Перевод: со всех языков на русский

с русского на все языки

(задач)

  • 81 on-line problem solving

    решение задач в централизованном режиме; решение задач в режиме онлайн; решение задач в реальном масштабе времени

    problem solving — решение задач; решение проблем

    English-Russian base dictionary > on-line problem solving

  • 82 sum

    [sʌm]
    basket purchase sum стоимость покупательской корзины capital sum сумма капитала check sum контрольная сумма clear sum итоговая сумма commutation sum сумма, подлежащая замене cover sum сумма страхового возмещения estimated sum рассчитанная сумма sum pl арифметика, решение задач; he is good at sums он силен в арифметике; sum and substance самая суть; in sum в общем, коротко говоря sum pl арифметика, решение задач; he is good at sums он силен в арифметике; sum and substance самая суть; in sum в общем, коротко говоря insurance sum сумма страхования irrecoverable sum невозместимая сумма loan sum размер ссуды loan sum сумма займа lump sum денежная сумма, выплачиваемая единовременно lump sum единовременная выплата; общая сумма lump sum единовременно выплачиваемая сумма lump sum крупная сумма lump sum общая сумма lump sum паушальная сумма maximum claimable sum максимальная сумма возмещения partial sum частичный итог principal sum основная сумма principal sum сумма, которая должна быть выплачена бенефициару по страховому полису purchase sum суммарная стоимость закупок redemption sum сумма, подлежащая погашению risk sum сумма, сопряженная с риском round sum округленная сумма round sum приближенная сумма standard sum of products вчт. нормальная дизъюнктивная форма sum pl арифметика, решение задач; he is good at sums он силен в арифметике; sum and substance самая суть; in sum в общем, коротко говоря sum pl арифметика, решение задач; he is good at sums он силен в арифметике; sum and substance самая суть; in sum в общем, коротко говоря sum арифметическая задача sum итог sum количество sum подводить итог sum складывать, подводить итог (часто sum up); sum up резюмировать, суммировать sum складывать sum сумма, количество; итог; sum total общая сумма sum сумма sum сущность sum in acquittance сумма в погашение долга sum of money денежная сумма sum of squares сумма квадратов sum up оценивать sum up резюмировать sum up суммировать sum сумма, количество; итог; sum total общая сумма sum складывать, подводить итог (часто sum up); sum up резюмировать, суммировать tender sum сумма предложения total purchase sum общая сумма покупок up-front sum задаток up-front sum предоплата

    English-Russian short dictionary > sum

  • 83 Mehrzweckreaktor

    1. многоцелевой реактор

     

    многоцелевой реактор
    Ядерный реактор, предназначенный для одновременного выполнения нескольких различных задач.
    Примечание
    Допускается конкретизация термина по количеству выполняемых задач, например, двухцелевой реактор.
    [ ГОСТ 23082-78]

    Тематики

    EN

    DE

    11. Многоцелевой реактор

    D. Mehrzweckreaktor

    Е. Multi-purpose reactor

    Ядерный реактор, предназначенный для одновременного выполнения нескольких различных задач.

    Примечание. Допускается конкретизация термина по количеству выполняемых задач, например, двухцелевой реактор

    Источник: ГОСТ 23082-78: Реакторы ядерные. Термины и определения оригинал документа

    Немецко-русский словарь нормативно-технической терминологии > Mehrzweckreaktor

  • 84 automated data management system

    1. автоматизированная система управления данными
    2. автоматизированная система управления
    3. автоматизированная система обработки данных

     

    автоматизированная система обработки данных

    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    автоматизированная система обработки данных
    АСОД

    Cистема обработки данных, основанная на использовании электронных вычислительных машин (компьютеров) в отличие от систем, где обработка данных ручная. Возможны два принципа организации такой обработки. В первом случае информация собирается и обрабатывается специально для решения каждой задачи, во втором — для решения различных задач наряду с переменной (специфической для каждой задачи) информацией используются общие нормативно-справочные (условно-постоянные) данные. В последнем случае система называется интегрированной (см. Интегрированная система обработки данных). АСОД применяются в планировании и управлении (автоматизированные системы управления), в научных исследованиях (автоматизированные системы сбора и обработки экспериментальных данных и системы автоматизации испытаний), в библиотечном деле и информационных службах (см. Информационно-поисковые cистемы), в проектировании (системы автоматизированного проектирования и конструкторских работ) и других областях. В статистических публикациях последних лет применяется близкий термин АСОИ (автоматизированные системы обработки информации), под которым понимаются системы, не обязательно связанные собственно с управлением теми или иными объектами (предприятиями, организациями, технологическими процессами).
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

     

    автоматизированная система, управляющая
    АСУ

    Управляющая система, часть функций которой, главным образом функцию принятия решений, выполняет человек-оператор.
    Примечание
    В зависимости от объектов управления различают, например: АСУ П, когда объектом управления является предприятие; АСУ ТП, когда объектом управления является технологический процесс; ОАСУ, когда объектом управления является организационный объект или комплекс.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.  Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    автоматизированная система управления
    АСУ

    Совокупность математических методов, технических средств (компьютеров, средств связи, устройств отображения информации и т. д.) и организационных комплексов, обеспечивающих рациональное управление сложным объектом (процессом) в соответствии с заданной целью. АСУ принято делить на основу и функциональную часть. В основу входят информационное, техническое и математическое обеспечение. К функциональной части относят набор взаимосвязанных программ, автоматизирующих конкретные функции управления (планирование, финансово-бухгалтерскую деятельность и др.). Различают АСУ объектами (технологическими процессами - АСУТП, предприятием - АСУП, отраслью - ОАСУ) и функциональными автоматизированными системами, например, проектирования, расчетов, материально-технического и др. обеспечения.
    [ http://www.morepc.ru/dict/]

