Перевод: со всех языков на русский

с русского на все языки

(задач)

  • 41 cílů (2.p. mn.č.)

    • задач
    * * *

    České-ruský slovník > cílů (2.p. mn.č.)

  • 42 úkoly klubu

    České-ruský slovník > úkoly klubu

  • 43 business computer

    1) Компьютерная техника: ЭВМ для экономических задач
    4) Вычислительная техника: ЭВМ для коммерческих задач, вычислительная машина для ( решения) коммерческих задач, вычислительная машина для (решения) экономических задач, вычислительная машина для решения коммерческих задач, вычислительная машина для решения экономических или коммерческих задач, компьютер для экономических расчётов

    Универсальный англо-русский словарь > business computer

  • 44 business-oriented computer

    2) Вычислительная техника: вычислительная машина для (решения) коммерческих задач, вычислительная машина для ( решения) экономических задач, вычислительная машина для решения коммерческих задач, вычислительная машина для решения экономических или коммерческих задач, машина для решения коммерческих задач, машина для решения экономических задач, машина для решения экономических или коммерческих задач

    Универсальный англо-русский словарь > business-oriented computer

  • 45 business machine

    1) Экономика: конторская машина, счётная машина для коммерческих задач, счётная машина для экономических задач, счётная машина для коммерческих задач (решения), счётная машина для экономических задач (решения), счётная машина для экономических или коммерческих задач (решения)
    2) Вычислительная техника: (calculating) счётная машина для (решения) коммерческих задач, (calculating) счётная машина для (решения) экономических задач, компьютер для коммерческих задач, счётная машина для решения экономических или коммерческих задач

    Универсальный англо-русский словарь > business machine

  • 46 business application

    3) Вычислительная техника: бизнес-приложение, коммерческая программа, коммерческое приложение, коммерческое применение, компьютерное решение экономических задач, прикладная программа для деловой сферы, применение ЭВМ для решения экономических задач, применение в бизнесе, применение вычислительных машин для ( решения) коммерческих задач, применение вычислительных машин для (решения) экономических задач, применение вычислительных машин для решения коммерческих задач, применение вычислительных машин для решения экономических задач, применение вычислительных машин для решения экономических или коммерческих задач, применение компьютера для решения экономических задач

    Универсальный англо-русский словарь > business application

  • 47 commercial computer

    Универсальный англо-русский словарь > commercial computer

  • 48 network-oriented language

    2) Вычислительная техника: язык для (описания) задач анализа схем, язык для ( описания) задач моделирования схем, язык для (описания) сетевых задач, язык для описания задач анализа или моделирования схем, язык для описания задач анализа схем, язык для описания задач моделирования схем, язык для описания сетевых задач

    Универсальный англо-русский словарь > network-oriented language

  • 49 problem solving

    cooperative problem solving — решение задач в режиме сотрудничества; кооперативное решение задач

    problem solving ability — способность к решению задач; способность к автоматическому решению задач

    on-line problem solving — решение задач в централизованном режиме; решение задач в режиме онлайн; решение задач в реальном масштабе времени

    English-Russian dictionary of Information technology > problem solving

  • 50 smart metering

    1. интеллектуальный учет электроэнергии

     

    интеллектуальный учет электроэнергии
    -
    [Интент]

    Учет электроэнергии

    Понятия «интеллектуальные измерения» (Smart Metering), «интеллектуальный учет», «интеллектуальный счетчик», «интеллектуальная сеть» (Smart Grid), как все нетехнические, нефизические понятия, не имеют строгой дефиниции и допускают произвольные толкования. Столь же нечетко определены и задачи Smart Metering в современных электрических сетях.
    Нужно ли использовать эти термины в такой довольно консервативной области, как электроэнергетика? Что отличает новые системы учета электроэнергии и какие функции они должны выполнять? Об этом рассуждает Лев Константинович Осика.

    SMART METERING – «ИНТЕЛЛЕКТУАЛЬНЫЙ УЧЕТ» ЭЛЕКТРОЭНЕРГИИ

    Определения и задачи
    По многочисленным публикациям в СМИ, выступлениям на конференциях и совещаниях, сложившемуся обычаю делового оборота можно сделать следующие заключения:
    • «интеллектуальные измерения» производятся у потребителей – физических лиц, проживающих в многоквартирных домах или частных домовладениях;
    • основная цель «интеллектуальных измерений» и реализующих их «интеллектуальных приборов учета» в России – повышение платежной дисциплины, борьба с неплатежами, воровством электроэнергии;
    • эти цели достигаются путем так называемого «управления электропотреблением», под которым подразумеваются ограничения и отключения неплательщиков;
    • средства «управления электропотреблением» – коммутационные аппараты, получающие команды на включение/отключение, как правило, размещаются в одном корпусе со счетчиком и представляют собой его неотъемлемую часть.
    Главным преимуществом «интеллектуального счетчика» в глазах сбытовых компаний является простота осуществления отключения (ограничения) потребителя за неплатежи (или невнесенную предоплату за потребляемую электроэнергию) без применения физического воздействия на существующие вводные выключатели в квартиры (коттеджи).
    В качестве дополнительных возможностей, стимулирующих установку «интеллектуальных приборов учета», называются:
    • различного рода интеграция с измерительными приборами других энергоресурсов, с биллинговыми и информационными системами сбытовых и сетевых компаний, муниципальных администраций и т.п.;
    • расширенные возможности отображения на дисплее счетчика всей возможной (при первичных измерениях токов и напряжений) информации: от суточного графика активной мощности, напряжения, частоты до показателей надежности (времени перерывов в питании) и денежных показателей – стоимости потребления, оставшейся «кредитной линии» и пр.;
    • двухсторонняя информационная (и управляющая) связь сбытовой компании и потребителя, т.е. передача потребителю различных сообщений, дистанционная смена тарифа, отключение или ограничение потребления и т.п.

    ЧТО ТАКОЕ «ИНТЕЛЛЕКТУАЛЬНЫЕ ИЗМЕРЕНИЯ»?

    Приведем определение, данное в тематическом докладе комитета ЭРРА «Нормативные аспекты СМАРТ ИЗМЕРЕНИЙ», подготовленном известной международной компанией КЕМА:
    «…Для ясности необходимо дать правильное определение смарт измерениям и описать организацию инфраструктуры смарт измерений. Необходимо отметить, что между смарт счетчиком и смарт измерением существует большая разница. Смарт счетчик – это отдельный прибор, который установлен в доме потребителя и в основном измеряет потребление энергии потребителем. Смарт измерения – это фактическое применение смарт счетчиков в большем масштабе, то есть применение общего принципа вместо отдельного прибора. Однако, если рассматривать пилотные проекты смарт измерений или национальные программы смарт измерений, то иногда можно найти разницу в определении смарт измерений. Кроме того, также часто появляются такие термины, как автоматическое считывание счетчика (AMR) и передовая инфраструктура измерений (AMI), особенно в США, в то время как в ЕС часто используется достаточно туманный термин «интеллектуальные системы измерений …».
    Представляют интерес и высказывания В.В. Новикова, начальника лаборатории ФГУП ВНИИМС [1]: «…Это автоматизированные системы, которые обеспечивают и по-требителям, и сбытовым компаниям контроль и управление потреблением энергоресурсов согласно установленным критериям оптимизации энергосбережения. Такие измерения называют «интеллектуальными измерениями», или Smart Metering, как принято за рубежом …
    …Основные признаки Smart Metering у счетчиков электрической энергии. Их шесть:
    1. Новшества касаются в меньшей степени принципа измерений электрической энергии, а в большей – функциональных возможностей приборов.
    2. Дополнительными функциями выступают, как правило, измерение мощности за короткие периоды, коэффициента мощности, измерение времени, даты и длительности провалов и отсутствия питающего напряжения.
    3. Счетчики имеют самодиагностику и защиту от распространенных методов хищения электроэнергии, фиксируют в журнале событий моменты вскрытия кожуха, крышки клеммной колодки, воздействий сильного магнитного поля и других воздействий как на счетчик, его информационные входы и выходы, так и на саму электрическую сеть.
    4. Наличие функций для управления нагрузкой и подачи команд на включение и отключение электрических приборов.
    5. Более удобные и прозрачные функции для потребителей и энергоснабжающих организаций, позволяющие выбирать вид тарифа и энергосбытовую компанию в зависимости от потребностей в энергии и возможности ее своевременно оплачивать.
    6. Интеграция измерений и учета всех энергоресурсов в доме для выработки решений, минимизирующих расходы на оплату энергоресурсов. В эту стратегию вовлекаются как отдельные потребители, так и управляющие компании домами, энергоснабжающие и сетевые компании …».
    Из этих цитат нетрудно заметить, что первые 3 из 6 функций полностью повторяют требования к счетчикам АИИС КУЭ на оптовом рынке электроэнергии и мощности (ОРЭМ), которые не менялись с 2003 г. Функция № 5 является очевидной функцией счетчика при работе потребителя на розничных рынках электроэнергии (РРЭ) в условиях либеральной (рыночной) энергетики. Функция № 6 практически повторяет многочисленные определения понятия «умный дом», а функция № 4, провозглашенная в нашей стране, полностью соответствует желаниям сбытовых компаний найти наконец действенное средство воздействия на неплательщиков. При этом ясно, что неплатежи – не следствие отсутствия «умных счетчиков», а результат популистской политики правительства. Отключить физических (да и юридических) лиц невозможно, и эта функция счетчика, безусловно, останется невостребованной до внесения соответствующих изменений в нормативно-правовые акты.
    На функции № 4 следует остановиться особо. Она превращает измерительный прибор в управляющую систему, в АСУ, так как содержит все признаки такой системы: наличие измерительного компонента, решающего компонента (выдающего управляющие сигналы) и, в случае размещения коммутационных аппаратов внутри счетчика, органов управления. Причем явно или неявно, как и в любой системе управления, подразумевается обратная связь: заплатил – включат опять.
    Обоснованное мнение по поводу Smart Grid и Smart Metering высказал В.И. Гуревич в [2]. Приведем здесь цитаты из этой статьи с локальными ссылками на используемую литературу: «…Обратимся к истории. Впервые этот термин встретился в тексте статьи одного из западных специалистов в 1998 г. [1]. В названии статьи этот термин был впервые использован Массудом Амином и Брюсом Волленбергом в их публикации «К интеллектуальной сети» [2]. Первые применения этого термина на Западе были связаны с чисто рекламными названиями специальных контроллеров, предназначенных для управления режимом работы и синхронизации автономных ветрогенераторов (отличающихся нестабильным напряжением и частотой) с электрической сетью. Потом этот термин стал применяться, опять-таки как чисто рекламный ход, для обозначения микропроцессорных счетчиков электроэнергии, способных самостоятельно накапливать, обрабатывать, оценивать информацию и передавать ее по специальным каналам связи и даже через Интернет. Причем сами по себе контроллеры синхронизации ветрогенераторов и микропроцессорные счетчики электроэнергии были разработаны и выпускались различными фирмами еще до появления термина Smart Grid. Это название возникло намного позже как чисто рекламный трюк для привлечения покупателей и вначале использовалось лишь в этих областях техники. В последние годы его использование расширилось на системы сбора и обработки информации, мониторинга оборудования в электроэнергетике [3] …
    1. Janssen M. C. The Smart Grid Drivers. – PAC, June 2010, p. 77.
    2. Amin S. M., Wollenberg B. F. Toward a Smart Grid. – IEEE P&E Magazine, September/October, 2005.
    3. Gellings C. W. The Smart Grid. Enabling Energy Efficiency and Demand Response. – CRC Press, 2010. …».
    Таким образом, принимая во внимание столь различные мнения о предмете Smart Grid и Smart Metering, сетевая компания должна прежде всего определить понятие «интеллектуальная система измерения» для объекта измерений – электрической сети (как актива и технологической основы ОРЭМ и РРЭ) и представить ее предметную область именно для своего бизнеса.

