Перевод: с русского на все языки

со всех языков на русский

коэффициент+управления

  • 81 трехфазный источник бесперебойного питания (ИБП)

    1. three-phase UPS

     

    трехфазный ИБП
    -
    [Интент]


    Глава 7. Трехфазные ИБП

    ... ИБП большой мощности (начиная примерно с 10 кВА) как правило предназначены для подключения к трехфазной электрической сети. Диапазон мощностей 8-25 кВА – переходный. Для такой мощности делают чисто однофазные ИБП, чисто трехфазные ИБП и ИБП с трехфазным входом и однофазным выходом. Все ИБП, начиная примерно с 30 кВА имеют трехфазный вход и трехфазный выход. Трехфазные ИБП имеют и другое преимущество перед однофазными ИБП. Они эффективно разгружают нейтральный провод от гармоник тока и способствуют более безопасной и надежной работе больших компьютерных систем. Эти вопросы рассмотрены в разделе "Особенности трехфазных источников бесперебойного питания" главы 8. Трехфазные ИБП строятся обычно по схеме с двойным преобразованием энергии. Поэтому в этой главе мы будем рассматривать только эту схему, несмотря на то, что имеются трехфазные ИБП, построенные по схеме, похожей на ИБП, взаимодействующий с сетью.

    Схема трехфазного ИБП с двойным преобразованием энергии приведена на рисунке 18.

    4929
    Рис.18. Трехфазный ИБП с двойным преобразованием энергии

    Как видно, этот ИБП не имеет почти никаких отличий на уровне блок-схемы, за исключением наличия трех фаз. Для того, чтобы увидеть отличия от однофазного ИБП с двойным преобразованием, нам придется (почти впервые в этой книге) несколько подробнее рассмотреть элементы ИБП. Мы будем проводить это рассмотрение, ориентируясь на традиционную технологию. В некоторых случаях будут отмечаться схемные особенности, позволяющие улучшить характеристики.

    Выпрямитель

    Слева на рис 18. – входная электрическая сеть. Она включает пять проводов: три фазных, нейтраль и землю. Между сетью и ИБП – предохранители (плавкие или автоматические). Они позволяют защитить сеть от аварии ИБП. Выпрямитель в этой схеме – регулируемый тиристорный. Управляющая им схема изменяет время (долю периода синусоиды), в течение которого тиристоры открыты, т.е. выпрямляют сетевое напряжение. Чем большая мощность нужна для работы ИБП, тем дольше открыты тиристоры. Если батарея ИБП заряжена, на выходе выпрямителя поддерживается стабилизированное напряжение постоянного тока, независимо от нвеличины напряжения в сети и мощности нагрузки. Если батарея требует зарядки, то выпрямитель регулирует напряжение так, чтобы в батарею тек ток заданной величины.

    Такой выпрямитель называется шести-импульсным, потому, что за полный цикл трехфазной электрической сети он выпрямляет 6 полупериодов сингусоиды (по два в каждой из фаз). Поэтому в цепи постоянного тока возникает 6 импульсов тока (и напряжения) за каждый цикл трехфазной сети. Кроме того, во входной электрической сети также возникают 6 импульсов тока, которые могут вызвать гармонические искажения сетевого напряжения. Конденсатор в цепи постоянного тока служит для уменьшения пульсаций напряжения на аккумуляторах. Это нужно для полной зарядки батареи без протекания через аккумуляторы вредных импульсных токов. Иногда к конденсатору добавляется еще и дроссель, образующий совместно с конденсатором L-C фильтр.

    Коммутационный дроссель ДР уменьшает импульсные токи, возникающие при открытии тиристоров и служит для уменьшения искажений, вносимых выпрямителем в электрическую сеть. Для еще большего снижения искажений, вносимых в сеть, особенно для ИБП большой мощности (более 80-150 кВА) часто применяют 12-импульсные выпрямители. Т.е. за каждый цикл трехфазной сети на входе и выходе выпрямителя возникают 12 импульсов тока. За счет удвоения числа импульсов тока, удается примерно вдвое уменьшить их амплитуду. Это полезно и для аккумуляторов и для электрической сети.

    Двенадцати-импульсный выпрямитель фактически состоит из двух 6-импульсных выпрямителей. На вход второго выпрямителя (он изображен ниже на рис. 18) подается трехфазное напряжение, прошедшее через трансформатор, сдвигающий фазу на 30 градусов.

    В настоящее время применяются также и другие схемы выпрямителей трехфазных ИБП. Например схема с пассивным (диодным) выпрямителем и преобразователем напряжения постоянного тока, применение которого позволяет приблизить потребляемый ток к синусоидальному.

    Наиболее современным считается транзисторный выпрямитель, регулируемый высокочастотной схемой широтно-импульсной модуляции (ШИМ). Применение такого выпрямителя позволяет сделать ток потребления ИБП синусоидальным и совершенно отказаться от 12-импульсных выпрямителей с трансформатором.

    Батарея

    Для формирования батареи трехфазных ИБП (как и в однофазных ИБП) применяются герметичные свинцовые аккумуляторы. Обычно это самые распространенные модели аккумуляторов с расчетным сроком службы 5 лет. Иногда используются и более дорогие аккумуляторы с большими сроками службы. В некоторых трехфазных ИБП пользователю предлагается фиксированный набор батарей или батарейных шкафов, рассчитанных на различное время работы на автономном режиме. Покупая ИБП других фирм, пользователь может более или менее свободно выбирать батарею своего ИБП (включая ее емкость, тип и количество элементов). В некоторых случаях батарея устанавливается в корпус ИБП, но в большинстве случаев, особенно при большой мощности ИБП, она устанавливается в отдельном корпусе, а иногда и в отдельном помещении.

    Инвертор

    Как и в ИБП малой мощности, в трехфазных ИБП применяются транзисторные инверторы, управляемые схемой широтно-импульсной модуляции (ШИМ). Некоторые ИБП с трехфазным выходом имеют два инвертора. Их выходы подключены к трансформаторам, сдвигающим фазу выходных напряжений. Даже в случае применения относительно низкочастоной ШИМ, такая схема совместно с применением фильтра переменного тока, построенного на трансформаторе и конденсаторах, позволяет обеспечить очень малый коэффициент гармонических искажений на выходе ИБП (до 3% на линейной нагрузке). Применение двух инверторов увеличивает надежность ИБП, поскольку даже при выходе из строя силовых транзисторов одного из инверторов, другой инвертор обеспечит работу нагрузки, пусть даже при большем коэффициенте гармонических искажений.

    В последнее время, по мере развития технологии силовых полупроводников, начали применяться более высокочастотные транзисторы. Частота ШИМ может составлять 4 и более кГц. Это позволяет уменьшить гармонические искажения выходного напряжения и отказаться от применения второго инвертора. В хороших ИБП существуют несколько уровней защиты инвертора от перегрузки. При небольших перегрузках инвертор может уменьшать выходное напряжение (пытаясь снизить ток, проходящий через силовые полупроводники). Если перегрузка очень велика (например нагрузка составляет более 125% номинальной), ИБП начинает отсчет времени работы в условиях перегрузки и через некоторое время (зависящее от степени перегрузки – от долей секунды до минут) переключается на работу через статический байпас. В случае большой перегрузки или короткого замыкания, переключение на статический байпас происходит сразу.

    Некоторые современные высококлассные ИБП (с высокочакстотной ШИМ) имеют две цепи регулирования выходного напряжения. Первая из них осуществляет регулирование среднеквадратичного (действующего) значения напряжения, независимо для каждой из фаз. Вторая цепь измеряет мгновенные значения выходного напряжения и сравнивает их с хранящейся в памяти блока управления ИБП идеальной синусоидой. Если мгновенное значение напряжения отклонилось от соотвествующего "идеального" значения, то вырабатывается корректирующий импульс и форма синусоиды выходного напряжения исправляется. Наличие второй цепи обратной связи позволяет обеспечить малые искажения формы выходного напряжения даже при нелинейных нагрузках.

    Статический байпас

    Блок статического байпаса состоит из двух трехфазных (при трехфазном выходе) тиристорных переключателей: статического выключателя инвертора (на схеме – СВИ) и статического выключателя байпаса (СВБ). При нормальной работе ИБП (от сети или от батареи) статический выключатель инвертора замкнут, а статический выключатель байпаса разомкнут. Во время значительных перегрузок или выхода из строя инвертора замкнут статический переключатель байпаса, переключатель инвертора разомкнут. В момент переключения оба статических переключателя на очень короткое время замкнуты. Это позволяет обеспечить безразрывное питание нагрузки.

    Каждая модель ИБП имеет свою логику управления и, соответственно, свой набор условий срабатывания статических переключателей. При покупке ИБП бывает полезно узнать эту логику и понять, насколько она соответствует вашей технологии работы. В частности хорошие ИБП сконструированы так, чтобы даже если байпас недоступен (т.е. отсутствует синхронизация инвертора и байпаса – см. главу 6) в любом случае постараться обеспечить электроснабжение нагрузки, пусть даже за счет уменьшения напряжения на выходе инвертора.

    Статический байпас ИБП с трехфазным входом и однофазным выходом имеет особенность. Нагрузка, распределенная на входе ИБП по трем фазным проводам, на выходе имеет только два провода: один фазный и нейтральный. Статический байпас тоже конечно однофазный, и синхронизация напряжения инвертора производится относительно одной из фаз трехфазной сети (любой, по выбору пользователя). Вся цепь, подводящая напряжение к входу статического байпаса должна выдерживать втрое больший ток, чем входной кабель выпрямителя ИБП. В ряде случаев это может вызвать трудности с проводкой.

    Сервисный байпас

    Трехфазные ИБП имеют большую мощность и обычно устанавливаются в местах действительно критичных к электропитанию. Поэтому в случае выхода из строя какого-либо элемента ИБП или необходимости проведения регламентных работ (например замены батареи), в большинстве случае нельзя просто выключить ИБП или поставить на его место другой. Нужно в любой ситуации обеспечить электропитание нагрузки. Для этих ситуаций у всех трехфазных ИБП имеется сервисный байпас. Он представляет собой ручной переключатель (иногда как-то заблокированный, чтобы его нельзя было включить по ошибке), позволяющий переключить нагрузку на питание непосредственно от сети. У большинства ИБП для переключения на сервисный байпас существует специальная процедура (определенная последовательность действий), которая позволяет обеспечит непрерывность питания при переключениях.

    Режимы работы трехфазного ИБП с двойным преобразованием

    Трехфазный ИБП может работать на четырех режимах работы.

    • При нормальной работе нагрузка питается по цепи выпрямитель-инвертор стабилизированным напряжением, отфильтрованным от импульсов и шумов за счет двойного преобразования энергии.
    • Работа от батареи. На это режим ИБП переходит в случае, если напряжение на выходе ИБП становится таким маленьким, что выпрямитель оказывается не в состоянии питать инвертор требуемым током, или выпрямитель не может питать инвертор по другой причине, например из-за поломки. Продолжительность работы ИБП от батареи зависит от емкости и заряда батареи, а также от нагрузки ИБП.
    • Когда какой-нибудь инвертор выходит из строя или испытывает перегрузку, ИБП безразрывно переходит на режим работы через статический байпас. Нагрузка питается просто от сети через вход статического байпаса, который может совпадать или не совпадать со входом выпрямителя ИБП.
    • Если требуется обслуживание ИБП, например для замены батареи, то ИБП переключают на сервисный байпас. Нагрузка питается от сети, а все цепи ИБП, кроме входного выключателя сервисного байпаса и выходных выключателей отделены от сети и от нагрузки. Режим работы на сервисном байпасе не является обязательным для небольших однофазных ИБП с двойным преобразованием. Трехфазный ИБП без сервисного байпаса немыслим.

    Надежность

    Трехфазные ИБП обычно предназначаются для непрерывной круглосуточной работы. Работа нагрузки должна обеспечиваться практически при любых сбоях питания. Поэтому к надежности трехфазных ИБП предъявляются очень высокие требования. Вот некоторые приемы, с помощью которых производители трехфазных ИБП могут увеличивать надежность своей продукции. Применение разделительных трансформаторов на входе и/или выходе ИБП увеличивает устойчивость ИБП к скачкам напряжения и нагрузки. Входной дроссель не только обеспечивает "мягкий запуск", но и защищает ИБП (и, в конечном счете, нагрузку) от очень быстрых изменений (скачков) напряжения.

    Обычно фирма выпускает целый ряд ИБП разной мощности. В двух или трех "соседних по мощности" ИБП этого ряда часто используются одни и те же полупроводники. Если это так, то менее мощный из этих двух или трех ИБП имеет запас по предельному току, и поэтому несколько более надежен. Некоторые трехфазные ИБП имеют повышенную надежность за счет резервирования каких-либо своих цепей. Так, например, могут резервироваться: схема управления (микропроцессор + платы "жесткой логики"), цепи управления силовыми полупроводниками и сами силовые полупроводники. Батарея, как часть ИБП тоже вносит свой вклад в надежность прибора. Если у ИБП имеется возможность гибкого выбора батареи, то можно выбрать более надежный вариант (батарея более известного производителя, с меньшим числом соединений).

    Преобразователи частоты

    Частота напряжения переменного тока в электрических сетях разных стран не обязательно одинакова. В большинстве стран (в том числе и в России) распространена частота 50 Гц. В некоторых странах (например в США) частота переменного напряжения равна 60 Гц. Если вы купили оборудование, рассчитанное на работу в американской электрической сети (110 В, 60 Гц), то вы должны каким-то образом приспособить к нему нашу электрическую сеть. Преобразование напряжения не является проблемой, для этого есть трансформаторы. Если оборудование оснащено импульсным блоком питания, то оно не чувствительно к частоте и его можно использовать в сети с частотой 50 Гц. Если же в состав оборудования входят синхронные электродвигатели или иное чувствительное к частоте оборудование, вам нужен преобразователь частоты. ИБП с двойным преобразованием энергии представляет собой почти готовый преобразователь частоты.

    В самом деле, ведь выпрямитель этого ИБП может в принципе работать на одной частоте, а инвертор выдавать на своем выходе другую. Есть только одно принципиальное ограничение: невозможность синхронизации инвертора с линией статического байпаса из-за разных частот на входе и выходе. Это делает преобразователь частоты несколько менее надежным, чем сам по себе ИБП с двойным преобразованием. Другая особенность: преобразователь частоты должен иметь мощность, соответствующую максимальному возможному току нагрузки, включая все стартовые и аварийные забросы, ведь у преобразователя частоты нет статического байпаса, на который система могла бы переключиться при перегрузке.

    Для изготовления преобразователя частоты из трехфазного ИБП нужно разорвать цепь синхронизации, убрать статический байпас (или, вернее, не заказывать его при поставке) и настроить инвертор ИБП на работу на частоте 60 Гц. Для большинства трехфазных ИБП это не представляет проблемы, и преобразователь частоты может быть заказан просто при поставке.

    ИБП с горячим резервированием

    В некоторых случаях надежности даже самых лучших ИБП недостаточно. Так бывает, когда сбои питания просто недопустимы из-за необратимых последствий или очень больших потерь. Обычно в таких случаях в технике применяют дублирование или многократное резервирование блоков, от которых зависит надежность системы. Есть такая возможность и для трехфазных источников бесперебойного питания. Даже если в конструкцию ИБП стандартно не заложено резервирование узлов, большинство трехфазных ИБП допускают резервирование на более высоком уровне. Резервируется целиком ИБП. Простейшим случаем резервирования ИБП является использование двух обычных серийных ИБП в схеме, в которой один ИБП подключен к входу байпаса другого ИБП.

    4930

    Рис. 19а. Последовательное соединение двух трехфазных ИБП

    На рисунке 19а приведена схема двух последовательно соединенным трехфазных ИБП. Для упрощения на рисунке приведена, так называемая, однолинейная схема, на которой трем проводам трехфазной системы переменного тока соответствует одна линия. Однолинейные схемы часто применяются в случаях, когда особенности трехфазной сети не накладывают отпечаток на свойства рассматриваемого прибора. Оба ИБП постоянно работают. Основной ИБП питает нагрузку, а вспомогательный ИБП работает на холостом ходу. В случае выхода из строя основного ИБП, нагрузка питается не от статического байпаса, как в обычном ИБП, а от вспомогательного ИБП. Только при выходе из строя второго ИБП, нагрузка переключается на работу от статического байпаса.