    автоматизированная система управления
    АСУ

    Система управления, в которой применяются современные автоматические средства обработки данных и экономико-математические методы для решения основных задач управления производственно-хозяйственной деятельностью. Это человеко-машинная система: в ней ряд операций и действий передается для исполнения машинам и другим устройствам (особенно это относится к так называемым рутинным, повторяющимся, стандартным операциям расчетов), но главное решение всегда остается за человеком. Этим АСУ отличаются от автоматических систем, т.е. таких технических устройств, которые действуют самостоятельно, по установленной для них программе, без вмешательства человека. АСУ подразделяются прежде всего на два класса: автоматизированные системы организационного управления и автоматизированные системы управления технологическими процессами (последние часто бывают автоматическими, первые ими принципиально быть не могут). Традиционно термин АСУ закрепился за первым из названных классов. Отличие АСУ от обычной, неавтоматизированной, но также использующей ЭВМ, системы управления показано на рис. А.1, а, б. Стрелками обозначены потоки информации. В первом случае компьютер используется для решения отдельных задач управления, например для производства плановых расчетов, результаты которых рассматриваются органом управления и либо принимаются, либо отвергаются. При этом необходимые данные собираются специально для решения каждой задачи и вводятся в компьютер, а потом за ненадобностью уничтожаются. Во втором случае существенная часть информации от объекта управления собирается непосредственно вычислительным центром, в том числе по каналам связи. При этом нет необходимости каждый раз вводить в компьютер все данные: часть из них (цены, нормативы и т. п.) хранится в ее запоминающем устройстве. Из вычислительного центра выработанные задания поступают, с одной стороны, в орган управления, а с другой (обычно через контрольное звено) — к объекту управления. В свою очередь информация, поступающая от объекта управления, влияет на принимаемые решения, т.е. здесь используется кибернетический принцип обратной связи. Это — АСУ. Принято рассматривать каждую АСУ одновременно в двух аспектах: с точки зрения ее функций — того, что и как она делает, и с точки зрения ее схемы, т.е. с помощью каких средств и методов эти функции реализуются. Соответственно АСУ подразделяют на две группы подсистем — функциональные и обеспечивающие. Создание АСУ на действующем экономическом объекте (в фирме, на предприятии, в банке и т.д.) — не разовое мероприятие, а длительный процесс. Отдельные подсистемы АСУ проектируются и вводятся в действие последовательными очередями, в состав функций включаются также все новые и новые задачи; при этом АСУ органически «вписывается» в систему управления. Обычно первые очереди АСУ ограничиваются решением чисто информационных задач. В дальнейшем их функции усложняются, включая использование оптимизационных расчетов, элементов оптимального управления. Степень участия АСУ в процессах управления может быть весьма различной, вплоть до самостоятельной выдачи компьютером, на основе получаемых им данных, оперативных управляющих «команд». Поскольку внедрение АСУ требует приспособления документации для машинной обработки, создаются унифицированные системы документации, а также классификаторы технико-экономической информации и т.д. Экономическая эффективность АСУ определяется прежде всего ростом эффективности самого производства в результате лучшей загрузки оборудования, повышения ритмичности, сокращения незавершенного производства и других материальных запасов, повышения качества продукции. РисА.1. Системы управления с использованием компьютеров а — неавтоматизированная, б — автоматизированная; I — управляющий центр; II — автоматизированная управляемая система (например, производство), III — контроль; тонкая черная стрелка — канал непосредственного управления компьютером некоторыми технологическими процессами (бывает не во всех АСУ); тонкая пунктирная стрелка показывает ту часть информации, которая поступает непосредственно в центр, минуя компьютер.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

     

    автоматизированная система управления данными

    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > automated data management system

  • 85 accreditation

    1. предоставление полномочий
    2. официальная регистрация
    3. аттестация
    4. аккредитация (лаборатории)
    5. аккредитация


    аккредитация
    Процедура, посредством которой авторитетный орган официально признает правомочность лица или органа выполнять конкретные работы. При этом процедура аккредитации должна проходить в рамках установленных прав управления (система аккредитации), специальным на то уполномоченным органом по аккредитации.
    [МУ 64-01-001-2002]

    аккредитация
    Официальное признание органом по аккредитации компетентности физического или юридического лица выполнять работы в определенной области оценки соответствия.
    [Федеральный закон "О техническом регулировании" от 27.12.2002 №184-ФЗ]

    аккредитация
    Процедура допуска организаций (агентов по продаже имущества, оценочных компаний и др.) к участию в конкурсах или иных конкурентных процедурах на проведение работ (оказание услуг) по заказу государственной или коммерческой организации.
    [ОАО РАО "ЕЭС России" СТО 17330282.27.010.001-2008]

    аккредитация
    Аккредитация относится к процессу регистрации, оформления, рассылки и проверки Олимпийских и Паралимпийских идентификационных и аккредитационных карточек, предоставляющих их владельцам права доступа и другие привилегии на Играх. ОКОИ может учредить функциональное подразделение, занимающееся всеми аспектами аккредитации.
    [Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]

    аккредитация
    1. Процедура допуска организаций (агентов по продаже имущества, оценочных компаний и др.) к участию в конкурсах или иных конкурентных процедурах на проведение работ (оказание услуг) по заказу государственной или коммерческой организации. 2. В сфере оказания профессиональных услуг ( оценить качество которых потребитель, как правило, по тем или иным причинам не в состоянии) – удостоверение в том, что эти качества соответствуют определенным стандартам и заслуживают доверия ( от лат. accredo, «доверять»). Например, к таким услугам принято относить: услуги по образованию (аккредитация вузов), услуги по проведению испытаний товаров (аккредитация лабораторий), услуги по клинической диагностике (аккредитация медицинских лабораторий), и другие. Аккредитация может быть государственная, негосударственная и общественная. Соответственно, подразделяются и организации, имеющие право ее производить.
    [ http://slovar-lopatnikov.ru/]

    EN

    accreditation
    Accreditation relates to the process of registering, producing, distributing and validating the Olympic and Paralympic identity and accreditation card that permits the holder access rights and other privileges for the Games. The OCOG may establish a functional area dealing with accreditation aspects.
    [Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]

    Тематики

    EN

     

    аккредитация (лаборатории)
    Процесс инспектирования лабораторий c целью подтверждения их соответствия определенным критериям.
    [Англо-русский глоссарий основных терминов по вакцинологии и иммунизации. Всемирная организация здравоохранения, 2009 г.]

    Тематики

    • вакцинология, иммунизация

    EN

     

    официальная регистрация

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    предоставление полномочий

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

    2.1 аттестация (accreditation): Процедура, посредством которой официальный орган формально признает, утверждает и принимает остаточный риск:

    a) для эксплуатации автоматизированной системы в определенном безопасном режиме с использованием заданного набора мер безопасности.