    БИЗНЕС И «ИНТЕЛЛЕКТУАЛЬНЫЙ УЧЕТ»

    В результате изучения бизнес-процессов деятельности ряда сетевых компаний и взаимодействия на РРЭ сетевых, энергосбытовых компаний и исполнителей коммунальных услуг были сформулированы следующие исходные условия.
    1. В качестве главного признака новой интеллектуальной системы учета электроэнергии (ИСУЭ), отличающей ее от существующей системы коммерческого и технического учета электроэнергии, взято расширение функций, причем в систему вовлекаются принципиально новые функции: определение технических потерь, сведение балансов в режиме, близком к on-line, определение показателей надежности. Это позволит, среди прочего, получить необходимую информацию для решения режимных задач Smart Grid – оптимизации по реактивной мощности, управления качеством электроснабжения.
    2. Во многих случаях (помимо решения задач, традиционных для сетевой компании) рассматриваются устройства и системы управления потреблением у физических лиц, осуществляющие их ограничения и отключения за неплатежи (традиционные задачи так называемых систем AMI – Advanced Metering Infrastructure).
    Учитывая вышеизложенное, для электросетевой компании предлагается принимать следующее двойственное (по признаку предметной области) определение ИСУЭ:
    в отношении потребителей – физических лиц: «Интеллектуальная система измерений – это совокупность устройств управления нагрузкой, приборов учета, коммуникационного оборудования, каналов передачи данных, программного обеспечения, серверного оборудования, алгоритмов, квалифицированного персонала, которые обеспечивают достаточный объем информации и инструментов для управления потреблением электроэнергии согласно договорным обязательствам сторон с учетом установленных критериев энергоэффективности и надежности»;
    в отношении системы в целом: «Интеллектуальная система измерений – это автоматизированная комплексная система измерений электроэнергии (с возможностью измерений других энергоресурсов), определения учетных показателей и решения на их основе технологических и бизнес-задач, которая позволяет интегрировать различные информационные системы субъектов рынка и развиваться без ограничений в обозримом будущем».

    ЗАДАЧИ «ИНТЕЛЛЕКТУАЛЬНОГО УЧЕТА»

    Далее мы будем основываться на том, что ИСУЭ позволит осуществить следующие функции в бытовом секторе:
    • дистанционное получение от каждой точки измерения (узла учета) у бытового потребителя сведений об отпущенной или потребленной электроэнергии;
    • расчет внутриобъектового (многоквартирный жилой дом, поселок) баланса поступления и потребления энергоресурсов с целью выявления технических и коммерческих потерь и принятия мер по эффективному энергосбережению;
    • контроль параметров поставляемых энергоресурсов с целью обнаружения и регистрации их отклонений от договорных значений;
    • обнаружение фактов несанкционированного вмешательства в работу приборов учета или изменения схем подключения электроснабжения;
    • применение санкций против злостных неплательщиков методом ограничения потребляемой мощности или полного отключения энергоснабжения;
    • анализ технического состояния и отказов приборов учета;
    • подготовка отчетных документов об электропотреблении;
    • интеграция с биллинговыми системами.

    «ИНТЕЛЛЕКТУАЛЬНЫЙ КОММЕРЧЕСКИЙ УЧЕТ»

    Остановимся подробно на одном из атрибутов ИСУЭ, который считаю ключевым для основного электросетевого бизнеса.
    Особенностью коммерческого учета электроэнергии (КУЭ) распределительных сетевых компаний является наличие двух сфер коммерческого оборота электроэнергии – ОРЭМ и РРЭ, которые хотя и сближаются в нормативном и организационном плане, но остаются пока существенно различными с точки зрения требований к КУЭ.
    Большинство сетевых компаний является субъектом как ОРЭМ, так и РРЭ. Соответственно и сам коммерческий учет в отношении требований к нему разделен на два вида:
    • коммерческий учет на ОРЭМ (технические средства – АИИС КУЭ);
    • коммерческий учет на РРЭ (технические средства – АСКУЭ).
    Кроме того, к коммерческому учету, т.е. к определению тех показателей, которые служат для начисления обязательств и требований сетевой компании (оплата услуг по транспорту электроэнергии, купля-продажа технологических потерь), следует отнести и измерения величин, необходимых для определения показателей надежности сети в отношении оказания услуг по передаче электроэнергии.
    Отметим, что сложившиеся технологии АИИС КУЭ и АСКУЭ по своей функциональной полноте (за исключением функции коммутации нагрузки внутри систем) – это технологии Smart Metering в том понимании, которое мы обсуждали выше. Поэтому далее будем считать эти понятия полностью совпадающими.
    Подсистема ИСУЭ на РРЭ, безусловно, самая сложная и трудоемкая часть всей интеллектуальной системы как с точки зрения организации сбора информации (включая измерительные системы (ИС) и средства связи в автоматизированных системах), так и с точки зрения объема точек поставки и соответственно средств измерений. Последние отличаются большим многообразием и сложностью контроля их и метрологических характеристик (МХ).
    Если технические требования к ИС на ОРЭМ и к ИС крупных потребителей (по крайней мере потребителей с присоединенной мощностью свыше 750 кВА) принципиально близки, то в отношении нормативного и организационного компонентов имеются сильные различия. Гармоничная их интеграция в среде разных компонентов – основная задача создания современной системы ИСУЭ любой сетевой компании.
    Особенностью коммерческого учета для нужд сетевого комплекса – основного бизнеса компании в отличие от учета электроэнергии потребителей, генерирующих источников и сбытовых компаний – является сам характер учетных показателей, вернее, одного из них – технологических потерь электроэнергии. Здесь трудность состоит в том, что границы балансовой принадлежности компании должны оснащаться средствами учета в интересах субъектов рынка – участников обращения электроэнергии, и по правилам, установленным для них, будь то ОРЭМ или РРЭ. А к измерению и учету важнейшего собственного учетного показателя, потерь, отдельные нормативные требования не предъявляются, хотя указанные показатели должны определяться по своим технологиям.
    При этом сегодня для эффективного ведения бизнеса перед сетевыми компаниями, по мнению автора, стоит задача корректного определения часовых балансов в режиме, близком к on-line, в условиях, когда часть счетчиков (со стороны ОРЭМ) имеют автоматические часовые измерения электроэнергии, а подавляющее большинство (по количеству) счетчиков на РРЭ (за счет физических лиц и мелкомоторных потребителей) не позволяют получать такие измерения. Актуальность корректного определения фактических потерь следует из необходимости покупки их объема, не учтенного при установлении тарифов на услуги по передаче электроэнергии, а также предоставления информации для решения задач Smart Grid.
    В то же время специалистами-практиками часто ставится под сомнение практическая востребованность определения технологических потерь и их составляющих в режиме on-line. Учитывая это мнение, которое не согласуется с разрабатываемыми стратегиями Smart Grid, целесообразно оставить окончательное решение при разработке ИСУЭ за самой компанией.
    Cистемы АИИС КУЭ сетевых компаний никогда не создавались целенаправленно для решения самых насущных для них задач, таких как:
    1. Коммерческая задача купли-продажи потерь – качественного (прозрачного и корректного в смысле метрологии и требований действующих нормативных документов) инструментального или расчетно-инструментального определения технологических потерь электроэнергии вместе с их составляющими – техническими потерями и потреблением на собственные и хозяйственные нужды сети.
    2. Коммерческая задача по определению показателей надежности электроснабжения потребителей.
    3. Управленческая задача – получение всех установленных учетной политикой компании балансов электроэнергии и мощности по уровням напряжения, по филиалам, по от-дельным подстанциям и группам сетевых элементов, а также КПЭ, связанных с оборотом электроэнергии и оказанием услуг в натуральном выражении.
    Не ставилась и задача технологического обеспечения возможного в перспективе бизнеса сетевых компаний – предоставления услуг оператора коммерческого учета (ОКУ) субъектам ОРЭМ и РРЭ на территории обслуживания компании.
    Кроме того, необходимо упорядочить систему учета для определения коммерческих показателей в отношении определения обязательств и требований оплаты услуг по транспорту электроэнергии и гармонизировать собственные интересы и интересы смежных субъектов ОРЭМ и РРЭ в рамках существующей системы взаимодействий и возможной системы взаимодействий с введением института ОКУ.
    Именно исходя из этих целей (не забывая при этом про коммерческие учетные показатели смежных субъектов рынка в той мере, какая требуется по обязательствам компании), и нужно строить подлинно интеллектуальную измерительную систему. Иными словами, интеллект измерений – это главным образом интеллект решения технологических задач, необходимых компании.
    По сути, при решении нового круга задач в целевой модели интеллектуального учета будет реализован принцип придания сетевой компании статуса (функций) ОКУ в зоне обслуживания. Этот статус формально прописан в действующей редакции Правил розничных рынков (Постановление Правительства РФ № 530 от 31.08.2006), однако на практике не осуществляется в полном объеме как из-за отсутствия необходимой технологической базы, так и из-за организационных трудностей.
    Таким образом, сетевая компания должна сводить баланс по своей территории на новой качественной ступени – оперативно, прозрачно и полно. А это означает сбор информации от всех присоединенных к сети субъектов рынка, формирование учетных показателей и передачу их тем же субъектам для определения взаимных обязательств и требований.
    Такой подход предполагает не только новую схему расстановки приборов в соответствии с комплексным решением всех поставленных технологами задач, но и новые функциональные и метрологические требования к измерительным приборам.

