Перевод: с русского на все языки

со всех языков на русский

изменения+магнитного+поля

  • 61 электромагнитный экран

    Русско-английский исловарь по машиностроению и автоматизации производства > электромагнитный экран

  • 62 электростатический экран

    Русско-английский исловарь по машиностроению и автоматизации производства > электростатический экран

  • 63 магнитный гистерезис

    запаздывание изменения магнитной индукции или намагниченности вещества по отношению к изменению напряженности магнитного поля

    Терминологический словарь "Металлы" > магнитный гистерезис

  • 64 коэрцитивная сила по индукции

    1. Induktionskoerzitivfeldstärke

     

    коэрцитивная сила по индукции
    Величина, равная напряженности магнитного поля, необходимого для изменения магнитной индукции от остаточной индукции до нуля.
    [ ГОСТ 19693-74

    Тематики

    EN

    DE

    FR

    Русско-немецкий словарь нормативно-технической терминологии > коэрцитивная сила по индукции

  • 65 коэрцитивная сила по намагниченности

    1. Magnetisierungskoerzitivfeldstärke

     

    коэрцитивная сила по намагниченности
    Величина, равная напряженности магнитного поля, необходимого для изменения намагниченности от остаточной намагниченности до нуля.
    [ ГОСТ 19693-74

    Тематики

    EN

    DE

    FR

    Русско-немецкий словарь нормативно-технической терминологии > коэрцитивная сила по намагниченности

  • 66 коэффициент потерь на вихревые токи

    1. Wirbelstromverlustfaktor

     

    коэффициент потерь на вихревые токи
    Приращение тангенса угла магнитных потерь, отнесенное к соответствующему изменению частоты при неизменной амплитуде напряженности магнитного поля.
    Примечание
    Зависимость тангенса угла магнитных потерь от частоты в заданном интервале ее изменения предполагается линейной.
    [ ГОСТ 19693-74

    Тематики

    EN

    DE

    FR

    Русско-немецкий словарь нормативно-технической терминологии > коэффициент потерь на вихревые токи

  • 67 размагничивание (в средствах навигации)

    1. MES
    2. magnetischer Eigenschutz

     

    размагничивание
    Нейтрализация магнитного поля судна.
    Примечание
    Если судно размагничивается обмотками (катушками), то изменения в результирующем магнитном поле по положению компаса обычно компенсируются катушками девиационного прибора компаса, расположенного в нактоузе компаса и соединенного с оборудованием судна, предназначенным для размагничивания.
    [ ГОСТ Р 52682-2006

    Тематики

    • средства навигации, наблюдения, управления

    EN

    DE

    FR

    Русско-немецкий словарь нормативно-технической терминологии > размагничивание (в средствах навигации)

  • 68 интеллектуальный учет электроэнергии

    1. smart metering

     

    интеллектуальный учет электроэнергии
    -
    [Интент]

    Учет электроэнергии

    Понятия «интеллектуальные измерения» (Smart Metering), «интеллектуальный учет», «интеллектуальный счетчик», «интеллектуальная сеть» (Smart Grid), как все нетехнические, нефизические понятия, не имеют строгой дефиниции и допускают произвольные толкования. Столь же нечетко определены и задачи Smart Metering в современных электрических сетях.
    Нужно ли использовать эти термины в такой довольно консервативной области, как электроэнергетика? Что отличает новые системы учета электроэнергии и какие функции они должны выполнять? Об этом рассуждает Лев Константинович Осика.

    SMART METERING – «ИНТЕЛЛЕКТУАЛЬНЫЙ УЧЕТ» ЭЛЕКТРОЭНЕРГИИ

    Определения и задачи
    По многочисленным публикациям в СМИ, выступлениям на конференциях и совещаниях, сложившемуся обычаю делового оборота можно сделать следующие заключения:
    • «интеллектуальные измерения» производятся у потребителей – физических лиц, проживающих в многоквартирных домах или частных домовладениях;
    • основная цель «интеллектуальных измерений» и реализующих их «интеллектуальных приборов учета» в России – повышение платежной дисциплины, борьба с неплатежами, воровством электроэнергии;
    • эти цели достигаются путем так называемого «управления электропотреблением», под которым подразумеваются ограничения и отключения неплательщиков;
    • средства «управления электропотреблением» – коммутационные аппараты, получающие команды на включение/отключение, как правило, размещаются в одном корпусе со счетчиком и представляют собой его неотъемлемую часть.
    Главным преимуществом «интеллектуального счетчика» в глазах сбытовых компаний является простота осуществления отключения (ограничения) потребителя за неплатежи (или невнесенную предоплату за потребляемую электроэнергию) без применения физического воздействия на существующие вводные выключатели в квартиры (коттеджи).
    В качестве дополнительных возможностей, стимулирующих установку «интеллектуальных приборов учета», называются:
    • различного рода интеграция с измерительными приборами других энергоресурсов, с биллинговыми и информационными системами сбытовых и сетевых компаний, муниципальных администраций и т.п.;
    • расширенные возможности отображения на дисплее счетчика всей возможной (при первичных измерениях токов и напряжений) информации: от суточного графика активной мощности, напряжения, частоты до показателей надежности (времени перерывов в питании) и денежных показателей – стоимости потребления, оставшейся «кредитной линии» и пр.;
    • двухсторонняя информационная (и управляющая) связь сбытовой компании и потребителя, т.е. передача потребителю различных сообщений, дистанционная смена тарифа, отключение или ограничение потребления и т.п.

