Перевод: с русского на все языки

со всех языков на русский

(действия+или+работы)

  • 61 рабочее место

    1. poste de travail
    2. place de travail

     

    рабочее место
    Элементарная единица структуры предприятия, где размещены исполнители работы, обслуживаемое технологическое оборудование, часть конвейера, на ограниченное время оснастка и предметы труда.
    Примечание:
    Определение рабочего места приведено применительно к машиностроительному производству. Определение рабочего места, применяемое в других отраслях народного хозяйства, установлено ГОСТ 19605
    [ ГОСТ 14.004-83]

    рабочее место
    Зона, оснащенная необходимыми техническими средствами, в которой совершается трудовая деятельность исполнителя или группы исполнителей, совместно выполняющих одну работу или операцию
    [ ГОСТ 19605-74]

    рабочее место
    Совокупность рабочего оборудования в рабочей области, окруженного рабочими условиями.
    [ГОСТ Р ЕН 614-1-2003]

    место рабочее
    1. Определённый участок производственной площади, закреплённый за рабочим, служащим или бригадой, оборудованный соответственно характеру выполняемых работ
    2. Расчётная единица для определения размеров торгового предприятия
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    ПРИМЕРНЫЙ ПЕРЕЧЕНЬ ОСНОВНЫХ ВОПРОСОВ ПЕРВИЧНОГО ИНСТРУКТАЖА НА РАБОЧЕМ МЕСТЕ

    1. Общие сведения о технологическом процессе и оборудовании на данном рабочем месте, производственном участке, в цехе. Основные опасные и вредные производственные факторы, возникающие при данном технологическом процессе.
    2. Безопасная организация и содержание рабочего места.
    3. Опасные зоны машины, механизма, прибора. Средства безопасности оборудования (предохранительные, тормозные устройства и ограждения, системы блокировки и сигнализации, знаки безопасности). Требования по предупреждению электротравматизма.
    4. Порядок подготовки к работе (проверка исправности оборудования, пусковых приборов, инструмента и приспособлений, блокировок, заземления и других средств защиты).
    5. Безопасные приемы и методы работы; действия при возникновении опасной ситуации.
    6. Средства индивидуальной защиты на данном рабочем месте и правила пользования ими.
    7. Схема безопасного передвижения работающих на территории цеха, участка.
    8. Внутрицеховые транспортные и грузоподъемные средства и механизмы. Требования безопасности при погрузочно-разгрузочных работах и транспортировке грузов.
    9. Характерные причины аварий, взрывов, пожаров, случаев производственных травм.
    10. Меры предупреждения аварий, взрывов, пожаров. Обязанность и действия при аварии, взрыве, пожаре. Способы применения имеющихся на участке средств пожаротушения, противоаварийной защиты и сигнализации, места их расположения.
    [ ГОСТ 12.0.004-90]

    Тематики

    EN

    DE

    FR

    Русско-французский словарь нормативно-технической терминологии > рабочее место

  • 62 дифференциальный манометр

    1. Differenzdruckmessgerät

     

    дифференциальный манометр
    дифманометр

    Манометр для измерения разности двух давлений.
    Примечание
    Дифманометр с верхним пределом измерения не более 40000 Па (4000 кгс/м2) называется микроманометром.
    [ГОСТ 8.271-77]

    дифференциальный манометр
    -

    [Лугинский Я. Н. и др. Англо-русский словарь по электротехнике и электроэнергетике. 2-е издание - М.: РУССО, 1995 - 616 с.]

    EN

    differential-pressure gage
    (engineering) Apparatus to measure pressure differences between two points in a system; it can be a pressured liquid column balanced by a pressured liquid reservoir, a formed metallic pressure element with opposing force, or an electrical-electronic gage (such as strain, thermal-conductivity, or ionization).

    [ http://www.answers.com/topic/differential-pressure-gage#ixzz1gzzibWaQ]

    Малые значения дифференциального давления могут измеряться приборами на основе мембран и сильфонов.
    Манометры дифференциальные сильфонные показывающие типа ДСП-160 нашли широкое применение на территории СНГ. Принцип их действия основан на деформации двух автономных сильфонных блоков, находящихся под воздействием «плюсового» и «минусового» давления. Эти деформации преобразовываются в перемещение указательной стрелки прибора. Перемещение стрелки осуществляется до установления равновесия между «плюсовым» сильфоном, с одной стороны, и «минусовым» и цилиндрической пружиной - с другой.

    4147
    Рис. 2.23

    Дифференциальный сильфонный манометр:

    а – схема привода стрелки;
    б – блок первичного преобразования;
    1 – «плюсовый» сильфон;
    2 – «минусовый» сильфон;
    3 – шток;
    4 – рычаг;
    5 – торсионный вывод;
    6 – цилиндрическая пружина;
    7 – компенсатор;
    8 – плоскостный клапан;
    9 – основание;
    10 и 11 – крышки;
    12 – подводящий штуцер;
    13 – манжета;
    14 – дросселирующий канал;
    15 – клапан;
    16 – рычажная система;
    17 – трибко-секторный механизм;
    18 – стрелка;
    19 – регулировочный винт;
    20 – натяжная пружина;
    21 – пробка;
    22 – уплотнительное резиновое кольцо

    «Плюсовый» 1 и «минусовый» 2 сильфоны (рис. Рис. 2.23, б) соединены между собой штоком 3, функционально связанным с рычагом 4, который, в свою очередь, неподвижно закреплен на оси торсионного вывода 5. К концу штока на выходе «минусового» сильфона присоединена цилиндрическая пружина 6, закрепленная нижним основанием на компенсаторе 7 и работающая на растяжение. Каждому номинальному перепаду давления соответствует определенная пружина.

    «Плюсовый» сильфон состоит из двух частей. Его первая часть (компенсатор 7, состоящий из трех дополнительных гофр и плоскостных клапанов 8) предназначена для уменьшения температурной погрешности прибора из-за изменения объема жидкости-наполнителя, обусловленного варьированием температуры окружающего воздуха. При изменении температуры окружающей среды и соответственно рабочей жидкости ее увеличивающийся объем перетекает через плоскостный клапан во внутреннюю полость сильфонов. Вторая часть «плюсового» сильфона рабочая и идентична по конструкции «минусовому» сильфону.

    «Плюсовый» и «минусовый» сильфоны присоединены к основанию 9, на котором установлены крышки 10 и 11, образующие вместе с сильфонами «плюсовую» и «минусовую» камеры с соответствующими подводящими штуцерами 12 давления р + и р

    Внутренние объемы сильфонов, так же как и внутренняя полость основания 9, заполняются: жидкостью ПМС-5 для обычного и коррозионно-стойкого исполнений; составом ПЭФ-703110 – в кислородном варианте; дистиллированной водой – в варианте для пищевой промышленности и жидкостью ПМС-20 – для газового исполнения.

    В конструкциях дифманометров, предназначенных для измерения давления газа, на шток одета манжета 13, движение среды организовано через дросселирующий канал 14. Регулированием размера проходного канала с помощью клапана 15 обеспечивается степень демпфирования измеряемого параметра.

    Дифманометр работает следующим образом. Среды «плюсового» и «минусового» давления поступают через подводящие штуцеры в «плюсовую» и «минусовую» камеры соответственно. «Плюсовое» давление в большей степени воздействует на сильфон 1, сжимая его. Это приводит к перетоку находящейся внутри жидкости в «минусовый» сильфон, который растягивается и разжимает цилиндрическую пружину. Такая динамика происходит до уравновешивания сил взаимодействия между «плюсовым» сильфоном и парой – «минусовый» сильфон – цилиндрическая пружина. Мерой деформации сильфонов и их упругого взаимодействия служит перемещение штока, которое передается на рычаг и соответственно на ось торсионного вывода. На этой оси (рис. 2.23,а) закреплена рычажная система 16, обеспечивающая передачу вращения оси торсионного вывода к трибко-секторному механизму 17 и стрелке 18. Таким образом, воздействие на один из сильфонов приводит к угловому перемещению оси торсионного вывода и затем к повороту указательной стрелки прибора.
    Регулировочным винтом 19 с помощью натяжной пружины 20 производится корректировка нулевой точки прибора.