    ПРЕИМУЩЕСТВА ИСУЭ

    Внедрение ИСУЭ даст новые широкие возможности для всех участников ОРЭМ и РРЭ в зоне обслуживания электросетевой компании.
    Для самой компании:
    1. Повышение эффективности существующего бизнеса.
    2. Возможности новых видов бизнеса – ОКУ, регистратор единой группы точек поставки (ГТП), оператор заправки электрического транспорта и т.п.
    3. Обеспечение внедрения технологий Smart grid.
    4. Создание и развитие программно-аппаратного комплекса (с сервисно-ориентированной архитектурой) и ИС, снимающих ограничения на развитие технологий и бизнеса в долгосрочной перспективе.
    Для энергосбытовой деятельности:
    1. Автоматический мониторинг потребления.
    2. Легкое определение превышения фактических показателей над планируемыми.
    3. Определение неэффективных производств и процессов.
    4. Биллинг.
    5. Мониторинг коэффициента мощности.
    6. Мониторинг показателей качества (напряжение и частота).
    Для обеспечения бизнеса – услуги для генерирующих, сетевых, сбытовых компаний и потребителей:
    1. Готовый вариант на все случаи жизни.
    2. Надежность.
    3. Гарантия качества услуг.
    4. Оптимальная и прозрачная стоимость услуг сетевой компании.
    5. Постоянное внедрение инноваций.
    6. Повышение «интеллекта» при работе на ОРЭМ и РРЭ.
    7. Облегчение технологического присоединения энергопринимающих устройств субъектов ОРЭМ и РРЭ.
    8. Качественный консалтинг по всем вопросам электроснабжения и энергосбережения.
    Успешная реализации перечисленных задач возможна только на базе информационно-технологической системы (программно-аппаратного комплекса) наивысшего достигнутого на сегодняшний день уровня интеграции со всеми возможными информационными системами субъектов рынка – измерительно-учетными как в отношении электроэнергии, так и (в перспективе) в отношении других энергоресурсов.

    ЛИТЕРАТУРА

    1. Новиков В.В. Интеллектуальные измерения на службе энергосбережения // Энергоэксперт. 2011. № 3.
    2. Гуревич В.И. Интеллектуальные сети: новые перспективы или новые проблемы? // Электротехнический рынок. 2010. № 6.

    [ http://www.news.elteh.ru/arh/2011/71/14.php]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > smart metering

  • 51 problem-solving knowledge

    Универсальный англо-русский словарь > problem-solving knowledge

  • 52 OR

    1. техническая надёжность
    2. скорость перетекания
    3. скорость переполнения
    4. реле защиты от перегрузок
    5. реле защиты от перегрузки
    6. по заказу
    7. отчёт об эксплуатации
    8. отправитель/получатель
    9. общая надёжность
    10. исследование операций
    11. внешний радиус

     

    внешний радиус
    наружный радиус


    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    Синонимы

    EN

     

    исследование операций

    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    исследование операций
    Прикладное направление кибернетики, используемое для решения практических организационных (в том числе экономических) задач. Это — комплексная научная дисциплина. Круг проблем, изучаемых ею, пока недостаточно определен. Иногда И.о. понимают очень широко, включая в него ряд чисто математических методов, иногда, наоборот, очень узко — как практическую методику решения с помощью экономико-математических моделей строго определенного перечня задач. Главный метод И.о. — системный анализ целенаправленных действий (операций) и объективная (в частности, количественная) сравнительная оценка возможных результатов этих действий. Например, расширение выпуска продукции на заводе требует одновременного и взаимосвязанного решения множества частных проблем: реконструкции предприятия, заказа оборудования, сырья и материалов, подготовки рынка сбыта, совершенствования технологии, изменений системы оперативно-производственного планирования и диспетчирования, организационной перестройки, перемещения руководящих работников и т.д. При анализе возможных последствий принимаемых решений приходится учитывать такие факторы, как неопределенность, случайность и риск. К решению столь сложных задач привлекают экономистов, математиков, статистиков, инженеров, социологов, психологов и др., поэтому одной из особенностей И.о. считают его междисциплинарный комплексный характер. Операционные исследования прежде всего предназначены для предварительного количественного обоснования принимаемых решений, поскольку они, как видно из примеров, очень сложны, требуют больших затрат и, главное, могут реализоваться многими способами (эти способы называют стратегиями или альтернативами). Кроме обоснования самих решений И.о. позволяет сравнить возможные варианты (альтернативы) организации операции, оценить возможное влияние на результат отдельных факторов, выявить «узкие места», т.е. те элементы системы, нарушение работы которых может особенно сильно сказаться на успехе операции и т.д. Таким образом, сущность задач И.о. — поиск путей рационального использования имеющихся ресурсов для реализации поставленной цели. Количественные методы И.о. строятся на основе достижений экономико-математических и математико-статистических дисциплин (теории массового обслуживания, оптимального программирования и т.д.). Разные математические методы применяются (в тех или иных комбинациях) при решении различных классов задач. Среди важнейших классов задач И.о. можно назвать задачи управления запасами, распределения ресурсов и назначения (распределительные задачи), задачи массового обслуживания, задачи замены оборудования, упорядочения и согласования (в том числе теории расписаний), состязательные (например, игры), задачи поиска и др. Среди применяемых методов — математическое программирование (линейное, нелинейное и т.п.), дифференциальные и разностные уравнения, методы теории графов, марковские процессы, теория игр, теория (статистических) решений, теория распознавания образов и ряд других. Считается, что И.о. зародилось накануне второй мировой войны, когда в Англии на одной радиолокационной станции была создана группа специалистов для решения технических задач с помощью математики. Они сосредоточили внимание на сравнении эффективности путей решения задач, поиске оптимального решения. Участие в этой группе представителей разных специальностей предопределило комплексный, или, как теперь принято говорить, системный подход. В настоящее время в этом направлении работают сотни исследовательских учреждений и групп в десятках стран. Организованы общества И.о., объединяемые международной федерацией (ИФОРС International Federation Of Operational Research Societies). Методы И.о., как и любые математические методы, всегда в той или иной мере упрощают, огрубляют задачу, отражая нелинейные процессы линейными моделями, стохастические системы — детерминированными и т.д. Жизнь богаче любой самой сложной схемы. Поэтому не следует ни преувеличивать значения количественных методов И.о., ни преуменьшать его, ссылаясь на примеры неудачных решений. Уместно привести в связи с этим известное парадоксальное определение, которое дал крупный американский специалист в этой области Т.А.Саати: «Исследование операций представляет собой искусство давать плохие ответы на те практические вопросы, на которые даются еще худшие ответы другими способами…»
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

     

    общая надёжность
    (напр. системы)
    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    отправитель/получатель
    (МСЭ-Т F.400/ Х.400).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

    • originator/recipient
    • OR

     

    отчёт об эксплуатации

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    по заказу

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    реле защиты от перегрузки
    -
    [В.А.Семенов. Англо-русский словарь по релейной защите]

    Тематики

    EN

     

    реле защиты от перегрузок

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    скорость переполнения
    (напр. ёмкости)
    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    скорость перетекания

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    техническая надёжность

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > OR

  • 53 operational research

    1. оперативное исследование
    2. исследование операций

     

    исследование операций

    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    исследование операций
    Прикладное направление кибернетики, используемое для решения практических организационных (в том числе экономических) задач. Это — комплексная научная дисциплина. Круг проблем, изучаемых ею, пока недостаточно определен. Иногда И.о. понимают очень широко, включая в него ряд чисто математических методов, иногда, наоборот, очень узко — как практическую методику решения с помощью экономико-математических моделей строго определенного перечня задач. Главный метод И.о. — системный анализ целенаправленных действий (операций) и объективная (в частности, количественная) сравнительная оценка возможных результатов этих действий. Например, расширение выпуска продукции на заводе требует одновременного и взаимосвязанного решения множества частных проблем: реконструкции предприятия, заказа оборудования, сырья и материалов, подготовки рынка сбыта, совершенствования технологии, изменений системы оперативно-производственного планирования и диспетчирования, организационной перестройки, перемещения руководящих работников и т.д. При анализе возможных последствий принимаемых решений приходится учитывать такие факторы, как неопределенность, случайность и риск. К решению столь сложных задач привлекают экономистов, математиков, статистиков, инженеров, социологов, психологов и др., поэтому одной из особенностей И.о. считают его междисциплинарный комплексный характер. Операционные исследования прежде всего предназначены для предварительного количественного обоснования принимаемых решений, поскольку они, как видно из примеров, очень сложны, требуют больших затрат и, главное, могут реализоваться многими способами (эти способы называют стратегиями или альтернативами). Кроме обоснования самих решений И.о. позволяет сравнить возможные варианты (альтернативы) организации операции, оценить возможное влияние на результат отдельных факторов, выявить «узкие места», т.е. те элементы системы, нарушение работы которых может особенно сильно сказаться на успехе операции и т.д. Таким образом, сущность задач И.о. — поиск путей рационального использования имеющихся ресурсов для реализации поставленной цели. Количественные методы И.о. строятся на основе достижений экономико-математических и математико-статистических дисциплин (теории массового обслуживания, оптимального программирования и т.д.). Разные математические методы применяются (в тех или иных комбинациях) при решении различных классов задач. Среди важнейших классов задач И.о. можно назвать задачи управления запасами, распределения ресурсов и назначения (распределительные задачи), задачи массового обслуживания, задачи замены оборудования, упорядочения и согласования (в том числе теории расписаний), состязательные (например, игры), задачи поиска и др. Среди применяемых методов — математическое программирование (линейное, нелинейное и т.п.), дифференциальные и разностные уравнения, методы теории графов, марковские процессы, теория игр, теория (статистических) решений, теория распознавания образов и ряд других. Считается, что И.о. зародилось накануне второй мировой войны, когда в Англии на одной радиолокационной станции была создана группа специалистов для решения технических задач с помощью математики. Они сосредоточили внимание на сравнении эффективности путей решения задач, поиске оптимального решения. Участие в этой группе представителей разных специальностей предопределило комплексный, или, как теперь принято говорить, системный подход. В настоящее время в этом направлении работают сотни исследовательских учреждений и групп в десятках стран. Организованы общества И.о., объединяемые международной федерацией (ИФОРС International Federation Of Operational Research Societies). Методы И.о., как и любые математические методы, всегда в той или иной мере упрощают, огрубляют задачу, отражая нелинейные процессы линейными моделями, стохастические системы — детерминированными и т.д. Жизнь богаче любой самой сложной схемы. Поэтому не следует ни преувеличивать значения количественных методов И.о., ни преуменьшать его, ссылаясь на примеры неудачных решений. Уместно привести в связи с этим известное парадоксальное определение, которое дал крупный американский специалист в этой области Т.А.Саати: «Исследование операций представляет собой искусство давать плохие ответы на те практические вопросы, на которые даются еще худшие ответы другими способами…»
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

     

    оперативное исследование
    Систематическое изучение путем наблюдения и/или в эксперименте работы системы, например, здравоохранения или его элементов с целью ее усовершенствования.
    [Англо-русский глоссарий основных терминов по вакцинологии и иммунизации. Всемирная организация здравоохранения, 2009 г.]