    ЧТО ТАКОЕ «ИНТЕЛЛЕКТУАЛЬНЫЕ ИЗМЕРЕНИЯ»?

    Приведем определение, данное в тематическом докладе комитета ЭРРА «Нормативные аспекты СМАРТ ИЗМЕРЕНИЙ», подготовленном известной международной компанией КЕМА:
    «…Для ясности необходимо дать правильное определение смарт измерениям и описать организацию инфраструктуры смарт измерений. Необходимо отметить, что между смарт счетчиком и смарт измерением существует большая разница. Смарт счетчик – это отдельный прибор, который установлен в доме потребителя и в основном измеряет потребление энергии потребителем. Смарт измерения – это фактическое применение смарт счетчиков в большем масштабе, то есть применение общего принципа вместо отдельного прибора. Однако, если рассматривать пилотные проекты смарт измерений или национальные программы смарт измерений, то иногда можно найти разницу в определении смарт измерений. Кроме того, также часто появляются такие термины, как автоматическое считывание счетчика (AMR) и передовая инфраструктура измерений (AMI), особенно в США, в то время как в ЕС часто используется достаточно туманный термин «интеллектуальные системы измерений …».
    Представляют интерес и высказывания В.В. Новикова, начальника лаборатории ФГУП ВНИИМС [1]: «…Это автоматизированные системы, которые обеспечивают и по-требителям, и сбытовым компаниям контроль и управление потреблением энергоресурсов согласно установленным критериям оптимизации энергосбережения. Такие измерения называют «интеллектуальными измерениями», или Smart Metering, как принято за рубежом …
    …Основные признаки Smart Metering у счетчиков электрической энергии. Их шесть:
    1. Новшества касаются в меньшей степени принципа измерений электрической энергии, а в большей – функциональных возможностей приборов.
    2. Дополнительными функциями выступают, как правило, измерение мощности за короткие периоды, коэффициента мощности, измерение времени, даты и длительности провалов и отсутствия питающего напряжения.
    3. Счетчики имеют самодиагностику и защиту от распространенных методов хищения электроэнергии, фиксируют в журнале событий моменты вскрытия кожуха, крышки клеммной колодки, воздействий сильного магнитного поля и других воздействий как на счетчик, его информационные входы и выходы, так и на саму электрическую сеть.
    4. Наличие функций для управления нагрузкой и подачи команд на включение и отключение электрических приборов.
    5. Более удобные и прозрачные функции для потребителей и энергоснабжающих организаций, позволяющие выбирать вид тарифа и энергосбытовую компанию в зависимости от потребностей в энергии и возможности ее своевременно оплачивать.
    6. Интеграция измерений и учета всех энергоресурсов в доме для выработки решений, минимизирующих расходы на оплату энергоресурсов. В эту стратегию вовлекаются как отдельные потребители, так и управляющие компании домами, энергоснабжающие и сетевые компании …».
    Из этих цитат нетрудно заметить, что первые 3 из 6 функций полностью повторяют требования к счетчикам АИИС КУЭ на оптовом рынке электроэнергии и мощности (ОРЭМ), которые не менялись с 2003 г. Функция № 5 является очевидной функцией счетчика при работе потребителя на розничных рынках электроэнергии (РРЭ) в условиях либеральной (рыночной) энергетики. Функция № 6 практически повторяет многочисленные определения понятия «умный дом», а функция № 4, провозглашенная в нашей стране, полностью соответствует желаниям сбытовых компаний найти наконец действенное средство воздействия на неплательщиков. При этом ясно, что неплатежи – не следствие отсутствия «умных счетчиков», а результат популистской политики правительства. Отключить физических (да и юридических) лиц невозможно, и эта функция счетчика, безусловно, останется невостребованной до внесения соответствующих изменений в нормативно-правовые акты.
    На функции № 4 следует остановиться особо. Она превращает измерительный прибор в управляющую систему, в АСУ, так как содержит все признаки такой системы: наличие измерительного компонента, решающего компонента (выдающего управляющие сигналы) и, в случае размещения коммутационных аппаратов внутри счетчика, органов управления. Причем явно или неявно, как и в любой системе управления, подразумевается обратная связь: заплатил – включат опять.
    Обоснованное мнение по поводу Smart Grid и Smart Metering высказал В.И. Гуревич в [2]. Приведем здесь цитаты из этой статьи с локальными ссылками на используемую литературу: «…Обратимся к истории. Впервые этот термин встретился в тексте статьи одного из западных специалистов в 1998 г. [1]. В названии статьи этот термин был впервые использован Массудом Амином и Брюсом Волленбергом в их публикации «К интеллектуальной сети» [2]. Первые применения этого термина на Западе были связаны с чисто рекламными названиями специальных контроллеров, предназначенных для управления режимом работы и синхронизации автономных ветрогенераторов (отличающихся нестабильным напряжением и частотой) с электрической сетью. Потом этот термин стал применяться, опять-таки как чисто рекламный ход, для обозначения микропроцессорных счетчиков электроэнергии, способных самостоятельно накапливать, обрабатывать, оценивать информацию и передавать ее по специальным каналам связи и даже через Интернет. Причем сами по себе контроллеры синхронизации ветрогенераторов и микропроцессорные счетчики электроэнергии были разработаны и выпускались различными фирмами еще до появления термина Smart Grid. Это название возникло намного позже как чисто рекламный трюк для привлечения покупателей и вначале использовалось лишь в этих областях техники. В последние годы его использование расширилось на системы сбора и обработки информации, мониторинга оборудования в электроэнергетике [3] …
    1. Janssen M. C. The Smart Grid Drivers. – PAC, June 2010, p. 77.
    2. Amin S. M., Wollenberg B. F. Toward a Smart Grid. – IEEE P&E Magazine, September/October, 2005.
    3. Gellings C. W. The Smart Grid. Enabling Energy Efficiency and Demand Response. – CRC Press, 2010. …».
    Таким образом, принимая во внимание столь различные мнения о предмете Smart Grid и Smart Metering, сетевая компания должна прежде всего определить понятие «интеллектуальная система измерения» для объекта измерений – электрической сети (как актива и технологической основы ОРЭМ и РРЭ) и представить ее предметную область именно для своего бизнеса.