    Система из двух последовательно соединенных ИБП может работать на шести основных режимах.

    А. Нормальная работа. Выпрямители 1 и 2 питают инверторы 1 и 2 и, при необходимости заряжают батареи 1 и 2. Инвертор 1 подключен к нагрузке (статический выключатель инвертора 1 замкнут) и питает ее стабилизированным и защищенным от сбоев напряжением. Инвертор 2 работает на холостом ходу и готов "подхватить" нагрузку, если инвертор 1 выйдет из строя. Оба статических выключателя байпаса разомкнуты.

    Для обычного ИБП с двойным преобразованием на режиме работы от сети допустим (при сохранении гарантированного питания) только один сбой в системе. Этим сбоем может быть либо выход из строя элемента ИБП (например инвертора) или сбой электрической сети.

    Для двух последовательно соединенных ИБП с на этом режиме работы допустимы два сбоя в системе: выход из строя какого-либо элемента основного ИБП и сбой электрической сети. Даже при последовательном или одновременном возникновении двух сбоев питание нагрузки будет продолжаться от источника гарантированного питания.

    Б. Работа от батареи 1. Выпрямитель 1 не может питать инвертор и батарею. Чаще всего это происходит из-за отключения напряжения в электрической сети, но причиной может быть и выход из строя выпрямителя. Состояние инвертора 2 в этом случае зависит от работы выпрямителя 2. Если выпрямитель 2 работает (например он подключен к другой электрической сети или он исправен, в отличие от выпрямителя 1), то инвертор 2 также может работать, но работать на холостом ходу, т.к. он "не знает", что с первым ИБП системы что-то случилось. После исчерпания заряда батареи 1, инвертор 1 отключится и система постарается найти другой источник электроснабжения нагрузки. Им, вероятно, окажется инвертор2. Тогда система перейдет к другому режиму работы.

    Если в основном ИБП возникает еще одна неисправность, или батарея 1 полностью разряжается, то система переключается на работу от вспомогательного ИБП.

    Таким образом даже при двух сбоях: неисправности основного ИБП и сбое сети нагрузка продолжает питаться от источника гарантированного питания.

    В. Работа от инвертора 2. В этом случае инвертор 1 не работает (из-за выхода из строя или полного разряда батареи1). СВИ1 разомкнут, СВБ1 замкнут, СВИ2 замкнут и инвертор 2 питает нагрузку. Выпрямитель 2, если в сети есть напряжение, а сам выпрямитель исправен, питает инвертор и батарею.

    На этом режиме работы допустим один сбой в системе: сбой электрической сети. При возникновении второго сбоя в системе (выходе из строя какого-либо элемента вспомогательного ИБП) электропитание нагрузки не прерывается, но нагрузка питается уже не от источника гарантированного питания, а через статический байпас, т.е. попросту от сети.

    Г. Работа от батареи 2. Наиболее часто такая ситуация может возникнуть после отключения напряжения в сети и полного разряда батареи 1. Можно придумать и более экзотическую последовательность событий. Но в любом случае, инвертор 2 питает нагругку, питаясь, в свою очередь, от батареи. Инвертор 1 в этом случае отключен. Выпрямитель 1, скорее всего, тоже не работает (хотя он может работать, если он исправен и в сети есть напряжение).

    После разряда батареи 2 система переключится на работу от статического байпаса (если в сети есть нормальное напряжение) или обесточит нагрузку.

    Д. Работа через статический байпас. В случае выхода из строя обоих инверторов, статические переключатели СВИ1 и СВИ2 размыкаются, а статические переключатели СВБ1 и СВБ2 замыкаются. Нагрузка начинает питаться от электрической сети.

    Переход системы к работе через статический байпас происходит при перегрузке системы, полном разряде всех батарей или в случае выхода из строя двух инверторов.

    На этом режиме работы выпрямители, если они исправны, подзаряжают батареи. Инверторы не работают. Нагрузка питается через статический байпас.

    Переключение системы на работу через статический байпас происходит без прерывания питания нагрузки: при необходимости переключения сначала замыкается тиристорный переключатель статического байпаса, и только затем размыкается тиристорный переключатель на выходе того инвертора, от которого нагрузка питалась перед переключением.

    Е. Ручной (сервисный) байпас. Если ИБП вышел из строя, а ответственную нагрузку нельзя обесточить, то оба ИБП системы с соблюдением специальной процедуры (которая обеспечивает безразрыное переключение) переключают на ручной байпас. после этого можно производить ремонт ИБП.

    Преимуществом рассмотренной системы с последовательным соединением двух ИБП является простота. Не нужны никакие дополнительные элементы, каждый из ИБП работает в своем штатном режиме. С точки зрения надежности, эта схема совсем не плоха:- в ней нет никакой лишней, (связанной с резервированием) электроники, соответственно и меньше узлов, которые могут выйти из строя.

    Однако у такого соединения ИБП есть и недостатки. Вот некоторые из них.
     

    1. Покупая такую систему, вы покупаете второй байпас (на нашей схеме – он первый – СВБ1), который, вообще говоря, не нужен – ведь все необходимые переключения могут быть произведены и без него.
    2. Весь второй ИБП выполняет только одну функцию – резервирование. Он потребляет электроэнергию, работая на холостом ходу и вообще не делает ничего полезного (разумеется за исключением того времени, когда первый ИБП отказывается питать нагрузку). Некоторые производители предлагают "готовые" системы ИБП с горячим резервированием. Это значит, что вы покупаете систему, специально (еще на заводе) испытанную в режиме с горячим резервированием. Схема такой системы приведена на рис. 19б.

    4931

    Рис.19б. Трехфазный ИБП с горячим резервированием

    Принципиальных отличий от схемы с последовательным соединением ИБП немного.

    1. У второго ИБП отсутствует байпас.
    2. Для синхронизации между инвертором 2 и байпасом появляется специальный информационный кабель между ИБП (на рисунке не показан). Поэтому такой ИБП с горячим резервированием может работать на тех же шести режимах работы, что и система с последовательным подключением двух ИБП. Преимущество "готового" ИБП с резервированием, пожалуй только одно – он испытан на заводе-производителе в той же комплектации, в которой будет эксплуатироваться.

    Для расмотренных схем с резервированием иногда применяют одно важное упрощение системы. Ведь можно отказаться от резервирования аккумуляторной батареи, сохранив резервирование всей силовой электроники. В этом случае оба ИБП будут работать от одной батареи (оба выпрямителя будут ее заряжать, а оба инвертора питаться от нее в случае сбоя электрической сети). Применение схемы с общей бетареей позволяет сэкономить значительную сумму – стоимость батареи.

    Недостатков у схемы с общей батареей много:

    1. Не все ИБП могут работать с общей батареей.
    2. Батарея, как и другие элементы ИБП обладает конечной надежностью. Выход из строя одного аккумулятора или потеря контакта в одном соединении могут сделать всю системы ИБП с горячим резервирование бесполезной.
    3. В случае выхода из строя одного выпрямителя, общая батарея может быть выведена из строя. Этот последний недостаток, на мой взгляд, является решающим для общей рекомендации – не применять схемы с общей батареей.


    Параллельная работа нескольких ИБП

    Как вы могли заметить, в случае горячего резервирования, ИБП резервируется не целиком. Байпас остается общим для обоих ИБП. Существует другая возможность резервирования на уровне ИБП – параллельная работа нескольких ИБП. Входы и выходы нескольких ИБП подключаются к общим входным и выходным шинам. Каждый ИБП сохраняет все свои элементы (иногда кроме сервисного байпаса). Поэтому выход из строя статического байпаса для такой системы просто мелкая неприятность.

    На рисунке 20 приведена схема параллельной работы нескольких ИБП.

    4932

    Рис.20. Параллельная работа ИБП

    На рисунке приведена схема параллельной системы с раздельными сервисными байпасами. Схема система с общим байпасом вполне ясна и без чертежа. Ее особенностью является то, что для переключения системы в целом на сервисный байпас нужно управлять одним переключателем вместо нескольких. На рисунке предполагается, что между ИБП 1 и ИБП N Могут располагаться другие ИБП. Разные производителю (и для разных моделей) устанавливают свои максимальные количества параллеьно работающих ИБП. Насколько мне известно, эта величина изменяется от 2 до 8. Все ИБП параллельной системы работают на общую нагрузку. Суммарная мощность параллельной системы равна произведению мощности одного ИБП на количество ИБП в системе. Таким образом параллельная работа нескольких ИБП может применяться (и в основном применяется) не столько для увеличения надежности системы бесперебойного питания, но для увеличения ее мощности.

    Рассмотрим режимы работы параллельной системы

    Нормальная работа (работа от сети). Надежность

    Когда в сети есть напряжение, достаточное для нормальной работы, выпрямители всех ИБП преобразуют переменное напряжение сети в постоянное, заряжая батареи и питая инверторы.

    Инверторы, в свою очередь, преобразуют постоянное напряжение в переменное и питают нагрузку. Специальная управляющая электроника параллельной системы следит за равномерным распределением нагрузки между ИБП. В некоторых ИБП распределение нагрузки между ИБП производится без использования специальной параллельной электроники. Такие приборы выпускаются "готовыми к параллельной работе", и для использования их в параллельной системе достаточно установить плату синхронизации. Есть и ИБП, работающие параллельго без специальной электроники. В таком случае количество параллельно работающих ИБП – не более двух. В рассматриваемом режиме работы в системе допустимо несколько сбоев. Их количество зависит от числа ИБП в системе и действующей нагрузки.

    Пусть в системе 3 ИБП мощностью по 100 кВА, а нагрузка равна 90 кВА. При таком соотношении числа ИБП и их мощностей в системе допустимы следующие сбои.

    Сбой питания (исчезновение напряжения в сети)

    Выход из строя любого из инверторов, скажем для определенности, инвертора 1. Нагрузка распределяется между двумя другими ИБП. Если в сети есть напряжение, все выпрямители системы работают.

    Выход из строя инвертора 2. Нагрузка питается от инвертора 3, поскольку мощность, потребляемая нагрузкой меньше мощности одного ИБП. Если в сети есть напряжение, все выпрямители системы продолжают работать.

    Выход из строя инвертора 3. Система переключается на работу через статический байпас. Нагрузка питается напрямую от сети. При наличии в сети нормального напряжения, все выпрямители работают и продолжают заряжать батареи. При любом последующем сбое (поломке статического байпаса или сбое сети) питание нагрузки прекращается. Для того, чтобы параллельная система допускала большое число сбоев, система должна быть сильно недогружена и должна включать большое число ИБП. Например, если нагрузка в приведенном выше примере будет составлять 250 кВА, то система допускает только один сбой: сбой сети или поломку инвертора. В отношении количества допустимых сбоев такая система эквивалентна одиночному ИБП. Это, кстати, не значит, что надежность такой параллельной системы будет такая же, как у одиночного ИБП. Она будет ниже, поскольку параллельная система намного сложнее одиночного ИБП и (при почти предельной нагрузке) не имеет дополнительного резервирования, компенсирующего эту сложность.

    Вопрос надежности параллельной системы ИБП не может быть решен однозначно. Надежность зависит от большого числа параметров: количества ИБП в системе (причем увеличение количества ИБП до бесконечности снижает надежность – система становится слишком сложной и сложно управляемой – впрочем максимальное количество параллельно работающих модулей для известных мне ИБП не превышает 8), нагрузки системы (т.е. соотношения номинальной суммарной мощности системы и действующей нагрузки), примененной схемы параллельной работы (т.е. есть ли в системе специальная электроника для обеспечения распределения нагрузки по ИБП), технологии работы предприятия. Таким образом, если единственной целью является увеличение надежности системы, то следует серьезно рассмотреть возможность использование ИБП с горячим резервированием – его надежность не зависит от обстоятельств и в силу относительной простоты схемы практически всегда выше надежности параллельной системы.

    Недогруженная система из нескольких параллельно работающих ИБП, которая способна реализвать описанную выше логику управления, часто также называется параллельной системой с резервированием.

    Работа с частичной нагрузкой

    Если нагрузка параллельной системы такова, что с ней может справиться меньшее, чем есть в системе количество ИБП, то инверторы "лишних" ИБП могут быть отключены. В некоторых ИБП такая логика управления подразумевается по умолчанию, а другие модели вообще лишены возможности работы в таком режиме. Инверторы, оставшиеся включенными, питают нагрузку. Коэффициент полезного действия системы при этом несколько возрастает. Обычно в этом режиме работы предусматривается некоторая избыточность, т.е. количестов работающих инверторов больше, чем необходимо для питания нагрузки. Тем самым обеспечивается резервирование. Все выпрямители системы продолжают работать, включая выпрямители тех ИБП, инверторы которых отключены.

    Работа от батареи

    В случае исчезновения напряжения в электрической сети, параллельная система переходит на работу от батареи. Все выпрямители системы не работают, инверторы питают нагрузку, получая энергию от батареи. В этом режиме работы (естественно) отсутствует напряжение в электрической сети, которое при нормальной работе было для ИБП не только источником энергии, но и источником сигнала синхронизации выходного напряжения. Поэтому функцию синхронизации берет на себя специальная параллельная электроника или выходная цепь ИБП, специально ориентированная на поддержание выходной частоты и фазы в соответствии с частотой и фазой выходного напряжения параллельно работающего ИБП.

    Выход из строя выпрямителя

    Это режим, при котором вышли из строя один или несколько выпрямителей. ИБП, выпрямители которых вышли из строя, продолжают питать нагрузку, расходуя заряд своей батареи. Они выдает сигнал "неисправность выпрямителя". Остальные ИБП продолжают работать нормально. После того, как заряд разряжающихся батарей будет полностью исчерпан, все зависит от соотношения мощности нагрузки и суммарной мощности ИБП с исправными выпрямителями. Если нагрузка не превышает перегрузочной способности этих ИБП, то питание нагрузки продолжится (если у системы остался значительный запас мощности, то в этом режиме работы допустимо еще несколько сбоев системы). В случае, если нагрузка ИБП превышает перегрузочную способность оставшихся ИБП, то система переходит к режиму работы через статический байпас.

    Выход из строя инвертора

    Если оставшиеся в работоспособном состоянии инверторы могут питать нагрузку, то нагрузка продолжает работать, питаясь от них. Если мощности работоспособных инверторов недостаточно, система переходит в режим работы от статического байпаса. Выпрямители всех ИБП могут заряжать батареи, или ИБП с неисправными инверторами могут быть полностью отключены для выполнения ремонта.

    Работа от статического байпаса

    Если суммарной мощности всех исправных инверторов параллельной системы не достаточно для поддержания работы нагрузки, система переходит к работе через статический байпас. Статические переключатели всех инверторов разомкнуты (исправные инверторы могут продолжать работать). Если нагрузка уменьшается, например в результате отключения части оборудования, параллельная система автоматически переключается на нормальный режим работы.

    В случае одиночного ИБП с двойным преобразованием работа через статический байпас является практически последней возможностью поддержания работы нагрузки. В самом деле, ведь достаточно выхода из строя статического переключателя, и нагрузка будет обесточена. При работе параллельной системы через статический байпас допустимо некоторое количество сбоев системы. Статический байпас способен выдерживать намного больший ток, чем инвертор. Поэтому даже в случае выхода из строя одного или нескольких статических переключателей, нагрузка возможно не будет обесточена, если суммарный допустимый ток оставшихся работоспособными статических переключателей окажется достаточен для работы. Конкретное количество допустимых сбоев системы в этом режиме работы зависит от числа ИБП в системе, допустимого тока статического переключателя и величины нагрузки.