    Пробки 21 предназначены для продувки импульсных линий, промывки измерительных полостей сильфонного блока, слива рабочей среды, заполнения измерительных полостей разделительной жидкостью при вводе прибора в работу.
    При односторонней перегрузке одной из камер происходит сжатие сильфона и перемещение штока. Клапан в виде уплотнительного резинового кольца 22 садится в гнездо основания, перекрывает переток жидкости из внутренней полости сильфона, и таким образом предотвращается его необратимая деформация. При непродолжительных перегрузках разность «плюсового» и «минусового» давления на сильфонный блок может достигать 25 МПа, а в отдельных типах приборов не превышать 32 МПа.
    прибор может выпускаться как в общетеническом, так и в аммиачном (А), кислородном (К), коррозионно-стойком-пищевом (Пп) исполнениях.
     

    4148
    Рис. 2.24

    Показывающий дифференциальный манометр на основе мембранной коробки:

    1 – мембранная коробка;
    2 – держатель «плюсового» давления;
    3 – держатель «минусового» давления;
    4 – корпус;
    5 – передаточный механизм;
    6 – стрелка;
    7 – цифербла

    Достаточно широкое распространение получили приборы на основе мембран и мембранных коробок. В одном из вариантов (рис. 2.24) мембранная коробка 1, внутрь которой через подводящий штуцер держателя 2 поступает «плюсовое» давление, является чувствительным элементом дифманометра. Под воздействием этого давления смещается подвижный центр мембранной коробки.
    «Минусовое» давление через подводящий штуцер держателя 3 подается внутрь герметичного корпуса 4 прибора и воздействует на мембранную коробку снаружи, создавая противодействие перемещению ее подвижного центра. Таким образом «плюсовое» и «минусовое» давления уравновешивают друг друга, а перемещение подвижного центра мембранной коробки свидетельствует о величине разностного – дифференциального давления. Этот сдвиг через передаточный механизм передается на указательную стрелку 6, которая на шкале циферблата 7 показывает измеряемое дифференциальное давление.
    Диапазон измеряемого давления определяется свойствами мембран и ограничивается, как правило, в пределах от 0 до 0,4…40 кПа. При этом класс точности может составлять 1,5; 1,0; 0,6; 0,4, а в некоторых приборах 0,25.

    Обязательная конструктивная герметичность корпуса определяет высокую защищенность от внешних воздействий и определяется в основном уровнем IP66.

    В качестве материала для чувствительных элементов приборов используется бериллиевая и другие бронзы, а также нержавеющая сталь, для штуцеров, передаточных механизмов – медные сплавы, коррозионно-стойкие сплавы, включая нержавеющую сталь.
    Приборы могут изготавливаться в корпусах малых (63 мм), средних (100 мм), и больших (160 мм) диаметров.

    Мембранные показывающие дифференциальные манометры, как и приборы с мембранными коробками, используются для измерения малых значений дифференциального давления. Отличительная особенность – устойчивая работа при высоком статическом давлении.
     

    4149
    Рис. 2.25

    Мембранные показывающие дифференциальные манометры с вертикальной мембраной:

    1 – «плюсовая» камера;
    2 – «минусовая» камера;
    3 – чувствительная гофрированная мембрана;
    4 – передающий шток;
    5 – передаточный механизм;
    6 – предохранительный клапан

    Дифманометр с вертикальной мембраной (Рис. 2.25) состоит из «плюсовой» 1 и «минусовой» 2 рабочих камер, разделенных чувствительной гофрированной мембраной 3. Под воздействием давления мембрана деформируется, в результате чего перемещается ее центр вместе с закрепленным на нем передающим штоком 4. Линейное смещение штока в передаточном механизме 5 преобразуется в осевое вращение трибки, и соответственно указательной стрелки, отсчитывающей на шкале прибора измеряемое давление.

    Для сохранения работоспособности чувствительной гофрированной мембраны при превышении максимального допустимого статического давления предусмотрен открывающийся предохранительный клапан 6. Причем конструкции этих клапанов могут быть различны. Соответственно такие приборы не могут использоваться, когда не допускается контакт сред из «плюсовой» и «минусовой» камер.

    4150
    Рис. 2.26

    Мембранный показывающий дифференциальный манометр с горизонтальной мембраной:

    1 – «плюсовая» камера;
    2 – «минусовая» камера;
    3 – входной блок;
    4 - чувствительная гофрированная мембрана;
    5 – толкатель;
    6 – сектор;
    7 – трибка;
    8 – стрелка;
    9 – циферблат;
    10 – разделительный сильфон

    Дифманометр с горизонтальной чувствительной мембраной показан на рис. 2.26. Входной блок 3 состоит из двух частей, между которыми устанавливается гофрированная мембрана 4. В ее центре закреплен толкатель 5, передающий перемещение от мембраны, через сектор 6, трибку 7 к стрелке 8. В этом передаточном звене линейное перемещение толкателя преобразуется в осевое вращение стрелки 8, отслеживающей на шкале циферблата 9 измеряемое давление. В этой конструкции применена сильфонная система вывода толкателя из зоны рабочего давления. Разделительный сильфон 10 своим основанием герметично закрепляется на центре чувствительной мембраны, а верхней частью также герметично прикрепляется к входному блоку. Такая конструкция исключает контакт измеряемой и окружающей сред.
    Конструкция входного блока предусматривает возможность промывки или продувки «плюсовой» и «минусовой» камер и обеспечивает применение таких приборов для работы даже в условиях загрязненных рабочих сред.

    4151
    Рис. 2.27

    Мембранный двухкамерный показывающий дифманометр:

    1 – «плюсовая» камера;
    2 – «минусовая» камера;
    3 – передающий шток;
    4 – сектор;
    5 – трибка;
    6 – коромысло

    Двухкамерная система измерения дифференциального давления применена в конструкции прибора, показанного на рис. 2.27. Измеряемые потоки среды направляются в «плюсовую» 1 и «минусовую» 2 рабочие камеры, основными функциональными элементами которых являются автономные чувствительные мембраны. Преобладание одного давления над другим приводит к линейному перемещению передающего штока 3, которое через коромысло 6 передается соответственно на сектор 4, трибку 5 и систему стрелочной индикации измеряемого параметра.
    Дифманометры с двухкамерной системой измерения используются для измерения малых дифференциальных давлений при высоких статических нагрузках, вязких сред и сред с твердыми вкраплениями.

    4152
    Рис. 2.28.

    Дифманометр с магнитным преобразователем:

    1 – поворотный магнит;
    2 – стрелка;
    3 – корпус;
    4 – магнитный поршень;
    5 – фторопластовый сальник;
    6 – рабочий канал;
    7 – пробка;
    8 – диапазонная пружина;
    9 – блок электроконтактов

    Принципиально иной показывающий дифманометр изображен на рис. 2.28. Поворотный магнит 1, на торце которого установлена стрелка 2, размещен в корпусе 3, выполненном из немагнитного металла. Магнитный поршень, уплотненный фторопластовым сальником 5, может передвигаться в рабочем канале 6. Магнитный поршень 4 со стороны «минусового» давления подпирает пробка 7, в свою очередь поджимаемая диапазонной пружиной 8.
    Среда «плюсового» давления через соответствующий подводящий штуцер воздействует на магнитный поршень и сдвигает его вместе с пробкой 7 по каналу 6 до уравновешивания такого смещения противодействующими силами – «минусовым» давлением и диапазонной пружиной. Движение магнитного поршня приводит к осевому вращению поворотного магнита и соответственно указательной стрелки. Такой сдвиг пропорционален перемещению стрелки. Полное согласование достигается подбором упругих характеристик диапазонной пружины.
    В дифманометре с магнитным преобразователем предусмотрен блок 9, замыкающий и размыкающий соответствующие контакты при прохождении вблизи его магнитного поршня.

    Приборы с магнитным преобразователем устойчивы к воздействию статического давления (до 10 МПа). Они обеспечивают относительно невысокую погрешность (примерно 2 %) в диапазоне функционирования до 0,4 Мпа и используются для измерения давления воздуха, газов, различных жидкостей.