    Тематики

    • вакцинология, иммунизация

    EN

    Англо-русский словарь нормативно-технической терминологии > operational research

  • 54 operations research

    1. исследование операций

     

    исследование операций

    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    исследование операций
    Прикладное направление кибернетики, используемое для решения практических организационных (в том числе экономических) задач. Это — комплексная научная дисциплина. Круг проблем, изучаемых ею, пока недостаточно определен. Иногда И.о. понимают очень широко, включая в него ряд чисто математических методов, иногда, наоборот, очень узко — как практическую методику решения с помощью экономико-математических моделей строго определенного перечня задач. Главный метод И.о. — системный анализ целенаправленных действий (операций) и объективная (в частности, количественная) сравнительная оценка возможных результатов этих действий. Например, расширение выпуска продукции на заводе требует одновременного и взаимосвязанного решения множества частных проблем: реконструкции предприятия, заказа оборудования, сырья и материалов, подготовки рынка сбыта, совершенствования технологии, изменений системы оперативно-производственного планирования и диспетчирования, организационной перестройки, перемещения руководящих работников и т.д. При анализе возможных последствий принимаемых решений приходится учитывать такие факторы, как неопределенность, случайность и риск. К решению столь сложных задач привлекают экономистов, математиков, статистиков, инженеров, социологов, психологов и др., поэтому одной из особенностей И.о. считают его междисциплинарный комплексный характер. Операционные исследования прежде всего предназначены для предварительного количественного обоснования принимаемых решений, поскольку они, как видно из примеров, очень сложны, требуют больших затрат и, главное, могут реализоваться многими способами (эти способы называют стратегиями или альтернативами). Кроме обоснования самих решений И.о. позволяет сравнить возможные варианты (альтернативы) организации операции, оценить возможное влияние на результат отдельных факторов, выявить «узкие места», т.е. те элементы системы, нарушение работы которых может особенно сильно сказаться на успехе операции и т.д. Таким образом, сущность задач И.о. — поиск путей рационального использования имеющихся ресурсов для реализации поставленной цели. Количественные методы И.о. строятся на основе достижений экономико-математических и математико-статистических дисциплин (теории массового обслуживания, оптимального программирования и т.д.). Разные математические методы применяются (в тех или иных комбинациях) при решении различных классов задач. Среди важнейших классов задач И.о. можно назвать задачи управления запасами, распределения ресурсов и назначения (распределительные задачи), задачи массового обслуживания, задачи замены оборудования, упорядочения и согласования (в том числе теории расписаний), состязательные (например, игры), задачи поиска и др. Среди применяемых методов — математическое программирование (линейное, нелинейное и т.п.), дифференциальные и разностные уравнения, методы теории графов, марковские процессы, теория игр, теория (статистических) решений, теория распознавания образов и ряд других. Считается, что И.о. зародилось накануне второй мировой войны, когда в Англии на одной радиолокационной станции была создана группа специалистов для решения технических задач с помощью математики. Они сосредоточили внимание на сравнении эффективности путей решения задач, поиске оптимального решения. Участие в этой группе представителей разных специальностей предопределило комплексный, или, как теперь принято говорить, системный подход. В настоящее время в этом направлении работают сотни исследовательских учреждений и групп в десятках стран. Организованы общества И.о., объединяемые международной федерацией (ИФОРС International Federation Of Operational Research Societies). Методы И.о., как и любые математические методы, всегда в той или иной мере упрощают, огрубляют задачу, отражая нелинейные процессы линейными моделями, стохастические системы — детерминированными и т.д. Жизнь богаче любой самой сложной схемы. Поэтому не следует ни преувеличивать значения количественных методов И.о., ни преуменьшать его, ссылаясь на примеры неудачных решений. Уместно привести в связи с этим известное парадоксальное определение, которое дал крупный американский специалист в этой области Т.А.Саати: «Исследование операций представляет собой искусство давать плохие ответы на те практические вопросы, на которые даются еще худшие ответы другими способами…»
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > operations research

  • 55 science-oriented language

    Универсальный англо-русский словарь > science-oriented language

  • 56 process

    1. Процессы обработки данных
    2. процесс обработки данных
    3. процесс (в теории управления)
    4. процесс (в спорте)
    5. процесс (в системе менеджмента качества)
    6. процесс (в кибернетике)
    7. процесс
    8. процедура
    9. перерабатывать
    10. обрабатывать

     

    обрабатывать

    [[http://www.rfcmd.ru/glossword/1.8/index.php?a=index&d=23]]

    Тематики

    EN

     

    перерабатывать

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    процедура
    Упорядоченная совокупность взаимосвязанных определенными отношениями действий, направленных на решение задачи.
    [МУ 64-01-001-2002]

    процедура

    Установленный способ осуществления деятельности или процесса.
    Примечания
    1. Процедуры могут быть документированными или недокументированными.
    2. Если процедура документирована, часто используется термин "письменная процедура" или "документированная процедура". Документ, содержащий процедуру, может называться "процедурный документ".
    [ ГОСТ Р ИСО 9000-2008]

    процедура 
    Документ, содержащий шаги, которые предписывают способ выполнения деятельности. Процедуры определяются как части процессов. См. тж. рабочая инструкция.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    EN

    procedure
    A document containing steps that specify how to achieve an activity. Procedures are defined as part of processes. See also work instruction.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    Тематики

    EN

     

    процесс
    Совокупность взаимосвязанных ресурсов и деятельности, которая преобразует входящие элементы в выходящие.
    [МУ 64-01-001-2002]

    процесс

    Структурированная совокупность действий, спроектированная для достижения конкретной цели. Процесс преобразует один или несколько определенных входов в определенные выходы. Процесс может включать в себя любые роли, ответственности, инструменты и контроли управления, необходимые для надежного получения выходов. Процесс, при необходимости, может определять политики, стандарты, рекомендации, виды деятельности и рабочие инструкции.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    EN

    process
    A structured set of activities designed to accomplish a specific objective. A process takes one or more defined inputs and turns them into defined outputs. It may include any of the roles, responsibilities, tools and management controls required to reliably deliver the outputs. A process may define policies, standards, guidelines, activities and work instructions if they are needed.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    Тематики

    EN

     

    процесс (в кибернетике)
    Последовательная смена состояний, стадий изменения (развития) системы или иного объекта (См. также Преобразование). Различают процессы: вещественные (например, преобразование сырья в готовый продукт в производстве) и информационные (например, преобразование бухгалтерской информации в связи с указанным производственным П.); управляемые (регулируемые) и неуправляемые; детерминированные и случайные (стохастические) — см. Случайный процесс; дискретные и непрерывные — см. Дискретность, непрерывность. Дискретные П. в экономико-математических моделях описываются разностными уравнениями, непрерывные — дифференциальными уравнениями. Для экономико-математического моделирования большое значение имеют также различия в степени инерционности экономических П., т.е. в скорости изменения их параметров (характеристик) под влиянием тех или иных воздействий. См. Инерционные показатели, Нестационарный экономический процесс, Стационарный экономический процесс.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

     

    процесс
    Совокупность взаимосвязанных или взаимодействующих видов деятельности, преобразующая входы в выходы.
    Примечания
    1. Входами к процессу обычно являются выходы других процессов.
    2. Процессы в организации, как правило, планируются и осуществляются в управляемых условиях с целью добавления ценности.
    3. Процесс, в котором подтверждение соответствия конечной продукции затруднено или экономически нецелесообразно, часто относят к "специальному процессу".
    [ ГОСТ Р ИСО 9000-2008]

    процесс
    Совокупность взаимосвязанных ресурсов и деятельности, которая преобразует входящие элементы в выходящие.
    Примечание
    К ресурсам могут относиться: персонал, средства обслуживания, оборудование, технология и методология.
    [ИСО 8402-94]

    Тематики

    EN

     

    процесс
    Связанный и регламентированный набор работ по получению повторяющихся результатов.
    [Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]

    EN

    process
    Coherent and regulated set of works aimed at recurrent results achievement.
    [Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]

    Тематики

    EN

     

    процесс
    Последовательность изменений во времени вещества, энергии, информации в объекте.
    Примечание
    Процесс можно рассматривать как объект.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    Тематики

    • автоматизация, основные понятия

    EN

     

    процесс обработки данных
    процесс

    Система действий, реализующая определенную функцию в системе обработки информации и оформленния так, что управляющая программа данной системы может перераспределять ресурсы этой системы в целях обеспечения мультипрограммирования.
    Примечания
    1. Процесс характеризуется состояниями, которые определяются наличием тех или иных ресурсов в распоряжении процесса и, следовательно, возможностью фактически выполнять действия, относящиеся к процессу.
    2. Перераспределение ресурсов, выполняемое управляющей программой, влияет на продолжительность процесса обработки данных, но не на его конечный результат.
    3. Процесс оформляют с помощью специальных структур управляющих данных, которыми манипулирует управляющий механизм.
    4. В конкретных системах обработки информации встречаются разновидности процессов, которые различаются способом оформления и составом ресурсов, назначаемых процессу и отнимаемых от него, и допускается вводить специальные названия для таких разновидностей, например, задача в операционной системе ОС ЕС ЭВМ.
    [ ГОСТ 19781-90]

    Тематики

    • обеспеч. систем обраб. информ. программное

    Синонимы

    EN

    4.25 процесс (process): Совокупность взаимосвязанных или взаимодействующих видов деятельности, преобразующих входы в выходы.

    [ИСО 9000:2005]

    Источник: ГОСТ Р ИСО/МЭК 12207-2010: Информационная технология. Системная и программная инженерия. Процессы жизненного цикла программных средств оригинал документа

    4.11 процесс (process): Совокупность взаимосвязанных и взаимодействующих видов деятельности, преобразующих входы в выходы [3].

    Источник: ГОСТ Р ИСО/МЭК 15288-2005: Информационная технология. Системная инженерия. Процессы жизненного цикла систем оригинал документа

    2.56 процесс (process): Компонент информационной системы, реализующий конкретный алгоритм обработки данных.

    Источник: ГОСТ Р ИСО/МЭК ТО 10032-2007: Эталонная модель управления данными

    3.17 процесс (process): Набор взаимосвязанных работ, которые преобразуют исходные данные в выходные результаты.