    Сервисный байпас

    Если нужно провести с параллельной системой ремонтные или регламентные работы, то система может быть отключена от нагрузки с помощью ручного переключателя сервисного байпаса. Нагрузка питается от сети, все элементы параллельной системы ИБП, кроме батарей, обесточены. Как и в случае системы с горячим резервированием, возможен вариант одного общего внешнего сервисного байпаса или нескольких сервисных байпасов, встроенных в отдельные ИБП. В последнем случае при использовании сервисного байпаса нужно иметь в виду соотношение номинального тока сервисного байпаса и действующей мощности нагрузки. Другими словами, нужно включить столько сервисных байпасов, чтобы нагрузка не превышала их суммарный номинальных ток.
    [ http://www.ask-r.ru/info/library/ups_without_secret_7.htm]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > трехфазный источник бесперебойного питания (ИБП)

  • 82 число кадров в сек.


    exposure per second (10 punc-
    (напр., 10) — tures)
    - m (маха)mach number (m)
    отношение скорости полета (или потока) к скорости звука. — ratio of the speed of a body, or of а flow to the speed of sound in the medium.
    - m в выходном сечении соплаnozzle exit mach number
    - m в зоне стыка крыла с фюзеляжем, критическое — critical mach number in wingbody junction
    - m. дозвуковое — subsonic mach number
    -, истинное — true mach number
    - m, крейсерское — cruise mach number
    - m, критическое — critical mach number
    число m невозмущенного потока, при котором достигается местное число m=l.0 во всех точках данного тела. — the free-stream mach number at which a lokal mach number of 1.0 is attained at any point on the body under consideration.
    - m, максимально допустимое в эксплуатации — maximum operating limit mach number (ммо)
    - м, местное — local mach number
    - м на входе в камеру сгоранияcombustion chamber inlet mach number
    - м на входе в соплоnozzle inlet mach number
    - м на концах лопастей (воздушного винта)propeller tip mach number
    - м невозмущенного потокаfree-stream mach number
    - м, околозвуковое — transonic mach number
    - м, первое критическое — first critical mach number
    число м полета, при котором на поверхности самолета впервые достигается местная скорость обтекания, равная местной скорости звука. — а free stream mach number at which the peak velocity on а body surface first becomes equal to the local speed of sound.
    - м, полетное — flight mach number
    отношение воздушной скорости самолета к скорости звука в аналогичных условиях. — the ratio of airspeed of an aircraft to the speed of sound under identical atmospheric conditions.
    - m потокаflow mach number
    - m предельное — maximum operating limit mach number, limiting operating mach number
    - m no приборуmachmeter reading (mmr)
    - m, приборное — indicated mach number (imn)
    - m при наборе высотыclimbing mach number
    - m, расчетное — design mach number
    - m, сверхзвуковое — supersonic mach number
    - m, сверхкритическое — supercritical mach number
    - m свободного потокаfree-stream mach number
    - маха (m)mach number (m)
    - на цифровом таблоnumber in numeric display
    - несущей способности, калифорнийское (характеризующее покрытие аэродрома) — california bearing ratio (cbr)
    - оборотов (безотносительно ко времени)number of revolutions
    - оборотов в минуту — revolutions per minute (rpm, r.p.m., rpm)

    the engine speed at maximum continuous power is... rpm.
    - оборотов, высокое — high speed /rpm/
    - оборотов двигателя — engine speed /rpm/
    - оборотов (на режиме) земного малого газа — ground idle speed /rpm/
    - оборотов коленчатого вала (пд)crankshaft rotational speed
    характеристики двигателя на всем диапазоне эксплуатационного числа оборотов коленчатого вала. — the engine characteristics over its entire operating range of crankshaft rotational speeds.
    - оборотов, критическое — critical rpm /speed/
    - оборотов, максимальное — maximum rpm /speed/
    - оборотов, малое — low speed /rpm/
    - оборотов на взлетном режиме (дв.) — takeoff rpm, engine takeoff speed
    - оборотов на максимальном продолжительном режиме (дв.) — maximum continuous speed at... percent rated maximum continuous power and... percent maximum continuous speed.
    - оборотов на оптимальном экономическом крейсерском режиме (дв.) — maximum best economy cruising speed
    20-ти часовой этап длительных испытаний на оптимальном экономич. крейсерск. режиме. — а 20-hour run (during endurance test) at maximum best economy cruising power and speed.
    - оборотов на рекомендуемом крейсерском режиме (дв.) — (maximum) recommended cruising speed
    - оборотов (на режиме) полетного малого газаflight idle speed
    - оборотов, постоянное (дв.) — constant speed
    - оборотов, расчетное — design rpm /speed/
    - оборотов ротора (дв.) — rotor speed
    - оборотов ротора высокого давления (гтд) — high pressure (rotor) rpm, hp rpm (n2), hp shaft speed
    - оборотов ротора низкого давления (гтд) — low pressure (rotor) rpm, lp rpm (n1), lp shaft speed
    - оборотов трансмиссионных валов, критическое (вертолета) — shafting critical speed, critical speed of shafting
    - оборотов (на режиме) холостого ходаidle speed
    -, октановое — octane number
    показатель качества бензина, характеризующий его детонационные свойства. — measure of а fuel ability to resist detonation.
    -, передаточное (в проводке управления) — control linkage gear ratio
    -, передаточное (в эл. системах) — gain
    -, передаточное (коэффициент усиления в системе управления ла) — (control system) gain
    -, передаточное (от органа управления до управляемой поверхности) — control-to-surface gear ratio
    -, передаточное (шестеренчатой передачи) — gear ratio all gear ratios (are given) relative to hp shaft speed.
    -, передаточное, канала сервоуправления — servo gear ratio
    -, передаточное самонастраивающееся /саморегулирующееся / (системы управления) — adaptive gain
    затягивание в пикирование при приближении к критическому числу м. — mach tuck
    коэффициент передаточного числаgain
    ограничение ч. оборотов программирование передаточных ч. (системы управления) — speed limitation gain scheduling
    продольная балансировка по числу м. — mach trim
    достигать ч. оборотов — gain /attain/ speed (rpm)
    увеличивать ч. оборотов — increase speed (rpm)
    увеличивать ч. оборотов двигателя — accelerate the engine
    уменьшать ч. оборотов — decrease speed (rpm)
    уменьшать ч. оборотов двигателя — decelerate the engine

    Русско-английский сборник авиационно-технических терминов > число кадров в сек.

  • 83 загрузка

    загрузка сущ
    uplift
    автомат загрузки
    load feel actuator
    автомат загрузки по скоростному напору
    Q-feel system
    время, необходимое на полное обслуживание и загрузку
    ground turn-around time
    график загрузки и центровки
    load and trim sheet
    дальность полета без коммерческой загрузки
    zero-payload range
    дальность полета с максимальной загрузкой
    full-load range
    дальность полета с полной коммерческой загрузкой
    commercial range
    диспетчер по загрузке
    load controller
    диспетчер по загрузке и центровке
    weight and balance controlled
    доходная загрузка
    break-even load
    зависимость коммерческой загрузки от дальности полета
    payload versus range
    загрузка воздушного судна
    aircraft lading
    загрузка канала
    channel occupancy
    инструкция по загрузке воздушного судна
    aircraft loading instruction
    коммерческая загрузка
    1. revenue load
    2. payload capacity 3. payload mass коммерческая загрузка, ограниченная по массе
    weight limited payload
    коммерческая загрузка, ограниченная по объему
    space limited payload
    коэффициент доходной загрузки
    break-even load factor
    коэффициент загрузки
    1. weight load factor
    2. cargo load factor 3. load factor коэффициент загрузки воздушного судна
    aircraft load factor
    коэффициент полезной загрузки
    revenue load factor
    люк для бесконтейнерной загрузки
    bulk cargo door
    люк для контейнерной загрузки
    cargo container door
    максимально допустимая коммерческая загрузка
    available load
    место загрузки
    1. boarding area
    2. loading area место загрузки воздушного судна
    aircraft's loading position
    местоположение при загрузке
    loading location
    неполная загрузка воздушного судна
    aircraft underloading
    оборудование для загрузки
    1. loading equipment
    2. cargo-loading equipment ограничения по загрузке
    loading restrictions
    план загрузки
    cargo plan
    платная загрузка
    commercial load
    предел коммерческой загрузки воздушного судна
    aircraft capacity range
    предельная загрузка
    breakpoint weight
    предлагать объем загрузки
    offer the capacity
    пружинный автомат загрузки
    artificial feel bungee
    распределение загрузки воздушного судна
    aircraft load distribution
    система искусственной загрузки органов управления
    artificial feel system
    средняя коммерческая загрузка
    average revenue load
    степень загрузки
    uplift ratio
    степень загрузки аэродрома
    aerodrome usability
    схема загрузки
    loading chart
    схема загрузки воздушного судна
    1. aircraft loading diagram
    2. aircraft loading chart усилие на органах управления от автомата загрузки
    artificial feel
    чартерный рейс с полной загрузкой
    1. plane-load charter
    2. whole-plane charter

    Русско-английский авиационный словарь > загрузка

  • 84 нагрузка


    load
    - (нервно-психическая и физическая)workload
    -, асимметричная — unsymmetrical load
    асимметричная нагрузка на самолет может возникнуть при отказе критического двигателя. — the airplane must be designed for unsymmetrical loads resulting from the failure of the critical engine.
    -, аэродинамическая — aerodynamic load
    -, безопасная — safe load
    -, боковая — side load
    для случая боковой нагрузки предполагается что самолет находится в горизонтальном положении при условии касания земли только колесами основных опор. — for the side load condition, the airplane is assumed to be in the level attitude with only the main wheels contacting the ground.
    -, вертикальная — vertical load
    -, вибрационная — vibration load
    -, воздушная — air load
    -, вызванная отказом двигателя, асимметричная — unsymmetrical load due to engine failure
    - генератораgenerator load
    -, гидравлическая — hydraulic load
    -, гироскопическая — gyroscopic load
    -, десантная — air-delivery load
    -, десантная (парашютная) — paradrop load
    -, динамическая — dynamic load
    нагрузка, возникающая при воздействии положительного (ипи отрицательного) ускорения на конструкцию ла. — any load due to acceleration (or deceleration) of an aircraft, and therefore proportional to its mass.
    -, динамическая, при полном вытягивании строп парашюта до наполнения купола — (parachute) deployment shock load the load which occurs when the rigging lines become taut prior to inflation of the canopy.
    -, динамическая, при раскрытии купола парашюта — (parachute) opening shock load

    maximum load developed during rapid inflation of the canopy.
    -, длительная — permanent load
    -, допускаемая прочностью самолета — load not exceeding airplane structural limitations
    -, допустимая — allowable load
    -, знакопеременная — alternate load
    -, индуктивная (эл.) — inductive load
    -, инерционная — inertia load
    -, коммерческая bес пассажиров, груза и багажа. — payload (p/l) weight of passengers, cargo, and baggage.
    - коммерческая, располагаемая — payload available
    -, максимальная коммерческая — maximum payload
    разность между максимальным расчетным весом без топлива и весом пустого снаряженного ла. — maximum design zero fuel weight minus operational empty weight.
    -, максимальная предельная радиальная (на колесо) — maximum radial limit load (rating of each wheel)
    -, максимальная статическая (на колесо) — maximum static load (rating of each wheel)
    -, маневренная — maneuvering load
    -, минимальная расчетная — minimum design load
    при определении минимальных расчетных нагрузок необходимо учитывать влияние возможных усталостных нагрузок и нагрузок от трения и заклинивания. — the minimum design loads must provide а rugged system for service use, including consideration of fatigua, jamming and friction loads.
    -, моментная (напр. поворотного срезного болта водила) — torque load
    - на вал (ротор)shaft (rotor) load
    - на генераторgenerator load
    - на гермокабину (от избыточного давления)pressurized cabin pressure differential load
    конструкция самолета допжна выдерживать полетные нагрузки в сочетании с нагрузками от избыточного давления в гермокабине. — the airplane structure must be strong enough to withstand the flight loads combined with pressure differential loads.
    - на двигательpower load on engine