    БИЗНЕС И «ИНТЕЛЛЕКТУАЛЬНЫЙ УЧЕТ»

    В результате изучения бизнес-процессов деятельности ряда сетевых компаний и взаимодействия на РРЭ сетевых, энергосбытовых компаний и исполнителей коммунальных услуг были сформулированы следующие исходные условия.
    1. В качестве главного признака новой интеллектуальной системы учета электроэнергии (ИСУЭ), отличающей ее от существующей системы коммерческого и технического учета электроэнергии, взято расширение функций, причем в систему вовлекаются принципиально новые функции: определение технических потерь, сведение балансов в режиме, близком к on-line, определение показателей надежности. Это позволит, среди прочего, получить необходимую информацию для решения режимных задач Smart Grid – оптимизации по реактивной мощности, управления качеством электроснабжения.
    2. Во многих случаях (помимо решения задач, традиционных для сетевой компании) рассматриваются устройства и системы управления потреблением у физических лиц, осуществляющие их ограничения и отключения за неплатежи (традиционные задачи так называемых систем AMI – Advanced Metering Infrastructure).
    Учитывая вышеизложенное, для электросетевой компании предлагается принимать следующее двойственное (по признаку предметной области) определение ИСУЭ:
    в отношении потребителей – физических лиц: «Интеллектуальная система измерений – это совокупность устройств управления нагрузкой, приборов учета, коммуникационного оборудования, каналов передачи данных, программного обеспечения, серверного оборудования, алгоритмов, квалифицированного персонала, которые обеспечивают достаточный объем информации и инструментов для управления потреблением электроэнергии согласно договорным обязательствам сторон с учетом установленных критериев энергоэффективности и надежности»;
    в отношении системы в целом: «Интеллектуальная система измерений – это автоматизированная комплексная система измерений электроэнергии (с возможностью измерений других энергоресурсов), определения учетных показателей и решения на их основе технологических и бизнес-задач, которая позволяет интегрировать различные информационные системы субъектов рынка и развиваться без ограничений в обозримом будущем».