    Примечание - Термин «работы» подразумевает использование ресурсов (См. 1.2 title="Управление качеством и обеспечение качества - Словарь").

    Источник: ГОСТ Р ИСО/МЭК 12207-99: Информационная технология. Процессы жизненного цикла программных средств оригинал документа

    3.3 процесс (process): Совокупность взаимосвязанных или взаимодействующих видов деятельности, преобразующая входы в выходы.

    Примечание - Определение заимствовано из стандарта ИСО 9000:2005.

    Источник: ГОСТ Р ИСО/МЭК 17020-2012: Оценка соответствия. Требования к работе различных типов органов инспекции оригинал документа

    3.28 процесс (process): Совокупность взаимосвязанных или взаимодействующих видов деятельности, преобразующих входы в выходы.

    Источник: ГОСТ Р ИСО/МЭК 15504-1-2009: Информационные технологии. Оценка процессов. Часть 1. Концепция и словарь оригинал документа

    3.9 процесс (process): Совокупность взаимосвязанных и взаимодействующих видов деятельности, преобразующая входные потоки в выходные.

    Источник: ГОСТ Р ИСО/ТС 14048-2009: Экологический менеджмент. Оценка жизненного цикла. Формат документирования данных

    3.2 процесс (process): Множество взаимосвязанных действий, преобразующих исходные данные в выходной результат в виде продукции.

    Примечание - Процесс может быть основным и вспомогательным (дополнительным) и декомпозирован на подпроцессы, операции.

    Источник: ГОСТ Р 52655-2006: Информационно-коммуникационные технологии в образовании. Интегрированная автоматизированная система управления учреждением высшего профессионального образования. Общие требования оригинал документа

    2.10 процесс (process): Совокупность взаимосвязанных видов деятельности и ресурсов, преобразующая входы в выходы ([4], подпункт 3.4.1).

    Источник: ГОСТ Р ИСО 14971-2006: Изделия медицинские. Применение менеджмента риска к медицинским изделиям оригинал документа

    3.3 процесс (process): Совокупность взаимосвязанных и взаимодействующих видов деятельности, преобразующей входы в выходы.

    Примечания

    1 Входами процесса обычно являются выходы других процессов.

    2 Процессы в организации, как правило, планируются и осуществляются в управляемых условиях с целью добавления ценности (ИСО 9000, пункт 3.4.1, исключая примечание 3).

    Источник: ГОСТ Р ИСО 10006-2005: Системы менеджмента качества. Руководство по менеджменту качества при проектировании оригинал документа

    3.3 процесс (process): Набор находящихся во взаимосвязи ресурсов и действий, которые преобразовывают входы в выходы.

    Источник: ГОСТ Р 51901.4-2005: Менеджмент риска. Руководство по применению при проектировании оригинал документа

    3.10 процесс (process): Совокупность взаимосвязанных или взаимодействующих видов деятельности, преобразующая входы в выходы.

    Примечание - Термин приведен в 3.4.1 ИСО 9000. Примечания удалены.

    Источник: ГОСТ Р ИСО 10002-2007: Менеджмент организации. Удовлетворенность потребителя. Руководство по управлению претензиями в организациях оригинал документа

    3.3 процесс (process): Совокупность взаимосвязанных или взаимодействующих видов деятельности, преобразующая входы в выходы.

    Примечание - Приведено в 3.4.1 ИСО 9000. Примечания не приведены.

    Источник: ГОСТ Р ИСО 10005-2007: Менеджмент организации. Руководящие указания по планированию качества оригинал документа

    3.11 процесс (process): Совокупность взаимосвязанных и взаимодействующих видов деятельности, преобразующая входные потоки в выходные потоки.

    [ ГОСТ Р ИСО 9000: 2005, определение 3.4.1 (без примечаний)]

    Источник: ГОСТ Р ИСО 14040-2010: Экологический менеджмент. Оценка жизненного цикла. Принципы и структура оригинал документа

    3.11 процесс (process): Совокупность взаимосвязанных и взаимодействующих видов деятельности, преобразующая входные потоки в выходные.

    [ИСО 9000:2005]

    Источник: ГОСТ Р ИСО 14044-2007: Экологический менеджмент. Оценка жизненного цикла. Требования и рекомендации оригинал документа

    2.31 процесс (process): Набор взаимосвязанных или взаимодействующих мероприятий, с помощью которых вложения на входе трансформируются в результаты на выходе.

    [ИСО 9000:2005]

    Источник: ГОСТ Р ИСО 24511-2009: Деятельность, связанная с услугами питьевого водоснабжения и удаления сточных вод. Руководящие указания для менеджмента коммунальных предприятий и оценке услуг удаления сточных вод оригинал документа

    2.30 процесс (process): Совокупность взаимосвязанных или взаимодействующих видов деятельности, преобразующая входы в выходы

    Источник: ГОСТ Р 53647.2-2009: Менеджмент непрерывности бизнеса. Часть 2. Требования оригинал документа

    3.6.29 процесс (process): Структурированный ряд видов деятельности, включающий различные сущности предприятия, предназначенный и организованный для достижения данной цели.

    Примечание - Настоящее определение очень близко определению, приведенному в ИСО 10303-49. Однако для настоящего стандарта необходимо понятие структурированного ряда видов деятельности без какой-либо предопределенной ссылки на время или этапы. Кроме того, с точки зрения управления потоком может возникнуть необходимость в холостых процессах, необходимых для синхронизации, хотя они фактически не делают ничего (выполнение мнимой задачи).

    Источник: ГОСТ Р ИСО 15531-1-2008: Промышленные автоматизированные системы и интеграция. Данные по управлению промышленным производством. Часть 1. Общий обзор оригинал документа

    3.58 процесс (process): Частично упорядоченный набор видов деятельности, который может быть выполнен для достижения определенного желаемого конечного результата для достижения установленной цели.

    Источник: ГОСТ Р ИСО 19439-2008: Интеграция предприятия. Основа моделирования предприятия оригинал документа

    2.31 процесс (process): Набор взаимосвязанных или взаимодействующих мероприятий, с помощью которых вложения на входе трансформируются в результаты на выходе.

    [ИСО 9000:2005]

    Источник: ГОСТ Р ИСО 24510-2009: Деятельность, связанная с услугами питьевого водоснабжения и удаления сточных вод. Руководящие указания по оценке и улучшению услуги, оказываемой потребителям оригинал документа

    2.5 процесс (process): Совокупность взаимосвязанных и взаимодействующих видов деятельности, преобразующая входы в выходы.

    Примечание - Для функционирования процесса на него подаются входы, управляющие воздействия и ресурсы.

    Источник: ГОСТ Р 52380.1-2005: Руководство по экономике качества. Часть 1. Модель затрат на процесс оригинал документа

    3.4.1 процесс (process): Совокупность взаимосвязанных или взаимодействующих видов деятельности, преобразующая входы в выходы.

    Примечания

    1 Входами к процессу обычно являются выходы других процессов.

    2 Процессы, в организации (3.3.1), как правило, планируются и осуществляются в управляемых условиях с целью добавления ценности.

    3 Процесс, в котором подтверждение соответствия (3.6.1) конечной продукции (3.4.2) затруднено или экономически нецелесообразно, часто относят к «специальному процессу».

    Источник: ГОСТ ISO 9000-2011: Системы менеджмента качества. Основные положения и словарь

    Процессы обработки данных

    84. Процесс обработки данных

    Процесс

    Computational process

    Process

    Система действий, реализующая определенную функцию в системе обработки информации и оформленная так, что управляющая программа данной системы может перераспределять ресурсы этой системы в целях обеспечения мультипрограммирования.

    Примечания:

    1. Процесс характеризуется состояниями, которые определяются наличием тех или иных ресурсов в распоряжении процесса и, следовательно, возможностью фактически выполнять действия, относящиеся к процессу.

    2. Перераспределение ресурсов, выполняемое управляющей программой, влияет на продолжительность процесса обработки данных, но не на его конечный результат.

    3. Процесс оформляют с помощью специальных структур управляющих данных, которыми манипулирует управляющий механизм.

    4. В конкретных системах обработки информации встречаются разновидности процессов, которые различаются способом оформления и составом ресурсов, назначаемых процессу и отнимаемых от него, и допускается вводить специальные названия для таких разновидностей, например задача в операционной системе ОС ЕС ЭВМ.

    Источник: ГОСТ 19781-90: Обеспечение систем обработки информации программное. Термины и определения оригинал документа

    2.25 процесс (process): Упорядоченная совокупность действий, использующая ресурсы для преобразования входных данных в выходные.

    Источник: ГОСТ Р 54581-2011: Информационная технология. Методы и средства обеспечения безопасности. Основы доверия к безопасности ИТ. Часть 1. Обзор и основы оригинал документа

    3.7.52 процесс (process): Набор взаимосвязанных или взаимодействующих видов деятельности, преобразующих входные данные в выходные.

    Примечание 1 - Входами процесса обычно являются выходы других процессов.

    Примечание 2 - Процессы в организации, как правило, планируются и осуществляются в управляемых условиях с целью добавления ценности (ГОСТ Р ИСО 9000, пункт 3.4.1, исключая примечание 3).

    Источник: ГОСТ Р 54147-2010: Стратегический и инновационный менеджмент. Термины и определения оригинал документа

    6.4 процесс (process): Совокупность взаимосвязанных или взаимодействующих видов деятельности, трансформирующая входные потоки (6.17)в выходные потоки (6.18).

    [ИСО 9000:2005, статья 3.4.1 без примечаний];

    [ИСО 14040:2006]

    Источник: ГОСТ Р ИСО 14050-2009: Менеджмент окружающей среды. Словарь оригинал документа

    3.3 процесс (process): Совокупность взаимосвязанных и взаимодействующих видов деятельности, преобразующая входы в выходы.

    Примечания

    1 Входами к процессу обычно являются выходы других процессов.

    2 Процессы в организации, как правило, планируются и осуществляются в управляемых условиях с целью добавления ценности.

    3 Процесс, в котором подтверждение соответствия конечной продукции затруднено или экономически нецелесообразно, часто относят к «специальному процессу».

    [ ГОСТ Р ИСО 9000-2008, ст. 3.4.1]

    Источник: Р 50.1.069-2009: Менеджмент риска. Рекомендации по внедрению. Часть 2. Определение процесса менеджмента риска

    3.124 процесс (process): Частично упорядоченный набор видов деятельности, который может быть выполнен для достижения определенного желаемого конечного результата для достижения установленной цели.