    [ http://jumas.ru/index.php?area=1&p=static&page=razdel_2_3_2]

     

    4145     4146
        Показывающий дифференциальный манометр на основе трубчатой пружины

    1 и 2 – держатели;
    3 и 4 – трубчатые пружины;
    5 и 8 – трибки;
    6 – стрелка «плюсового» давления;
    7 и 9 – шкалы избыточного давления;
    10 – стрелка «минусового» давления

    В приборах такого типа на автономных держателях 1 и 2, соединенных вместе, установлены трубчатые пружины. Каждый держатель вместе с трубчатым чувствительным элементом образовывают автономные измерительные каналы. Среда «плюсового» давления поступает через входной штуцер держателя 2 в трубку 4, деформирует ее овал, в результате чего перемещается наконечник трубки и это перемещение через соответствующий зубчатый сектор передается на трибку 5. Эта трибка соответственно приводит к отклонению указательной стрелки 6, которая показывает на шкале 7 значение «плюсового» избыточного давления.

    «Минусовое» давление посредством держателя 1, трубчатой пружины 3, трибки 8 приводит к перемещению циферблата 9, объединенного со стрелкой 10, которая на шкале 7 отслеживает значение измеряемого параметра.

    Дифференциальные манометры (далее – дифманометры), как отмечалось в п.1.3, являются названием отнесенным в нашей стране к показывающим приборам. (Устройства, обеспечивающие электрический выходной сигнал, пропорциональный измеряемому дифференциальному давлению имеют название измерительных преобразователей разности давлений). Хотя отдельные производители, а также некоторые специалисты-эксплуатанционщики измерительные преобразователи разности давлений также называют дифманометрами.

    Дифманометры нашли основное применение в технологических процессах для измерения, контроля, регистрации и регулирования следующих параметров:

    · расхода различных жидких, газообразных и парообразных сред по перепаду давления на разного рода сужающих устройствах (стандартных диафрагмах, соплах, включая сопла Вентури) и дополнительно вводимых в поток гидро- и аэродинамических сопротивлениях, например на преобразователях типа Annubar или на нестандартных гидро- и аэродинамических препятствиях;

    · перепада - разности давления, вакуумметрических, избыточных, в двух точках технологического цикла, включая потери на фильтрах систем вентиляции и кондиционирования воздуха;

    · уровня жидких сред по величине гидростатического столба.

    Согласно ГОСТ 18140–84/23/, предельные номинальные перепады давления дифманометров-расходомеров, верхние пределы или сумма абсолютных значений верхних пределов измерений дифманометров-перепадомеров должны приниматься из следующего ряда:

    10; 16; 25; 40; 63; 100; 160; 250; 400; 630 Па;

    1; 1,6; 2,5; 4; 6,3; 10; 16; 25; 40; 63; 100; 160; 250; 400; 630 кПа;

    1; 1,6; 2,5; 4; 6,3 МПа.

    У дифманометров-расходомеров верхние пределы измерений выбираются из ряда, определяемого выражением:

    А = а × 10n, (2.7)

    где а – одно из чисел следующего ряда: 1; 1,25; 1,6; 2,0; 2,5; 3,2; 4; 5; 6,3; 8; n – целое (положительное или отрицательное) число или нуль.

    Верхние пределы измерений или сумма абсолютных значений верхних пределов измерений дифманометров-уровнемеров следует выбирать и ряда:

    0,25; 0,4; 0,63; 1,0; 1,6; 2,5; 4,0; 6,3; 10; 16; 25; 40; 63; 100 и 160 метров.

    Одной из важных характеристик дифманометров является предельно допустимое рабочее избыточное давление, т. е. избыточное давление, которое могут выдержать рабочие каналы без необратимой деформации чувствительных элементов. Такое значение параметра принимается из следующего ряда:

    25; 40; 63; 100; 160; 250; 400 и 630 кПа;

    1; 1,6; 2,5; 4; 6,3; 10; 16; 25; 32; 40 и 63 МПа.

    Нижние пределы измерений дифманометров-расходо-меров из-за неустойчивости работы стандартных сужающих устройств при малых Числах Рейнольдса измеряемого потока не должны превышать 30 % шкалы прибора. У преобразователей Annubar этот предел не превышает 10 % при сохранении объявленного класса точности (1,0).

    Классы точности дифманометров принимаются из ряда: 0,25; 0,5; 1,0; 1,5.

    Дифманометры должны иметь линейную шкалу при измерении уровня или перепада, линейную или квадратичную – при измерении расхода.

    Дифманометры могут иметь условные обозначения, предложенные в методике п.1.4. Указываются модель прибора, причем на первом месте в обозначении фиксируется измеряемый параметр – тип измерителя (дифманометр), затем – принцип измерения и функция, предельный номинальный перепад, избыточное рабочее давление, класс точности. Например, дифманометр сильфонный показывающий в корпусе диаметром 160 мм, на предельный номинальный перепад давления 630 кПа, с рабочим избыточным давлением 32 МПа, класса точности 1,5 обозначается как

    ДСП 160 (0…630 кПа)-32 МПа-1,5.

    После этого допускается указывать дополнительные обозначения, например исполнение по «IP», измеряемой среде, присоединительным линиям и т. д.

    Специфика измерения дифференциального давления обусловливает наличие в дифманометрах устройств продувки импульсных линий без необходимости демонтажа прибора или его узлов.

    При испытаниях, а также в нормальных условиях отечественные дифманометры, согласно требований производителя, должны обеспечивать заданные метрологические характеристики после выдержки не менее 6-ти часов при температуре окружающей среды:

    20 ± 2 или 23 ± 2 оС – для приборов классов точности 0,5; 0,6 и 1;

    20 ± 5 или 23 ± 5 оС – для приборов класса точности 1,5.

    Современные конструкции из-за снижения металлоемкости и совершенствования преобразователей позволяют сокращать время температурной адаптации у некоторых моделей до нескольких десятков минут.

    Конкретная температура приведена в ТУ на измеритель и должна регистрироваться в техническом описании или паспорте на прибор.

    Дифманометры, не защищенные от одностороннего воздействия, должны выдерживать перегрузку со стороны среды «плюсового» давления, превышающую предельные номинальные перепады на 10…50 %. «Плюсовым», в противовес «минусовому», называют большее из двух давлений среды, поступающей на вход дифференциального манометра.

    Конструкции, у которых предусмотрены односторонние перегрузки, должны выдерживать десятикратные, стократные или двухсот пятидесятикратные односторонние перегрузки/23/.

    Показывающие дифференциальные манометры на основе трубчатой пружины находят широкое применение для визуализации расхода различных сред, гидродинамических потерь в системах теплового отопления.

    Дифференциальное давление, т. е. разность давлений р отсчитывается стрелкой на шкале циферблата.

    Дифманометры такого типа, исходя из особенностей трубчатых пружин, обеспечивают работоспособность в промышленных условиях в диапазоне от 0 до 100 МПа.

    [ http://jumas.ru/index.php?area=1&p=static&page=razdel2_2_4]

    Тематики

    Синонимы

    EN

    DE

    FR

    Русско-немецкий словарь нормативно-технической терминологии > дифференциальный манометр

  • 63 расходомер жидкости (газа)

    1. Durchflußmeßgerät

     

    расходомер жидкости (газа)
    расходомер
    Ндп. измеритель расхода жидкости (газа)
    Измерительный прибор или совокупность приборов, предназначенных для измерения расхода жидкости (газа).
    [ ГОСТ 15528-86]

    Расходомеры, служат для измерения объема (объемный расход) или массы (массовый расход) жидкостей, газов и паров, проходящих через заданное сечение трубопровода в единицу времени. Иногда расходомеры снабжают интеграторами, или счетчиками - устройствами для суммирования измеряемых объемов или масс контролируемых сред в течение заданного промежутка времени. Расходомеры разных типов рассчитаны на измерения в определенной области расходов (рис. 1).

    5288

    Рис. 1. Диапазоны измерений расходов жидкостей, газов и паров разными расходомерами.

    Основные показатели, обусловливающие выбор расходомера: значение расхода; тип контролируемой среды, ее температура, давление, вязкость, плотность, электрическая проводимость, рН; перепад давлений на первичном измерительном преобразователе (датчике); диаметр трубопровода; диапазон (отношение максимального расхода к минимальному) и погрешность измерений. В зависимости от физ.-химических свойств измеряемой и окружающей сред в расходомеры используются различные методы измерений.