    prevent too sudden and great power load being thrown on the engine.
    - на единицу площадиload per unit area
    - на колесоwheel load
    - на колонку (или штурвал, ручку) при продольном yправлении — elevator pressure (felt when deflecting control column (wheel or stick)
    - на конструкцию, выраженная в единицах ускорения (статическая и динамическая) — (static and dynamic) loads on structure expressed in g units
    - на крыло, удельная — wing loading
    часть веса самолета, приходящаяся на единицу поверхности крыла и равная частномy от деления полетного веса самолета на площадь крыла. — wing loading is gross weight of aeroplane divided by gross wing area.
    - на лопасть, удельная — blade loading
    - на моторамуload on engine mount
    - на мотораму, боковая — side load on engine mount
    - на мощность, удельная часть веса самолета, приходящаяся на единицу силы тяги, развиваемой его силовой установкой при нормальном режиме работы. — power loading the gross weight of an aircraft divided by the horsepower of the engine(s).
    - на орган управления (усилие)control pressure
    - на орган управления, пропорциональная величине отклонения поверхности управнения — control pressure proportional to amount of control surface deflection
    - на орган управления (штурвал, колонку, ручку управления, педали), создаваемая загрузочным механизмом — control pressure created by feel unit /or spring/
    - на орган управления (штурвал, колонку или педали), создаваемая отклоняемой поверхностью управления — control pressure created by control surface
    - на педали при путевом управленииrudder pressure (felt when deflecting pedals)
    - на площадь, сметаемую несущим винтом — rotor disc loading
    величина подъемной силы (тяги) несущего винта, деленная на площадь ометаемую винтом. — the thrust of the rotor divided by the rotor disc area.
    - на поверхность управления — control surface load, backpressure on control surface
    - на поверхность управления от порыва ветраcontrol surface gust load
    - на поверхность управления, удельная — control surface loading the mean normal force per unit area carried by an aerofoil.
    - на полfloor load
    - на пол, удельная — floor loading
    -, направленная к продольной оси самолета, боковая — inward acting side load
    -, направленная от продольной оси самолета, боковая — outward acting side load
    - на размах, удельная — span loading
    полетный вес самолета, деленный на квадрат размаха крыла. — the gross weight of an airplane divided by the square of the span.
    - на растяжение — tensile load /stress, strain/
    - на руль высоты (усилие при отклонении)backpressure on elevator
    - на руль направления (усилие при отклонении)backpressure on rudder
    - на сжатиеcompression load
    - на систему управленияcontrol system load
    максимальные и минимальные усилия летчика, прикладываемые к органам управления (в условиях полета) и передаваемые в точку крепления проводки управления к рычагу поверхности управления. — the maximum and minimum pilot forces are assumed to act at the appropriate control grips or pads (in a manner simulating flight conditions) and to be reacted at the attachment of the control system to control surface horn.
    - на скручиваниеtorsional load
    - на срезshear load
    - на тягу, удельная — thrust loading
    отношение веса реактивного самолета к тяге, развиваемой его двигателем (двигателями), — the weight-thrust ratio of а jet aircraft expressed as gross weight (in kg) divided by thrust (in kg).
    - на шасси при посадкеground load on the landing gear at touch-down
    - на шину (колеса)load on tire
    - на штурвал (ручку) при управлении no кренуaileron pressure (felt when deflecting control wheel (or stick)
    - на элерон (усилие при отклонении)backpressure on aileron
    -, номинальная (эл.) — rated load
    -, нормальная — normal load
    -, нормальная эксплуатационная (в системах управления) — normal operating load control system load that can be obtained in normal operation.
    -, ограниченная весом, коммерческая (платная) — weight limited payload (wlp)
    коммерческая нагрузка, oграниченная одним наиболее перечисленных ниже): — payload as restricted by the most critical of the following:
    1. взлетным весом снаряженного самолета за вычетом веса пустого снаряженного самолета и минимального запаса расходуемого топлива. — 1. operational takeoff weight minus operational empty weight minus minimum usable fuel.
    2. посадочным весом снаряженного самолета за вычетом веса пустого снаряженнаго самолета и анз топлива. — 2. operational landing weight minus operational empty weight minus flight reserve fuel.
    3. ограничениями по использованию отсеков. данная нагрузка не должна превышать макс. коммерческую нагрузку. — 3. compartment and other related limits. (it must not exceed maximum payload).
    -, ограниченная объемом, коммерческая (платная) — space limited payload (slp)
    нагрузка, ограниченная числом мест, объемными и другими пределами кабины, грузовых и багажных отсеков, — payload as restricted by seating,volumetric, and other related limits of the cabin, cargo, and baggage compartments. (it must not exceed maximum payload).
    -, омическая (эл.) — resistive load
    -, осевая — axial load
    -, основная — basic load
    - от встречного порыва (ветpa)load resulting from encountering head-on gust
    - от заклинивания (подвижных элементов)jamming load
    - от избыточного давления (в гермокабине)pressure differential load
    - от порыва (ветра)gust load
    случай нагружения конструкции самолета, особенного крыла, в результате воздействия на самолет вертикальных и горизонтальных воздушных течений (порывов), — the load condition which is imposed on an airplane, especially the wings, as a result of the airplane's flying into vertical or horizontal air currents.
    - от тренияfriction load
    -, параллельная линия шарниров (узлов подвески поверхностей управления). — load parallel to (control surface) hinge line
    -, переменная (по величине) — varying load, load of variable magnitude
    -, пиковая — peak load
    -, платная (коммерческая) — payload (p/l)
    beс пассажиров, груза и багажа. — weight of passengers, cargo, and baggage.
    -, повторная — repeated load
    расчеты и испытания конструкции должны продемонстрировать ее способность выдерживать повторные переменные нагрузки возможные при эксплуатации. — the structure must be shown by analysis, tests, or both, to be able to withstand the repeated load of variable magnitude expected in service.
    -, погонная — load per unit length
    -, полезная — payload (p/l)
    вес пассажиров, груза, багажа — weight of passengers, cargo, and baggage.
    -, полезная — useful load
    разность между взлетным весом снаряженного и весом пустого снаряженного ла. (включает: коммерческую нагрузку, вырабатываемые топливо и др. жидкости, не входящие в состав снаряжения ла). — difference between operational takeoff weight and operational empty weight. (it includes payload, usable fuel, and other usable fluids not included as operational items).
    -, полетная — flight load
    отношение составляющей аэродинамической силы (действующей перпендикулярно продольной оси самолета) к весу самолета. — flight load factors represent the ratio of the aerodynamic force component (acting normal to the assumed longitudinal axis of the airplane) to the weight of the airplane.
    -, полная — full load
    включает вес экипажа, снаряжения, топлива и полезной нагрузки.
    -, постоянная — permanent load
    - предельная, разрушающая (по терминологии икао) — ultimate load
    -, продольная — longitudinal load
    -, равномерная — uniform load
    -, радиальная эксплуатационная (на каждое колесо шасcи) — radial limit load (rating of each wheel)
    -, разрушающая (расчетная) — ultimate load
    нагрузка, в результате которой возникает, или может возникнуть на основании расчетов, разрушение элемента конструкции. — the load which will, or is computed to, cause failure in any structural member.
    -, разрушающая (способная вызывать разрушение) — destructive load
    торможение может привести к появлению разрушающей нагрузки на переднее колесо. — braking can cause destructive loads on nosewheel.
    -, распределенная — distributed load
    -, рассредоточенная — distributed load
    -, расчетная — ultimate load
    расчетная нагрузка опрелеляется как произведение эксплуатационной нагрузки на коэффициент безопасности. — ultimate load is the limit load multiplied by the prescribed factor of safety.
    -, расчетная (по терминологии икао) — proof load
    -, расчетная (по усилиям в системе управления) — design load design loads are accepted in the absence of a rational analysis.
    -, скручивающая — torsional load
    -, служебная — operational items /load/
    включает экипаж, парашюты, кислородное оборудование экипажа, масло для двигателей и невырабатываемое топливо. — includes: crew, parachutes, crew's oxygen equipment, engine oil, unusable fuel.
    -, служебная (стандартная) — standard items
    служебная нагрузка может включать: нерасходуемые топливо и жидкости, масло для двигателей, огнетушители, аварийное кислородное оборудоавние, конструкции в буфете, дополнительное электронное оборудование. — may include, unusable fuel and other fluids, engine oil, toilet fluid, fire extinguishers, emergency oxygen equipment, structure in galley, buffet, supplementary electronic equipment.
    - снаряженного (самолета)operational load
    -, сосредоточенная — concentrated load
    -, статическая — static load
    постоянно действующая нагрузка, постепенно возрастающая от нуля до своего максимума при нулевом ускорении. — а stationary load or one that is gradually increased from zero to its maximum. it is an unaccelerated basic load.
    -, суммарная — total load
    -, ударная — impact load
    -, уравновешивающая — balancing load
    -, усталостная — fatigue load
    -, фрикционная — friction load
    -, центробежная (на ротор) — centrifugal loading (on rotor)
    -, частичная — partial load
    -, чрезмерная — overload(ing)
    -, эксплуатационная — limit load
    максимальная нагрузка, воздействующая на самолет в эксплуатации, — the strength requirements are specified in terms of limit loads (the maximum loads to be expected in service).
    -, эксплуатационная нормальная (на систему управления) — normal operating load, load obtained in normal operationtained in normal operation
    -, электрическая — (electrical) load
    весовая отдача по полезной н. — useful load-to-takeoff weight ratio
    зависимость платной н. от дальности полета — payload-range curve
    под н. — under load
    при установившемся режиме работы с полной н. — at steady full-load conditions
    распределение н. — load distribution
    точка приложения н. — point of load application
    характеристика н. — load characteristic
    включать (эл.) н. — activate load
    включать (эл.) н. на генератор, (аккумулятор) — apply load to (generator, battery)
    воспринимать н. — take up load
    выдерживать н. — withstand /support/ load
    испытывать h. — be subjected to load
    нести h. — carry load
    передавать н. — transmit load
    подключать (эл.) н. к... — apply load to...
    прикладывать — apply load to...
    работать без н. (об электродвигателе, преобразователе) — run unloaded
    сбрасывать (эл.) н. — deactivate load
    снимать н. (руля высоты) — relieve elevator pressure, adjust elevator trim tab, relieve pressure by adjusting elevator trim control
    создавать (маханическую) н. — impose load on...
    устанавливать за счет платной h. — install (smth) with payload penalty

    Русско-английский сборник авиационно-технических терминов > нагрузка

  • 85 Защита от короткого замыкания и прочность при коротком замыкании

    1. cos j

    7.5. Защита от короткого замыкания и прочность при коротком замыкании

    Примечание. В настоящее время требования этого пункта применимы главным образом к устройствам переменного тока. Требования к устройствам постоянного тока находятся в стадии рассмотрения.

    7.5.1. Общие положения

    НКУ должны иметь конструкцию, способную выдерживать тепловые и электродинамические нагрузки, возникающие при значениях токов короткого замыкания, не превышающих установленных.

    Примечание. Нагрузки, возникающие вследствие короткого замыкания, могут быть уменьшены при помощи токоограничивающих устройств (индуктивностей, токоограничивающих плавких предохранителей или других токоограничивающих коммутационных устройств).

    НКУ должны быть защищены от токов короткого замыкания, например, автоматическими выключателями, плавкими предохранителями или тем и другим вместе, которые могут быть частью НКУ или располагаться за его пределами.

    Примечание. Если НКУ предназначены для использования в системах IT*, то аппарат защиты в каждой фазе должен иметь достаточную отключающую способность относительно междуфазного напряжения при двухфазном замыкании на землю.

    * См title="Электроустановки зданий. Часть 3. Основные характеристики".

    Потребитель, заказывая НКУ, должен определить условия короткого замыкания на месте его установки.

    Примечание. Желательно, чтобы в случае повреждения, ведущего к образованию дуги внутри НКУ, обеспечивалась максимально возможная степень защиты персонала, хотя главной целью является предупреждение образования такой дуги принятием соответствующих мер при проектировании или ограничение длительности горения дуги.

    Для ЧИ НКУ рекомендуется использовать устройства, прошедшие типовые испытания, например, системы сборных шин, если на них не распространяются исключения пп. 8.2.3.1.1 - 8.2.3.1.3. В случаях, когда применение устройств, прошедших типовые испытания, не представляется возможным, прочность этих частей при коротком замыкании проверяют путем экстраполяции, исходя из устройств, испытанных в соответствии с типовыми испытаниями.

    7.5.2. Сведения, касающиеся прочности при коротком замыкании

    7.5.2.1. Для НКУ, в котором имеется только один блок ввода, изготовитель обязан представлять сведения о прочности при коротком замыкании следующим образом:

    7.5.2.1.1. Для НКУ с устройством защиты от короткого замыкания, включенным в блок ввода, указанием максимально допустимого значения ожидаемого тока короткого замыкания на зажимах блока ввода. Эта величина не должна превышать номинальные значения (см. пп. 4.3 - 4.7). Коэффициент мощности и пиковые значения должны соответствовать указанным в п. 7.5.3.

    Если устройством защиты от короткого замыкания является плавкий предохранитель, то изготовитель обязан указать характеристики плавкой вставки (номинальный ток, отключающую способность, ток отключения, I2t и т.д.).

    Если используют автоматический выключатель с расцепителем, имеющим выдержку времени, то может потребоваться указание максимальной выдержки времени и значения тока уставки, соответствующих ожидаемому току короткого замыкания.

    7.5.2.1.2. Для НКУ, в которых защитное устройство от короткого замыкания не входит в блок ввода, прочность при коротком замыкании указывают с помощью следующих способов (одного или нескольких):

    а) номинальный кратковременно выдерживаемый ток (п. 4.3) и номинальный ударный ток (п. 4.4) вместе с соответствующим временем, если оно отличается от 1 с. Отношение пикового значения к действующему должно соответствовать указанному в табл. 5.

    Примечание. Для периодов времени с максимальным значением до 3 с соотношение между кратковременно выдерживаемым током и соответствующим временем представляется формулой

    i2t = const

    при условии, что пиковое значение не превышает значение номинального ударного тока;

    b) номинальный ожидаемый ток короткого замыкания на зажимах блока ввода НКУ, а также соответствующее время, если оно отличается от 1 с. Соотношение между пиковым и действующим значением должно быть таким, как указано в табл. 5;

    с) номинальный условный ток короткого замыкания (п. 4.6);

    d) номинальный ток короткого замыкания, отключаемый плавким предохранителем (п. 4.7).

    Для подпунктов с) и d) изготовитель обязан указывать характеристики (номинальный ток, отключающая способность, ток отключения, I2t и т.д.) токоограничивающих коммутационных устройств (например, автоматических выключателей или плавких предохранителей), необходимых для защиты НКУ.

    Примечание. При замене плавких вставок должны использоваться вставки с такими же характеристиками.

    7.5.2.2. Для НКУ с несколькими блоками ввода, одновременная работа которых маловероятна, прочность при коротком замыкании может указываться для каждого из блоков в соответствии с п. 7.5.2.1.

    7.5.2.3. Для НКУ с несколькими блоками ввода, которые могут работать одновременно, а также для НКУ с одним блоком ввода и одним или несколькими блоками вывода для вращающихся машин большой мощности, могущих повлиять на величину тока короткого замыкания, должно быть заключено специальное соглашение о величинах ожидаемого тока короткого замыкания в каждом блоке ввода или вывода и на шинах.

    7.5.3. Зависимость между пиковыми и действующим и значениями тока короткого замыкания

    Пиковое значение тока короткого замыкания (пиковое значение первой волны тока короткого замыкания, включая постоянную составляющую) для определения электродинамических усилий, получается умножением действующего значения тока короткого замыкания на коэффициент п. Стандартные значения коэффициента n и соответствующего коэффициента мощности даны в табл. 5.

    Таблица 5

    Действующее значение тока короткого замыкания

    cos j

    n

    I £ 5 кА

    0,7

    1,5

    5 кА < I £ 10 кА

    0,5

    1,7

    10 кА < I £ 20 кА

    0,3

    2

    20 кА < I £ 50 кА

    0,25

    2,1

    50 кА < I

    0,2

    2,2

    Примечание. Значения, приведенные в табл. 5, соответствуют большинству случаев применения. В специальных местах, например, вблизи трансформаторов или генераторов, коэффициент мощности может иметь более низкие значения; таким образом, максимальное пиковое значение ожидаемого тока станет предельным значением вместо действующего значения тока короткого замыкания.

    7.5.4. Координация устройств защиты от короткого замыкания

    7.5.4.1. Координация устройств защиты должна являться предметом согласования между потребителем и изготовителем. Вместо такого соглашения можно использовать сведения, приводимые в каталоге предприятия-изготовителя.

    7.5.4.2. Если по условиям эксплуатации необходима непрерывность питания, то уставки или выбор устройств защиты от короткого замыкания внутри НКУ должны производиться таким образом, чтобы короткое замыкание, возникающее в любой отходящей цепи ответвления, могло быть устранено с помощью отключающего устройства, установленного в поврежденной цепи ответвления без какого-либо воздействия на другие отходящие ответвления, чем гарантируется селективность системы защиты.

    7.5.5. Внутренние цепи НКУ

    7.5.5.1. Главные цепи

    7.5.5.1.1. Шины (оголенные или с изоляцией) должны располагаться таким образом, чтобы при нормальных условиях эксплуатации исключалась возможность внутреннего короткого замыкания. При отсутствии других указаний их выбирают согласно сведениям о прочности при коротком замыкании (п. 7.5.2) и должны выдерживать по крайней мере воздействия коротких замыканий, ограниченных устройствами защиты на стороне подачи питания на шины.

    7.5.5.1.2. Проводники между главными шинами и стороной питания отдельного функционального блока, также как и комплектующие, входящие в этот блок, могут быть выбраны, исходя из уменьшенных воздействий короткого замыкания со стороны присоединения нагрузки к устройству защиты от короткого замыкания в этом блоке, при условии такого расположения этих проводников, при котором в нормальных рабочих условиях внутреннее короткое замыкание между фазами и/или между фазами и землей является маловероятным, например, если проводники имеют соответствующую изоляцию или оболочку. Это также относится к проводникам со стороны питания отдельных функциональных блоков внутри НКУ, не содержащих главных шин.

    7.5.5.2. Вспомогательные цепи

    Обычно вспомогательные цепи должны быть защищены от воздействия коротких замыканий. Однако защитное устройство, предохраняющее от короткого замыкания, не следует применять в случае, если его срабатывание может иметь опасные последствия. В этом случае проводники вспомогательных цепей должны располагаться таким образом, чтобы в нормальных условиях работы исключалась возможность возникновения короткого замыкания.

    Источник: ГОСТ 28668-90 Э: Низковольтные комплектные устройства распределения и управления. Часть 1. Требования к устройствам, испытанным полностью или частично оригинал документа

    Русско-английский словарь нормативно-технической терминологии > Защита от короткого замыкания и прочность при коротком замыкании

  • 86 система контроля реакторной кинетики

    1. Kontrollsystem der Reaktorkinetik

     

    система контроля реакторной кинетики
    Система контроля ядерного реактора, предназначенная для контроля физической мощности, скорости изменения физической мощности и (или) реактивности ядерного реактора.
    Примечания
    1. Физическая мощность ядерного реактора - величина, пропорциональная плотности потока нейтронов в активной зоне ядерного реактора.
    2. Скорость изменения физической мощности ядерного реактора может выражаться величиной, характеризующей изменение физической мощности в е раз (два раза) за определенное время, называемое периодом (периодом удвоения).
    3. Реактивность ядерного реактора - величина, определяющая отклонение размножающих свойств среды ядерного реактора, в которой протекает цепная реакция, от критического состояния.
    Реактивность ядерного реактора вычисляют по формуле
    ρ = 1- 1/Kэфф,
    где Kэфф - эффективный коэффициент размножения нейтронов.
    [ ГОСТ 17137-87]

    Тематики

    • системы контроля, управл. и защиты ядерных реакторов

    EN

    DE

    4. Система контроля реакторной кинетики

    D. Kontrollsystem der Reaktorkinetik

    Е. Reactor kinetics monitoring system

    Система контроля ядерного реактора, предназначенная для контроля физической мощности, скорости изменения физической мощности и (или) реактивности ядерного реактора.

    Примечания:

    1. Физическая мощность ядерного реактора - величина, пропорциональная плотности потока нейтронов в активной зоне ядерного реактора.

    2. Скорость изменения физической мощности ядерного реактора может выражаться величиной, характеризующей изменение физической мощности в е раз (два раза) за определенное время, называемое периодом (периодом удвоения).

    3. Реактивность ядерного реактора - величина, определяющая отклонение размножающих свойств среды ядерного реактора, в которой протекает цепная реакция, от критического состояния.

    Реактивность ядерного реактора вычисляют по формуле

    ρ = 1- 1/Kэфф,

    где Kэфф - эффективный коэффициент размножения нейтронов

    Источник: ГОСТ 17137-87: Системы контроля, управления и защиты ядерных реакторов. Термины и определения оригинал документа

    Русско-немецкий словарь нормативно-технической терминологии > система контроля реакторной кинетики

  • 87 срок службы каждой лампы

    1. life of an individual LED-lamp

    3.7 срок службы каждой лампы (life of an individual LED-lamp): Период времени, в течение которого лампа обеспечивает более 50 % (или альтернативно 70 %, см. примечание 3) номинального светового потока при стандартных условиях испытания.