    Источник: ГОСТ Р 54136-2010: Системы промышленной автоматизации и интеграция. Руководство по применению стандартов, структура и словарь оригинал документа

    Англо-русский словарь нормативно-технической терминологии > process

  • 57 heuristics

    1. эвристика

     

    эвристика
    Опыт. Знание, приобретенное на основе накопления опыта.
    [ http://www.morepc.ru/dict/]

    эвристика
    1. В широком смысле слова раздел психологии, изучающий природу мыслительных операций человека при решении им различных задач. 2. В узком смысле — приемы и методы поиска решения задач и вывода доказательств, основанные на учете опыта решения сходных задач в прошлом, накоплении опыта, учете ошибок, а также — интуиции. Легче всего показать сущность Э. и ее отличие от алгоритмического подхода (такого, при котором каждый шаг решения задач заранее предопределен) на игре в шахматы. В этой игре нет никакой возможности выбрать лучший ход путем перебора всех мыслимых вариантов, поскольку их число астрономически велико. Шахматист действует эвристически — на основании опыта и интуиции. Изучение проблем Э. связано с более общей проблемой создания так называемого искусственного интеллекта или мыслящих ЭВМ. Исследования в этом направлении показали, во-первых, что создание искусственного интеллекта намного более сложная задача, чем это представлялось на первых порах, во-вторых, позволили выработать некоторые весьма эффективные методы решения сложных вычислительных задач. Один из распространенных эвристических методов — метод иерархически направленного перебора возможных шагов к решению, при котором отбрасываются заведомо ненужные варианты и существенно сокращается их число. Методы эвристического программирования используются при решении задач распознавания образов, автоматического поиска информации (в информационно-поисковых системах), в такой популярной области как выработка программ для игры ЭВМ в шахматы и т.д. Разрабатываются также эвристические методы решения экономических задач. При обычных, полностью алгоритмированных методах машина решает задачу последовательно от начала до конца. При этом, как бы хорошо ни была составлена программа, она делает массу ненужных вычислений, перебирая вариант за вариантом возможного решения. Эвристические методы позволят, видимо, отказаться от части ненужных расчетов и решать некоторые задачи с меньшими затратами машинного времени. Кроме того, перспективно соединение точных алгоритмических методов с эвристическими. В таких случаях модели называют эвроритмическими, или алгоритмо-эвристическими. Эвристические программы не предназначены для получения точных численных решений, их главная задача — определение стратегии поиска приблизительных решений.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > heuristics

  • 58 DP

    1. процессор для обработки данных
    2. проект предложения
    3. приоритет при отбрасывании
    4. предварительное сообщение
    5. порт пункта назначения
    6. перепад давлений
    7. обработка данных
    8. импульс набора номера
    9. дистанционная защита
    10. динамическое программирование
    11. выявленный загрязнитель воздуха, не имеющий установленных норм по предельно-допустимой концентрации

     

    выявленный загрязнитель воздуха, не имеющий установленных норм по предельно-допустимой концентрации

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    динамическое программирование

    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    динамическое программирование
    Раздел математического программирования, совокупность приемов, позволяющих находить оптимальные решения, основанные на вычислении последствий каждого решения и выработке оптимальной стратегии для последующих решений. Процессы принятия решений, которые строятся по такому принципу, называются многошаговыми процессами. Математически оптимизационная задача строится в Д. п. с помощью таких соотношений, которые последовательно связаны между собой: например, полученный результат для одного года вводится в уравнение для следующего (или, наоборот, для предыдущего), и т.д. Таким образом, можно получить на вычислительной машине результаты решения задачи для любого избранного момента времени и «следовать» дальше. Д.п. применяется не обязательно для задач, связанных с течением времени. Многошаговым может быть и процесс решения вполне «статической» задачи. Таковы, например, некоторые задачи распределения ресурсов. Общим для задач Д.п. является то, что переменные в модели рассматриваются не вместе, а последовательно, одна за другой. Иными словами, строится такая вычислительная схема, когда вместо одной задачи со многими переменными строится много задач с малым числом (обычно даже одной) переменных в каждой. Это значительно сокращает объем вычислений. Однако такое преимущество достигается лишь при двух условиях: когда критерий оптимальности аддитивен, т.е. общее оптимальное решение является суммой оптимальных решений каждого шага, и когда будущие результаты не зависят от предыстории того состояния системы, при котором принимается решение. Все это вытекает из принципа оптимальности Беллмана (см. Беллмана принцип оптимальности), лежащего в основе теории Д.п. Из него же вытекает основной прием — нахождение правил доминирования, на основе которых на каждом шаге производится сравнение вариантов будущего развития и заблаговременное отсеивание заведомо бесперспективных вариантов. Когда эти правила обращаются в формулы, однозначно определяющие элементы последовательности один за другим, их называют разрешающими правилами. Процесс решения при этом складывается из двух этапов. На первом он ведется «с конца»: для каждого из различных предположений о том, чем кончился предпоследний шаг, находится условное оптимальное управление на последнем шаге, т.е. управление, которое надо применить, если предпоследний шаг закончился определенным образом. Такая процедура проводится до самого начала, а затем — второй раз — выполняется от начала к концу, в результате чего находятся уже не условные, а действительно оптимальные шаговые управления на всех шагах операции (см. пример в статье Дерево решений). Несмотря на выигрыш в сокращении вычислений при использовании подобных методов по сравнению с простым перебором возможных вариантов, их объем остается очень большим. Поэтому размерность практических задач Д.п. всегда незначительна, что ограничивает его применение. Можно выделить два наиболее общих класса задач, к которым в принципе мог бы быть применим этот метод, если бы не «проклятие размерности». (На самом деле на таких задачах, взятых в крайне упрощенном виде, пока удается лишь демонстрировать общие основы метода и анализировать экономико-математические модели). Первый — задачи планирования деятельности экономического объекта (предприятия, отрасли и т.п.) с учетом изменения потребности в производимой продукции во времени. Второй класс задач — оптимальное распределение ресурсов между различными направлениями во времени. Сюда можно отнести, в частности, такую интересную задачу: как распределить урожай зерна каждого года на питание и на семена, чтобы в сумме за ряд лет получить наибольшее количество хлеба?
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

     

    дистанционная защита
    -

    [В.А.Семенов Англо-русский словарь по релейной защите]

    дистанционная защита
    Защита с относительной селективностью, срабатывание и селективность которой зависят от измерения в месте ее установки электрических величин, по которым путем сравнения с уставками зон оценивается эквивалентная удаленность повреждения
    [Разработка типовых структурных схем микропроцессорных устройств РЗА на объектах ОАО "ФКС ЕЭС". Пояснительная записка. Новосибирск 2006 г.]

    дистанционная защита
    Защита, чье действие и селективность основаны на локальном измерении электрических величин, по которым рассчитываются эквивалентные расстояния до места повреждения в пределах установленных зон.
    [ http://docs.cntd.ru/document/1200069370]

    дистанционная защита
    Защита, принцип действия и селективность которой основаны на измерении в месте установки защиты электрических величин, характеризующих повреждение, и сравнении их с уставками зон.
    [Циглер Г. Цифровая дистанционная защита: принципы и применение. М.: Энергоиздат. 2005]

    EN

    distance protection
    distance relay (US)

    a non-unit protection whose operation and selectivity depend on local measurement of electrical quantities from which the equivalent distance to the fault is evaluated by comparing with zone settings
    [IEV ref 448-14-01]

    FR

    protection de distance
    protection à sélectivité relative de section dont le fonctionnement et la sélectivité dépendent de la mesure locale de grandeurs électriques à partir desquelles la distance équivalente du défaut est évaluée par comparaison avec des réglages de zones
    [IEV ref 448-14-01]

    Дистанционные защиты применяются в сетях сложной конфигурации, где по соображениям быстродействия и чувствительности не могут использоваться более простые максимальные токовые и токовые направленные защиты.
    Дистанционной защитой определяется сопротивление (или расстояние - дистанция) до места КЗ, и в зависимости от этого защита срабатывает с меньшей или большей выдержкой времени. Следует уточнить, что современные дистанционные защиты, обладающие ступенчатыми характеристиками времени, не измеряют каждый раз при КЗ значение указанного выше сопротивления на зажимах измерительного органа и не устанавливают в зависимости от этого большую или меньшую выдержку времени, а всего лишь контролируют зону, в которой произошло повреждение. Время срабатывания защиты при КЗ в любой точке рассматриваемой зоны остается неизменным. Каждая защита выполняется многоступенчатой, причем при КЗ в первой зоне, охватывающей 80-85% длины защищаемой линии, время срабатывания защиты не более 0,15 с. Для второй зоны, выходящей за пределы защищаемой линии, выдержка времени на ступень выше и колеблется в пределах 0,4-0,6 с. При КЗ в третьей зоне выдержка времени еще более увеличивается и выбирается так же, как и для направленных токовых защит.
    На рис. 7.15 показан участок сети с двухсторонним питанием и приведены согласованные характеристики выдержек времени дистанционных защит (ДЗ). При КЗ, например, в точке К1 - первой зоне действия защит ДЗ3 и ДЗ4 - они сработают с минимальным временем соответственно t I3 и t I4. Защиты ДЗ1 и ДЗ6 также придут в действие, но для них повреждение будет находиться в III зоне, и они могут сработать как резервные с временем t III1 и t III6 только в случае отказа в отключении линии БВ собственными защитами.


    4610
    Рис. 7.14. Размещение токовых направленных защит нулевой последовательности на участке сетей и характеристики выдержек времени защит:
    Р31-Р36 - комплекты токовых направленных защит нулевой последовательности


    4611
    Рис. 7.15. Защита участка сети дистанционными защитами и характеристики выдержек времени этих защит:
    ДЗ1-ДЗ6 - комплекты дистанционных защит; l3 и l4 - расстояния от мест установки защит до места повреждения


    При КЗ в точке К2 (шины Б) оно устраняется действием защит ДЗ1 и ДЗ4 с временем t II1 и t II4.
    Дистанционная защита - сложная защита, состоящая из ряда элементов (органов), каждый из которых выполняет определенную функцию. На рис. 7.16 представлена упрощенная схема дистанционной защиты со ступенчатой характеристикой выдержки времени. Схема имеет пусковой и дистанционный органы, а также органы направления и выдержки времени.
    Пусковой орган ПО выполняет функцию отстройки защиты от нормального режима работы и пускает ее в момент возникновения КЗ. В качестве такого органа в рассматриваемой схеме применено реле сопротивления, реагирующее на ток I р и напряжение U p на зажимах реле.
    Дистанционные (или измерительные) органы ДО1 и ДО2 устанавливают меру удаленности места КЗ.
    Каждый из них выполнен при помощи реле сопротивления, которое срабатывает при КЗ, если
    4612
    где Z p - сопротивление на зажимах реле; Z - сопротивление защищаемой линии длиной 1 км; l - длина участка линии до места КЗ, км; Z cp - сопротивление срабатывания реле.
    Из приведенного соотношения видно, что сопротивление на зажимах реле Z p пропорционально расстоянию l до места КЗ.
    Органы выдержки времени ОВ2 и ОВ3 создают выдержку времени, с которой защита действует на отключение линии при КЗ во второй и третьей зонах. Орган направления OHM разрешает работу защиты при направлении мощности КЗ от шин в линию.
    В схеме предусмотрена блокировка БН, выводящая защиту из действия при повреждениях цепей напряжения, питающих защиту. Дело в том, что если при повреждении цепей напряжение на зажимах защиты Uр=0, то Zp=0. Это означает, что и пусковой, и дистанционный органы могут сработать неправильно. Для предотвращения отключения линии при появлении неисправности в цепях напряжения блокировка снимает с защиты постоянный ток и подает сигнал о неисправности цепей напряжения. Оперативный персонал в этом случае обязан быстро восстановить нормальное напряжение на защите. Если по какой-либо причине это не удается выполнить, защиту следует вывести из действия переводом накладки в положение "Отключено".