    В данной статье рассматриваются наиболее важные типы расходомеры и счетчиков, применяемых в химических лабораториях, химических и смежных отраслях промышленности для высокоточных контроля и учета химических веществ при их производстве, выдаче и потреблении, а также в системах автоматизированного управления технологическими процессами.

     

    5289

    Расходомеры переменного перепада давлений (рис. 2, а). Действие их основано на зависимости перепада давлений на гидравлическом сопротивлении (диафрагмы, сопла и трубы Вентури, сопла Лаваля и др.), расположенном в потоке контролируемой среды, от ее расхода Q. Измерения разности давлений Dp = p1 - p2 осуществляются на прямолинейном участке трубопровода (длиной до 10 и не менее 5 диаметров соответственно до и после гидравлического сопротивления). Расходомеры данного типа особенно распространены благодаря следующим достоинствам: простоте конструкции и возможности измерений в широком диапазоне значений расхода и диаметров трубопроводов (от десятков до 3000 мм и более); возможности применения для различных по составу и агрессивности жидкостей и газов при температурах до 350-400 °С и давлениях до 100 МПа; возможности расчетным путем определять расход без натурной градуировки расходомеры в случае трубопроводов диаметрами 50-1000 мм. Недостатки: небольшой диапазон измерений из-за квадратичной зависимости между расходом и перепадом давлений (3:1); значительные потери давления на гидравлическом сопротивлении и связанные с этим дополнительные затраты энергии. Погрешность 1,5-2,5% от макс. расхода.

    5290

    Расходомеры постоянного перепада давлений, или ротаметры ( рис. 2, б). В этих приборах измеряется прямо пропорциональная расходу величина перемещения поплавка h внутри конической трубки под воздействием движущегося снизу вверх потока контролируемой среды. Последний поднимает поплавок до тех пор, пока подъемная сила, возникающая благодаря наличию на нем перепада давлений, не уравновесится весом поплавка. Трубки ротаметров могут быть стеклянными (рассчитаны на давление до 2,5 МПа) и металлическими (до 70 МПа). Поплавки в зависимости от свойств жидкости или газа изготовляют из различных металлов либо пластмасс. Приборы работоспособны при температурах от — 80 до 400 °С, предпочтительны для трубопроводов диаметром до 150 мм, имеют равномерные шкалы, градуированные в единицах объемного расхода. Достоинства: возможность измерений расхода жидкостей и газов от весьма малых значений (0,002 л/ч по воде, 0,03 л/ч по воздуху) до высоких (150-200 и до 3000 м3/ч); широкий диапазон измерений (10:1); малые потери давления (до 0,015 МПа). Погрешность 0,5-2,5% от макс. расхода.

    5291

    Электромагнитные расходомеры (рис. 2, в). Действие их основано на прямо пропорциональной зависимости расхода от эдс, индуцированной в потоке электропроводной жидкости (минимальная удельная электрическая проводимость 10-3-10-4 См/м), движущейся во внеш. магнитное поле, которое направлено перпендикулярно оси трубопровода. Эдс определяется с помощью двух электродов, вводимых в измеряемую среду диаметрально противоположно через электроизоляционное покрытие внутри поверхности трубопровода. Материалы покрытий - резины, фторопласты, эпоксидные компаунды, керамика и другие. Приборы позволяют измерять расход различных пульп, сиропов, агрессивных и радиоактивных жидкостей и т. д. при давлениях обычно до 2,5 МПа (иногда до 20 МПа); диаметр трубопроводов, как правило, 2-3000 мм. Во избежание поляризации электродов измерения проводят в переменном магнитном поле. Допустимые температуры контролируемой среды определяются термостойкостью электроизоляционных покрытий и могут достигать, как правило, 230 °С. При измерении расхода жидких металлов (например, Na, К и их эвтектик) указанные температуры обусловлены термостойкостью используемых конструкционных материалов, в первую очередь магнитов, создающих постоянное магнитное поле (исключает возникновение в металлах вихревых токов) и составляют 400-500 °С; в данном случае трубопроводы не имеют внутренней изоляции, а. электроды привариваются непосредственно к их наружным поверхностям. Достоинства: высокое быстродействие; широкий диапазон измерений (100:1); отсутствие потерь давления (приборы не имеют элементов, выступающих внутрь трубопровода); показания приборов не зависят от вязкости и плотности жидкостей. Погрешность 0,5-1,0% от измеряемой величины.

    5292

    Тахометрические расходомеры В турбинных расходомерах (рис. 2, г) используется зависимость измеряемой тахометром частоты вращения турбинки, приводимой в движение потоком среды (нефтепродукты, растворы кислот и щелочей, нейтральные или агрессивные газы) от ее расхода. Турбинки могут размещаться аксиально либо тангенциально по отношению к направлению движения потока. Диаметр трубопроводов 4-4000 мм; вязкость среды 0,8-750 мм2/с; температура от -240 до 550 °С, давление до 70 МПа; диапазон измерений до 100:1; потери давления 0,05 МПа. Погрешность 0,5-1,5% от макс. расхода.

    В шариковых расходомерах контролируемая жидкая среда закручивается с помощью неподвижного винтового направляющего аппарата и увлекает за собой металлический шарик, заставляя его вращаться внутри трубопровода (перемещению вдоль оси препятствуют ограничит. кольца). Мера расхода - частота вращения шарика, измеряемая, например, тахометром. Диаметр трубопроводов 5-150 мм; температура среды от -30 до 250 °С, давление до 6,4 МПа; диапазон измерений 10:1; потери давления до 0,05 МПа. В этих приборах в отличие от турбинных отсутствуют опорные подшипники, что позволяет измерять расход жидкостей с механическими включениями и увеличивает ресурс работы. Погрешность не более 1,5% от максимального расхода.

    5293

    Ультразвуковые расходомеры (рис. 2, д). В основу их работы положено использование разницы во времени прохождения ультразвуковых колебаний (более 20 кГц) в направлении потока контролируемой среды и против него. Электронное устройство формирует электрический импульс, поступающий на пьезоэлемент П1, который излучает электромеханические колебания в движущуюся среду. Эти колебания воспринимаются через некоторое время пьезоэлементом П2, преобразуются им в электрический импульс, попадающий в электронное устройство и снова направляемый им на пьезоэлемент П1 и т.д. Контур П1-П2 характеризуется частотой f1 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной разности между скоростью распространения звука в контролируемой среде и скоростью самой среды. Аналогично электронное устройство подает импульсы в обратном направлении, то есть от пьезоэлемента П2 к пьезоэлементу П1. Контур П2-П1 характеризуется частотой f2 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной сумме скоростей распространения звука в среде и самой среды. Далее электронное устройство определяет разность Df указанных частот, которая пропорциональна скорости (расходу) среды.

    Эти приборы не вызывают потерь давления, обладают высоким быстродействием и обеспечивают измерение пульсирующих расходов (частота 5-10 кГц) любых не содержащих газовых включений жидкостей (в т. ч. вязких и агрессивных), а также газов и паров. Диаметр трубопроводов 10-3000 мм и более; температура среды от —40 до 200°С (реже-от —250 до 250 °C), давление до 4 МПа; диапазон измерений 100:1. Погрешность 1,0-2,5% от макс. расхода.

    5294

    Вихревые расходомеры (рис. 2, е). Действие их основано на зависимости между расходом и частотой возникновения вихрей за твердым телом (например, металлическим прямоугольным стержнем), которое расположено в потоке жидкости или газа. Образованию вихрей способствует поочередное изменение давления па гранях этого тела. Диапазон частот образования вихрей определяется размером и конфигурацией тела и диаметром трубопроводов (25-300 мм). Температура среды обычно от - 50 до 400 °С, реже от -270 до 450 °С; давление до 4 МПа, иногда до -6,3 МПа; диапазон измерений: для жидкостей 12:1, для газов 40:1. Градуировка приборов не зависит от плотности и вязкости контролируемой среды, а также от ее температуры и давления. Погрешность 0,5-1,0% от измеряемой величины при числах Рейнольдса Re > 30000; при Re < 10000 определение расхода практически невозможно из-за отсутствия вихрей.

