

    В 2005 году была начата работа по изменению стандарта IEEE1588-2002 с целью расширения возможных областей его применения (телекоммуникации, беспроводная связь и в др.). Результатом работы стало новое издание IEEE1588-2008, которое доступно с марта 2008 со следующими новыми особенностями:

    • Усовершенствованные алгоритмы для обеспечения погрешностей в наносекундном диапазоне.
    • Повышенное быстродействие синхронизации времени (возможна более частая передача сообщений синхронизации Sync).
    • Поддержка новых типов сообщений.
    • Ввод однорежимного принципа работы (не требуется передачи сообщений типа FollowUp).
    • Ввод поддержки функции т.н. прозрачных часов для предотвращения накопления погрешностей измерения при каскадной схеме соединения коммутаторов.
    • Ввод профилей, определяющих настройки для новых областей применения.
    • Возможность назначения на такие транспортные механизмы как DeviceNet, PROFInet и IEEE802.3/Ethernet (прямое назначение).
    • Ввод структуры TLV (тип, длина, значение) для расширения возможных областей применения стандарта и удовлетворения будущих потребностей.
    • Ввод дополнительных опциональных расширений стандарта.

    ПРИНЦИП ФУНКЦИОНИРОВАНИЯ СИСТЕМ НА ОСНОВЕ ПРОТОКОЛА PTP

    В системах, где используется протокол PTP, различают два вида часов: ведущие часы и ведомые часы. Ведущие часы, в идеале, контролируются либо радиочасами, либо GPS-приемниками и осуществляют синхронизацию ведомых часов. Часы в конечном устройстве, неважно ведущие ли они или ведомые, считаются обычными часами; часы в составе устройств сети, выполняющих функцию передачи и маршрутизации данных (например, в Ethernet-коммутаторах), считаются граничными часами.

    Процедура синхронизации согласно протоколу PTP подразделяется на два этапа. На первом этапе осуществляется коррекция разницы показаний времени между ведущими и ведомыми часами – то есть осуществляется так называемая коррекция смещения показаний времени. Для этого ведущее устройство осуществляет передачу сообщения для целей синхронизации времени Sync ведомому устройству (сообщение типа Sync). Сообщение содержит в себе текущее показание времени ведущих часов и его передача осуществляется периодически через фиксированные интервалы времени. Однако поскольку считывание показаний ведущих часов, обработка данных и передача через контроллер Ethernet занимает некоторое время, информация в передаваемом сообщении к моменту его приема оказывается неактуальной.   Одновременно с этим осуществляется как можно более точная фиксация момента времени, в который сообщение Sync уходит от отправителя, в составе которого находятся ведущие часы (TM1). Затем ведущее устройство осуществляет передачу зафиксированного момента времени передачи сообщения Sync ведомым устройствам (сообщение FollowUp). Те также как можно точнее осуществляют измерение момента времени приема первого сообщения (TS1) и вычисляют величину, на которую необходимо выполнить коррекцию разницы в показаниях времени между собою и ведущим устройством соответственно (O) (см. рис. 1 и рис. 2). Затем непосредственно осуществляется коррекция показаний часов в составе ведомых устройств на величину смещения. Если задержки в передачи сообщений по сети не было, то можно утверждать, что устройства синхронизированы по времени.

    На втором этапе процедуры синхронизации устройств по времени осуществляется определение задержки в передаче упомянутых выше сообщений по сети между устройствами. Указанное выполняется  при использовании сообщений специального типа. Ведомое устройство отправляет так называемое сообщение Delay Request (Запрос задержки в передаче сообщения по сети) ведущему устройству и осуществляет фиксацию момента передачи данного сообщения. Ведущее устройство фиксирует момент приема данного сообщения и отправляет зафиксированное значение в сообщении Delay Response (Ответное сообщение с указанием момента приема сообщения). Исходя из зафиксированных времен передачи сообщения Delay Request ведомым устройством и приема сообщения Delay Response ведущим устройством производится оценка задержки в передачи сообщения между ними по сети. Затем производится соответствующая коррекция показаний часов в ведомом устройстве. Однако все упомянутое выше справедливо, если характерна симметричная задержка в передаче сообщения в обоих направлениях между устройствами (то есть характерны одинаковые значения в задержке передачи сообщений в обоих направлениях).