    ЗАДАЧИ «ИНТЕЛЛЕКТУАЛЬНОГО УЧЕТА»

    Далее мы будем основываться на том, что ИСУЭ позволит осуществить следующие функции в бытовом секторе:
    • дистанционное получение от каждой точки измерения (узла учета) у бытового потребителя сведений об отпущенной или потребленной электроэнергии;
    • расчет внутриобъектового (многоквартирный жилой дом, поселок) баланса поступления и потребления энергоресурсов с целью выявления технических и коммерческих потерь и принятия мер по эффективному энергосбережению;
    • контроль параметров поставляемых энергоресурсов с целью обнаружения и регистрации их отклонений от договорных значений;
    • обнаружение фактов несанкционированного вмешательства в работу приборов учета или изменения схем подключения электроснабжения;
    • применение санкций против злостных неплательщиков методом ограничения потребляемой мощности или полного отключения энергоснабжения;
    • анализ технического состояния и отказов приборов учета;
    • подготовка отчетных документов об электропотреблении;
    • интеграция с биллинговыми системами.

    «ИНТЕЛЛЕКТУАЛЬНЫЙ КОММЕРЧЕСКИЙ УЧЕТ»

    Остановимся подробно на одном из атрибутов ИСУЭ, который считаю ключевым для основного электросетевого бизнеса.
    Особенностью коммерческого учета электроэнергии (КУЭ) распределительных сетевых компаний является наличие двух сфер коммерческого оборота электроэнергии – ОРЭМ и РРЭ, которые хотя и сближаются в нормативном и организационном плане, но остаются пока существенно различными с точки зрения требований к КУЭ.
    Большинство сетевых компаний является субъектом как ОРЭМ, так и РРЭ. Соответственно и сам коммерческий учет в отношении требований к нему разделен на два вида:
    • коммерческий учет на ОРЭМ (технические средства – АИИС КУЭ);
    • коммерческий учет на РРЭ (технические средства – АСКУЭ).
    Кроме того, к коммерческому учету, т.е. к определению тех показателей, которые служат для начисления обязательств и требований сетевой компании (оплата услуг по транспорту электроэнергии, купля-продажа технологических потерь), следует отнести и измерения величин, необходимых для определения показателей надежности сети в отношении оказания услуг по передаче электроэнергии.
    Отметим, что сложившиеся технологии АИИС КУЭ и АСКУЭ по своей функциональной полноте (за исключением функции коммутации нагрузки внутри систем) – это технологии Smart Metering в том понимании, которое мы обсуждали выше. Поэтому далее будем считать эти понятия полностью совпадающими.
    Подсистема ИСУЭ на РРЭ, безусловно, самая сложная и трудоемкая часть всей интеллектуальной системы как с точки зрения организации сбора информации (включая измерительные системы (ИС) и средства связи в автоматизированных системах), так и с точки зрения объема точек поставки и соответственно средств измерений. Последние отличаются большим многообразием и сложностью контроля их и метрологических характеристик (МХ).
    Если технические требования к ИС на ОРЭМ и к ИС крупных потребителей (по крайней мере потребителей с присоединенной мощностью свыше 750 кВА) принципиально близки, то в отношении нормативного и организационного компонентов имеются сильные различия. Гармоничная их интеграция в среде разных компонентов – основная задача создания современной системы ИСУЭ любой сетевой компании.
    Особенностью коммерческого учета для нужд сетевого комплекса – основного бизнеса компании в отличие от учета электроэнергии потребителей, генерирующих источников и сбытовых компаний – является сам характер учетных показателей, вернее, одного из них – технологических потерь электроэнергии. Здесь трудность состоит в том, что границы балансовой принадлежности компании должны оснащаться средствами учета в интересах субъектов рынка – участников обращения электроэнергии, и по правилам, установленным для них, будь то ОРЭМ или РРЭ. А к измерению и учету важнейшего собственного учетного показателя, потерь, отдельные нормативные требования не предъявляются, хотя указанные показатели должны определяться по своим технологиям.
    При этом сегодня для эффективного ведения бизнеса перед сетевыми компаниями, по мнению автора, стоит задача корректного определения часовых балансов в режиме, близком к on-line, в условиях, когда часть счетчиков (со стороны ОРЭМ) имеют автоматические часовые измерения электроэнергии, а подавляющее большинство (по количеству) счетчиков на РРЭ (за счет физических лиц и мелкомоторных потребителей) не позволяют получать такие измерения. Актуальность корректного определения фактических потерь следует из необходимости покупки их объема, не учтенного при установлении тарифов на услуги по передаче электроэнергии, а также предоставления информации для решения задач Smart Grid.
    В то же время специалистами-практиками часто ставится под сомнение практическая востребованность определения технологических потерь и их составляющих в режиме on-line. Учитывая это мнение, которое не согласуется с разрабатываемыми стратегиями Smart Grid, целесообразно оставить окончательное решение при разработке ИСУЭ за самой компанией.
    Cистемы АИИС КУЭ сетевых компаний никогда не создавались целенаправленно для решения самых насущных для них задач, таких как:
    1. Коммерческая задача купли-продажи потерь – качественного (прозрачного и корректного в смысле метрологии и требований действующих нормативных документов) инструментального или расчетно-инструментального определения технологических потерь электроэнергии вместе с их составляющими – техническими потерями и потреблением на собственные и хозяйственные нужды сети.
    2. Коммерческая задача по определению показателей надежности электроснабжения потребителей.
    3. Управленческая задача – получение всех установленных учетной политикой компании балансов электроэнергии и мощности по уровням напряжения, по филиалам, по от-дельным подстанциям и группам сетевых элементов, а также КПЭ, связанных с оборотом электроэнергии и оказанием услуг в натуральном выражении.
    Не ставилась и задача технологического обеспечения возможного в перспективе бизнеса сетевых компаний – предоставления услуг оператора коммерческого учета (ОКУ) субъектам ОРЭМ и РРЭ на территории обслуживания компании.
    Кроме того, необходимо упорядочить систему учета для определения коммерческих показателей в отношении определения обязательств и требований оплаты услуг по транспорту электроэнергии и гармонизировать собственные интересы и интересы смежных субъектов ОРЭМ и РРЭ в рамках существующей системы взаимодействий и возможной системы взаимодействий с введением института ОКУ.
    Именно исходя из этих целей (не забывая при этом про коммерческие учетные показатели смежных субъектов рынка в той мере, какая требуется по обязательствам компании), и нужно строить подлинно интеллектуальную измерительную систему. Иными словами, интеллект измерений – это главным образом интеллект решения технологических задач, необходимых компании.
    По сути, при решении нового круга задач в целевой модели интеллектуального учета будет реализован принцип придания сетевой компании статуса (функций) ОКУ в зоне обслуживания. Этот статус формально прописан в действующей редакции Правил розничных рынков (Постановление Правительства РФ № 530 от 31.08.2006), однако на практике не осуществляется в полном объеме как из-за отсутствия необходимой технологической базы, так и из-за организационных трудностей.
    Таким образом, сетевая компания должна сводить баланс по своей территории на новой качественной ступени – оперативно, прозрачно и полно. А это означает сбор информации от всех присоединенных к сети субъектов рынка, формирование учетных показателей и передачу их тем же субъектам для определения взаимных обязательств и требований.
    Такой подход предполагает не только новую схему расстановки приборов в соответствии с комплексным решением всех поставленных технологами задач, но и новые функциональные и метрологические требования к измерительным приборам.