    5295

    Объемные расходомеры (рис. 2,ж). В качестве измерителей объема служат счетчики с цилиндрическими или овальными шестернями, поршневые, с плавающей шайбой, лопастные, винтовые и другие. Они снабжены устройствами выдачи сигналов, пропорциональных объемному расходу вещества. Эти приборы пропускают определенный объем жидкости за один цикл хода чувствительного элемента. Мера расхода - число таких циклов. Диаметр трубопроводов 15-300 мм; температура среды до 150°С, давление до 10 МПа; диапазон измерений до 20:1. Основное достоинство - стабильность показаний. Недостатки: необходимость установки фильтров, задерживающих твердые частицы (чувствительный элемент при их проникновении может выйти из строя); износ движущихся деталей, приводящий к увеличению погрешности показаний, которая обычно составляет 0,5-1,0 от измеряемой величины.

    5296

    Струйные расходомеры (рис. 2,з). В них используется принцип действия генератора автоколебаний. В приборе часть струи потока жидкости или газа ответвляется и через так называемый канал обратной связи а поступает на вход устройства, создавая поперечное давление на струю. Последняя перебрасывается к противоположной стенке трубопровода, где от нее снова ответвляется часть потока, подаваемая через канал б на вход прибора; в результате струя переходит в первоначальное положение и т. д. Такой переброс происходит с частотой, пропорциональной расходу контролируемой среды, и сопровождается изменением давления в каналах а и б, что позволяет датчику давления воспринимать автоколебания. Диаметр трубопроводов 2-25 мм; температура среды от —263 до 500 °С, давление до 4 МПа; диапазон измерений 10:1. Основное достоинство - отсутствие подвижных элементов. Погрешность-1,5% от макс. расхода.

    5297

    Корреляционные расходомеры (рис. 2, и). В этих приборах с помощью сложных ультразвуковых и иных устройств осуществляется запоминание в заданном сечении трубопровода (I) характерного "образа" потока контролируемой среды и его последнее распознавание в другом сечении (II), расположенном на определенном расстоянии от первого. Мера расхода - время прохождения "образом" потока участка трубопровода между сечениями. Диаметр трубопроводов 15-900 мм; температура среды до 100-150°С, давление до 20 МПа; диапазон измерений 10:1. Достоинства: независимость показаний от изменений плотности, вязкости, электропроводности и других параметров жидкости; отсутствие потерь давления. Погрешность 1 % от измеряемой величины.

    [ http://www.chemport.ru/data/chemipedia/article_3233.html]

     

     

    Недопустимые, нерекомендуемые

    Тематики

    Синонимы

    EN

    DE

    FR

    14. Расходомер жидкости (газа)

    Расходомер

    Ндп. Измеритель расхода жидкости (газа)

    D. Durchflußmeßgerät

    E. Flowmeter

    F. Débitmètre

    Измерительный прибор или совокупность приборов, предназначенных для измерения расхода жидкости (газа)

    Источник: ГОСТ 15528-86: Средства измерений расхода, объема или массы протекающих жидкости и газа. Термины и определения оригинал документа

    Русско-немецкий словарь нормативно-технической терминологии > расходомер жидкости (газа)

  • 64 дифференциальный манометр

    1. differential-pressure gage
    2. differential pressure indicator
    3. differential pressure gage
    4. differential manometer
    5. differential gauge pressure

     

    дифференциальный манометр
    дифманометр

    Манометр для измерения разности двух давлений.
    Примечание
    Дифманометр с верхним пределом измерения не более 40000 Па (4000 кгс/м2) называется микроманометром.
    [ГОСТ 8.271-77]

    дифференциальный манометр
    -

    [Лугинский Я. Н. и др. Англо-русский словарь по электротехнике и электроэнергетике. 2-е издание - М.: РУССО, 1995 - 616 с.]

    EN

    differential-pressure gage
    (engineering) Apparatus to measure pressure differences between two points in a system; it can be a pressured liquid column balanced by a pressured liquid reservoir, a formed metallic pressure element with opposing force, or an electrical-electronic gage (such as strain, thermal-conductivity, or ionization).

    [ http://www.answers.com/topic/differential-pressure-gage#ixzz1gzzibWaQ]

    Малые значения дифференциального давления могут измеряться приборами на основе мембран и сильфонов.
    Манометры дифференциальные сильфонные показывающие типа ДСП-160 нашли широкое применение на территории СНГ. Принцип их действия основан на деформации двух автономных сильфонных блоков, находящихся под воздействием «плюсового» и «минусового» давления. Эти деформации преобразовываются в перемещение указательной стрелки прибора. Перемещение стрелки осуществляется до установления равновесия между «плюсовым» сильфоном, с одной стороны, и «минусовым» и цилиндрической пружиной - с другой.

    4147
    Рис. 2.23

    Дифференциальный сильфонный манометр:

    а – схема привода стрелки;
    б – блок первичного преобразования;
    1 – «плюсовый» сильфон;
    2 – «минусовый» сильфон;
    3 – шток;
    4 – рычаг;
    5 – торсионный вывод;
    6 – цилиндрическая пружина;
    7 – компенсатор;
    8 – плоскостный клапан;
    9 – основание;
    10 и 11 – крышки;
    12 – подводящий штуцер;
    13 – манжета;
    14 – дросселирующий канал;
    15 – клапан;
    16 – рычажная система;
    17 – трибко-секторный механизм;
    18 – стрелка;
    19 – регулировочный винт;
    20 – натяжная пружина;
    21 – пробка;
    22 – уплотнительное резиновое кольцо

    «Плюсовый» 1 и «минусовый» 2 сильфоны (рис. Рис. 2.23, б) соединены между собой штоком 3, функционально связанным с рычагом 4, который, в свою очередь, неподвижно закреплен на оси торсионного вывода 5. К концу штока на выходе «минусового» сильфона присоединена цилиндрическая пружина 6, закрепленная нижним основанием на компенсаторе 7 и работающая на растяжение. Каждому номинальному перепаду давления соответствует определенная пружина.

    «Плюсовый» сильфон состоит из двух частей. Его первая часть (компенсатор 7, состоящий из трех дополнительных гофр и плоскостных клапанов 8) предназначена для уменьшения температурной погрешности прибора из-за изменения объема жидкости-наполнителя, обусловленного варьированием температуры окружающего воздуха. При изменении температуры окружающей среды и соответственно рабочей жидкости ее увеличивающийся объем перетекает через плоскостный клапан во внутреннюю полость сильфонов. Вторая часть «плюсового» сильфона рабочая и идентична по конструкции «минусовому» сильфону.

    «Плюсовый» и «минусовый» сильфоны присоединены к основанию 9, на котором установлены крышки 10 и 11, образующие вместе с сильфонами «плюсовую» и «минусовую» камеры с соответствующими подводящими штуцерами 12 давления р + и р

    Внутренние объемы сильфонов, так же как и внутренняя полость основания 9, заполняются: жидкостью ПМС-5 для обычного и коррозионно-стойкого исполнений; составом ПЭФ-703110 – в кислородном варианте; дистиллированной водой – в варианте для пищевой промышленности и жидкостью ПМС-20 – для газового исполнения.

    В конструкциях дифманометров, предназначенных для измерения давления газа, на шток одета манжета 13, движение среды организовано через дросселирующий канал 14. Регулированием размера проходного канала с помощью клапана 15 обеспечивается степень демпфирования измеряемого параметра.

    Дифманометр работает следующим образом. Среды «плюсового» и «минусового» давления поступают через подводящие штуцеры в «плюсовую» и «минусовую» камеры соответственно. «Плюсовое» давление в большей степени воздействует на сильфон 1, сжимая его. Это приводит к перетоку находящейся внутри жидкости в «минусовый» сильфон, который растягивается и разжимает цилиндрическую пружину. Такая динамика происходит до уравновешивания сил взаимодействия между «плюсовым» сильфоном и парой – «минусовый» сильфон – цилиндрическая пружина. Мерой деформации сильфонов и их упругого взаимодействия служит перемещение штока, которое передается на рычаг и соответственно на ось торсионного вывода. На этой оси (рис. 2.23,а) закреплена рычажная система 16, обеспечивающая передачу вращения оси торсионного вывода к трибко-секторному механизму 17 и стрелке 18. Таким образом, воздействие на один из сильфонов приводит к угловому перемещению оси торсионного вывода и затем к повороту указательной стрелки прибора.
    Регулировочным винтом 19 с помощью натяжной пружины 20 производится корректировка нулевой точки прибора.