    Задержка в передачи сообщения в обоих направлениях будет идентичной в том случае, если устройства соединены между собой по одной линии связи и только. Если в сети между устройствами имеются коммутаторы или маршрутизаторы, то симметричной задержка в передачи сообщения между устройствами не будет, поскольку коммутаторы в сети осуществляют сохранение тех пакетов данных, которые проходят через них, и реализуется определенная очередность их передачи. Эта особенность может, в некоторых случаях, значительным образом влиять на величину задержки в передаче сообщений (возможны значительные отличия во временах передачи данных). При низкой информационной загрузке сети этот эффект оказывает малое влияние, однако при высокой информационной загрузке, указанное может значительным образом повлиять на точность синхронизации времени. Для исключения больших погрешностей был предложен специальный метод и введено понятие граничных часов, которые реализуются в составе коммутаторов сети. Данные граничные часы синхронизируются по времени с часами ведущего устройства. Далее коммутатор по каждому порту является ведущим устройством для всех ведомых устройств, подключенных к его портам, в которых осуществляется соответствующая синхронизация часов. Таким образом, синхронизация всегда осуществляется по схеме точка-точка и характерна практически одинаковая задержка в передаче сообщения в прямом и обратном направлении, а также практическая неизменность этой задержки по величине от одной передачи сообщения к другой.

    Хотя принцип, основанный на использовании граничных часов показал свою практическую эффективность, другой механизм был определен во второй  версии протокола PTPv2 – механизм использования т. н. прозрачных часов. Данный механизм  предотвращает накопление погрешности, обусловленной изменением величины задержек в передаче сообщений синхронизации коммутаторами и предотвращает снижение точности синхронизации в случае наличия сети с большим числом каскадно-соединенных коммутаторов. При использовании такого механизма передача сообщений синхронизации осуществляется от ведущего устройства ведомому, как и передача любого другого сообщения в сети. Однако когда сообщение синхронизации проходит через коммутатор фиксируется задержка его передачи коммутатором. Задержка фиксируется в специальном поле коррекции в составе первого сообщения синхронизации Sync или в составе последующего сообщения FollowUp (см. рис. 2). При передаче сообщений Delay Request и Delay Response также осуществляется фиксация времени задержки их в коммутаторе. Таким образом, реализация поддержки т. н. прозрачных часов в составе коммутаторов позволяет компенсировать задержки, возникающие непосредственно в них.

    РЕАЛИЗАЦИЯ ПРОТОКОЛА PTP

    Если необходимо использование протокола PTP в системе, должен быть реализован стек протокола PTP. Это может быть сделано при предъявлении минимальных требований к производительности процессоров устройств и к пропускной способности сети. Это очень важно для реализации стека протокола в простых и дешевых устройствах. Протокол PTP может быть без труда реализован даже в системах, построенных на дешевых контроллерах (32 бита).

    Единственное требование, которое необходимо удовлетворить для обеспечения высокой точности синхронизации, – как можно более точное измерение устройствами момента времени, в который осуществляется передача сообщения, и момента времени, когда осуществляется прием сообщения. Измерение должно производится максимально близко к аппаратной части (например, непосредственно в драйвере) и с максимально возможной точностью. В реализациях исключительно на программном уровне архитектура и производительность системы непосредственно ограничивают максимально допустимую точность.

    При использовании дополнительной поддержки аппаратного обеспечения для присвоения меток времени, точность может быть значительным образом повышена и может быть обеспечена ее виртуальная независимость от программного обеспечения. Для этого необходимо использование дополнительной логики, которая может быть реализована в программируемой логической интегральной схеме или специализированной для решения конкретной задачи интегральной схеме на сетевом входе.

    РЕЗУЛЬТАТЫ

    Компания Hirschmann – один из первых производителей, реализовавших протокол PTP и оптимизировавших его использование. Компанией был разработан стек, максимально эффективно реализующий протокол, а также чип (программируемая интегральная логическая схема), который обеспечивает высокую точность проводимых замеров.

    В системе, в которой несколько обычных часов объединены через Ethernet-коммутатор с функцией граничных часов, была достигнута предельная погрешность +/- 60 нс при практически полной независимости от загрузки сети и загрузки процессора. Также компанией была протестирована система, состоящая из 30 каскадно-соединенных коммутаторов, обладающих функцией поддержки т.н. прозрачных часов и были зафиксированы  погрешности менее в пределах +/- 200 нс.