    Лампа достигает конца срока службы, когда она перестает обеспечивать 50 % (или альтернативно 70 %) номинального светового потока. Срок службы всегда указывают в комбинации с интенсивностью отказов (см. примечание 4 и 3.9).

    Примечания

    1 Лампы имеют критерий срока службы, отличный от критерия срока службы обычных ламп, поскольку лампы не подвержены внезапным отказам и характеризуются постепенным снижением их светового потока.

    2 Однако встроенное устройство управления может внезапно выйти из строя. Определением 3.7 предполагается, что лампа, не дающая полного света из-за отказа устройства управления, фактически достигает конца срока службы, так как не обеспечивает минимального светового потока, объявленного изготовителем или ответственным поставщиком.

    3 Максимальное снижение коэффициента сохранения светового потока может изменяться в зависимости от применения лампы. Настоящий стандарт приводит в качестве примера значение 50 % (L50), которое часто используют для коммерческих целей. Для профессиональных целей может быть выбран коэффициент сохранения светового потока, равный 70 % (L70). Информацию по выбранному коэффициенту представляет изготовитель.

    4 Конец срока службы определяется отказом 50 % ламп при выбранном значении коэффициента сохранения светового потока: L70, F50 или L50, F50. Для профессионального использования рекомендуются значения L70, F10 означающие отказ 10 % ламп при достижении 70 %-го коэффициента сохранения светового потока.

    Источник: ГОСТ Р 54815-2011: Лампы светодиодные со встроенным устройством управления для общего освещения на напряжения свыше 50 В. Эксплуатационные требования оригинал документа

    Русско-английский словарь нормативно-технической терминологии > срок службы каждой лампы

  • 88 отношение


    relationship
    (взаимосвязь)
    - (математическая зависимость)relation
    - (параметр, представляющий собой отношение двух величин) — ratio
    - веса к емкостиweight-to-capacity ratio
    - водности облаков к среднемy эффективному диаметру капельliquid water content vs mean effective drop diameter
    - давленийpressure ratio
    - давлений в соплеexhaust nozzle pressure ratio
    - давлений на входе и выходе двигателя (степень повышения давления)engine pressure ratio (epr)
    - диаметра втулки винта к диаметру винта (относительный диаметр втулки)hub ratio
    - массmass ratio
    - массы к площадиmass-area ratio
    -, обратное — inverse ratio
    -, передаточное (редуктора) — gear ratio
    отношение угловых скоростей двух зубчатых колес.
    -, передаточное (от рычагов к поверхностям управления) — gearing ratio
    -, передаточное (коэффициент усиления в автоматической системе управления) — gain
    - площадейarea ratio
    - площадей критического и выходного сечения (сопла) — throat/exit area ratio
    - подъемной силы к лобовомy сопротивлению — lift-drag ratio, l/d ratio
    -, прямое — direct ratio
    -, самонастраивающееся передаточное (системы управления) — adaptive gain
    - тяги к весу — thrust-weight ratio, t/w ratio
    по о. (при определении взаимных перемещений) определяться о. — relative to, with respect to... be defined by the relation

    Русско-английский сборник авиационно-технических терминов > отношение

  • 89 акселератор

    1. shortcut key
    2. accelerator key
    3. accelerator

     

    акселератор
    «быстрая» клавиша
    оперативная клавиша

    Определенная комбинация клавиш, нажатие которой инициализирует выполнение какого-либо действия. Например, одновременное нажатие клавиш Alt+F4 в Диспетчере программ (Program Manager) приводит к выходу из среды Windows.
    [ http://www.morepc.ru/dict/]

    акселератор
    В наиболее общем смысле — термин экономической кибернетики: такое звено системы управления («дифференцирующее звено«), в котором выходная величина пропорциональна скорости изменения входной величины, т.е. y = к (dx/dt). Соответственно, в теории экономического роста это показатель, характеризующий связь между приростом национального дохода (или конечной продукции) и объемом капиталовложений и отражающий так называемый эффект нарастания развития (акселерации). Наконец, еще более узкая трактовка этого понятия представлена в работах представителей некоторых представителей кейнсианства (см. Кейнсианская теория экономики) - как показателя, отражающего лишь одну сторону указанной связи: влияние ожидаемого или потребного роста национального дохода (объема продукции, или спроса на эту продукцию) на размер «индуцируемых» им капиталовложений (См. в ст. Автономные капиталовложения). Именно последняя трактовка наиболее распространена в западной экономической литературе. Смысл «эффекта нарастания развития» состоит в том, что чем большая доля национального дохода выделяется на капиталовложения, тем быстрее растет сам национальный доход, тем большую долю его можно выделить на новые капиталовложения и т.д. Коэффициент к получается делением суммы капиталовложений К в данном году на прирост национального дохода (конечной продукции) ?N в предшествующем году; иначе говоря, это сумма капиталовложений, связанных с приростом единицы дохода: где величина k называется мощностью А. (или фактором А.). Такое соотношение объясняется тем, что всегда стоимость средств производства существенно превышает стоимость производимой ими в течение года продукции. Следовательно, если известен абсолютный объем капиталовложений данного года, то с помощью А. можно определить примерную величину прироста национального дохода (или конечной продукции) в будущем году: И наоборот, если задаются целью получить определенный прирост национального дохода (или конечной продукции), то, зная величину А., можно определить необходимый объем капиталовложений (равный приросту фондов): K = k ?N + b. Например, если мы хотим, чтобы выпуск продукции в будущем году вырос на 20 млн. руб., то при коэффициенте акселерации 3 придется затратить 60 млн. руб. капиталовложений, а при коэффициенте 4 — 80 млн. руб. (в этом смысле А. иногда отождествляют с коэффициентом приростной фондоемкости). Это будут, однако, не все потребные капиталовложения, а лишь «индуцированные«. Сюда не войдут, например, затраты на восстановление выбывающих фондов и автономные капиталовложения (слагаемое b). Вместе с мультипликатором, А. дает в руки исследователя важные инструменты для построения динамической модели экономики. В частности, взаимодействие между акселератором и мультипликатором заложено в основу известной модели Харрода-Домара. Применительно к отдельной фирме эконометрика трактует коэффициент акселерации k как оптимальный показатель капиталоемкости изменений масштабов хозяйственной деятельности (например, расширения производства некоторой продукции). Он может быть как постоянным, так и переменным — когда при росте производства меняется и уровень его экономической эффективности («эффект масштаба«, эффект изменения технологии производства). Различается ряд видов акселератора; среди них: А. простой (crude aссеlerator) - описанная выше модель, учитывающая лишь взаимосвязи роста результатов (дохода или продукции) с необходимыми для него или вызванными им капиталовложениями, но без учета дополнительных обстоятельств (например, возможностей роста производства без капиталовложений, если имеются недогруженные мощности). А. гибкий (flexible accelerator) - усложнение предыдущей модели, учитывающее, в частности, указанные выше возможные обстоятельства, колебания уровня производства и др. А. с запаздыванием (lagged accelerator) учитывает запаздывание фактической скорости роста инвестиций по отношению к росту результатов производства (дохода), который вызывает («индуцирует») их.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > акселератор

  • 90 дерево целей

    1. relevance tree
    2. objective tree

     

    дерево целей

    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    дерево целей
    В программно-целевых методах планирования и управления — граф, схема, показывающая членение общих (генеральных) целей плана или программы на подцели, последних — на подцели следующего уровня и т.д. (дерево — это связный граф, выражающий соподчинение и взаимосвязи элементов; в данном случае такими элементами являются цели и подцели). Представление целей начинается с верхнего яруса, дальше они последовательно разукрупняются. Причем основным правилом разукрупнения целей является полнота: каждая цель верхнего уровня должна быть представлена в виде подцелей следующего уровня исчерпывающим образом, т.е. так, чтобы объединение понятий подцелей полностью определяло понятие исходной цели. На рис.Д.3. показан фрагмент примерного Д. ц. долгосрочной программы развития региона. Д. ц., направленное на решение такой народнохозяйственной и социальной задачи как подъем отставшего в своем развитии региона (генеральная цель программы), может включать подцели первого яруса: повышение благосостояния населения, развитие производительных сил, экологическое оздоровление и др. Одна из перечисленных целей — повышение благосостояния (на рис. Д.3. обозначенная цифрой 4), в свою очередь, на втором ярусе подразделяется на «материальное благосостояние» (4.1) и «социальное благосостояние» (4.2), а на третьем ярусе подцель «материальное благосостояние» расшифровывается как целая серия целей: «питание», «одежда», «жилой комплекс» и т.д. Разумеется, это очень условный пример. Но на нем можно познакомиться с основными понятиями, применяемыми в целевом планировании. Понятие «состязательность целей» означает, что достижение одной цели затрудняет достижение другой. Если каким-то способом получить численный коэффициент состязательности между ними, это позволит включить их в математическую программу расчетов по Д. ц. (например, расчетов количества времени, необходимого для достижения глобальной цели при разных вариантах распределения ресурсов между ними). Коэффициент взаимной поддержки целей, напротив, определяет, в какой мере достижение одной цели способствует достижению другой. Особенно важны коэффициенты значимости целей. Они определяются экспертным путем и показывают, какая из целей важнее, чем можно поступиться при необходимости для их достижения, и наоборот, на что надо обратить большее внимание, выделить больше ресурсов. От полноты информации, заключенной в Д. ц., в решающей степени зависит качество всей последующей работы — оценки программ, их прогнозируемых следствий, оценки планов, разработка всей системы деятельности по созданию условий для реализации планов и программ. Рис. Д.3. Фрагмент дерева целей 0 — генеральная цель: «Ускорение развития рассматриваемого региона»; 4 — «Повышение благосостояния населения»; 4.1 — «Материальное благосостояние»; 4.2 — «Социальное благосостояние»; 4.1.1 — «Улучшение природно-биологической среды жизни»; 4.1.2 — «Питание»; 4.1.3 — «Одежда»…; 4.1.3.1 — «Обувь» и т. д.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > дерево целей

  • 91 ИБП для централизованных систем питания

    1. centralized UPS

     

    ИБП для централизованных систем питания
    ИБП для централизованного питания нагрузок
    -
    [Интент]

    ИБП для централизованных систем питания

    А. П. Майоров

    Для многих предприятий всесторонняя защита данных имеет жизненно важное значение. Кроме того, есть виды деятельности, в которых прерывания подачи электроэнергии не допускаются даже на доли секунды. Так работают расчетные центры банков, больницы, аэропорты, центры обмена трафиком между различными сетями. В такой же степени критичны к электропитанию телекоммуникационное оборудование, крупные узлы Интернет, число ежедневных обращений к которым исчисляется десятками и сотнями тысяч. Третья часть обзора по ИБП посвящена оборудованию, предназначенному для обеспечения питания особо важных объектов.

    Централизованные системы бесперебойного питания применяют в тех случаях, когда прерывание подачи электроэнергии недопустимо для работы большинства единиц оборудования, составляющих одну информационную или технологическую систему. Как правило, проблемы питания рассматривают в рамках единого проекта наряду со многими другими подсистемами здания, поскольку они требуют вложения значительных средств и увязки с силовой электропроводкой, коммутационным электрооборудованием и аппаратурой кондиционирования. Изначально системы бесперебойного питания рассчитаны на долгие годы эксплуатации, их срок службы можно сравнить со сроком службы кабельных подсистем здания и основного компьютерного оборудования. За 15—20 лет функционирования предприятия оснащение его рабочих станций обновляется три-четыре раза, несколько раз изменяется планировка помещений и производится их ремонт, но все эти годы система бесперебойного питания должна работать безотказно. Для ИБП такого класса долговечность превыше всего, поэтому в их технических спецификациях часто приводят значение важнейшего технического показателя надежности — среднего времени наработки на отказ (Mean Time Before Failure — MTBF). Во многих моделях с ИБП оно превышает 100 тыс. ч, в некоторых из них достигает 250 тыс. ч (т. е. 27 лет непрерывной работы). Правда, сравнивая различные системы, нужно учитывать условия, для которых этот показатель задан, и к предоставленным цифрам относиться осторожно, поскольку условия работы оборудования разных производителей неодинаковы.

    Батареи аккумуляторов

    К сожалению, наиболее дорогостоящий компонент ИБП — батарея аккумуляторов так долго работать не может. Существует несколько градаций качества батарей, которые различаются сроком службы и, естественно, ценой. В соответствии с принятой два года назад конвенцией EUROBAT по среднему сроку службы батареи разделены на четыре группы:

    10+ — высоконадежные,
    10 — высокоэффективные,
    5—8 — общего назначения,
    3—5 — стандартные коммерческие.

    Учитывая исключительно жесткую конкуренцию на рынке ИБП малой мощности, производители стремятся снизить до минимума начальную стоимость своих моделей, поэтому часто комплектуют их самыми простыми батареями. Применительно к этой группе продуктов такой подход оправдан, поскольку упрощенные ИБП изымают из обращения вместе с защищаемыми ими персональными компьютерами. Впервые вступающие на этот рынок производители, пытаясь оттеснить конкурентов, часто используют в своих интересах неосведомленность покупателей о проблеме качества батарей и предлагают им сравнимые по остальным показателям модели за более низкую цену. Имеются случаи, когда партнеры крупной фирмы комплектуют ее проверенные временем и признанные рынком модели ИБП батареями, произведенными в развивающихся странах, где контроль за технологическим процессом ослаблен, а, значит, срок службы батарей меньше по сравнению с "кондиционными" изделиями. Поэтому, подбирая для себя ИБП, обязательно поинтересуйтесь качеством батареи и ее производителем, избегайте продукции неизвестных фирм. Следование этим рекомендациям сэкономит вам значительные средства при эксплуатации ИБП.

    Все сказанное еще в большей степени относится к ИБП высокой мощности. Как уже отмечалось, срок службы таких систем исчисляется многими годами. И все же за это время приходится несколько раз заменять батареи. Как это ни покажется странным, но расчеты, основанные на ценовых и качественных параметрах батарей, показывают, что в долгосрочной перспективе наиболее выгодны именно батареи высшего качества, несмотря на их первоначальную стоимость. Поэтому, имея возможность выбора, устанавливайте батареи только "высшей пробы". Гарантированный срок службы таких батарей приближается к 15 годам.

    Не менее важный аспект долговечности мощных систем бесперебойного питания — условия эксплуатации аккумуляторных батарей. Чтобы исключить непредсказуемые, а следовательно, часто приводящие к аварии перерывы в подаче электропитания, абсолютно все включенные в приведенную в статье таблицу модели оснащены самыми совершенными схемами контроля за состоянием батарей. Не мешая выполнению основной функции ИБП, схемы мониторинга, как правило, контролируют следующие параметры батареи: зарядный и разрядный токи, возможность избыточного заряда, рабочую температуру, емкость.

    Кроме того, с их помощью рассчитываются такие переменные, как реальное время автономной работы, конечное напряжение зарядки в зависимости от реальной температуры внутри батареи и др.

    Подзарядка батареи происходит по мере необходимости и в наиболее оптимальном режиме для ее текущего состояния. Когда емкость батареи снижается ниже допустимого предела, система контроля автоматически посылает предупреждающий сигнал о необходимости ее скорой замены.

    Топологические изыски

    Долгое время специалисты по системам электропитания руководствовались аксиомой, что мощные системы бесперебойного питания должны иметь топологию on-line. Считается, что именно такая топология гарантирует защиту от всех нарушений на линиях силового питания, позволяет фильтровать помехи во всем частотном диапазоне, обеспечивает на выходе чистое синусоидальное напряжение с номинальными параметрами. Однако за качество электропитания приходится платить повышенным выделением тепловой энергии, сложностью электронных схем, а следовательно, потенциальным снижением надежности. Но, несмотря на это, за многолетнюю историю выпуска мощных ИБП были разработаны исключительно надежные аппараты, способные работать в самых невероятных условиях, когда возможен отказ одного или даже нескольких узлов одновременно. Наиболее важным и полезным элементом мощных ИБП является так называемый байпас. Это обходной путь подачи энергии на выход в случае ремонтных и профилактических работ, вызванных отказом некоторых компонентов систем или возникновением перегрузки на выходе. Байпасы бывают ручными и автоматическими. Они формируются несколькими переключателями, поэтому для их активизации требуется некоторое время, которое инженеры постарались снизить до минимума. И раз уж такой переключатель был создан, то почему бы не использовать его для снижения тепловыделения в то время, когда питающая сеть пребывает в нормальном рабочем состоянии. Так появились первые признаки отступления от "истинного" режима on-line.