    Пробки 21 предназначены для продувки импульсных линий, промывки измерительных полостей сильфонного блока, слива рабочей среды, заполнения измерительных полостей разделительной жидкостью при вводе прибора в работу.
    При односторонней перегрузке одной из камер происходит сжатие сильфона и перемещение штока. Клапан в виде уплотнительного резинового кольца 22 садится в гнездо основания, перекрывает переток жидкости из внутренней полости сильфона, и таким образом предотвращается его необратимая деформация. При непродолжительных перегрузках разность «плюсового» и «минусового» давления на сильфонный блок может достигать 25 МПа, а в отдельных типах приборов не превышать 32 МПа.
    прибор может выпускаться как в общетеническом, так и в аммиачном (А), кислородном (К), коррозионно-стойком-пищевом (Пп) исполнениях.
     

    4148
    Рис. 2.24

    Показывающий дифференциальный манометр на основе мембранной коробки:

    1 – мембранная коробка;
    2 – держатель «плюсового» давления;
    3 – держатель «минусового» давления;
    4 – корпус;
    5 – передаточный механизм;
    6 – стрелка;
    7 – цифербла

    Достаточно широкое распространение получили приборы на основе мембран и мембранных коробок. В одном из вариантов (рис. 2.24) мембранная коробка 1, внутрь которой через подводящий штуцер держателя 2 поступает «плюсовое» давление, является чувствительным элементом дифманометра. Под воздействием этого давления смещается подвижный центр мембранной коробки.
    «Минусовое» давление через подводящий штуцер держателя 3 подается внутрь герметичного корпуса 4 прибора и воздействует на мембранную коробку снаружи, создавая противодействие перемещению ее подвижного центра. Таким образом «плюсовое» и «минусовое» давления уравновешивают друг друга, а перемещение подвижного центра мембранной коробки свидетельствует о величине разностного – дифференциального давления. Этот сдвиг через передаточный механизм передается на указательную стрелку 6, которая на шкале циферблата 7 показывает измеряемое дифференциальное давление.
    Диапазон измеряемого давления определяется свойствами мембран и ограничивается, как правило, в пределах от 0 до 0,4…40 кПа. При этом класс точности может составлять 1,5; 1,0; 0,6; 0,4, а в некоторых приборах 0,25.

    Обязательная конструктивная герметичность корпуса определяет высокую защищенность от внешних воздействий и определяется в основном уровнем IP66.

    В качестве материала для чувствительных элементов приборов используется бериллиевая и другие бронзы, а также нержавеющая сталь, для штуцеров, передаточных механизмов – медные сплавы, коррозионно-стойкие сплавы, включая нержавеющую сталь.
    Приборы могут изготавливаться в корпусах малых (63 мм), средних (100 мм), и больших (160 мм) диаметров.

    Мембранные показывающие дифференциальные манометры, как и приборы с мембранными коробками, используются для измерения малых значений дифференциального давления. Отличительная особенность – устойчивая работа при высоком статическом давлении.
     

    4149
    Рис. 2.25

    Мембранные показывающие дифференциальные манометры с вертикальной мембраной:

    1 – «плюсовая» камера;
    2 – «минусовая» камера;
    3 – чувствительная гофрированная мембрана;
    4 – передающий шток;
    5 – передаточный механизм;
    6 – предохранительный клапан

    Дифманометр с вертикальной мембраной (Рис. 2.25) состоит из «плюсовой» 1 и «минусовой» 2 рабочих камер, разделенных чувствительной гофрированной мембраной 3. Под воздействием давления мембрана деформируется, в результате чего перемещается ее центр вместе с закрепленным на нем передающим штоком 4. Линейное смещение штока в передаточном механизме 5 преобразуется в осевое вращение трибки, и соответственно указательной стрелки, отсчитывающей на шкале прибора измеряемое давление.

    Для сохранения работоспособности чувствительной гофрированной мембраны при превышении максимального допустимого статического давления предусмотрен открывающийся предохранительный клапан 6. Причем конструкции этих клапанов могут быть различны. Соответственно такие приборы не могут использоваться, когда не допускается контакт сред из «плюсовой» и «минусовой» камер.

    4150
    Рис. 2.26

    Мембранный показывающий дифференциальный манометр с горизонтальной мембраной:

    1 – «плюсовая» камера;
    2 – «минусовая» камера;
    3 – входной блок;
    4 - чувствительная гофрированная мембрана;
    5 – толкатель;
    6 – сектор;
    7 – трибка;
    8 – стрелка;
    9 – циферблат;
    10 – разделительный сильфон

    Дифманометр с горизонтальной чувствительной мембраной показан на рис. 2.26. Входной блок 3 состоит из двух частей, между которыми устанавливается гофрированная мембрана 4. В ее центре закреплен толкатель 5, передающий перемещение от мембраны, через сектор 6, трибку 7 к стрелке 8. В этом передаточном звене линейное перемещение толкателя преобразуется в осевое вращение стрелки 8, отслеживающей на шкале циферблата 9 измеряемое давление. В этой конструкции применена сильфонная система вывода толкателя из зоны рабочего давления. Разделительный сильфон 10 своим основанием герметично закрепляется на центре чувствительной мембраны, а верхней частью также герметично прикрепляется к входному блоку. Такая конструкция исключает контакт измеряемой и окружающей сред.
    Конструкция входного блока предусматривает возможность промывки или продувки «плюсовой» и «минусовой» камер и обеспечивает применение таких приборов для работы даже в условиях загрязненных рабочих сред.

    4151
    Рис. 2.27

    Мембранный двухкамерный показывающий дифманометр:

    1 – «плюсовая» камера;
    2 – «минусовая» камера;
    3 – передающий шток;
    4 – сектор;
    5 – трибка;
    6 – коромысло

    Двухкамерная система измерения дифференциального давления применена в конструкции прибора, показанного на рис. 2.27. Измеряемые потоки среды направляются в «плюсовую» 1 и «минусовую» 2 рабочие камеры, основными функциональными элементами которых являются автономные чувствительные мембраны. Преобладание одного давления над другим приводит к линейному перемещению передающего штока 3, которое через коромысло 6 передается соответственно на сектор 4, трибку 5 и систему стрелочной индикации измеряемого параметра.
    Дифманометры с двухкамерной системой измерения используются для измерения малых дифференциальных давлений при высоких статических нагрузках, вязких сред и сред с твердыми вкраплениями.

    4152
    Рис. 2.28.

    Дифманометр с магнитным преобразователем:

    1 – поворотный магнит;
    2 – стрелка;
    3 – корпус;
    4 – магнитный поршень;
    5 – фторопластовый сальник;
    6 – рабочий канал;
    7 – пробка;
    8 – диапазонная пружина;
    9 – блок электроконтактов

    Принципиально иной показывающий дифманометр изображен на рис. 2.28. Поворотный магнит 1, на торце которого установлена стрелка 2, размещен в корпусе 3, выполненном из немагнитного металла. Магнитный поршень, уплотненный фторопластовым сальником 5, может передвигаться в рабочем канале 6. Магнитный поршень 4 со стороны «минусового» давления подпирает пробка 7, в свою очередь поджимаемая диапазонной пружиной 8.
    Среда «плюсового» давления через соответствующий подводящий штуцер воздействует на магнитный поршень и сдвигает его вместе с пробкой 7 по каналу 6 до уравновешивания такого смещения противодействующими силами – «минусовым» давлением и диапазонной пружиной. Движение магнитного поршня приводит к осевому вращению поворотного магнита и соответственно указательной стрелки. Такой сдвиг пропорционален перемещению стрелки. Полное согласование достигается подбором упругих характеристик диапазонной пружины.
    В дифманометре с магнитным преобразователем предусмотрен блок 9, замыкающий и размыкающий соответствующие контакты при прохождении вблизи его магнитного поршня.

    Приборы с магнитным преобразователем устойчивы к воздействию статического давления (до 10 МПа). Они обеспечивают относительно невысокую погрешность (примерно 2 %) в диапазоне функционирования до 0,4 Мпа и используются для измерения давления воздуха, газов, различных жидкостей.