    4613
    Рис. 7.16. Принципиальная схема дистанционной защиты со ступенчатой характеристикой выдержки времени

    Работа защиты.

    При КЗ на линии срабатывают реле пускового органа ПО и реле органа направления OHM. Через контакты этих реле плюс постоянного тока поступит на контакты дистанционных органов и на обмотку реле времени третьей зоны ОВ3 и приведет его в действие. Если КЗ находится в первой зоне, дистанционный орган ДО1 замкнет свои контакты и пошлет импульс на отключение выключателя без выдержки времени. При КЗ во второй зоне ДО1 работать не будет, так как значение сопротивления на зажимах его реле будет больше значения сопротивления срабатывания. В этом случае сработает дистанционный орган второй зоны ДО2, который запустит реле времени ОВ2. По истечении выдержки времени второй зоны от реле ОВ2 поступит импульс на отключение линии. Если КЗ произойдет в третьей зоне, дистанционные органы ДО1 и ДО2 работать не будут, так как значения сопротивления на их зажимах больше значений сопротивлений срабатывания. Реле времени ОВ3, запущенное в момент возникновения КЗ контактами реле OHM, доработает и по истечении выдержки времени третьей зоны пошлет импульс на отключение выключателя линии. Дистанционный орган для третьей зоны защиты, как правило, не устанавливается.
    В комплекты дистанционных защит входят также устройства, предотвращающие срабатывание защит при качаниях в системе.

    [ http://leg.co.ua/knigi/raznoe/obsluzhivanie-ustroystv-releynoy-zaschity-i-avtomatiki-4.html]

     

    Тематики

    Синонимы

    EN

    DE

    • Distanzschutz, m

    FR

     

    импульс набора номера

    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    EN

     

    обработка данных
    Систематическое осуществление операций над данными.
    [ИСО/МЭК 2382-1]
    [ ГОСТ Р 52292-2004]

    обработка данных
    Технологическая операция, в результате которой изменяет свое значение хотя бы один из показателей, характеризующих состояние данных (объем данных при этом не изменяется).
    [ ГОСТ Р 51170-98]

    обработка данных
    - Любое преобразование данных при решении конкретной задачи.
    - Работа, выполняемая компьютером.
    [ http://www.morepc.ru/dict/]

    обработка данных
    Процесс приведения данных к виду, удобному для использования. Независимо от вида информации, которая должна быть получена, и типа оборудования любая система О.д. выполняет три основные группы операций: подбор исходных, входных данных (см. Сбор данных), собственно их обработку (в процессе которой система оперирует промежуточными данными), получение и анализ результатов, т.е. выходных данных). Выполняет ли эти операции человек или машина (см. Автоматизированная система обработки данных), все равно они следуют при этом заданному алгоритму (для человека это могут быть инструкция, методика, а для ЭВМ — программа). Важным процессом О.д. является агрегирование, укрупнение их от одной к другой ступени хозяйственной иерархии. Проверка статистических данных, приведение их к сопоставимому виду, сложение, вычитание и другие арифметические операции — тоже процессы О.д. Можно назвать также выборку, отсечение ненужных данных, запоминание, изменение последовательности (упорядочение), классификацию и многие другие. О.д. предшествует во времени принятию решений. Она может производиться эпизодически, периодически (т.е. через заданные промежутки времени), в АСУ — также в реальном масштабе времени. Последнее означает, что О.д. производится с той же скоростью, с какой протекают описываемые ими события, иначе говоря — со скоростью, достаточной для анализа событий и управления их последующим ходом.
    [ http://slovar-lopatnikov.ru/]


    Тематики

    EN

     

    перепад давлений

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    порт пункта назначения
    (МСЭ-T G.7041/ Y.1303).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    предварительное сообщение

    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

     

    приоритет при отбрасывании
    (МСЭ-T G.8010/ Y.1306).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    проект предложения

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    процессор для обработки данных

    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > DP

  • 59 dynamic programming

    1. динамическое программирование

     

    динамическое программирование

    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    динамическое программирование
    Раздел математического программирования, совокупность приемов, позволяющих находить оптимальные решения, основанные на вычислении последствий каждого решения и выработке оптимальной стратегии для последующих решений. Процессы принятия решений, которые строятся по такому принципу, называются многошаговыми процессами. Математически оптимизационная задача строится в Д. п. с помощью таких соотношений, которые последовательно связаны между собой: например, полученный результат для одного года вводится в уравнение для следующего (или, наоборот, для предыдущего), и т.д. Таким образом, можно получить на вычислительной машине результаты решения задачи для любого избранного момента времени и «следовать» дальше. Д.п. применяется не обязательно для задач, связанных с течением времени. Многошаговым может быть и процесс решения вполне «статической» задачи. Таковы, например, некоторые задачи распределения ресурсов. Общим для задач Д.п. является то, что переменные в модели рассматриваются не вместе, а последовательно, одна за другой. Иными словами, строится такая вычислительная схема, когда вместо одной задачи со многими переменными строится много задач с малым числом (обычно даже одной) переменных в каждой. Это значительно сокращает объем вычислений. Однако такое преимущество достигается лишь при двух условиях: когда критерий оптимальности аддитивен, т.е. общее оптимальное решение является суммой оптимальных решений каждого шага, и когда будущие результаты не зависят от предыстории того состояния системы, при котором принимается решение. Все это вытекает из принципа оптимальности Беллмана (см. Беллмана принцип оптимальности), лежащего в основе теории Д.п. Из него же вытекает основной прием — нахождение правил доминирования, на основе которых на каждом шаге производится сравнение вариантов будущего развития и заблаговременное отсеивание заведомо бесперспективных вариантов. Когда эти правила обращаются в формулы, однозначно определяющие элементы последовательности один за другим, их называют разрешающими правилами. Процесс решения при этом складывается из двух этапов. На первом он ведется «с конца»: для каждого из различных предположений о том, чем кончился предпоследний шаг, находится условное оптимальное управление на последнем шаге, т.е. управление, которое надо применить, если предпоследний шаг закончился определенным образом. Такая процедура проводится до самого начала, а затем — второй раз — выполняется от начала к концу, в результате чего находятся уже не условные, а действительно оптимальные шаговые управления на всех шагах операции (см. пример в статье Дерево решений). Несмотря на выигрыш в сокращении вычислений при использовании подобных методов по сравнению с простым перебором возможных вариантов, их объем остается очень большим. Поэтому размерность практических задач Д.п. всегда незначительна, что ограничивает его применение. Можно выделить два наиболее общих класса задач, к которым в принципе мог бы быть применим этот метод, если бы не «проклятие размерности». (На самом деле на таких задачах, взятых в крайне упрощенном виде, пока удается лишь демонстрировать общие основы метода и анализировать экономико-математические модели). Первый — задачи планирования деятельности экономического объекта (предприятия, отрасли и т.п.) с учетом изменения потребности в производимой продукции во времени. Второй класс задач — оптимальное распределение ресурсов между различными направлениями во времени. Сюда можно отнести, в частности, такую интересную задачу: как распределить урожай зерна каждого года на питание и на семена, чтобы в сумме за ряд лет получить наибольшее количество хлеба?
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > dynamic programming

  • 60 linear programming

    1. линейное программирование

     