    Новая топология отдаленно напоминает линейно-интерактивную. Устанавливаемый пользователем системы порог срабатывания определяет момент перехода системы в так называемый экономный режим. При этом напряжение из первичной сети поступает на выход системы через байпас, однако электронная схема постоянно следит за состоянием первичной сети и в случае недопустимых отклонений мгновенно переключается на работу в основном режиме on-line.

    Подобная схема применена в ИБП серии Synthesis фирмы Chloride (Сети и системы связи, 1996. № 10. С. 131), механизм переключения в этих устройствах назван "интеллектуальным" ключом. Если качество входной линии укладывается в пределы, определяемые самим пользователем системы, аппарат работает в линейно-интерактивном режиме. При достижении одним из контролируемых параметров граничного значения система начинает работать в нормальном режиме on-line. Конечно, в этом режиме система может работать и постоянно.

    За время эксплуатации системы отход от исходной аксиомы позволяет экономить весьма значительные средства за счет сокращения тепловыделения. Сумма экономии оказывается сопоставимой со стоимостью оборудования.

    Надо отметить, что от своих исходных принципов отошла еще одна фирма, ранее выпускавшая только линейно-интерактивные ИБП и ИБП типа off-line сравнительно небольшой мощности. Теперь она превысила прежний верхний предел мощности своих ИБП (5 кВА) и построила новую систему по топологии on-line. Я имею в виду фирму АРС и ее массив электропитания Simmetra (Сети и системы связи. 1997. № 4. С. 132). Создатели попытались заложить в систему питания те же принципы повышения надежности, которые применяют при построении особо надежной компьютерной техники. В модульную конструкцию введена избыточность по отношению к управляющим модулям и батареям. В любом из трех выпускаемых шасси из отдельных модулей можно сформировать нужную на текущий момент систему и в будущем наращивать ее по мере надобности. Суммарная мощность самого большого шасси достигает 16 кВА. Еще рано сравнивать эту только что появившуюся систему с другими включенными в таблицу. Однако факт появления нового продукта в этом исключительно устоявшемся секторе рынка сам по себе интересен.

    Архитектура

    Суммарная выходная мощность централизованных систем бесперебойного питания может составлять от 10—20 кВА до 200—300 МВА и более. Соответственно видоизменяется и структура систем. Как правило, она включают в себя несколько источников, соединенных параллельно тем или иным способом. Аппаратные шкафы устанавливают в специально оборудованных помещениях, где уже находятся распределительные шкафы выходного напряжения и куда подводят мощные входные силовые линии электропитания. В аппаратных помещениях поддерживается определенная температура, а за функционированием оборудования наблюдают специалисты.

    Многие реализации системы питания для достижения необходимой надежности требуют совместной работы нескольких ИБП. Существует ряд конфигураций, где работают сразу несколько блоков. В одних случаях блоки можно добавлять постепенно, по мере необходимости, а в других — системы приходится комплектовать в самом начале проекта.

    Для повышения суммарной выходной мощности используют два варианта объединения систем: распределенный и централизованный. Последний обеспечивает более высокую надежность, но первый более универсален. Блоки серии EDP-90 фирмы Chloride допускают объединение двумя способами: и просто параллельно (распределенный вариант), и с помощью общего распределительного блока (централизованный вариант). При выборе способа объединения отдельных ИБП необходим тщательный анализ структуры нагрузки, и в этом случае лучше всего обратиться за помощью к специалистам.

    Применяют параллельное соединение блоков с централизованным байпасом, которое используют для повышения общей надежности или увеличения общей выходной мощности. Число объединяемых блоков не должно превышать шести. Существуют и более сложные схемы с избыточностью. Так, например, чтобы исключить прерывание подачи питания во время профилактических и ремонтных работ, соединяют параллельно несколько блоков с подключенными к отдельному ИБП входными линиями байпасов.

    Особо следует отметить сверхмощные ИБП серии 3000 фирмы Exide. Суммарная мощность системы питания, построенная на модульных элементах этой серии, может достигать нескольких миллионов вольт-ампер, что сравнимо с номинальной мощностью генераторов некоторых электростанций. Все компоненты серии 3000 без исключения построены на модульном принципе. На их основе можно создать особо мощные системы питания, в точности соответствующие исходным требованиям. В процессе эксплуатации суммарную мощность систем можно наращивать по мере увеличения нагрузки. Однако следует признать, что систем бесперебойного питания такой мощности в мире не так уж много, их строят по специальным контрактам. Поэтому серия 3000 не включена в общую таблицу. Более подробные данные о ней можно получить на Web-узле фирмы Exide по адресу http://www.exide.com или в ее московском представительстве.

    Важнейшие параметры

    Для систем с высокой выходной мощностью очень важны показатели, которые для менее мощных систем не имеют первостепенного значения. Это, например, КПД — коэффициент полезного действия (выражается либо действительным числом меньше единицы, либо в процентах), показывающий, какая часть активной входной мощности поступает к нагрузке. Разница значений входной и выходной мощности рассеивается в виде тепла. Чем выше КПД, тем меньше тепловой энергии выделяется в аппаратной комнате и, значит, для поддержания нормальных рабочих условий требуется менее мощная система кондиционирования.

    Чтобы представить себе, о каких величинах идет речь, рассчитаем мощность, "распыляемую" ИБП с номинальным значением на выходе 8 МВт и с КПД, равным 95%. Такая система будет потреблять от первичной силовой сети 8,421 МВт — следовательно, превращать в тепло 0,421 МВт или 421 кВт. При повышении КПД до 98% при той же выходной мощности рассеиванию подлежат "всего" 163 кВт. Напомним, что в данном случае нужно оперировать активными мощностями, измеряемыми в ваттах.

    Задача поставщиков электроэнергии — подавать требуемую мощность ее потребителям наиболее экономным способом. Как правило, в цепях переменного тока максимальные значения напряжения и силы тока из-за особенностей нагрузки не совпадают. Из-за этого смещения по фазе снижается эффективность доставки электроэнергии, поскольку при передаче заданной мощности по линиям электропередач, через трансформаторы и прочие элементы систем протекают токи большей силы, чем в случае отсутствия такого смещения. Это приводит к огромным дополнительным потерям энергии, возникающим по пути ее следования. Степень сдвига по фазе измеряется не менее важным, чем КПД, параметром систем питания — коэффициентом мощности.

    Во многих странах мира существуют нормы на допустимое значение коэффициента мощности систем питания и тарифы за электроэнергию нередко зависят от коэффициента мощности потребителя. Суммы штрафов за нарушение нормы оказываются настольно внушительными, что приходится заботиться о повышении коэффициента мощности. С этой целью в ИБП встраивают схемы, которые компенсируют сдвиг по фазе и приближают значение коэффициента мощности к единице.

    На распределительную силовую сеть отрицательно влияют и нелинейные искажения, возникающие на входе блоков ИБП. Почти всегда их подавляют с помощью фильтров. Однако стандартные фильтры, как правило, уменьшают искажения только до уровня 20—30%. Для более значительного подавления искажений на входе систем ставят дополнительные фильтры, которые, помимо снижения величины искажений до нескольких процентов, повышают коэффициент мощности до 0,9—0,95. С 1998 г. встраивание средств компенсации сдвига по фазе во все источники электропитания компьютерной техники в Европе становится обязательным.

    Еще один важный параметр мощных систем питания — уровень шума, создаваемый такими компонентами ИБП, как, например, трансформаторы и вентиляторы, поскольку их часто размещают вместе в одном помещении с другим оборудованием — там где работает и персонал.

    Чтобы представить себе, о каких значениях интенсивности шума идет речь, приведем для сравнения такие примеры: уровень шума, производимый шелестом листвы и щебетанием птиц, равен 40 дБ, уровень шума на центральной улице большого города может достигать 80 дБ, а взлетающий реактивный самолет создает шум около 100 дБ.

    Достижения в электронике

    Мощные системы бесперебойного электропитания выпускаются уже более 30 лет. За это время бесполезное тепловыделение, объем и масса их сократились в несколько раз. Во всех подсистемах произошли и значительные технологические изменения. Если раньше в инверторах использовались ртутные выпрямители, а затем кремниевые тиристоры и биполярные транзисторы, то теперь в них применяются высокоскоростные мощные биполярные транзисторы с изолированным затвором (IGBT). В управляющих блоках аналоговые схемы на дискретных компонентах сначала были заменены на цифровые микросхемы малой степени интеграции, затем — микропроцессорами, а теперь в них установлены цифровые сигнальные процессоры (Digital Signal Processor — DSP).

    В системах питания 60-х годов для индикации их состояния использовались многочисленные аналоговые измерительные приборы. Позднее их заменили более надежными и информативными цифровыми панелями из светоизлучающих диодов и жидкокристаллических индикаторов. В наше время повсеместно используют программное управление системами питания.

    Еще большее сокращение тепловых потерь и общей массы ИБП дает замена массивных трансформаторов, работающих на частоте промышленной сети (50 или 60 Гц), высокочастотными трансформаторами, работающими на ультразвуковых частотах. Между прочим, высокочастотные трансформаторы давно применяются во внутренних источниках питания компьютеров, а вот в ИБП их стали устанавливать сравнительно недавно. Применение IGBT-приборов позволяет строить и бестрансформаторные инверторы, при этом внутреннее построение ИБП существенно меняется. Два последних усовершенствования применены в ИБП серии Synthesis фирмы Chloride, отличающихся уменьшенным объемом и массой.

    Поскольку электронная начинка ИБП становится все сложнее, значительную долю их внутреннего объема теперь занимают процессорные платы. Для радикального уменьшения суммарной площади плат и изоляции их от вредных воздействий электромагнитных полей и теплового излучения используют электронные компоненты для так называемой технологии поверхностного монтажа (Surface Mounted Devices — SMD) — той самой, которую давно применяют в производстве компьютеров. Для защиты электронных и электротехнических компонентов имеются специальные внутренние экраны.

    ***

    Со временем серьезный системный подход к проектированию материальной базы предприятия дает значительную экономию не только благодаря увеличению срока службы всех компонентов "интегрированного интеллектуального" здания, но и за счет сокращения расходов на электроэнергию и текущее обслуживание. Использование централизованных систем бесперебойного питания в пересчете на стоимость одного рабочего места дешевле, чем использование маломощных ИБП для рабочих станций и даже ИБП для серверных комнат. Однако, чтобы оценить это, нужно учесть все факторы установки таких систем.

    Предположим, что предприятие свое помещение арендует. Тогда нет никакого смысла разворачивать дорогостоящую систему централизованного питания. Если через пять лет руководство предприятия не намерено заниматься тем же, чем занимается сегодня, то даже ИБП для серверных комнат обзаводиться нецелесообразно. Но если оно рассчитывает на то, что производство будет держаться на плаву долгие годы и решило оснастить принадлежащее им здание системой бесперебойного питания, то для выбора такой системы нужно воспользоваться услугами специализированных фирм. Сейчас их немало и в России. От этих же фирм можно получить информацию о так называемых системах гарантированного электропитания, в которые включены дизельные электрогенераторы и прочие, более экзотические источники энергии.

    Нам же осталось рассмотреть лишь методы управления ИБП, что мы и сделаем в одном из следующих номеров нашего журнала

    [ http://www.ccc.ru/magazine/depot/97_07/read.html?0502.htm]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > ИБП для централизованных систем питания

  • 92 источник бесперебойного питания с дельта преобразованием

    1. delta conversion UPS

     

    ИБП с дельта преобразованием
    -

    EN

    delta conversion UPS
    Hybrid type UPS offered by APC corporation. It uses an AC/DC converter between the AC input and the DC battery buss. The converter is able to add or subtract energy from the mains in order to stabilize output voltage and correct input power factor. An output converter is connected between UPS output and battery. It acts as an ac/dc rectifier to charge the batteries and as a dc/ac inverter upon mains outage.
    [ http://www.upsonnet.com/UPS-Glossary/]

    Принцип дельта-преобразования (delta conversion) основан на применении в схеме ИБП так называемого дельта-трансформатора. Дельта-трансформа­тор представляет собой дроссель с обмоткой подмагничивания, которая позволяет управлять током в основной обмотке (аналогично принципу магнитного усилите­ля). В ИБП применяются два постоянно работающих инвертора. Один служит для управления дельта-трансформатором и, соответственно, регулировки входного тока и компенсации некоторых помех. Его мощность составляет 20% от мощности вто­рого инвертора, работающего на нагрузку. Второй инвертор, мощность которого определяет мощность ИБП, формирует выходную синусоиду, обеспечивая коррек­цию отклонений формы входного напряжения, а также питает нагрузки от батарей при работе ИБП в автономном режиме. Благодаря такой схеме обеспечивается воз­можность плавной загрузки входной сети при переходе из автономного режима ра­боты от батарей к работе от сети (режим on-line), а также высокая перегрузочная способность — до 200 % в течение 1 мин.

    0426
    ИБП с дельта преобразованием

    При загрузке ИБП данного типа на 100 % номинальной мощности коэффици­ент полезного действия составляет 96,5 %. Однако высокие показатели ИБП данного типа обеспечивает при следующих условиях:

    • отсутствие отклонений и иска­жений напряжения в питающей сети,
    • нагрузка ИБП, близкая к номинальной и яв­ляющаяся линейной.

    В реальных условиях показатели данного типа ИБП (КПД = 90,8...93,5%) приближаются к показателям ИБП с двойным преобразованием. Реальное достижение высоких заявленных значений КПД ИБП с дельта-преобразованием возможно при широком внедрении импульсных блоков питания с коррекцией коэффициента мощности. Это означает, что нагруз­ка приобретает преимущественно активный характер и создаются условия для проявления высоких энергетических характеристик ИБП.
    В последнее время коэффициент мощности новых блоков питания достиг значения 0,92...0,97.
    Дру­гим достоинством ИБП с дельта-преобразованием является высокий коэффициент мощности самого устройства, близкий к 1. Это облегчает совместную работу ИБП и ДГУ. На основе ИБП с дельта-преобразованием строятся мощные централизо­ванные системы бесперебойного электропитания (СБЭ) с избыточным резервированием. Естественно, возможны также схе­мы с единичными ИБП. Диапазон мощностей ИБП этого типа 10...480 кВА. Воз­можно параллельное объединение до 8 ИБП для работы на общую нагрузку в од­ной СБЭ. Данный тип ИБП является основной альтернативой типу ИБП с двой­ным преобразованием.
    [ http://electromaster.ru/modules/myarticles/article.php?storyid=365 ]
     

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > источник бесперебойного питания с дельта преобразованием

  • 93 показатель

    м
    indice, indicateur; ( числовой) chiffre, grandeur; ( коэффициент) taux, ratio; (плана, программы) objectif; макроэк. тж agrégat

    показатели хозяйственной деятельности предприятиясм. показатели результатов хозяйственной деятельности