    Компания Hirschmann Automation and Control реализовала протоколы PTP версии 1 и версии 2 в промышленных коммутаторах серии MICE, а также в серии монтируемых на стойку коммутаторов MACH100.

    ВЫВОДЫ

    Протокол PTP во многих областях уже доказал эффективность своего применения. Можно быть уверенным, что он получит более широкое распространение в течение следующих лет и что многие решения при его использовании смогут быть реализованы более просто и эффективно чем при использовании других технологий.

    [ Источник]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > time synchronization

  • 119 balance

    ˈbæləns
    1. сущ.
    1) весы (любой конструкции) quick balance Roman balance
    2) равновесие( в прямом и переносном смысле) balance of forces balance of nature balance of terror balance of power keep one's balance lose one's balance be off balance the strategic balance favourable balance unfavourable balance
    3) элк. баланс (соотношение мощностей правого и левого канала в стереозаписи)
    4) то же, что Libra
    5) противовес( в прямом и переносном смысле)
    6) маятник;
    балансир, баланс ( в механизмах)
    7) соотношение сил (необязательно равновесное), характеристика этого соотношения
    8) коммерч. баланс, сальдо bank balance strike a balance credit balance debit balance trade balance trial balance balance in hand balance due balance of payments balance of trade
    9) амер. разг. остаток( по коммерческим операциям) Syn: left-over
    10) балласт( по ошибочной ассоциации с ballast) ∙ - balance weight be in the balance tremble in the balance swing in the balance hang in the balance hold the balance upon a fair balance the beam of a balance balance-yard balance-fish balance-knife balance-man balance-master balance-mistress - balance-sheet balance-seat balance-step the balance of advantage lies with him ≈ на его стороне значительные преимущества to be weighed in the balance and found wanting( Дан., 5-
    27) ≈ не оправдать надежд
    2. гл.
    1) сохранять равновесие, быть в равновесии;
    уравновешивать( что-л.;
    что-л. чем-л.) One thing balances another. ≈ Одно компенсирует другое. balance oneself balance disadvantage by smth. to balance disadvantage with smth.
    2) взвешивать, обдумывать;
    сопоставлять( with, against) to balance а trip to the mountains against the chance of a summer job ≈ решать, что выбрать: поездку в горы или возможность получить работу на лето We must balance the two proposals. ≈ Нам надо взвесить достоинства этих двух предложений. balance income with expenditure
    3) колебаться, медлить He balanced in indecision. ≈ Он медлил в нерешительности.
    4) балансировать, качаться Balanced herself half over the balcony-rail. ≈ Она наполовину перевесилась через перила балкона.
    5) коммерч. подводить баланс the accounts don't balance ≈ счета не сходятся balance one's accounts balance out
    весы - quick /Roman/ * безмен, пружинные весы - assay * пробирные весы чаша весов - to tip the * склонять чашу весов, давать перевес равновесие;
    состояние равновесия - stable * устойчивое равновесие (тж. в спорте) - * of nature природное равновесие - off * неустойчивый, шаткий - to maintain a strict * of forces строго поддерживать равновесие сил - to hold the * even сохранять равновесие - to keep /to hold, to preserve/ one's * удерживать /сохранять/ равновесие - to lose * потерять равновесие - to make out the * уравновешивать, приводить в состояние равновесия - the blow threw him off his * удар сбил его с ног душевное равновесие;
    спокойствие;
    уравновешенность - to be off one's * потерять равновесие /душевный покой/ - to lose one's * выйти из себя, потерять равновесие - she was thrown off her * with anger она была вне себя от негодования - he kept his * even at the most trying moments он не терял самообладания даже в самые трудные минуты пропорциональность;
    гармоническое сочетание - the * of colours гармония красок (специальное) баланс - heat * (физическое) тепловой баланс решающий фактор;
    решающее влияние или значение - to hold the * осуществлять контроль, распоряжаться - the * of advantage lies with him на его стороне значительные преимущества - the * of out fortune rests with him наша судьба в его руках противовес, компенсатор;
    гиря баланс (шест канатоходца) маятник, балансир, баланс (в часовом механизме) (финансовое) баланс;
    сальдо;
    остаток - adverse * пассивный баланс - trade *, * of trade торговый баланс - favourable * активный баланс - sterling *s стерлинговые счета, стерлинговые авуары - * of payments платежный баланс - *s with foreign banks остатки на счетах в заграничных банках, иностранные авуары - * in hand денежная наличность, наличность кассы - * of an account остаток счета - on * после подведения баланса - to strike the * подводить баланс;