    [ http://jumas.ru/index.php?area=1&p=static&page=razdel_2_3_2]

     

    4145     4146
        Показывающий дифференциальный манометр на основе трубчатой пружины

    1 и 2 – держатели;
    3 и 4 – трубчатые пружины;
    5 и 8 – трибки;
    6 – стрелка «плюсового» давления;
    7 и 9 – шкалы избыточного давления;
    10 – стрелка «минусового» давления

    В приборах такого типа на автономных держателях 1 и 2, соединенных вместе, установлены трубчатые пружины. Каждый держатель вместе с трубчатым чувствительным элементом образовывают автономные измерительные каналы. Среда «плюсового» давления поступает через входной штуцер держателя 2 в трубку 4, деформирует ее овал, в результате чего перемещается наконечник трубки и это перемещение через соответствующий зубчатый сектор передается на трибку 5. Эта трибка соответственно приводит к отклонению указательной стрелки 6, которая показывает на шкале 7 значение «плюсового» избыточного давления.

    «Минусовое» давление посредством держателя 1, трубчатой пружины 3, трибки 8 приводит к перемещению циферблата 9, объединенного со стрелкой 10, которая на шкале 7 отслеживает значение измеряемого параметра.

    Дифференциальные манометры (далее – дифманометры), как отмечалось в п.1.3, являются названием отнесенным в нашей стране к показывающим приборам. (Устройства, обеспечивающие электрический выходной сигнал, пропорциональный измеряемому дифференциальному давлению имеют название измерительных преобразователей разности давлений). Хотя отдельные производители, а также некоторые специалисты-эксплуатанционщики измерительные преобразователи разности давлений также называют дифманометрами.

    Дифманометры нашли основное применение в технологических процессах для измерения, контроля, регистрации и регулирования следующих параметров:

    · расхода различных жидких, газообразных и парообразных сред по перепаду давления на разного рода сужающих устройствах (стандартных диафрагмах, соплах, включая сопла Вентури) и дополнительно вводимых в поток гидро- и аэродинамических сопротивлениях, например на преобразователях типа Annubar или на нестандартных гидро- и аэродинамических препятствиях;

    · перепада - разности давления, вакуумметрических, избыточных, в двух точках технологического цикла, включая потери на фильтрах систем вентиляции и кондиционирования воздуха;

    · уровня жидких сред по величине гидростатического столба.

    Согласно ГОСТ 18140–84/23/, предельные номинальные перепады давления дифманометров-расходомеров, верхние пределы или сумма абсолютных значений верхних пределов измерений дифманометров-перепадомеров должны приниматься из следующего ряда:

    10; 16; 25; 40; 63; 100; 160; 250; 400; 630 Па;

    1; 1,6; 2,5; 4; 6,3; 10; 16; 25; 40; 63; 100; 160; 250; 400; 630 кПа;

    1; 1,6; 2,5; 4; 6,3 МПа.

    У дифманометров-расходомеров верхние пределы измерений выбираются из ряда, определяемого выражением:

    А = а × 10n, (2.7)

    где а – одно из чисел следующего ряда: 1; 1,25; 1,6; 2,0; 2,5; 3,2; 4; 5; 6,3; 8; n – целое (положительное или отрицательное) число или нуль.

    Верхние пределы измерений или сумма абсолютных значений верхних пределов измерений дифманометров-уровнемеров следует выбирать и ряда:

    0,25; 0,4; 0,63; 1,0; 1,6; 2,5; 4,0; 6,3; 10; 16; 25; 40; 63; 100 и 160 метров.

    Одной из важных характеристик дифманометров является предельно допустимое рабочее избыточное давление, т. е. избыточное давление, которое могут выдержать рабочие каналы без необратимой деформации чувствительных элементов. Такое значение параметра принимается из следующего ряда:

    25; 40; 63; 100; 160; 250; 400 и 630 кПа;

    1; 1,6; 2,5; 4; 6,3; 10; 16; 25; 32; 40 и 63 МПа.

    Нижние пределы измерений дифманометров-расходо-меров из-за неустойчивости работы стандартных сужающих устройств при малых Числах Рейнольдса измеряемого потока не должны превышать 30 % шкалы прибора. У преобразователей Annubar этот предел не превышает 10 % при сохранении объявленного класса точности (1,0).

    Классы точности дифманометров принимаются из ряда: 0,25; 0,5; 1,0; 1,5.

    Дифманометры должны иметь линейную шкалу при измерении уровня или перепада, линейную или квадратичную – при измерении расхода.

    Дифманометры могут иметь условные обозначения, предложенные в методике п.1.4. Указываются модель прибора, причем на первом месте в обозначении фиксируется измеряемый параметр – тип измерителя (дифманометр), затем – принцип измерения и функция, предельный номинальный перепад, избыточное рабочее давление, класс точности. Например, дифманометр сильфонный показывающий в корпусе диаметром 160 мм, на предельный номинальный перепад давления 630 кПа, с рабочим избыточным давлением 32 МПа, класса точности 1,5 обозначается как

    ДСП 160 (0…630 кПа)-32 МПа-1,5.

    После этого допускается указывать дополнительные обозначения, например исполнение по «IP», измеряемой среде, присоединительным линиям и т. д.

    Специфика измерения дифференциального давления обусловливает наличие в дифманометрах устройств продувки импульсных линий без необходимости демонтажа прибора или его узлов.

    При испытаниях, а также в нормальных условиях отечественные дифманометры, согласно требований производителя, должны обеспечивать заданные метрологические характеристики после выдержки не менее 6-ти часов при температуре окружающей среды:

    20 ± 2 или 23 ± 2 оС – для приборов классов точности 0,5; 0,6 и 1;

    20 ± 5 или 23 ± 5 оС – для приборов класса точности 1,5.

    Современные конструкции из-за снижения металлоемкости и совершенствования преобразователей позволяют сокращать время температурной адаптации у некоторых моделей до нескольких десятков минут.

    Конкретная температура приведена в ТУ на измеритель и должна регистрироваться в техническом описании или паспорте на прибор.

    Дифманометры, не защищенные от одностороннего воздействия, должны выдерживать перегрузку со стороны среды «плюсового» давления, превышающую предельные номинальные перепады на 10…50 %. «Плюсовым», в противовес «минусовому», называют большее из двух давлений среды, поступающей на вход дифференциального манометра.

    Конструкции, у которых предусмотрены односторонние перегрузки, должны выдерживать десятикратные, стократные или двухсот пятидесятикратные односторонние перегрузки/23/.

    Показывающие дифференциальные манометры на основе трубчатой пружины находят широкое применение для визуализации расхода различных сред, гидродинамических потерь в системах теплового отопления.

    Дифференциальное давление, т. е. разность давлений р отсчитывается стрелкой на шкале циферблата.

    Дифманометры такого типа, исходя из особенностей трубчатых пружин, обеспечивают работоспособность в промышленных условиях в диапазоне от 0 до 100 МПа.

    [ http://jumas.ru/index.php?area=1&p=static&page=razdel2_2_4]

    Тематики

    Синонимы

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > дифференциальный манометр

  • 65 расходомер жидкости (газа)

    1. flowmeter

     

    расходомер жидкости (газа)
    расходомер
    Ндп. измеритель расхода жидкости (газа)
    Измерительный прибор или совокупность приборов, предназначенных для измерения расхода жидкости (газа).
    [ ГОСТ 15528-86]

    Расходомеры, служат для измерения объема (объемный расход) или массы (массовый расход) жидкостей, газов и паров, проходящих через заданное сечение трубопровода в единицу времени. Иногда расходомеры снабжают интеграторами, или счетчиками - устройствами для суммирования измеряемых объемов или масс контролируемых сред в течение заданного промежутка времени. Расходомеры разных типов рассчитаны на измерения в определенной области расходов (рис. 1).

    5288

    Рис. 1. Диапазоны измерений расходов жидкостей, газов и паров разными расходомерами.

    Основные показатели, обусловливающие выбор расходомера: значение расхода; тип контролируемой среды, ее температура, давление, вязкость, плотность, электрическая проводимость, рН; перепад давлений на первичном измерительном преобразователе (датчике); диаметр трубопровода; диапазон (отношение максимального расхода к минимальному) и погрешность измерений. В зависимости от физ.-химических свойств измеряемой и окружающей сред в расходомеры используются различные методы измерений.