    показатели экономического цикла — indicateurs cycliques, avertisseurs

    - показатель в натуральном выражении
    - показатель выпуска продукции
    - показатель деловой активности
    - показатель доходности
    - показатели за год
    - показатель занятости
    - показатель качества
    - показатель конкурентоспособности
    - показатель концентрации
    - показатель рыночной конъюнктуры
    - показатель кризиса
    - показатель ликвидности
    - показатель оборота
    - показатель оборота товарных запасов
    - показатели плана
    - показатели производительности
    - показатели прошлых лет
    - показатель рентабельности
    - показатель роста
    - показатели сбыта
    - показатели себестоимости
    - показатель сезонности
    - социально-экономический показатель
    - показатели спроса
    - показатели стоимости
    - показатель управления
    - показатель финансового управления
    - показатель фондовооружённости
    - экономически значимый показатель
    - показатель эффективности
    - агрегатный показатель
    - агрегированный показатель
    - базисный показатель
    - балансовый показатель
    - валовой показатель
    - действующие показатели
    - денежный показатель
    - достигнутые показатели
    - душевые показатели
    - измеримый показатель
    - итоговый показатель
    - качественный показатель
    - квартальный показатель
    - ключевой показатель
    - количественный показатель
    - контрольные показатели
    - конъюнктурный показатель
    - наивысший показатель
    - наивысший показатель за год
    - натуральный показатель
    - нормативный показатель
    - общехозяйственный показатель
    - опережающий показатель
    - ориентировочный показатель
    - относительный показатель
    - оценочный показатель
    - пересмотренный показатель
    - планируемый показатель
    - плановые показатели
    - основные плановые показатели
    - отраслевые плановые показатели
    - предварительный показатель
    - производственные показатели
    - промышленный показатель
    - расчётный показатель
    - реальный показатель
    - сводный показатель
    - скорректированный показатель
    - совокупный показатель
    - сравнительные показатели
    - статистические показатели
    - стоимостные показатели
    - в стоимостных показателях
    - текущий показатель
    - технико-экономический показатель
    - капитальный удельный показатель
    - фактический показатель
    - физические показатели
    - финансовый показатель
    - циклические показатели
    - цифровые показатели
    - экономический показатель

    Русско-французский финансово-экономическому словарь > показатель

  • 94 динамометрическая ручка

    Авиация и космонавтика. Русско-английский словарь > динамометрическая ручка

  • 95 аэродром

    аварийная обстановка на аэродроме
    aerodrome emergency
    автоматическая информация в районе аэродрома
    automatic terminal information
    администрация аэродрома
    aerodrome authority
    аэродром без командно-диспетчерской службы
    uncontrolled aerodrome
    аэродром без радиолокационных средств
    nonradar aerodrome
    аэродром выгрузки
    debarkation aerodrome
    аэродром вылета
    1. aerodrome of departure
    2. takeoff aerodrome аэродром вынужденной посадки
    emergency aerodrome
    аэродром выхода на радиосвязь
    aerodrome of call
    аэродром для реактивных воздушных судов
    jet aerodrome
    аэродром для самолетов короткого взлета и посадки
    1. stolport
    2. STOLport аэродром, имеющий частые туманы
    fog-plagued aerodrome
    аэродром летного училища
    flying-school airfield
    аэродром материально-технического обеспечения
    logistics aerodrome
    аэродром местного значения
    local aerodrome
    аэродром местных воздушных линий
    domestic aerodrome
    аэродром назначения
    destination aerodrome
    аэродром на трассе полета
    en-route aerodrome
    аэродром, обеспечивающий заправку топливом
    refuelling aerodrome
    аэродром погрузки
    embarkation aerodrome
    аэродром посадки
    landing aerodrome
    аэродром постоянного базирования
    base aerodrome
    аэродром предполагаемой посадки
    aerodrome of intended landing
    аэродром прилета
    1. receiving aerodrome
    2. arrival aerodrome аэродром приписки
    1. home aerodrome
    2. aerodrome of origin аэродром с бетонным покрытием
    concrete-surfaced aerodrome
    аэродром с жестким покрытием
    rigid pavement aerodrome
    аэродром с командно-диспетчерской службой
    controlled aerodrome
    аэродром совместного базирования гражданского и военных воздушных судов
    joint civil and military aerodrome
    аэродром с перекрещивающимися ВПП
    X-type aerodrome
    аэродром с твердым покрытием
    hard surface aerodrome
    аэродром с травяным покрытием
    grass aerodrome
    базовый аэродром
    depot aerodrome
    береговой аэродром
    coastal aerodrome
    видимость у земли в зоне аэродрома
    aerodrome ground visibility
    вне аэродрома
    off-aerodrome
    военный аэродром
    military aerodrome
    воздушная обстановка в зоне аэродрома
    aerodrome air picture
    временный аэродром
    1. temporary aerodrome
    2. provisional aerodrome всепогодный аэродром
    all-weather aerodrome
    вспомогательный аэродром
    satellite aerodrome
    вход в зону аэродрома
    1. inward flight
    2. entry into the aerodrome zone выполнять круг полета над аэродромом
    carry out a circuit of the aerodrome
    выполнять полет в режиме ожидания над аэродромом
    hold over the beacon
    выполнять полеты с аэродрома
    operate from the aerodrome
    высота аэродрома
    1. aerodrome altitude
    2. aerodrome level генеральный план аэродрома
    aerodrome master plan
    главный аэродром
    main aerodrome
    горный аэродром
    high-level aerodrome
    гражданский аэродром
    civil aerodrome
    граница аэродрома
    aerodrome boundary
    грунтовой аэродром
    unpaved aerodrome
    давление на аэродроме
    aerodrome pressure
    движение в зоне аэродрома
    aerodrome traffic
    действия по аэродрому при объявлении тревоги
    aerodrome alert measures
    действующий аэродром
    operating
    диспетчер аэродрома
    aerodrome controller
    диспетчер зоны аэродрома
    commuter operator
    дополнительный аэродром
    1. auxiliary aerodrome
    2. supplementary aerodrome дренаж аэродрома
    aerodrome drainage
    дренажная система аэродрома
    aerodrome drainage system
    заводской аэродром
    factory aerodrome
    загруженность аэродрома
    airport workload
    задействованный аэродром
    participating aerodrome
    запасной аэродром посадки
    alternate destination
    запасный аэродром
    alternate aerodrome
    зона аэродрома
    terminal area
    зона движения в районе аэродрома
    aerodrome traffic zone
    зона, контролируемая авиадиспетчерской службой аэродрома
    aerodrome controlled zone
    зона контроля аэродрома диспетчерской службой
    aerodrome control sector
    зона подхода к аэродрому
    aerodrome approach area
    изменение направления ветра в районе аэродрома
    aerodrome wind shift
    искусственные сооружения в районе аэродрома
    aerodrome culture
    испытательный аэродром
    test aerodrome
    карта подходов к аэродрому
    aerodrome approach chart
    категорированный аэродром
    categorized aerodrome
    категория аэродрома
    aerodrome category
    кодовое обозначение аэродрома
    aerodrome reference code
    конечный аэродром
    1. final aerodrome
    2. terminal aerodrome контрольная площадка на аэродроме
    aerodrome checkpoint
    контрольная точка аэродрома
    aerodrome check point
    контрольный ориентир аэродрома
    aerodrome reference point
    коэффициент использования аэродрома
    1. aerodrome usability factor
    2. aerodrome utilization factor круг полета над аэродромом
    1. aerodrome circuit
    2. aerodrome circle летать по кругу над аэродромом
    circle the aerodrome
    летная полоса аэродрома
    aerodrome strip
    маркировка аэродрома
    layout of aerodrome markings
    метеоданные по аэродрому
    aerodrome forecast material
    метеорологический минимум аэродрома
    aerodrome meteorological minima
    метеоусловия на аэродроме посадки
    terminal weather
    метеоусловия на запасном аэродроме
    alternate weather
    минимум аэродрома
    aerodrome minima
    минимум запасного аэродрома
    alternate minima
    муниципальный аэродром для коммерческой авиации
    municipal commercial aerodrome
    наблюдение за аэродромом
    aerodrome observation
    недействующий аэродром
    abandoned aerodrome
    необлетанный аэродром
    unfamiliar aerodrome
    несертифицированный аэродром
    unimproved airdrome
    облетанный аэродром
    familiar aerodrome
    ограждение аэродрома
    aerodrome fencing
    оперативный аэродром
    operational aerodrome
    опознавание аэродрома
    aerodrome identification
    опознавательный знак аэродрома
    aerodrome identification sign
    опознавать аэродром с воздуха
    identify the aerodrome from the air
    основной аэродром
    principal aerodrome
    подземные сооружения на аэродроме
    underaerodrome utilities
    подход к зоне аэродрома
    aerodrome approach
    подъездная дорога к аэродрому
    aerodrome approach road
    полет по кругу в районе аэродрома
    aerodrome traffic circuit operation
    полет по кругу над аэродромом
    1. aerodrome circling
    2. aerodrome circuit-circling помещение на аэродроме для размещения дежурных экипажей
    aerodrome alert room
    порядок действий по тревоге на аэродроме
    aerodrome alerting procedure
    посадка вне аэродрома
    landing off the aerodrome
    поток в промежуточных аэродромах
    pick-up traffic
    превышение аэродрома
    aerodrome elevation
    предупреждение по аэродрому
    aerodrome warning
    прибывать в зону аэродрома
    arrive over the aerodrome
    приземляться на аэродроме
    get into the aerodrome
    прогноз по аэродрому
    aerodrome forecast
    проектирование и строительство аэродромов
    aerodrome engineering
    прокладка маршрута в районе аэродрома
    terminal routing
    промежуточный аэродром
    intermediate aerodrome
    пропускная способность аэродрома
    aerodrome handing capacity
    профиль местности в районе аэродрома
    aerodrome ground profile
    радиолокатор обзора зоны аэродрома
    terminal area surveillance radar
    размещение на аэродроме
    on-aerodrome location
    разработка мероприятий на случай аварийной обстановки на аэродроме
    aerodrome emergency planning
    район размещения аэродрома
    aerodrome site
    регулярный аэродром
    regular aerodrome
    резервный аэродром
    reserve aerodrome
    роза ветров аэродрома
    1. aerodrome wind rose
    2. aerodrome wind distribution руководство по производству полетов в зоне аэродрома
    aerodrome rules
    руление по аэродрому
    ground taxi operation
    светосигнальное оборудование аэродрома для обеспечения безопасности
    aerodrome security lighting
    сводка по аэродрому
    aerodrome report
    сектор подхода к аэродрому
    approach sector
    Секция аэродромов, воздушных трасс и наземных средств
    Aerodromes, Air Routes and Ground Aids Section
    (ИКАО) система маркировки аэродрома
    aerodrome marking system
    система объявления тревоги на аэродроме
    aerodrome alert system
    система управления подходом к аэродрому
    aerodrome approach control system
    сложные метеоусловия в районе аэродрома
    aerodrome adverse weather
    служба управления движением в зоне аэродрома
    aerodrome control service
    служебная дорога на аэродроме
    aerodrome service road
    снежные заносы на аэродроме
    aerodrome snow windrow
    советник по проектированию и строительству аэродромов
    aerodrome engineering instructor
    состояние готовности служб аэродрома по тревоге
    aerodrome alert status
    (состояние готовности аэродрома по тревоге) спланированный участок аэродрома
    aerodrome graded area
    справочник по аэродромам
    aerodrome directory
    стационарный аэродром
    permanent aerodrome
    степень загрузки аэродрома
    aerodrome usability
    степень использования аэродрома
    aerodrome utilization rate
    сухопутный аэродром
    land aerodrome
    схема аэродрома
    1. aerodrome chart
    2. aerodrome layout схема движения в зоне аэродрома
    aerodrome traffic pattern
    схема зоны аэродрома
    terminal area streamline
    схема руления по аэродрому
    aerodrome taxi circuit
    узловой аэродром
    key aerodrome
    указанный аэродром
    1. given aerodrome
    2. aerodrome in question указатель контрольного ориентира аэродрома
    aerodrome check-point sign
    указатель летной полосы аэродрома
    aerodrome strip marker
    указатель минимума аэродрома
    airport minima reminder
    управление в зоне аэродрома
    aerodrome control
    условия вне зоны аэродрома
    off-field conditions
    условия в районе аэродрома
    aerodrome environment
    уход из зоны аэродрома
    outward flight
    учебный аэродром
    training aerodrome
    частота командно-диспетчерского пункта аэродрома
    airport tower frequency
    эксплуатационный минимум аэродрома
    aerodrome operating minima
    эксплуатация аэродрома
    aerodrome operation

    Русско-английский авиационный словарь > аэродром

  • 96 винт

    авторотация воздушного винта
    propeller windmilling
    авторотирующий воздушный винт
    windmilling propeller
    балансир несущего винта
    rotor balancer
    балансировать воздушный винт
    balance the propeller
    балансировка воздушного винта
    propeller balance
    балка рулевого винта
    tail rotor pylon
    биение воздушного винта
    airscrew knock
    вал воздушного винта
    propeller shaft
    вал синхронизации несущих винтов
    rotor synchronizing shaft
    вал трансмиссии рулевого винта
    pylon drive shaft
    вертолет с несколькими несущими винтами
    multirotor
    вертолет с одним несущим винтом
    1. single main rotor helicopter
    2. single-rotor верхний несущий винт
    upper rotor
    верхний соосный винт
    upper coaxial rotor
    винт регулировки малого газа
    idle adjusting screw
    винт стравливания давления
    bleed screw
    влияние спутной струи от воздушного винта
    slipstream effect
    воздушное судно с несущим винтом
    rotary-wing aircraft
    воздушные винты противоположного вращения
    contrarotating propellers
    воздушный винт
    1. prop
    2. propeller 3. airscrew воздушный винт во флюгерном положении
    feathered propeller
    воздушный винт двусторонней схемы
    doubleacting propeller
    воздушный винт изменяемого шага
    1. controllable propeller
    2. variable pitch propeller 3. adjustable-pitch propeller воздушный винт левого вращения
    left-handed propeller
    воздушный винт на режиме малого газа
    idling propeller
    воздушный винт постоянного числа оборотов
    constant-speed propeller
    воздушный винт правого вращения
    right-handed propeller
    воздушный винт прямой тяги
    direct drive propeller
    воздушный винт с автоматически изменяемым шагом
    automatic pitch propeller
    воздушный винт с автоматической регулировкой
    automatically controllable propeller
    воздушный винт с большим шагом
    high-pitch propeller
    воздушный винт с гидравлическим управлением шага
    hydraulic propeller
    воздушный винт фиксированного шага
    1. constant-pitch propeller
    2. fixed-pitch propeller вращать воздушный винт
    drive a propeller
    втулка винта
    rotor head
    втулка воздушного винта
    1. propeller hub
    2. airscrew boss 3. airscrew hub втулка несущего винта
    1. main rotor head
    2. main rotor hub 3. rotor hub втулка рулевого винта
    anti-torque rotor hub
    выводить воздушный винт из флюгерного положения
    unfeather the propeller
    высотный воздушный винт
    altitude propeller
    гидравлическое управление шагом воздушного винта
    hydraulic propeller pitch control
    задний несущий винт
    rear main rotor
    закрытый воздушный винт
    shrouded propeller
    запас по оборотам несущего винта
    rotor speed margin
    кок винта в сборе
    cone assy
    колонка несущего винта
    rotor mast
    кольцевой обтекатель воздушного винта
    airscrew antidrag ring
    комель лопасти воздушного винта
    propeller blade shank
    контактное кольцо воздушного винта
    propeller slip ring
    конусность несущего винта
    rotor coning angle
    коэффициент заполнения воздушного винта
    propeller solidity ratio
    крутящий момент воздушного винта
    1. airscrew torque
    2. propeller torque крутящий момент воздушного винта в режиме авторотации
    propeller windmill torque
    крутящий момент несущего винта
    rotor torque
    лонжерон лопасти несущего винта
    rotor blade spar
    лопасть воздушного винта
    propeller blade
    лопасть несущего винта
    main rotor blade
    лопасть рулевого винта
    1. tail rotor blade
    2. antitorque rotor blade л управления шагом воздушного винта
    propeller pitch control system
    малошумный воздушный винт
    silenced tractor propeller
    механизм реверса воздушного винта
    propeller reverser
    механизм реверсирования воздушного винта
    airscrew reversing gear
    механизм синхронизации работы воздушного винта
    propeller synchronization mechanism
    муфта сцепления двигателя с несущим винтом вертолета
    rotor clutch assembly
    несбалансированный воздушный винт
    out-of-balance propeller
    несущий винт
    1. main rotor
    2. rotary wing 3. lifting propeller 4. rotor 5. idling rotor несущий винт вертолета
    helicopter rotor
    несущий винт с приводом от двигателя
    power-driven rotor
    несущий винт с шарнирно закрепленными лопастями
    articulated rotor
    нижний соосный винт
    lower coaxial rotor
    облегченный воздушный винт
    lower pitch propeller
    обратное вращение воздушного винта
    airscrew reverse rotation
    обтекатель втулки воздушного винта
    propeller dome
    окружная скорость законцовки воздушного винта
    propeller tip speed
    окружная скорость лопасти воздушного винта
    airscrew blade speed
    остерегаться лопастей несущего винта
    keep clear of rotor blades
    отказ несущего винта
    rotor failure
    открытый воздушный винт
    unshrouded propeller
    отрицательная тяга воздушного винта
    propeller drag
    паук автомата перекоса несущего винта
    rotor spider
    педаль управления рулевым винтом
    1. antitorque control pedal
    2. tail rotor control pedal переводить винт на отрицательную тягу
    reverse the propeller
    передний несущий винт
    front main rotor
    планетарный редуктор воздушного винта
    propeller planetary gear
    площадь, ометаемая воздушным винтом
    propeller disk area
    подъемная сила несущего винта
    rotor lift
    посадка с неработающим воздушным винтом
    dead-stick landing
    потеря тяги при скольжении воздушного винта
    airscrew slip loss
    проворачивать воздушный винт
    wind up
    промежуточный редуктор несущего винта
    rotor intermediate gear
    рабочая часть лопасти воздушного винта
    blade pressure side
    раскрутка несущего винта
    rotor starting
    расстояние между лопастью несущего винта и хвостовой балкой
    rotor-to-tail boom clearance
    реверсивный воздушный винт
    1. negative thrust propeller
    2. reversible-pitch propeller регулятор оборотов воздушного винта
    propeller governor
    регулятор числа оборотов воздушного винта
    propeller control unit
    редуктор воздушного винта
    1. propeller gearbox
    2. propeller gear 3. airscrew reduction gear редуктор рулевого винта
    antitorque gearbox
    редуктор трансмиссии привода винтов
    rotor gear box
    рулевой винт
    1. antitorque propeller
    2. antitorque rotor 3. tail rotor сдвоенные несущие винты
    dual main rotors
    система регулирования оборотов несущего винта
    rotor governing system
    система флюгирования воздушного винта
    propeller feathering system
    скорость изменения шага винта
    pitch-change rate
    соосные винты
    coaxial rotors
    соосный воздушный винт
    coaxial propeller
    сопротивление воздуха вращению несущего винта
    rotor windage
    спутная струя за воздушным винтом
    airscrew wash
    ставить воздушный винт во флюгерное положение
    feather the propeller
    ставить воздушный винт на полетный упор
    latch the propeller flight stop
    ставить воздушный винт на упор
    latch a propeller
    стенд балансировки воздушных винтов
    propeller balancing stand
    стопорить воздушный винт
    brake the propeller
    толкающий воздушный винт
    pusher propeller
    тормоз воздушного винта
    propeller brake
    тормозить отрицательной тягой винта
    brake by propeller drag
    тормоз несущего винта
    main rotor brake
    трансмиссия привода несущего винта
    1. transmission rotor drive system
    2. rotor drive system туннельный воздушный винт
    ducting propeller
    турбулентный след за воздушным винтом
    propeller wake
    тяга воздушного винта
    1. propeller thrust
    2. airscrew propulsion тяга несущего винта
    rotor thrust
    тянущий воздушный винт
    tractor propeller
    угол установки лопасти воздушного винта
    1. airscrew blade incidence
    2. propeller incidence управление шагом воздушного винта
    propeller pitch control
    уравновешивать крутящий момент несущего винта
    counteract the rotor torque
    устанавливать шаг воздушного винта
    set the propeller pitch
    установка шага лопасти воздушного винта
    propeller pitch setting
    утяжелять воздушный винт
    move the blades to higher
    фиксатор шага лопасти воздушного винта
    propeller pitch lock
    флюгирование воздушного винта
    propeller feathering
    флюгируемый воздушный винт
    feathering propeller
    формуляр воздушного винта
    propeller record
    формуляр несущего винта
    rotor record
    ходовой винт
    actuating screw
    (механизации крыла) четырехлопастный воздушный винт
    four-bladed propeller
    шаг воздушного винта
    propeller pitch
    шаг несущего винта
    1. main rotor pitch
    2. rotor pitch шлиц в головке винта
    screw head slot
    шум от несущего винта
    main rotor noise
    электрическое управление шагом воздушного винта
    electric propeller pitch control