    ПРЕИМУЩЕСТВА ИСУЭ

    Внедрение ИСУЭ даст новые широкие возможности для всех участников ОРЭМ и РРЭ в зоне обслуживания электросетевой компании.
    Для самой компании:
    1. Повышение эффективности существующего бизнеса.
    2. Возможности новых видов бизнеса – ОКУ, регистратор единой группы точек поставки (ГТП), оператор заправки электрического транспорта и т.п.
    3. Обеспечение внедрения технологий Smart grid.
    4. Создание и развитие программно-аппаратного комплекса (с сервисно-ориентированной архитектурой) и ИС, снимающих ограничения на развитие технологий и бизнеса в долгосрочной перспективе.
    Для энергосбытовой деятельности:
    1. Автоматический мониторинг потребления.
    2. Легкое определение превышения фактических показателей над планируемыми.
    3. Определение неэффективных производств и процессов.
    4. Биллинг.
    5. Мониторинг коэффициента мощности.
    6. Мониторинг показателей качества (напряжение и частота).
    Для обеспечения бизнеса – услуги для генерирующих, сетевых, сбытовых компаний и потребителей:
    1. Готовый вариант на все случаи жизни.
    2. Надежность.
    3. Гарантия качества услуг.
    4. Оптимальная и прозрачная стоимость услуг сетевой компании.
    5. Постоянное внедрение инноваций.
    6. Повышение «интеллекта» при работе на ОРЭМ и РРЭ.
    7. Облегчение технологического присоединения энергопринимающих устройств субъектов ОРЭМ и РРЭ.
    8. Качественный консалтинг по всем вопросам электроснабжения и энергосбережения.
    Успешная реализации перечисленных задач возможна только на базе информационно-технологической системы (программно-аппаратного комплекса) наивысшего достигнутого на сегодняшний день уровня интеграции со всеми возможными информационными системами субъектов рынка – измерительно-учетными как в отношении электроэнергии, так и (в перспективе) в отношении других энергоресурсов.