    подводить итоги - to bring accounts to a * составлять сводный баланс( разговорное) остаток - he spent the * of his life in travel остаток жизни он провел в странствиях - he gave the * of his dinner to the dog он бросил остатки обеда собаке (B.) (астрономия) Весы (созвездие и знак зодиака) (спортивное) брусья;
    стойка - one hand * стойка на одной руке > upon /on/ (a) * по зрелом размышлении, хорошо взвесив обстоятельства;
    с учетом всего вышесказанного;
    в конечном счете, в итоге - to be in the * быть нерешенным - the future is in the * будущее неясно - to swing /to be, to tremble/ in the * висеть на волоске, быть в критическом положении;
    колебаться, сомневаться - to hang in the * быть брошенным на чашу весов - to weigh in the * взвешивать, обсуждать, оценивать (доводы, достоинства и т. п.) - to be weighed in the * and found wanting не выдержать проверки - to turn the * склонить чашу весов - a moth will turn the * мелочь /случайность/ может изменить все балансировать, сохранять равновесие, быть в равновесии - do these scales *? чаши весов уравновешены? балансировать - the little boy was balancing himself on the edge of a chair мальчик качался /балансировал/ на краю стула приводить в равновесие;
    уравновешивать, уравнивать - to * foreign trade (экономика) сбалансировать внешнююторговлю - the teams were perfectly *d силы команд были совершенно равны удовлетворять потребность( в товаре) (бухгалтерское) подсчитывать, подытоживать;
    сводить, заключать, закрывать( счета, книги) ;
    погашать;
    подбивать баланс - to * an account уравнять /погасить/ счет - to * the books закрыть /забалансировать/ (бухгалтерские) книги - to compute and * one's gain and loss подводить итог приходу и расходу сводиться, балансироваться - the accounts don't * счета не сходятся взвешивать, определять вес (приблизительно) взвешивать, обдумывать;
    сопоставлять - to * probabilities сопоставлять возможности - she *d her answer to the sum with his она сравнила свой и его ответы на задачу медлить, колебаться - a disposition to * and temporize склонность к медлительности и колебаниям - to * in indecision быть в нерешительности (by, with, against) противопоставлять, нейтрализовать, компенсировать - to * a disadvantage by /with/ smth. восполнять ущерб чем-л.;
    нейтрализовать вред - the advantages more than * the disadvantages достоинства вполне покрывают недостатки - her lack of politeness was *d by her readiness to help недостаток вежливости сглаживался у нее готовностью помочь( специальное) добавлять недостающее количество делать балансе (в танце)
    to ~ one's accounts подытоживать счета;
    the accounts don't balance счета не сходятся
    adverse ~ неблагоприятный платежный баланс adverse ~ неблагоприятный торговый баланс adverse ~ пассивный платежный баланс adverse ~ пассивный торговый баланс
    adverse ~ of payments неблагоприятный платежный баланс adverse ~ of payments пассивный платежный баланс
    adverse ~ of trade неблагоприятный торговый баланс adverse ~ of trade пассивный торговый баланс
    adverse cash ~ неблагоприятный баланс наличности adverse cash ~ пассивный баланс кассовой наличности
    balance ком. баланс, сальдо (тж. balance in hand) ;
    balance of payments платежный баланс;
    balance of trade активный баланс (внешней торговли) ;
    to strike a balance подводить баланс;
    перен. подводить итоги ~ баланс, сальдо, остаток ~ баланс ~ балансировать;
    сохранять равновесие, быть в равновесии;
    уравновешивать ~ балансировать ~ (B). Весы (созвездие и знак зодиака) ~ весы;
    quick (или Roman) balance безмен, пружинные весы ~ весы ~ взвешивать, обдумывать;
    сопоставлять (with, against) ~ закрывать счета ~ колебаться (between) ~ компенсировать ~ маятник;
    балансир, баланс (в часовом механизме) ~ медлить, колебаться ~ нейтрализовать ~ разг. остаток ~ остаток ~ погашать ~ ком. подводить баланс ~ подводить итог ~ подсчитывать ~ приводить в равновесие ~ пропорциональность ~ противовес ~ равновесие;
    balance of forces равновесие сил;
    balance of power политическое равновесие '(между государствами) ~ равновесие ~ решающий фактор ~ сальдировать ~ сальдо ~ состояние счета ~ уравнивать ~ уравновешивать
    ~ in our favour остаток в нашу пользу
    the ~ of advantage lies with him на его стороне значительные преимущества
    ~ of an account остаток на счете ~ of an account остаток при расчете ~ of an account сальдо счета
    ~ of cash in hand кассовая наличность ~ of cash in hand остаток по кассе
    ~ of current accounts сальдо текущих счетов
    ~ of current transactions сальдо по текущим сделкам
    ~ равновесие;
    balance of forces равновесие сил;
    balance of power политическое равновесие '(между государствами)
    ~ of freight сальдо фрахта
    ~ of goods and services баланс товаров и услуг
    ~ of order остаток заказа
    balance ком. баланс, сальдо (тж. balance in hand) ;
    balance of payments платежный баланс;
    balance of trade активный баланс (внешней торговли) ;
    to strike a balance подводить баланс;
    перен. подводить итоги ~ of payments платежный баланс