    [адаптировано из AGCA];

    b) того, что орган или лицо, обеспечивающее безопасность, достаточно компетентны для выполнения конкретных задач

    [адаптировано из Руководства 2 ИСО/МЭК] и

    c) того, что услуга по обеспечению безопасности соответствует предопределенной среде применения.

    Источник: ГОСТ Р 54581-2011: Информационная технология. Методы и средства обеспечения безопасности. Основы доверия к безопасности ИТ. Часть 1. Обзор и основы оригинал документа

    5.6 аккредитация (accreditation): Подтверждение соответствия (5.2) третьей стороной, относящееся к органу по оценке соответствия (2.5) и служащее официальным признанием его компетентности для выполнения конкретных задач по оценке соответствия.

    Источник: ГОСТ Р ИСО/МЭК 17000-2009: Оценка соответствия. Словарь и общие принципы оригинал документа

    5.9 аккредитация (accreditation): Подтверждение третьей стороной компетентности органа по валидации или верификации (5.6), официально заявляющего о своей компетенции в выполнении определенных задач в области валидации (5.4) или верификации (5.1).

    [ИСО 14065:2007]

    Источник: ГОСТ Р ИСО 14050-2009: Менеджмент окружающей среды. Словарь оригинал документа

    3.4.1 аккредитация (accreditation): Аттестация третьей стороны, действие которой распространяется на орган по валидации или верификации, официально заявляющий о своей компетенции в области выполнения специфических задач о валидации и верификации.

    Примечание - В соответствии с ИСО/МЭК 1700:2004, статья 5.6.

    Источник: ГОСТ Р ИСО 14065-2010: Газы парниковые. Требования к органам по валидации и верификации парниковых газов для их применения при аккредитации или других формах признания оригинал документа

    Англо-русский словарь нормативно-технической терминологии > accreditation

  • 86 block programming

    1. блочное программирование

     

    блочное программирование
    Метод решения сложных задач линейного программирования путем разложения модели на блоки. Крупноразмерная модель (включающая много показателей в исходной таблице) сводится к нескольким моделям меньшей размерности. Получившиеся задачи решаются вместе по специальным правилам согласования. Необходимость такого подхода обосновывается тем, что с ростом размерности трудоемкость, да и просто сложность решения задач растет невероятно быстро. «Проклятие размерности», по меткому выражению американского математика Р.Беллмана, характерно для большинства реальных задач математического программирования. Широко применяется Б.п. в отраслевых задачах оптимизации, где естественно разложение, «декомпозиция» общей модели отрасли либо на блоки – модели предприятий, либо на блоки, соответствующие последовательным стадиям переработки сырья (производственным переделам). Среди теоретических схем Б.п. наиболее известны две: метод декомпозиции Данцига-Вульфа и метод планирования на двух уровнях Корнаи-Липтака (Дж. Данциг и П.Вульф – американские, Я. Корнаи и Т. Липтак – венгерские ученые). Обе они представляют собой последовательные (итеративные) пересчеты, взаимно увязывающие решения главной «отраслевой» задачи и локальных задач предприятий. Различие же между ними состоит в том, что в первом случае итеративный процесс основан на корректировке двойственных оценок ресурсов и продукции (такая корректировка делает для «предприятия» выгодными планы, все более приближающиеся к оптимальному плану отрасли), а во втором случае – на корректировке лимитов общеотраслевых ресурсов, выделяемых предприятиям. При этом задача сводится к игре между центром, варьирующим допустимые распределения ресурсов, и предприятиями (варьирующими допустимые двойственные оценки ресурсов); ценой игры является сумма целевых функций предприятий. Иначе говоря, схема Данцига-Вульфа построена по принципу «централизованное определение цен – децентрализованное определение наилучших возможностей», а схема Корнаи-Липтака – по принципу «централизованное лимитирование возможностей – децентрализованное выявление эффекта от их использования» [1]. В обоих случаях важную роль играют двойственные оценки, причем их оптимальный уровень выявляется вместе с оптимальным распределением ресурсов, т.е. собственно планом (именно в этом состоит принцип оптимального планирования). [1] Эта удачная, на наш взгляд, формулировка заимствована из кн.: Математические методы в планировании отраслей и предприятий. М.: Экономика, 1973.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > block programming

  • 87 internal plant problems of optimal planning

    1. внутризаводские задачи оптимального планирования

     

    внутризаводские задачи оптимального планирования
    Массовая область применения экономико-математических методов в экономике, основа автоматизированных систем управления предприятиями. На начальном этапе применение экономико-математических методов характеризовалось разработкой и решением отдельных планово-экономических задач, например, задач оптимизации формирования производственной программы, использования производственных мощностей и др. В этом отношении накоплен богатый опыт. Основной оптимизационной моделью подсистемы перспективного планирования является модель выбора вариантов проектов реконструкции и нового строительства, решаемая методами целочисленного программирования. Она дополняется алгоритмической сетью расчета остальных показателей плана, производных по отношению к показателям капитальных вложений и объемов продукции по годам перспективного периода (эти показатели получаются непосредственно решением модели). Для подсистемы текущего планирования основной является модель оптимизации производственной программы (чаще всего для решения применяются методы линейного программирования). Эта модель сводится к нахождению таких объемов и номенклатуры выпуска продукции, которые в условиях установленной (госзаказом, заказами частных компаний, или прогнозом рыночной конъюнктуры) потребности и при наличных мощностях обеспечивали бы получение экстремума целевой функции; ею может быть максимизация прибыли, объема реализованной продукции и т.д. Экономико-математические модели календарного планирования предназначены для установления (например, в рамках месячного плана) конкретных сроков запуска деталей в производство; матричные модели материальных и информационных потоков используются для разработки бизнес-планов; модели теории управления запасами помогают регулировать незавершенное производство и контролировать запасы сырья, полуфабрикатов и готовой продукции и т.д. Однако опыт показал, что изолированное решение отдельных задач планирования и управления не позволяет полностью использовать возможности экономико-математических методов и современных вычислительных средств. Поэтому в настоящее время основным путем решения внутризаводских задач оптимального планирования и управления стал путь создания взаимосвязанных комплексов экономико-математических моделей. Они объединяют весь цикл управления — от сбора данных до выработки команд и решений, а также доведения их до исполнителей. Такой комплекс включает модели планирования, оптимизации решений и формирования данных непосредственно в последовательности, соответствующей технологии и графику операций по управлению производством. Часть моделей при этом предназначена для выработки на электронной технике управляющих команд в реальном масштабе времени. (Это относится, например, к управлению технологическими процессами в непрерывном производстве). В зависимости от институциональной формы предприятия (компании) возможны разные критерии оптимальности и разные стимулы производства для руководителей и коллективов этих экономических объектов.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > internal plant problems of optimal planning