    ЛИТЕРАТУРА

    1. Новиков В.В. Интеллектуальные измерения на службе энергосбережения // Энергоэксперт. 2011. № 3.
    2. Гуревич В.И. Интеллектуальные сети: новые перспективы или новые проблемы? // Электротехнический рынок. 2010. № 6.

    [ http://www.news.elteh.ru/arh/2011/71/14.php]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > интеллектуальный учет электроэнергии

  • 69 коэрцитивная сила по индукции

    1. induction coercive force

     

    коэрцитивная сила по индукции
    Величина, равная напряженности магнитного поля, необходимого для изменения магнитной индукции от остаточной индукции до нуля.
    [ ГОСТ 19693-74

    Тематики

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > коэрцитивная сила по индукции

  • 70 коэрцитивная сила по намагниченности

    1. magnetization coercive force

     

    коэрцитивная сила по намагниченности
    Величина, равная напряженности магнитного поля, необходимого для изменения намагниченности от остаточной намагниченности до нуля.
    [ ГОСТ 19693-74

    Тематики

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > коэрцитивная сила по намагниченности

  • 71 коэффициент потерь на вихревые токи

    1. eddy current less coefficient

     

    коэффициент потерь на вихревые токи
    Приращение тангенса угла магнитных потерь, отнесенное к соответствующему изменению частоты при неизменной амплитуде напряженности магнитного поля.
    Примечание
    Зависимость тангенса угла магнитных потерь от частоты в заданном интервале ее изменения предполагается линейной.
    [ ГОСТ 19693-74

    Тематики

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > коэффициент потерь на вихревые токи

  • 72 магнитострикция

    1. magnetostriction

     

    магнитострикция
    Изменения габаритов тела при воздействии магнитного поля.
    [ http://www.manual-steel.ru/eng-a.html]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > магнитострикция

  • 73 размагничивание (в средствах навигации)

    1. degaussing

     

    размагничивание
    Нейтрализация магнитного поля судна.
    Примечание
    Если судно размагничивается обмотками (катушками), то изменения в результирующем магнитном поле по положению компаса обычно компенсируются катушками девиационного прибора компаса, расположенного в нактоузе компаса и соединенного с оборудованием судна, предназначенным для размагничивания.
    [ ГОСТ Р 52682-2006

    Тематики

    • средства навигации, наблюдения, управления

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > размагничивание (в средствах навигации)

  • 74 Электромагнитный экран электротехнического изделия (устройства)

    1. Electromagnetic screen

    72. Электромагнитный экран электротехнического изделия (устройства)

    Electromagnetic screen

    Часть электротехнического изделия (устройства), предназначенная для изменения распределения напряженности магнитного поля в определенной части пространства, действие которой основано на использовании в ней вихревых токов

    Источник: ГОСТ 18311-80: Изделия электротехнические. Термины и определения основных понятий оригинал документа

    Русско-английский словарь нормативно-технической терминологии > Электромагнитный экран электротехнического изделия (устройства)

  • 75 Магнитный экран электротехнического изделия (устройства)

    1. Magnetic screen

    73. Магнитный экран электротехнического изделия (устройства)

    Magnetic screen

    Часть электротехнического изделия (устройства), предназначенная для изменения распределения напряженности магнитного поля в определенной части пространства, действие которой основано на использовании высокой магнитной проницаемости ее материала

    Источник: ГОСТ 18311-80: Изделия электротехнические. Термины и определения основных понятий оригинал документа

    Русско-английский словарь нормативно-технической терминологии > Магнитный экран электротехнического изделия (устройства)

  • 76 коэрцитивная сила по индукции

    1. coercivité

     

    коэрцитивная сила по индукции
    Величина, равная напряженности магнитного поля, необходимого для изменения магнитной индукции от остаточной индукции до нуля.
    [ ГОСТ 19693-74

    Тематики

    EN

    DE

    FR

    Русско-французский словарь нормативно-технической терминологии > коэрцитивная сила по индукции

  • 77 коэрцитивная сила по намагниченности

    1. coercivité

     

    коэрцитивная сила по намагниченности
    Величина, равная напряженности магнитного поля, необходимого для изменения намагниченности от остаточной намагниченности до нуля.
    [ ГОСТ 19693-74

    Тематики

    EN

    DE

    FR

    Русско-французский словарь нормативно-технической терминологии > коэрцитивная сила по намагниченности