    линейное программирование

    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    линейное программирование
    Область математического программирования, посвященная теории и методам решения экстремальных задач, характеризующихся линейной зависимостью между переменными. В самом общем виде задачу Л.п. можно записать так. Даны ограничения типа или в так называемой канонической форме, к которой можно привести все три указанных случая Требуется найти неотрицательные числа xj (j = 1, 2, …, n), которые минимизируют (или максимизируют) линейную форму Неотрицательность искомых чисел записывается так: Таким образом, здесь представлена общая задача математического программирования с теми оговорками, что как ограничения, так и целевая функция — линейные, а искомые переменные — неотрицательны. Обозначения можно трактовать следующим образом: bi — количество ресурса вида i; m — количество видов этих ресурсов; aij — норма расхода ресурса вида i на единицу продукции вида j; xj — количество продукции вида j, причем таких видов — n; cj — доход (или другой выигрыш) от единицы этой продукции, а в случае задачи на минимум — затраты на единицу продукции; нумерация ресурсов разделена на три части: от 1 до m1, от m1 + 1 до m2 и от m2 + 1 до m в зависимости от того, какие ставятся ограничения на расходование этих ресурсов; в первом случае — «не больше», во втором — «столько же», в третьем — «не меньше»; Z — в случае максимизации, например, объем продукции или дохода, в случае же минимизации — себестоимость, расход сырья и т.п. Добавим еще одно обозначение, оно появится несколько ниже; vi — оптимальная оценка i-го ресурса. Слово «программирование» объясняется здесь тем, что неизвестные переменные, которые отыскиваются в процессе решения задачи, обычно в совокупности определяют программу (план) работы некоторого экономического объекта. Слово, «линейное» отражает факт линейной зависимости между переменными. При этом, как указано, задача обязательно имеет экстремальный характер, т.е. состоит в отыскании экстремума (максимума или минимума) целевой функции. Следует с самого начала предупредить: предпосылка линейности, когда в реальной экономике подавляющее большинство зависимостей носит более сложный нелинейный характер, есть огрубление, упрощение действительности. В некоторых случаях оно достаточно реалистично, в других же выводы, получаемые с помощью решения задач Л.п. оказываются весьма несовершенными. Рассмотрим две задачи Л.п. — на максимум и на минимум — на упрощенных примерах. Предположим, требуется разработать план производства двух видов продукции (объем первого — x1; второго — x2) с наиболее выгодным использованием трех видов ресурсов (наилучшим в смысле максимума общей прибыли от реализации плана). Условия задачи можно записать в виде таблицы (матрицы). Исходя из норм, зафиксированных в таблице, запишем неравенства (ограничения): a11x1 + a12x2 ? bi a21x1 + a22x2 ? b2 a31x1 + a32x2 ? b3 Это означает, что общий расход каждого из трех видов ресурсов не может быть больше его наличия. Поскольку выпуск продукции не может быть отрицательным, добавим еще два ограничения: x1? 0, x2? 0. Требуется найти такие значения x1 и x2, при которых общая сумма прибыли, т.е. величина c1 x1 + c2 x2 будет наибольшей, или короче: Удобно показать условия задачи на графике (рис. Л.2). Рис. Л.2 Линейное программирование, I (штриховкой окантована область допустимых решений) Любая точка здесь, обозначаемая координатами x1 и x2, составляет вариант искомого плана. Очевидно, что, например, все точки, находящиеся в области, ограниченной осями координат и прямой AA, удовлетворяют тому условию, что не может быть израсходовано первого ресурса больше, чем его у нас имеется в наличии (в случае, если точка находится на самой прямой, ресурс используется полностью). Если то же рассуждение отнести к остальным ограничениям, то станет ясно, что всем условиям задачи удовлетворяет любая точка, находящаяся в пределах области, края которой заштрихованы, — она называется областью допустимых решений (или областью допустимых значений, допустимым множеством). Остается найти ту из них, которая даст наибольшую прибыль, т.е. максимум целевой функции. Выбрав произвольно прямую c1x1 + c2x2 = П и обозначив ее MM, находим на чертеже все точки (варианты планов), где прибыль одинакова при любом сочетании x1 и x2 (см. Линия уровня). Перемещая эту линию параллельно ее исходному положению, найдем точку, которая в наибольшей мере удалена от начала координат, однако не вышла за пределы области допустимых значений. (Перемещая линию уровня еще дальше, уже выходим из нее и, следовательно, нарушаем ограничения задачи). Точка M0 и будет искомым оптимальным планом. Она находится в одной из вершин многоугольника. Может быть и такой случай, когда линия уровня совпадает с одной из прямых, ограничивающих область допустимых значений, тогда оптимальным будет любой план, находящийся на соответствующем отрезке. Координаты точки M0 (т.е. оптимальный план) можно найти, решая совместно уравнения тех прямых, на пересечении которых она находится. Противоположна изложенной другая задача Л.п.: поиск минимума функции при заданных ограничениях. Такая задача возникает, например, когда требуется найти наиболее дешевую смесь некоторых продуктов, содержащих необходимые компоненты (см. Задача о диете). При этом известно содержание каждого компонента в единице исходного продукта — aij, ее себестоимость — cj ; задается потребность в искомых компонентах — bi. Эти данные можно записать в таблице (матрице), сходной с той, которая приведена выше, а затем построить уравнения как ограничений, так и целевой функции. Предыдущая задача решалась графически. Рассуждая аналогично, можно построить график (рис. Л.3), каждая точка которого — вариант искомого плана: сочетания разных количеств продуктов x1 и x2. Рис.Л.3 Линейное программирование, II Область допустимых решений здесь ничем сверху не ограничена: нужное количество заданных компонентов тем легче получить, чем больше исходных продуктов. Но требуется найти наиболее выгодное их сочетание. Пунктирные линии, как и в предыдущем примере, — линии уровня. Здесь они соединяют планы, при которых себестоимость смесей исходных продуктов одинакова. Линия, соответствующая наименьшему ее значению при заданных требованиях, — линия MM. Искомый оптимальный план — в точке M0. Приведенные крайне упрощенные примеры демонстрируют основные особенности задачи Л.п. Реальные задачи, насчитывающие много переменных, нельзя изобразить на плоскости — для их геометрической интерпретации используются абстрактные многомерные пространства. При этом допустимое решение задачи — точка в n-мерном пространстве, множество всех допустимых решений — выпуклое множество в этом пространстве (выпуклый многогранник). Задачи Л.п., в которых нормативы (или коэффициенты), объемы ресурсов («константы ограничений«) или коэффициенты целевой функции содержат случайные элементы, называются задачами линейного стохастического программирования; когда же одна или несколько независимых переменных могут принимать только целочисленные значения, то перед нами задача линейного целочисленного программирования. В экономике широко применяются линейно-программные методы решения задач размещения производства (см. Транспортная задача), расчета рационов для скота (см. Задача диеты), наилучшего использования материалов (см. Задача о раскрое), распределения ресурсов по работам, которые надо выполнять (см. Распределительная задача) и т.д. Разработан целый ряд вычислительных приемов, позволяющих решать на ЭВМ задачи линейного программирования, насчитывающие сотни и тысячи переменных, неравенств и уравнений. Среди них наибольшее распространение приобрели методы последовательного улучшения допустимого решения (см. Симплексный метод, Базисное решение), а также декомпозиционные методы решения крупноразмерных задач, методы динамического программирования и др. Сама разработка и исследование таких методов — развитая область вычислительной математики. Один из видов решения имеет особое значение для экономической интерпретации задачи Л.п. Он связан с тем, что каждой прямой задаче Л.п. соответствует другая, симметричная ей двойственная задача (подробнее см. также Двойственность в линейном программировании). Если в качестве прямой принять задачу максимизации выпуска продукции (или объема реализации, прибыли и т.д.), то двойственная задача заключается, наоборот, в нахождении таких оценок ресурсов, которые минимизируют затраты. В случае оптимального решения ее целевая функция — сумма произведений оценки (цены) vi каждого ресурса на его количество bi— то есть равна целевой функции прямой задачи. Эта цена называется объективно обусловленной, или оптимальной оценкой, или разрешающим множителем. Основополагающий принцип Л.п. состоит в том, что в оптимальном плане и при оптимальных оценках всех ресурсов затраты и результаты равны. Оценки двойственной задачи обладают замечательными свойствами: они показывают, насколько возрастет (или уменьшится) целевая функция прямой задачи при увеличении (или уменьшении) запаса соответствующего вида ресурсов на единицу. В частности, чем больше в нашем распоряжении данного ресурса по сравнению с потребностью в нем, тем ниже будет оценка, и наоборот. Не решая прямую задачу, по оценкам ресурсов, полученных в двойственной задаче, можно найти оптимальный план: в него войдут все технологические способы, которые оправдывают затраты, исчисленные в этих оценках (см. Объективно обусловленные (оптимальные) оценки). Первооткрыватель Л.п. — советский ученый, академик, лауреат Ленинской, Государственной и Нобелевской премий Л.В.Канторович. В 1939 г. он решил математически несколько задач: о наилучшей загрузке машин, о раскрое материалов с наименьшими расходами, о распределении грузов по нескольким видам транспорта и др., при этом разработав универсальный метод решения этих задач, а также различные алгоритмы, реализующие его. Л.В.Канторович впервые точно сформулировал такие важные и теперь широко принятые экономико-математические понятия, как оптимальность плана, оптимальное распределение ресурсов, объективно обусловленные (оптимальные) оценки, указав многочисленные области экономики, где могут быть применены экономико-математические методы принятия оптимальных решений. Позднее, в 40—50-х годах, многое сделали в этой области американские ученые — экономист Т.Купманс и математик Дж. Данциг. Последнему принадлежит термин «линейное программирование». См. также: Ассортиментные задачи, Базисное решение, Блочное программирование, Булево линейное программирование, Ведущий столбец, Ведущая строка, Вершина допустимого многогранника, Вырожденная задача, Гомори способ, Граничная точка, Двойственная задача, Двойственность в линейном программировании, Дифференциальные ренты, Дополняющая нежесткость, Жесткость и нежесткость ограничений ЛП, Задача диеты, Задача о назначениях, Задача о раскрое, Задачи размещения, Исходные уравнения, Куна — Таккера условия, Множители Лагранжа, Область допустимых решений, Опорная прямая, Распределительные задачи, Седловая точка, Симплексная таблица, Симплексный метод, Транспортная задача.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > linear programming

См. также в других словарях:

  • Теория решения изобретательских задач — Эта статья или раздел нуждается в переработке. Пожалуйста, улучшите статью в соответствии с правилами написания статей …   Википедия

  • Решение задач — процесс выполнения действий или мыслительных операций, направленный на достижение цели, заданной в рамках проблемной ситуации задачи; является составной частью мышления. С точки зрения когнитивного подхода процесс решения задач является наиболее… …   Википедия

  • Диспетчер задач Windows — Эта статья  о Диспетчере задач в Microsoft Windows. О других подобных программах читайте в статье Диспетчер задач. Диспетчер задач в Windows 7 Диспетчер задач …   Википедия

  • Диспетчер задач — У этого термина существуют и другие значения, см. Диспетчер (значения). Эта статья  об утилитах управления процессами. О встроенной утилите Microsoft Windows см. Диспетчер задач Microsoft Windows. Диспетчер задач … …   Википедия

  • ИСЧИСЛЕНИЕ ЗАДАЧ — интуиционистское исчисление высказываний, понимаемое в свете интерпретации, к рую предложил в 1932 сов. ученый А. Н. Колмогоров. Эта интерпретация была свободна от гносеологич. установок интуиционизма и вскрывала содержательный материалистич.… …   Философская энциклопедия

  • Диспетчер задач Microsoft Windows — Эта статья о Диспетчере задач в Microsoft Windows. О других подобных программах читайте в статье Диспетчер задач. Task manager из Windows 4.x под Windows XP (NT 5.1) …   Википедия

  • Панель задач — У этого термина существуют и другие значения, см. Панель. Панель задач (англ. taskbar)  приложение, которое используется для запуска других программ или управления уже запущенными, и представляет собой …   Википедия

  • Менеджер задач — Это статья об утилитах управления процессами. О встроенной утилите Microsoft Windows см. статью Диспетчер задач Microsoft Windows Диспетчер задач  компьютерная программа (утилита) для вывода на экран списка запущенных процессов и потребляемых ими …   Википедия

  • Панель задач Windows — Панель задач (англ. taskbar)  приложение, которое используется для запуска других программ или управления уже запущенными, и представляет собой панель инструментов. В частности используется для управления окнами приложений. Панель задач может… …   Википедия

  • Панель задач Microsoft Windows — Панель задач (англ. taskbar)  приложение, которое используется для запуска других программ или управления уже запущенными, и представляет собой панель инструментов. В частности используется для управления окнами приложений. Панель задач может… …   Википедия

  • Этапы решение задач на ЭВМ — Значимость предмета статьи поставлена под сомнение. Пожалуйста, покажите в статье значимость её предмета, добавив в неё доказательства значимости по частным критериям значимости или, в случае если частные критерии значимости для… …   Википедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»