  • 88 calculus mathematics

    1. вычислительная математика

     

    вычислительная математика
    Математическая дисциплина, изучающая методы численного решения математических задач путем нахождения алгоритма точного или приближенного получения результата с помощью конечной последовательности элементарных арифметических операций. В более широком смысле — «раздел математики, включающий круг вопросов, связанных с использованием ЭВМ» [1]. Соответственно этому пониманию в В.м. выделяются три больших раздела: анализ математических моделей; разработка методов и алгоритмов решения типовых математических задач, возникающих при исследовании моделей; вопросы упрощения взаимоотношений человека с ЭВМ, включая теорию и практику программирования задач для ЭВМ, в том числе автоматизации программирования. Среди важных задач В.м. — развитие численных методов оптимизации, исследование устойчивости методов и алгоритмов к различного рода ошибкам, в том числе ошибкам округления, а также разработка методов системного программирования.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > calculus mathematics

  • 89 round-robin

    Англо-русский словарь нормативно-технической терминологии > round-robin

  • 90 combinatorial methods in economics

    1. комбинаторные методы решения экономических задач

     

    комбинаторные методы решения экономических задач
    Совокупность (не вполне определенная) методов, основанных на идеях комбинаторики — отдела математики, изучающего вопросы, связанные с размещением и взаимным расположением частей конечного множества объектов. С помощью этих методов решаются разнообразные задачи математического программирования (если их не удается решить методами линейного или выпуклого программирования и др.). Они состоят либо в замене исходной задачи более «легкими» (см. Методы ветвей и границ), либо в построении правил, отсеивающих заведомо неоптимальные варианты решения. К.м. во многом носят эвристический характер, индивидуальны для разных классов задач, а часто и для отдельных задач. Причем нередко, чем более специален такой метод, тем эффективнее задача решается на ЭВМ. Специальными комбинаторными задачами являются задачи теории расписания.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > combinatorial methods in economics

  • 91 multi-criterion optimization

    1. многокритериальная оптимизация

     

    многокритериальная оптимизация
    1. Метод решения задач, которые состоят в поиске лучшего (оптимального) решения, удовлетворяющего нескольким несводимым друг к другу критериям. 2. Соответствующий раздел математического программирования. Например, надо принять решение о постройке шоссейной дороги в объезд города. Приходится при этом учитывать такие разнородные факторы и интересы разных субъектов, как выигрыш города в целом (меньше машин, чище воздух), проигрыш отдельных горожан (пассажиры, проезжающие через город, могут останавливаться на обед, покупать сувениры и т.п., а теперь это оказывается невозможным), повышение безопасности движения, время, затрачиваемое транспортом на проезд через город и объезд вокруг него и т.д. Для решения таких задач с помощью компьютера требуется их формализация, которая неизбежно связывается с экспертными оценками как самих критериев, так и взаимоотношений между ними (одни критерии противоречат друг другу, другие, наоборот, действуют в одном направлении, третьи — индифферентны, безразличны друг к другу). Поиски средств формализации многокритериальных задач — молодая, развивающаяся область исследований. Известен ряд способов решения многокритериальных задач: а) оптимизация одного критерия (почему-либо признанного наиболее важным); остальные при этом играют роль дополнительных ограничений; б) упорядочение заданного множества критериев и последовательная оптимизация по каждому из них (см. Лексикографическое упорядочение); в) сведение многих критериев к одному путем введения априорных (экспертных) весовых коэффициентов для каждого из критериев (более важный критерий получает более высокий вес). Термин «многокритериальные задачи» часто отождествляется с термином «задачи векторной оптимизации«; однако прослеживается различие: в последнем случае речь идет не о разнородных критериях системы, а о сопоставлении однородных критериев разных участников (см. рис. к статье Оптимальность по Парето). Нельзя также оба эти термина смешивать с термином «многоэкстремальные задачи«, для которых характерны не разные критерии, а наличие у целевой функции не только глобального (возможно и не единственного) экстремума, но и локальных экстремумов.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > multi-criterion optimization

  • 92 small business system

    1. небольшая вычислительная система для финансовых и управленческих задач
    2. небольшая вычислительная система для решения финансовых и управленческих задач

     

    небольшая вычислительная система для решения финансовых и управленческих задач

    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

     

    небольшая вычислительная система для финансовых и управленческих задач

    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > small business system

  • 93 nonlinear programming

    1. нелинейное программирование

     