  • 78 коэффициент потерь на вихревые токи

    1. coefficient de pertes par courants de Foucault

     

    коэффициент потерь на вихревые токи
    Приращение тангенса угла магнитных потерь, отнесенное к соответствующему изменению частоты при неизменной амплитуде напряженности магнитного поля.
    Примечание
    Зависимость тангенса угла магнитных потерь от частоты в заданном интервале ее изменения предполагается линейной.
    [ ГОСТ 19693-74

    Тематики

    EN

    DE

    FR

    Русско-французский словарь нормативно-технической терминологии > коэффициент потерь на вихревые токи

  • 79 размагничивание (в средствах навигации)

    1. démagnétisation
    2. dégaussin

     

    размагничивание
    Нейтрализация магнитного поля судна.
    Примечание
    Если судно размагничивается обмотками (катушками), то изменения в результирующем магнитном поле по положению компаса обычно компенсируются катушками девиационного прибора компаса, расположенного в нактоузе компаса и соединенного с оборудованием судна, предназначенным для размагничивания.
    [ ГОСТ Р 52682-2006

    Тематики

    • средства навигации, наблюдения, управления

    EN

    DE

    FR

    Русско-французский словарь нормативно-технической терминологии > размагничивание (в средствах навигации)

  • 80 график


    chart, graph, curve, card
    (графическое изображение взаимозависимых величин) (рис. 144)
    - (по терминологии, принятой икао) — graph
    - (кривая зависимости, напр. веса, высоты, температуры) — curve wat curves.
    - (карта)card
    - (расписание)schedule
    - (участок графика, ограниченный с 4-х сторон) — carpet
    - ветровwind chart
    - девиации (магнитного компаса) (рис. 86) — compass correction card
    - девиации (радиокомпаса) (рис. 86) — quadrantal error calibration card /curve/
    - зависимости величин (х) от величин (у) — value (х) for /versus, vs/ value (y) chart /graph/
    - зависимости величины "r" и относительной скорости принятия решения от располагаемых длины разбега и дистанции прерванного взлета — value of "r" and v1/vr ratio for takeoff run available and accelerate-stop distance available chart /graph/
    - зависимости (взлетного) веса ла, высоты и температуры воздуха (аэродрома) — (takeoff) weight-altitude-temperature curves, wat curves
    - зависимости максимального взлетного веса от высоты аэродрома и температуры /graph/ — maximum takeoff weight for aerodrome altitude chart
    - зависимости максимального взлетного веса от высоты и температуры аэродрома (подрисуночная надпись) — maximum take-off weight for altitude and temperature the wat curves should be titled as written above.
    - зависимости максимального взлетного веса от располагаемых взлетной дистанции и дистанции прерванного взлета — maximum takeoff weight for take-off distance available and accelerate-stop distance available chart /graph/
    - зависимости максимального поперечного момента от полетного веса — maximum lateral imbalance moment for /vs/ gross weight chart
    - зависимости сбалансированной летной полосы от максимального взлетного веса — balance takeoff field length for maximum takeoff weight chart /graph/

    the graph should be titled: balanced takeoff field length for maximum takeoff weight.
    - захода на посадкуapproach chart
    - изменения центровки в полетееn-route center of gravity variation chart
    - на рис.1 иллюстрирует (показывает) — chart in fig.1 illustrates/provides/(a presentation of)
    - опробывания двигателяengine ground-test schedule
    - остаточной девиации (магн. компаса) (рис. 86) — compass correction card /curve/
    - перевода величин перевод атмосферного давления в барометрическую высоту аэродрома. — conversion chart /graph/ conversion of atmospheric pressure into aerodrome altitude.
    - перевода относительной скорости принятия решения (при взлете) в скорость припятия решения — v1/vr into v1 conversion chart /graph/ the graph should be titled: conversion of v1/vr into v1 (km/h ias)
    - полетаflight schedule
    - поправок (к указателю скорости, высотомеру) — (airspeed indicator and altimeter) error correction chart /curves/
    - потребной длины летного поля при взлете — takeoff field length required chart /graph/
    - радиодевиации(радиокомпаса)quadrantal error calibration curve
    -, центровочный (указывающий предельные веса и центровки) — center-of-gravity diagram, balance diagram /chart/ (showing weight and balance limits)
    - чистого градиента набора высоты в полете с одним отказавшим двигателем — en route net gradient of climb one engine inoperative chart /graph/
    метод пользования г. — method of use of chart/graph/
    правила пользования данным — the use of this chart /graph/
    г. изложены в тексте — is explained in the text
    пример пользования г. — example of use of chart
    пример пользования графиком: — procedure for reading the chart /graph/, chart /graph/ reading procedure:
    определите наибольший взлетный вес для данной длины впп следующим образом: начинайте отсчет с левой стороны графика (рис. i) от заданной располагаемой взлетной дистанции (6000 фт), проведите секущую до уклона впп (0,5 % вниз), а затем опустите перпендикуляр пo линии графика до пересечения с линией отсчета, и т. д. — (1) to determine the highest takeoff weight permitted by takeoff field length limitations, proceed as follows: using fig. 1 start on left of the graph from the given takeoff distance (6000 ft), proceed across to runway slope (0.5 % downhill), then down the guide lines to the reference line. (2) starting from the accelorate-stop distance available (5350 ft) proceed upwards through the slope grid to the wind component, then to the reference line.
    форма г. четкость г. (для удобства пользования) из г. (рис. 1) выбираем, находим... — chart /graph/ form readability of graph (to facilitate accurate reading of the graph) use /refer to/ (fig i) to obtain /find/....
    строить г. — plot /constuct/ chart
    читать г. (в обратном направлении) — read chart (in reverse direction)