    Русско-английский авиационный словарь > винт

  • 97 нагрузка

    асимметричная нагрузка
    unsymmetrical load
    аэродинамическая нагрузка
    aerodynamic load
    безопасная нагрузка
    1. fail-safe load
    2. safe load боковая нагрузка
    side load
    боковая полоса безопасности, способная нести нагрузку
    bearing shoulder
    (от воздушного судна) весовая отдача по полезной нагрузке
    useful-to-takeoff load ratio
    ветровая нагрузка
    wind effect
    вибрационная нагрузка
    vibratory load
    внешняя нагрузка
    external load
    выдерживать нагрузку
    withstand the load
    гидродинамическая нагрузка
    water load
    гироскопическая нагрузка
    gyroscopic load
    динамическая нагрузка
    dynamic load
    допустимая нагрузка
    allowable load
    имитатор аэродинамических нагрузок
    air-load simulator
    инерционная нагрузка
    inertia load
    испытание на ударную нагрузку
    1. shock test
    2. impact test испытания воздушного судна на переменные нагрузки
    aircraft alternate-stress tests
    испытания по замеру нагрузки в полете
    flight stress measurement tests
    классификационный номер степени нагрузки
    load classification number
    коэффициент полезной нагрузки
    useful load factor
    кривая частоты нагрузки
    frequency weighting curve
    маневренная нагрузка
    manoeuvring load
    нагрузка в полете
    flight load
    нагрузка в полете от поверхности управления
    flight control load
    нагрузка на единицу площади
    load per unit area
    нагрузка на колесо
    wheel load
    нагрузка на крыло
    wing load
    нагрузка на поверхность управления
    control surface load
    нагрузка от сопротивления
    resisting load
    нагрузка при рулении
    taxiing load
    нагрузка при скручивании
    torsional load
    нагрузка при стоянке на земле
    ground load
    нервюра, воспринимающая нагрузку на сжатие
    compression rib
    нести нагрузку
    1. carry stress
    2. carry load несущий нагрузку
    load-bearing
    нормальная эксплуатационная нагрузка
    normal operating load
    общая нагрузка пилота
    pilot's workland
    передавать нагрузку
    transmit load
    переменная нагрузка
    1. alternate load
    2. varying load поверхность, не несущая нагрузки
    nonload-bearing surface
    поверхность, несущая нагрузку
    load-bearing surface
    повторные нагрузки
    repeated loads
    подавать нагрузку
    activate load
    под нагрузкой
    under load
    покрытие, несущее нагрузку
    load-bearing pavement
    полезная нагрузка воздушного судна
    aircraft useful load
    посадочная нагрузка
    landing load
    превышение нормативных нагрузок планера
    airframe overstressing
    превышение установленных нагрузок
    overstressing
    предел нагрузки
    stress limit
    предельная нагрузка
    1. ultimate load
    2. maximum load 3. limit load предельная разрушающая нагрузка
    ultimate breaking load
    предельная эксплуатационная нагрузка
    limit operating load
    прикладывать нагрузку
    apply load
    работать без нагрузки
    run unloaded
    рабочая нагрузка
    1. workload
    2. service load равномерная нагрузка
    uniform load
    разрушающая нагрузка
    failure load
    разрушение вследствие повышенных нагрузок
    overstress failure
    распределение аэродинамической нагрузки
    air-load distribution
    распределение нагрузки
    load distribution
    распределенная нагрузка
    distributed load
    расчет нагрузки
    weight
    расчетная нагрузка
    1. design load
    2. proof load расчетный предел нагрузки воздушного судна
    aircraft design load
    расчет удельной нагрузки на поверхность
    area density calculation
    режим работы с полной нагрузкой
    full-load conditions
    сжимающая нагрузка
    compressive load
    создавать нагрузку
    1. create load
    2. impose load сосредоточенная нагрузка
    concentrated load
    средняя нагрузка на одно колесо
    equivalent wheel load
    статическая нагрузка
    static load
    стойкость к ударным нагрузкам
    crashworthiness
    ток нагрузки
    load current
    ударная нагрузка
    impact load
    уравновешивающая нагрузка
    balancing load
    усталостная нагрузка
    fatigue load
    цепь нагрузки
    load circuit
    шина распределения нагрузки
    load distribution bus

    Русско-английский авиационный словарь > нагрузка

  • 98 выключатель

    1. switch
    2. on-off switch
    3. cutout switch
    4. cutout
    5. circuit-breaker
    6. circuit breaker
    7. cb
    8. breaker

     

    выключатель
    Коммутационный электрический аппарат, имеющий два коммутационных положения или состояния и предназначенный для включении и отключения тока.
    Примечание. Под выключателем обычно понимают контактный аппарат без самовозврата. В остальных случаях термин должен быть дополнен поясняющими словами, например, «выключатель с самовозвратом», «выключатель тиристорный» и т. д.
    [ ГОСТ 17703-72]

    выключатель
    Контактный коммутационный аппарат, способный включать, проводить и отключать токи при нормальных условиях в цепи, а также включать, проводить в течение нормированного времени и отключать токи при нормированных анормальных условиях в цепи, таких как короткое замыкание.
    [ ГОСТ Р 52565-2006]

    выключатель
    Устройство для включения и отключения тока и напряжения в одной или более электрических цепях.
    Примечание. При отсутствии других указаний под понятиями «напряжение» и «ток» подразумевают их среднеквадратичные значения.
    [ ГОСТ Р 51324.1-2005]

    выключатель

    Прибор для включения и отключения электрического оборудования и устройств
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    EN

    (on-off) switch
    switch for alternatively closing and opening one or more electric circuits
    Source: 581-10-01 MOD
    [IEV number 151-12-23]

    FR

    interrupteur, m
    commutateur destiné à fermer et ouvrir alternativement un ou plusieurs circuits électriques
    Source: 581-10-01 MOD
    [IEV number 151-12-23]

    При отключении воздушных и кабельных линий тупикового питания первым рекомендуется отключать выключатель со стороны нагрузки, вторым — со стороны питания.
    [РД 153-34.0-20.505-2001]

    ... так чтобы она с меньшей выдержкой времени отключала выключатели с той стороны, на которой защита отсутствует;
    [ПУЭ]

    б) блокировка между выключателями нагрузки или разъединителем и заземляющим разъединителем, не позволяющая включать выключатель нагрузки или разъединитель при включенном заземляющем разъединителе и включать заземляющий разъединитель при включенном выключателе нагрузки или разъединителе;
    [ ГОСТ 12.2.007.4-75]

    Испытания изоляции выключателей и разъединителей должны быть проведены при включенном и отключенном положениях.
    [ ГОСТ 1516_1-76]
     


    Выключатели предназначены для оперативной и аварийной коммутации в энергосистемах, т.е. выполнения операций включения и отключения отдельных цепей при ручном или автоматическом управлении. Во включенном состоянии выключатели должны беспрепятственно пропускать токи нагрузки. Характер режима работы этих аппаратов несколько необычен: нормальным для них считается как включенное состояние, когда они обтекаются током нагрузки, так и отключенное, при котором они обеспечивают необходимую электрическую изоляцию между разомкнутыми участками цепи. Коммутация цепи, осуществляемая при переключении выключателя из одного положения в другое, производится нерегулярно, время от времени, а выполнение им специфических требований по отключению возникающего в цепи короткого замыкания чрезвычайно редко. Выключатели должны надежно выполнять свои функции в течение срока службы, находясь в любом из указанных состояний, и одновременно быть всегда готовыми к мгновенному эффективному выполнению любых коммутационных операций, часто после длительного пребывания в неподвижном состоянии. Отсюда следует, что они должны иметь очень высокий коэффициент готовности: при малой продолжительности процессов коммутации (несколько минут в год) должна быть обеспечена постоянная готовность к осуществлению коммутаций.
    [ http://relay-protection.ru/content/view/46/8/]

    Тематики

    Действия

    Сопутствующие термины

    EN

    DE

    FR

    3.1 выключатель (switch): Устройство для включения и отключения тока и напряжения1) в одной или более электрических цепях.

    1) При отсутствии других указаний под понятиями «напряжение» и «ток» подразумевают их среднеквадратичные значения.

    Источник: ГОСТ Р 51324.1-2005: Выключатели для бытовых и аналогичных стационарных электрических установок. Часть 1. Общие требования и методы испытаний оригинал документа

    2.1 выключатель (circuit-breaker): Контактный коммутационный аппарат, способный включать, проводить и отключать токи при нормальных условиях цепи, а также включать, проводить в течение нормированного времени и отключать токи при нормированных ненормальных условиях в цепи, таких, как короткое замыкание.

    [МЭС 441-14-20] [1]

    Источник: ГОСТ Р 50030.2-2010: Аппаратура распределения и управления низковольтная. Часть 2. Автоматические выключатели оригинал документа

    Русско-английский словарь нормативно-технической терминологии > выключатель

  • 99 измерительная функция

    1. metering function
    2. metering characteristic

     

    измерительная функция
    Термин определяет что именно измеряет данный прибор, например, такой-то ток, напряжение, коэффициент мощности и т.д.
    [Интент]

    Тематики

    • измерение электр. величин в целом

    EN

    Русско-английский словарь нормативно-технической терминологии > измерительная функция

  • 100 пускорегулирующий аппарат с высоким коэффициентом мощности

    1. high power factor ballast

    3.15 пускорегулирующий аппарат с высоким коэффициентом мощности (high power factor ballast): Пускорегулирующий аппарат с коэффициентом мощности не менее 0,85 (отстающим или опережающим).

    Примечания

    1. Значение 0,85 учитывает искажение формы волны тока.

    2. В Северной Америке высокий коэффициент мощности - не менее 0,9.

    Источник: ГОСТ Р МЭК 61347-1-2011: Устройства управления лампами. Часть 1. Общие требования и требования безопасности оригинал документа

    Русско-английский словарь нормативно-технической терминологии > пускорегулирующий аппарат с высоким коэффициентом мощности

См. также в других словарях:

  • коэффициент управления (тиратроном) — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN control ratio …   Справочник технического переводчика

  • коэффициент управления DLC 64 кбит/с — — [http://www.iks media.ru/glossary/index.html?glossid=2400324] Тематики электросвязь, основные понятия EN sixty four (64) kbit/s DLC on ratio …   Справочник технического переводчика

  • коэффициент управления нулями — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN zero controlling factor …   Справочник технического переводчика

  • коэффициент управления по отклонению — valdymo pagal nuokrypį koeficientas statusas T sritis automatika atitikmenys: angl. proportional control factor vok. Proportionalaussteuerung, f; proportionaler Regelfaktor, m rus. коэффициент управления по отклонению, m pranc. gain d un… …   Automatikos terminų žodynas

  • коэффициент оперативной готовности — (availability factor) AF: Вероятность того, что объект окажется в работоспособном состоянии в произвольный момент времени, кроме планируемых периодов, в течение которых применение объекта по назначению не предусматривается, и, начиная с этого… …   Словарь-справочник терминов нормативно-технической документации

  • Коэффициент стоячей волны — отношение действующих значений максимального напряжения (тока) к минимальному напряжению (току). Источник …   Словарь-справочник терминов нормативно-технической документации

  • Коэффициент направленного действия — отношение квадрата напряженности поля, создаваемого антенной в данном направлении, к среднему (по всем направлениям) значению квадрата напряженности поля. Источник …   Словарь-справочник терминов нормативно-технической документации

  • Коэффициент усиления антенны — отношение квадрата напряженности поля, создаваемого данной антенной, к квадрату напряженности поля, создаваемого эталонной антенной, при этом предполагается, что мощности, подводимые к обеим антеннам, одинаковы, а коэффициент полезного действия… …   Словарь-справочник терминов нормативно-технической документации

  • Коэффициент полезного действия антенно-фидерной системы — произведение коэффициента полезного действия антенны на коэффициент полезного действия фидера. Источник …   Словарь-справочник терминов нормативно-технической документации

  • Коэффициент передачи — Коэффициент передачи (также коэффициент преобразования) отношение напряжения на выходе той или иной системы, предназначенной для передачи электрических сигналов, к напряжению на входе. В частном случае, когда значения выходного и входного… …   Википедия

  • Коэффициент усиления — Коэффициент передачи отношение напряжения на выходе той или иной системы, предназначенной для передачи электрических сигналов, к напряжению на входе, KП = UВЫХ / UВХ. Коэффициент передачи часто выражают в логарифмическом виде, как 20 lg (UВЫХ /… …   Википедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»