    нелинейное программирование
    Раздел математического программирования, изучающий методы решения экстремальных задач с нелинейной целевой функцией и (или) областью допустимых решений, определенной нелинейными ограничениями. В экономике это соответствует тому, что результаты (эффективность) возрастают или убывают непропорционально изменению масштабов использования ресурсов (или, что то же самое, масштабов производства) - например, из-за деления издержек производства на предприятиях на переменные и условно-постоянные, из-за насыщения спроса на товары, когда каждую следующую единицу продать труднее, чем предыдущую, из-за влияния экстерналий (см.Внешняя экономия, внешние издержки) и т.д. В краткой форме задачу Н.п. можно записать так: F (x) ? max при условиях g (x) ? b, x ? 0. где x — вектор искомых переменных, F (x) — целевая функция, g (x) — функция ограничений (непрерывно дифференцируемая), b — вектор констант ограничений (выбор знака ? в первом условии здесь произволен, его всегда можно изменить на обратный). Решение задачи нелинейного программирования (глобальный максимум или минимум) может принадлежать либо границе, либо внутренней части допустимого множества. Иначе говоря, задача состоит в выборе таких неотрицательных значений переменных, подчиненных системе ограничений в форме неравенств, при которых достигается максимум (или минимум) данной функции. При этом не оговаривается форма ни целевой функции, ни неравенств. Могут быть разные случаи: целевая функция — нелинейна, а ограничения — линейны; целевая функция — линейна, а ограничения (хотя бы одно из них) - нелинейны; и целевая функция, и ограничения нелинейны. Задачи, в которых число переменных и (или) число ограничений бесконечно, называются задачами бесконечномерного Н.п.. Задачи, в которых целевая функция и (или) функции ограничений содержат случайные элементы, называются задачами стохастического Н.п. Например, задачу для двух переменных (выпуск продукта x и выпуск продукта y) и вогнутой целевой функции (прибыль — p) можно геометрически представить на чертеже (см. рис. H.4; заштрихована область допустимых решений). Эта задача реалистично отражает распространенное в экономике явление: рост прибыли с ростом производства до определенного (оптимального) уровня в точке B’, а затем ее снижение, например, вследствие затоваривания продукцией или исчерпания наиболее эффективных ресурсов. Нелинейные задачи сложны, часто их упрощают тем, что приводят к линейным. Для этого условно принимают, что на том или ином участке целевая функция возрастает или убывает пропорционально изменению независимых переменных. Такой подход называется методом кусочно-линейных приближений, он применим, однако, лишь к некоторым видам нелинейных задач. Нелинейные задачи в определенных условиях решаются с помощью функции Лагранжа (см. Множители Лагранжа, Лагранжиан): найдя ее седловую точку, тем самым находят и решение задачи. Среди вычислительных алгоритмов Н.п. большое место занимают градиентные методы. Универсального же метода для нелинейных задач нет, и, по-видимому, может не быть, поскольку они чрезвычайно разнообразны. Особенно трудно решаются многоэкстремальные задачи. Для некоторых типов задач выпуклого программирования (вид нелинейного) разработаны эффективные численные методы оптимизации Рис. Н.4 Нелинейное программирование (заштрихована область допустимых решений)
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > nonlinear programming

  • 94 scheduling theory

    1. теория расписаний

     

    теория расписаний
    Научная дисциплина, посвященная разработке методов оптимизации оперативно-календарного планирования. Задачи Т.р. — один из видов задач исследования операций, объединяемых в классе задач упорядочения. Они состоят в определении оптимальной очередности обработки изделий на различных станках или других рабочих местах, составлении программы-»диспетчера» для управления работой ЭВМ в мультипрограммном режиме и т.п. Для решения задач используется ряд методов линейного программирования, дискретного программирования, методы ветвей и границ, сетевого планирования и управления. Последнее время особое развитие принимают приближенные методы решения, резко сокращающие перебор вариантов, (метод Монте-Карло). Сложность таких задач можно проиллюстрировать примером: требуется спланировать изготовление четырех изделий, каждое из которых проходит обработку на каждом из пяти станков. Существует (4!)5 или почти 7962 тыс. различных вариантов обработки (последовательностей); некоторые из них к тому же надо как-то отсеять, поскольку определенные операции следует выполнять в заданном порядке. На практике, разумеется, задачи еще намного сложнее. Проще других решаются так называемые задачи одного станка: поиск наилучшей последовательности обработки на нем некоторого множества деталей (наилучшей с точки зрения минимума затрат на пролеживание деталей до и после обработки, минимума времени задержки в выдаче деталей по сравнению с установленным сроком, минимального объема незавершенного производства и т.п.). Существует также ряд моделей планирования работы производственного участка (методическую основу для них дает модель Джонсона для n деталей и двух станков, но она представляет лишь теоретический интерес и малоприменима на практике). Наконец, Т.р. содержит методы составления календарных планов работы предприятий. Обычно задача ставится таким образом: составить план изготовления всех изделий, в котором не нарушались бы технологические ограничения, ограничения по мощности оборудования, а также сроки запуска и выпуска продукции. См. также: Задача о коммивояжере, Оперативно-календарное планирование.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > scheduling theory

  • 95 environmental performance

    1. экологические характеристики
    2. экологическая эффективность (характеристики экологичности)
    3. экологическая результативность
    4. экологическая деятельность

     

    экологическая результативность
    (В контексте систем экологического менеджмента)
    Измеримые результаты функционирования системы экологического менеджмента, относящиеся к управлению организации своими экологическими аспектами, основанному на ее экологической политике, экологических целях и задачах.
    [ http://www.14000.ru/glossary/main.php?PHPSESSID=25e3708243746ef7c85d0a8408d768af]

    EN

    environmental performance
    Measurable results of the environmental management system, related to an organization's control of its environmental aspects, based on its environmental policy, objectives and targets.
    [ISO 14001]

    Тематики

    EN

     

    экологическая эффективность
    характеристики экологичности

    Измеряемые результаты системы управления окружающей средой, связанные с контролированием организацией экологических аспектов, основанных на ее экологической политике, а также на целевых и плановых экологических показателях.
    [ ГОСТ Р ИСО 14050-99]

    Тематики

    Синонимы

    EN

     

    экологические характеристики

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

    3.10 экологическая результативность (environmental performance): Измеряемые организацией (3.16) результаты управления своими экологическими аспектами (3.6).

    Примечание - В контексте систем экологического менеджмента (3.8) результаты могут быть измерены в отношении реализации экологической политики (3.11) организации (3.16), достижения экологических целей (3.9), выполнения экологических задач (3.12) и других требований к экологической результативности.

    Источник: ГОСТ Р ИСО 14001-2007: Системы экологического менеджмента. Требования и руководство по применению оригинал документа

    3.11 экологическая результативность (environmental performance): Измеряемые организацией (3.20) результаты управления своими экологическими аспектами (3.7)

    Примечание - В контексте систем экологического менеджмента (3.9) результаты могут быть измерены в отношении реализации экологической политики (3.13) организации (3.20), достижения экологических целей (3.10), выполнения экологических задач (3.14) и других требований к экологической результативности.

    [ИСО 14001:2004, 3.10]

    Источник: ГОСТ Р ИСО 14004-2007: Системы экологического менеджмента. Общее руководство по принципам, системам и методам обеспечения функционирования оригинал документа

    3.10 экологическая результативность (environmental performance): Измеряемые организацией (3.16) результаты управления своими экологическими аспектами (3.6).