    Русско-английский сборник авиационно-технических терминов > график

См. также в других словарях:

  • ИНВЕРСИИ МАГНИТНОГО ПОЛЯ — предполагаемые по палеомагнитным данным изменения направления магнитного поля Земли на 180°. Основанием для этой гипотезы послужило повсеместное обнаружение в толщах осад, и эффузивных п. послойного изменения знака вектора естественной остаточной …   Геологическая энциклопедия

  • ИНВЕРСИЯ МАГНИТНОГО ПОЛЯ — ИНВЕРСИЯ МАГНИТНОГО ПОЛЯ, изменение полярности, когда северный магнитный полюс Земли становится южным и наоборот. Анализ магнитного направления базальтовых лав суши и океанов, а также осадков на дне морей показал, что главное МАГНИТНОЕ ПОЛЕ Земли …   Научно-технический энциклопедический словарь

  • Напряжённость магнитного поля — Размерность L−1I Единицы измерения …   Википедия

  • Теорема о циркуляции магнитного поля — Теорема о циркуляции магнитного поля  одна из фундаментальных теорем классической электродинамики, сформулированная Андре Мари Ампером в 1826 году. В 1861 году Джеймс Максвелл снова вывел эту теорему, опираясь на аналогии с гидродинамикой, и …   Википедия

  • напряженность порогового магнитного поля — пороговое поле Напряженность магнитного поля, после приложения которого при нормальной температуре начинает сказываться эффект необратимого изменения электромагнитных характеристик магнитного материала и который может быть снят только термическим …   Справочник технического переводчика

  • Поля теория —         математическая теория, изучающая свойства скалярных, векторных (в общем случае тензорных) полей, т. е. областей пространства (или плоскости), каждой точке М которых поставлено в соответствие число u (М) (например, температура, давление,… …   Большая советская энциклопедия

  • Ротор векторного поля — Ротор, или вихрь векторный дифференциальный оператор над векторным полем. Показывает, насколько и в каком направлении закручено поле в каждой точке. Ротор поля F обозначается символом rot F (в русскоязычной литературе) или curl F (в англоязычной… …   Википедия

  • Ротор поля — Ротор, или вихрь векторный дифференциальный оператор над векторным полем. Показывает, насколько и в каком направлении закручено поле в каждой точке. Ротор поля F обозначается символом rot F (в русскоязычной литературе) или curl F (в англоязычной… …   Википедия

  • Поля физические —         особая форма материи; физическая система, обладающая бесконечно большим числом степеней свободы. Примерами П. ф. могут служить электромагнитное и гравитационное поля, поле ядерных сил, а также волновые (квантованные) поля, соответствующие …   Большая советская энциклопедия

  • ЭЛЕКТРОМАГНИТНЫЕ ПОЛЯ ПРОМЫШЛЕННОЙ ЧАСТОТЫ — (ЭМП ПЧ) являются частью сверхнизкочастотного диапазона радиочастотного спектра, наиболее распространенной как в производственных условиях, так и в быту; диапазон ПЧ представлен в нашей стране частотой 50 Гц (в ряде стран Американского континента …   Российская энциклопедия по охране труда

  • ПОСТОЯННЫЕ МАГНИТНЫЕ ПОЛЯ — ПОСТОЯННЫЕ МАГНИТНЫЕ ПОЛЯ. Источниками постоянных магнитных полей (ПМП) на рабочих местах являются постоянные магниты, электромагниты, сильноточные системы постоянного тока (линии передачи постоянного тока, электролитные ванны и др.… …   Российская энциклопедия по охране труда

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»