    ~ of payments disequilibrium неравновесие платежного баланса
    ~ of payments equilibrium равновесие платежного баланса
    ~ of payments figure статья платежного баланса
    ~ of payments figures итог платежного баланса
    ~ of payments gap дефицит платежного баланса
    ~ of payments statistics статистические данные платежного баланса
    ~ of payments surplus активное сальдо платежного баланса
    ~ равновесие;
    balance of forces равновесие сил;
    balance of power политическое равновесие '(между государствами) ~ of power равновесие сил ~ of power соотношение сил
    ~ of services баланс услуг
    ~ of the purchase price остаток покупной цены
    balance ком. баланс, сальдо (тж. balance in hand) ;
    balance of payments платежный баланс;
    balance of trade активный баланс (внешней торговли) ;
    to strike a balance подводить баланс;
    перен. подводить итоги ~ of trade торговый баланс
    ~ of trade improvement улучшение торгового баланса
    ~ of trade surplus активное сальдо торгового баланса
    ~ of unclassifiable transactions остаток от неклассифицируемых операций
    ~ on current account остаток на текущем счете
    ~ on giro account остаток на жиросчете
    ~ on investment income сальдо доходов от инвестирования
    ~ on long-term capital account остаток на долгосрочном счете движения капитала
    ~ on short-term capital account остаток на краткосрочном счете движения капитала
    ~ on transfer account остаток на жиросчете
    to ~ one's accounts подытоживать счета;
    the accounts don't balance счета не сходятся
    ~ sheet total итог балансового отчета
    ~ the accounts выводить сальдо счетов ~ the accounts закрывать счета ~ the accounts определять остаток на счетах
    ~ the books закрывать бухгалтерские книги
    ~ to be carried forward сальдо к переносу на следующую страницу
    ~ weight противовес, контргруз
    bank ~ баланс банка bank ~ остаток на банковском счете bank ~ остаток счета в банке bank ~ сальдо банковского счета
    to be (или to tremble, to swing, to hang) in the ~ висеть на волоске, быть в критическом положении
    to be off one's ~ потерять душевное равновесие
    to be weighed in the ~ and found wanting не оправдать надежд
    cash ~ запас наличных денег cash ~ кассовая наличность cash ~ кассовый остаток
    classified trial ~ систематизированный предварительный баланс с группировкой статей по форме финансового отчета
    cleared ~ окончательное сальдо
    commencement ~ баланс на начало периода
    current external ~ текущее состояние внешних расчетов
    debit ~ дебетовое сальдо debit ~ дебетовый баланс debit ~ положительное сальдо
    ending ~ баланс на конец периода
    external ~ состояние внешних расчетов
    favourable trade ~ активный торговый баланс favourable trade ~ благоприятный торговый баланс
    giro ~ жиробаланс
    gross investments ~ баланс валовых капиталовложений
    to hold the ~ распоряжаться
    in ~ на балансе
    initial ~ исходный баланс
    invisibles ~ баланс невидимых статей баланса
    to keep one's ~ сохранять равновесие;
    перен. оставаться спокойным;
    to lose one's balance упасть, потерять равновесие;
    перен. выйти из себя
    to keep one's ~ сохранять равновесие;
    перен. оставаться спокойным;
    to lose one's balance упасть, потерять равновесие;
    перен. выйти из себя
    monthly ~ месячный баланс
    negative cash ~ отрицательный кассовый остаток
    negative net ~ пассивный чистый баланс
    net ~ сальдо net ~ чистый остаток
    net external ~ сальдо по внешним расчетам
    nonoil trade ~ торговый баланс без учета нефти
    old ~ выч. сальдо за предыдущий период
    on ~ на балансе
    passive ~ неблагоприятный платежный баланс passive ~ пассивный платежный баланс passive: ~ фин. беспроцентный;
    passive balance пассивное сальдо;
    passive bonds амер. беспроцентные облигации
    positive ~ активный баланс positive ~ положительное сальдо
    positive cash ~ положительный кассовый остаток
    ~ весы;
    quick (или Roman) balance безмен, пружинные весы
    redress the ~ восстанавливать равновесие redress: ~ исправлять;
    восстанавливать;
    to redress the balance восстанавливать равновесие
    remit a ~ сальдировать счет
    restore the ~ восстанавливать баланс
    Roman ~ безмен
    spring ~ пружинные весы, безмен
    balance ком. баланс, сальдо (тж. balance in hand) ;
    balance of payments платежный баланс;
    balance of trade активный баланс (внешней торговли) ;
    to strike a balance подводить баланс;
    перен. подводить итоги strike a ~ подводить баланс
    surplus ~ активный баланс
    torsion ~ мотор-весы, динамо-весы
    total current ~ итоговое сальдо по контокорренту
    trade ~ торговый баланс trade: ~ attr. торговый;
    trade balance торговый баланс
    trial ~ предварительный баланс trial ~ пробный баланс
    unfavourable trade ~ пассивный торговый баланс
    unrecorded commercial ~ неучтенный торговый баланс
    upon a fair ~ по зрелом размышлении