    Примечание - В контексте систем экологического менеджмента (3.8) результаты могут быть измерены в отношении реализации экологической политики (3.11) организации (3.16), достижения экологических целей (3.9), выполнения экологических задач (3.12) и других требований к экологической результативности.

    Источник: ГОСТ Р 54336-2011: Системы экологического менеджмента в организациях, выпускающих нанопродукцию. Требования оригинал документа

    3.16 экологическая результативность (environmental performance): Измеряемые результаты управления организацией (3.4) своими экологическими аспектами (3.2).

    Примечание - В контексте систем экологического менеджмента (4.1) результаты можно оценивать относительно экологической политики (4.1.1) организации (3.4), экологических целей (4.1.2), экологических задач (4.1.3) и других требований к экологической результативности.

    [ИСО 14001:2004]

    Источник: ГОСТ Р ИСО 14050-2009: Менеджмент окружающей среды. Словарь оригинал документа

    Англо-русский словарь нормативно-технической терминологии > environmental performance

  • 96 economico-mathematical studies in the ex-USSR and russia

    1. экономико-математические исследования в бывш. СССР и России

     

    экономико-математические исследования в бывш. СССР и России
    (исторический очерк) Э.-м.и. — направление научных исследований, которые ведутся на стыке экономики, математики и кибернетики и имеют основной целью повышение экономической эффективности общественного производства с помощью математического анализа экономических процессов и явлений и основанных на нем методов принятия оптимальных (шире — рациональных) плановых и иных управленческих решений. Они затрагивают также общую проблематику оптимального распределения ресурсов безотносительно к характеру социально-экономического строя. Развитие Э.-м.и. в бывш. СССР надо рассматривать как этап противоречивого процесса развития отечественной экономической науки и часть общего процесса развития мировой экономической науки, в настоящее время во многом практически математизированной. Первым достижением в развитии Э.-м.и. явилась разработка советскими учеными межотраслевого баланса производства и распределения продукции в народном хозяйстве страны за 1923/24 хозяйственный год. В основу методологии их исследования были положены модели воспроизводства К.Маркса, а также модели В.К.Дмитриева. Эта работа нашла международное признание и предвосхитила развитие американским экономистом русского происхождения В.В.Леонтьевым его прославленного метода «затраты-выпуск».. (Впоследствии, после длительного перерыва, вызванного тем, что Сталин потребовал прекратить межотраслевые исследования, они стали широко применяться и в нашей стране под названием метода межотраслевого баланса.) Примерно в это же время советский экономист Г.А.Фельдман представил в Комиссию по составлению первого пятилетнего плана доклад «К теории темпов народного дохода», в котором предложил ряд моделей анализа и планирования синтетических показателей развития экономики. Этим самым были заложены основы теории экономического роста. Другой выдающийся ученый Н.К.Кондратьев разработал теорию долговременных экономических циклов, нашедшую мировое признание. Однако в начале тридцатых годов Э.м.и. в СССР были практически свернуты, а Фельдман, Кондратьев и сотни других советских экономистов были репрессированы, погибли в застенках Гулага. Продолжались лишь единичные, разрозненные исследования. В одном из них, работе Л.В.Канторовича «Математические методы организации и планирования производства» (1939 г.) были впервые изложены принципы новой отрасли математики, которая позднее получила название линейного программирования, а если смотреть шире, то этим были заложены основы фундаментальной для экономики теории оптимального распределения ресурсов. Л.В.Канторович четко сформулировал понятие экономического оптимума и ввел в науку оптимальные, объективно обусловленные оценки — средство решения и анализа оптимизационных задач. Одновременно советский экономист В.В.Новожилов пришел к аналогичным выводам относительно распределения ресурсов. Он выработал понятие оптимального плана народного хозяйства, как такого плана, который требует для заданного объема продукции наименьшей суммы трудовых затрат, и ввел понятия, позволяющие находить этот минимум: в частности, понятие «дифференциальных затрат народного хозяйства по данному продукту», близкое по смыслу к оптимальным оценкам Л.В.Канторовича. Большой вклад в разработку экономико-математических методов внес академик В.С.Немчинов: он создал ряд новых моделей МОБ, в том числе модель экономического района; очень велики его заслуги в области организационного оформления и развития экономико-математического направления советской науки. Он основал первую в стране экономико-математическую лабораторию, впоследствии на ее базе и на базе нескольких других коллективов был создан Центральный экономико-математический институт АН СССР, ныне ЦЭМИ РАН (см.ниже).. В 1965 г. академикам Л.В.Канторовичу, В.С.Немчинову и проф. В.В.Новожилову за научную разработку метода линейного программирования и экономических моделей была присуждена Ленинская премия. В 1975 г. Л.В.Канторович был также удостоен Нобелевской премии по экономике. В 50 — 60-x гг. развернулась широкая работа по составлению отчетных, а затем и плановых МОБ народного хозяйства СССР и отдельных республик. За цикл исследований по разработке методов анализа и планирования межотраслевых связей и отраслевой структуры народного хозяйства, построению плановых и отчетных МОБ академику А.Н.Ефимову (руководитель работы), Э.Ф.Баранову, Л.Я.Берри, Э.Б.Ершову, Ф.Н.Клоцвогу, В.В.Коссову, Л.Е.Минцу, С.С.Шаталину, М.Р.Эйдельману в 1968 г. была присуждена Государственная премия СССР. Развитие Э.-м.и., накопление опыта решения экономико-математических задач, выработка новых теоретических положений и переосмысление многих старых положений экономической науки, вызванное ее соединением с математикой и кибернетикой, позволили в начале 60-х гг. академику Н.П.Федоренко выступить с идеей о необходимости теоретической разработки и поэтапной реализации единой системы оптимального функционирования социалистической экономики (СОФЭ). Стало ясно, что внедрение математических методов в экономические исследования должно приводить и приводит к совершенствованию всей системы экономических знаний, обеспечивает дальнейшую систематизацию, уточнение и развитие основных понятий и категорий науки, усиливает ее действенность, т.е. прежде всего ее влияние на рост эффективности народного хозяйства. С 60-х годов расширилось число научных учреждений, ведущих Э.-м.и., в частности, были созданы Центральный экономико-математический институт АН СССР, Институт экономики и организации промышленного производства СО АН СССР, развернулась подготовка кадров экономистов-математиков и специалистов по экономической кибернетике в МГУ, НГУ, МИНХ им. Плеханова и других вузах страны. Исследования охватили теоретическую разработку проблем оптимального функционирования экономики, системного анализа, а также такие прикладные области как отраслевое перспективное планирование, материально-техническое снабжение, создание математических методов и моделей для автоматизированных систем управления предприятиями и отраслями. На первых этапах возрождения Э.-м.и. в СССР усилия в области моделирования концентрировались на построении макромоделей, отражающих функционирование народного хозяйства страны в целом, а также ряда частных моделей и на развитии соответствующего математического аппарата. Такие попытки имели немалое методологическое значение и способствовали углублению понимания общих вопросов экономико-математического моделироdания (в том числе таких, как адекватность моделей, границы их познавательных возможностей и т.д.). Но скоро стала очевидна ограниченность такого подхода. Концепция СОФЭ стимулировала развитие иного подхода — системного моделирования экономических процессов, были расширены методологические поиски экономических рычагов воздействия на экономику: оптимального ценообразования, платы за использование природных и трудовых ресурсов и т.д. На этой основе начались параллельные разработки ряда систем моделей, из которых наиболее известны многоуровневая система среднесрочного прогнозирования (рук. Б.Н.Михалевский), система моделей для расчетов по определению общих пропорций развития народного хозяйства и согласованию отраслевых и территориальных разрезов плана — СМОТР (рук. Э.Ф.Баранов), система многоступенчатой оптимизации экономики (рук. В.Ф.Пугачев), межотраслевая межрайонная модель (рук. А.Г.Гранберг). Существенно углубилось понимание народнохозяйственного оптимума, роли и места экономических стимулов в его достижении. Наряду с распространенной ранее скалярной оптимизацией в исследованиях стала более активно применяться многокритериальная, лучше учитывающая многосложность условий и обстоятельств решения плановой задачи. Более того, стало меняться общее отношение к оптимизации как универсальному принципу: вместе с ней (но не вместо нее, как иногда можно прочитать) начали разрабатываться методы принятия рациональных (не обязательно оптимальных в строгом смысле этого слова) решений, теория компромисса и неантагонистических игр (Ю.Б.Гермейер) и другие методы, учитывающие не только технико-экономические, но и человеческие факторы: интересы участников процессов принятия и реализации решений. В начале 70-х гг. экономисты-математики провели широкие исследования в области применения программно-целевых методов в планировании и управлении народным хозяйством. Они приняли также активное участие в разработке методики регулярного (раз в пять лет) составления Комплексной программы научно-технического прогресса на очередное двадцатилетие. Впервые в работе такого масштаба при определении общих пропорций развития народного хозяйства на перспективу и решении некоторых частных задач был использован аппарат экономико-математических методов. Началось широкое внедрение программно-целевого метода в практику народнохозяйственного планирования. Были продолжены работы по созданию АСПР — автоматизированной системы плановых расчетов Госплана СССР и Госпланов союзных республик, и в 1977 г. введена в действие ее первая очередь, а в 1985 г. — вторая очередь. Выявились и немалые трудности непосредственного внедрения оптимизационных принципов в практику хозяйствования. В условиях, когда предприятия, объединения, отраслевые министерства были заинтересованы не столько в выявлении производственных резервов, сколько в их сокрытии, чтобы избежать получения напряженных плановых заданий, учитывающих эти резервы, оптимизация не могла найти повсеместную поддержку: ее смысл как раз в выявлении резервов. Поэтому работа по созданию АСУ не всегда давала должные результаты: усилия затрачивались на учет, анализ, расчеты по заработной плате, но не на оптимизацию, т.е. повышение эффективности производства (оптимизационные задачи в большинстве АСУ занимали лишь 2 — 3% общего объема решаемых задач). В результате эффективность производства не росла, а штаты управления увеличивались: создавались отделы АСУ, вычислительные центры. Эти обстоятельства способствовали некоторому спаду экономико-математических исследований к началу 80-х гг. Большой удар по экономико-математическому направлению был нанесен в 1983 г., когда бывший тогда секретарем ЦК КПСС К.У.Черненко обрушился с явно несправедливой и предвзятой критикой на ЦЭМИ АН СССР, после чего институт жестоко пострадал: подвергся реорганизации, был разделен надвое, потом еще раз надвое, из него ушел ряд ведущих ученых. Тем не менее, прошедшие годы ознаменовались серьезными научными и практическими достижениями экономико-математического крыла советской экономической науки. В ряде аспектов, прежде всего теоретических — оно заняло передовые позиции в мировой науке. Например, в области математической экономики и эконометрии (не говоря уже об открытиях Л.В.Канторовича) широко известны советские исследования процессов оптимального экономического роста (В.Л.Макаров, С.М.Мовшович, А.М.Рубинов и др.), ряд моделей экономического равновесия; сделанная еще в 1976 г. В.М.Полтеровичем попытка синтеза теории равновесия и теории экономического роста; работы отечественных ученых в области теории игр, теории группового (социального) выбора и многие другие. В каком-то смысле опережая время, экономисты-математики еще в 70-е гг. приступили к моделированию и изучению таких явлений, приобретших острую актуальность в период перестройки, как «самоусиление дефицита», экономика двух рынков — с фиксированными и гибкими ценами, функционирование экономики в условиях неравновесия. Активно развивается математический аппарат, в частности, такие его разделы, как линейное и нелинейное программирование (Е.Г.Гольштейн), дискретное программирование (А.А.Фридман), теория оптимального управления (Л.С.Понтрягин и его школа), методы прикладного математико-статистического анализа (С.А.Айвазян). За последние годы развернулось широкое использование имитационных методов, являющихся характерной чертой современного этапа развития экономико-математических методов. Хотя сама по себе идея машинной имитации зародилась существенно раньше, ее практическая реализация оказалась возможной именно теперь, когда появились электронные вычислительные машины новых поколений, обеспечивающие прямой диалог человека с машиной. Наконец, новым направлением прикладной работы, синтезирующим достижения в области экономико-математического моделирования и информатики, стала разработка и реализация концепции АРМ (автоматизированного рабочего места плановика и экономиста), а также концепции стендового экспериментирования над экономическими системами (В.Л.Макаров). Начинается (во всяком случае должна начинаться) переориентация Э.-м.и. на изучение путей формирования и эффективного функционирования рынка (особенно переходного процесса — это самостоятельная тема). Тут может быть использован богатый арсенал экономико-математических методов, накопленный не только в нашей стране, но и в странах с развитой рыночной экономикой.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > economico-mathematical studies in the ex-USSR and russia