    Большой англо-русский и русско-английский словарь > balance

  • 120 current ceiling

    Большой англо-русский и русско-английский словарь > current ceiling

См. также в других словарях:

  • текущее значение — [Интент] Тематики электротехника, основные понятия EN current value …   Справочник технического переводчика

  • текущее значение параметра радионуклидного источника электрической энергии — Значение параметра радионуклидного источника, измеренное в данный момент времени. Примечание К параметрам относятся ток, напряжение, мощность. [ГОСТ 22212 85] Тематики устройства энергетические радионуклидные Обобщающие термины основные… …   Справочник технического переводчика

  • текущее значение вероятности безотказной работы — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN current reliability …   Справочник технического переводчика

  • текущее значение водонефтяного фактора для добываемой продукции — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN instantaneous producing water oil ratio …   Справочник технического переводчика

  • текущее значение времени — Выводится на правый верхний угол экрана. [Е.С.Алексеев, А.А.Мячев. Англо русский толковый словарь по системотехнике ЭВМ. Москва 1993] Тематики информационные технологии в целом EN clockCLK …   Справочник технического переводчика

  • текущее значение газового фактора — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN instantaneous gas factor …   Справочник технического переводчика

  • Текущее значение параметра радионуклидного источника электрической энергии — 26. Текущее значение параметра радионуклидного источника электрической энергии Значение параметра радионуклидного источника, измеренное в данный момент времени. Примечание. К параметрам относятся ток, напряжение, мощность Источник: ГОСТ 22212 85 …   Словарь-справочник терминов нормативно-технической документации

  • сбросить текущее значение и установить значение по умолчанию — [Интент] Тематики электротехника, основные понятия EN reset the current to default …   Справочник технического переводчика

  • текущее среднеквадратичное значение корректированного ускорения aw, — 3.1.5.3 текущее среднеквадратичное значение корректированного ускорения aw, q(t): Среднеквадратичное значение корректированного ускорения в момент времени t, определяемое формулой                                               (3) где aw(x)… …   Словарь-справочник терминов нормативно-технической документации

  • ТЕКУЩЕЕ ТОЛКОВАНИЕ — разновидность неофициального толкования норм права, представляет собой разъяснение норм права, даваемое в повседневной практике любым правоприменяющим органом (судом, органом государственного управления и т.д.). Имеет значение лишь для данного… …   Юридическая энциклопедия

  • ТЕКУЩЕЕ ТОЛКОВАНИЕ — разновидность неофициального толкования норм права, представляет собой разъяснение норм права, даваемое в повседневной практике любым правоприменяющим органом (судом, органом государственного управления и т.д.). Имеет значение лишь для данного… …   Энциклопедический словарь экономики и права

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»