  • 97 expert system

    1. экспертная система

     

    экспертная система
    ЭС

    Система, использующая базу знаний для решения задач в некоторой предметной области. ЭС - одно из направлений ИИ.
    Синоним - knowledge-based system.
    Особый класс систем искусственного интеллекта, включающий знания об определённой слабо структурированной и трудно формализуемой узкой предметной области и способная предлагать и объяснять разумные решения. Ее основным назначением является: интерпретация данных, диагностика состояния, мониторинг, прогнозирование, планирование и обучение.
    [ http://www.morepc.ru/dict/]

    экспертная система
    Компьютерная система, предназначенная для решения качественных задач с помощью накапливаемых знаний и получения из них логических выводов. Последние могут вырабатываться как с помощью формализации собранной от экспертов-специалистов в данной предметной области информации, так и с помощью извлечения знаний из других информационных источников. Э.с. с успехом применяются в управлении производством и исследовании операций для решения как тактических задач типа составления графика работы оборудования, так и стратегических — планирования, прогнозирования, распределения ресурсов. Э.с. способны фиксировать неудачные решения и учитывать их в дальнейшем, встречаясь с аналогичными задачами. Они оценивают ограничения задачи, и если при этих ограничениях она оказывается неразрешимой, автоматически смягчают их, следуя установленным приоритетам, пока не «выходят» на приемлемые удовлетворительные решения. Применяются разнообразные экономико-математические методы: сети, методы ветвей и границ, стохастические процессы и др. В некоторых достаточно узких областях Э.с. оказываются эффективнее человека-специалиста (как правило, это относится к решению хорошо структурированных задач, поддающихся строгому операциональному описанию, но не к слабоструктурированным проблемам).
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    • ЭС

    EN

    Англо-русский словарь нормативно-технической терминологии > expert system

  • 98 backgrounding

    I фоновая обработка (данных) ;
    решение задач с низким приоритетом (при отсутствии задач с более высоким приоритетом) II организация фоновой обработки( данных)
    фоновая обработка
    backgrounding вчт. организация фоновой обработки ~ вчт. решение задач с низким приоритетом ~ вчт. фоновая обработка

    Большой англо-русский и русско-английский словарь > backgrounding

  • 99 on-line problem solving


    1. решение задач в централизованном режиме (напр. при дистанционной обработке), решение задач в режиме онлайн
    2. решение задач в реальном (масштабе) времени

    Большой англо-русский и русско-английский словарь > on-line problem solving

  • 100 dynamic programming

    иссл. опер. динамическое программирование (раздел исследования операций, посвященный теории и методам решения многошаговых задач принятия оптимальных решений; отличие таких задач от задач математического программирования заключается в том, что на каждом этапе в задаче может появляться новая информация)
    See:
    * * *

    Англо-русский экономический словарь > dynamic programming

См. также в других словарях:

  • Теория решения изобретательских задач — Эта статья или раздел нуждается в переработке. Пожалуйста, улучшите статью в соответствии с правилами написания статей …   Википедия

  • Решение задач — процесс выполнения действий или мыслительных операций, направленный на достижение цели, заданной в рамках проблемной ситуации задачи; является составной частью мышления. С точки зрения когнитивного подхода процесс решения задач является наиболее… …   Википедия

  • Диспетчер задач Windows — Эта статья  о Диспетчере задач в Microsoft Windows. О других подобных программах читайте в статье Диспетчер задач. Диспетчер задач в Windows 7 Диспетчер задач …   Википедия

  • Диспетчер задач — У этого термина существуют и другие значения, см. Диспетчер (значения). Эта статья  об утилитах управления процессами. О встроенной утилите Microsoft Windows см. Диспетчер задач Microsoft Windows. Диспетчер задач … …   Википедия

  • ИСЧИСЛЕНИЕ ЗАДАЧ — интуиционистское исчисление высказываний, понимаемое в свете интерпретации, к рую предложил в 1932 сов. ученый А. Н. Колмогоров. Эта интерпретация была свободна от гносеологич. установок интуиционизма и вскрывала содержательный материалистич.… …   Философская энциклопедия

  • Диспетчер задач Microsoft Windows — Эта статья о Диспетчере задач в Microsoft Windows. О других подобных программах читайте в статье Диспетчер задач. Task manager из Windows 4.x под Windows XP (NT 5.1) …   Википедия

  • Панель задач — У этого термина существуют и другие значения, см. Панель. Панель задач (англ. taskbar)  приложение, которое используется для запуска других программ или управления уже запущенными, и представляет собой …   Википедия

  • Менеджер задач — Это статья об утилитах управления процессами. О встроенной утилите Microsoft Windows см. статью Диспетчер задач Microsoft Windows Диспетчер задач  компьютерная программа (утилита) для вывода на экран списка запущенных процессов и потребляемых ими …   Википедия

  • Панель задач Windows — Панель задач (англ. taskbar)  приложение, которое используется для запуска других программ или управления уже запущенными, и представляет собой панель инструментов. В частности используется для управления окнами приложений. Панель задач может… …   Википедия

  • Панель задач Microsoft Windows — Панель задач (англ. taskbar)  приложение, которое используется для запуска других программ или управления уже запущенными, и представляет собой панель инструментов. В частности используется для управления окнами приложений. Панель задач может… …   Википедия

  • Этапы решение задач на ЭВМ — Значимость предмета статьи поставлена под сомнение. Пожалуйста, покажите в статье значимость её предмета, добавив в неё доказательства значимости по частным критериям значимости или, в случае если частные критерии значимости для… …   Википедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»