    В данной статье рассматриваются наиболее важные типы расходомеры и счетчиков, применяемых в химических лабораториях, химических и смежных отраслях промышленности для высокоточных контроля и учета химических веществ при их производстве, выдаче и потреблении, а также в системах автоматизированного управления технологическими процессами.

     

    5289

    Расходомеры переменного перепада давлений (рис. 2, а). Действие их основано на зависимости перепада давлений на гидравлическом сопротивлении (диафрагмы, сопла и трубы Вентури, сопла Лаваля и др.), расположенном в потоке контролируемой среды, от ее расхода Q. Измерения разности давлений Dp = p1 - p2 осуществляются на прямолинейном участке трубопровода (длиной до 10 и не менее 5 диаметров соответственно до и после гидравлического сопротивления). Расходомеры данного типа особенно распространены благодаря следующим достоинствам: простоте конструкции и возможности измерений в широком диапазоне значений расхода и диаметров трубопроводов (от десятков до 3000 мм и более); возможности применения для различных по составу и агрессивности жидкостей и газов при температурах до 350-400 °С и давлениях до 100 МПа; возможности расчетным путем определять расход без натурной градуировки расходомеры в случае трубопроводов диаметрами 50-1000 мм. Недостатки: небольшой диапазон измерений из-за квадратичной зависимости между расходом и перепадом давлений (3:1); значительные потери давления на гидравлическом сопротивлении и связанные с этим дополнительные затраты энергии. Погрешность 1,5-2,5% от макс. расхода.

    5290

    Расходомеры постоянного перепада давлений, или ротаметры ( рис. 2, б). В этих приборах измеряется прямо пропорциональная расходу величина перемещения поплавка h внутри конической трубки под воздействием движущегося снизу вверх потока контролируемой среды. Последний поднимает поплавок до тех пор, пока подъемная сила, возникающая благодаря наличию на нем перепада давлений, не уравновесится весом поплавка. Трубки ротаметров могут быть стеклянными (рассчитаны на давление до 2,5 МПа) и металлическими (до 70 МПа). Поплавки в зависимости от свойств жидкости или газа изготовляют из различных металлов либо пластмасс. Приборы работоспособны при температурах от — 80 до 400 °С, предпочтительны для трубопроводов диаметром до 150 мм, имеют равномерные шкалы, градуированные в единицах объемного расхода. Достоинства: возможность измерений расхода жидкостей и газов от весьма малых значений (0,002 л/ч по воде, 0,03 л/ч по воздуху) до высоких (150-200 и до 3000 м3/ч); широкий диапазон измерений (10:1); малые потери давления (до 0,015 МПа). Погрешность 0,5-2,5% от макс. расхода.

    5291

    Электромагнитные расходомеры (рис. 2, в). Действие их основано на прямо пропорциональной зависимости расхода от эдс, индуцированной в потоке электропроводной жидкости (минимальная удельная электрическая проводимость 10-3-10-4 См/м), движущейся во внеш. магнитное поле, которое направлено перпендикулярно оси трубопровода. Эдс определяется с помощью двух электродов, вводимых в измеряемую среду диаметрально противоположно через электроизоляционное покрытие внутри поверхности трубопровода. Материалы покрытий - резины, фторопласты, эпоксидные компаунды, керамика и другие. Приборы позволяют измерять расход различных пульп, сиропов, агрессивных и радиоактивных жидкостей и т. д. при давлениях обычно до 2,5 МПа (иногда до 20 МПа); диаметр трубопроводов, как правило, 2-3000 мм. Во избежание поляризации электродов измерения проводят в переменном магнитном поле. Допустимые температуры контролируемой среды определяются термостойкостью электроизоляционных покрытий и могут достигать, как правило, 230 °С. При измерении расхода жидких металлов (например, Na, К и их эвтектик) указанные температуры обусловлены термостойкостью используемых конструкционных материалов, в первую очередь магнитов, создающих постоянное магнитное поле (исключает возникновение в металлах вихревых токов) и составляют 400-500 °С; в данном случае трубопроводы не имеют внутренней изоляции, а. электроды привариваются непосредственно к их наружным поверхностям. Достоинства: высокое быстродействие; широкий диапазон измерений (100:1); отсутствие потерь давления (приборы не имеют элементов, выступающих внутрь трубопровода); показания приборов не зависят от вязкости и плотности жидкостей. Погрешность 0,5-1,0% от измеряемой величины.

    5292

    Тахометрические расходомеры В турбинных расходомерах (рис. 2, г) используется зависимость измеряемой тахометром частоты вращения турбинки, приводимой в движение потоком среды (нефтепродукты, растворы кислот и щелочей, нейтральные или агрессивные газы) от ее расхода. Турбинки могут размещаться аксиально либо тангенциально по отношению к направлению движения потока. Диаметр трубопроводов 4-4000 мм; вязкость среды 0,8-750 мм2/с; температура от -240 до 550 °С, давление до 70 МПа; диапазон измерений до 100:1; потери давления 0,05 МПа. Погрешность 0,5-1,5% от макс. расхода.

    В шариковых расходомерах контролируемая жидкая среда закручивается с помощью неподвижного винтового направляющего аппарата и увлекает за собой металлический шарик, заставляя его вращаться внутри трубопровода (перемещению вдоль оси препятствуют ограничит. кольца). Мера расхода - частота вращения шарика, измеряемая, например, тахометром. Диаметр трубопроводов 5-150 мм; температура среды от -30 до 250 °С, давление до 6,4 МПа; диапазон измерений 10:1; потери давления до 0,05 МПа. В этих приборах в отличие от турбинных отсутствуют опорные подшипники, что позволяет измерять расход жидкостей с механическими включениями и увеличивает ресурс работы. Погрешность не более 1,5% от максимального расхода.

    5293

    Ультразвуковые расходомеры (рис. 2, д). В основу их работы положено использование разницы во времени прохождения ультразвуковых колебаний (более 20 кГц) в направлении потока контролируемой среды и против него. Электронное устройство формирует электрический импульс, поступающий на пьезоэлемент П1, который излучает электромеханические колебания в движущуюся среду. Эти колебания воспринимаются через некоторое время пьезоэлементом П2, преобразуются им в электрический импульс, попадающий в электронное устройство и снова направляемый им на пьезоэлемент П1 и т.д. Контур П1-П2 характеризуется частотой f1 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной разности между скоростью распространения звука в контролируемой среде и скоростью самой среды. Аналогично электронное устройство подает импульсы в обратном направлении, то есть от пьезоэлемента П2 к пьезоэлементу П1. Контур П2-П1 характеризуется частотой f2 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной сумме скоростей распространения звука в среде и самой среды. Далее электронное устройство определяет разность Df указанных частот, которая пропорциональна скорости (расходу) среды.

    Эти приборы не вызывают потерь давления, обладают высоким быстродействием и обеспечивают измерение пульсирующих расходов (частота 5-10 кГц) любых не содержащих газовых включений жидкостей (в т. ч. вязких и агрессивных), а также газов и паров. Диаметр трубопроводов 10-3000 мм и более; температура среды от —40 до 200°С (реже-от —250 до 250 °C), давление до 4 МПа; диапазон измерений 100:1. Погрешность 1,0-2,5% от макс. расхода.

    5294

    Вихревые расходомеры (рис. 2, е). Действие их основано на зависимости между расходом и частотой возникновения вихрей за твердым телом (например, металлическим прямоугольным стержнем), которое расположено в потоке жидкости или газа. Образованию вихрей способствует поочередное изменение давления па гранях этого тела. Диапазон частот образования вихрей определяется размером и конфигурацией тела и диаметром трубопроводов (25-300 мм). Температура среды обычно от - 50 до 400 °С, реже от -270 до 450 °С; давление до 4 МПа, иногда до -6,3 МПа; диапазон измерений: для жидкостей 12:1, для газов 40:1. Градуировка приборов не зависит от плотности и вязкости контролируемой среды, а также от ее температуры и давления. Погрешность 0,5-1,0% от измеряемой величины при числах Рейнольдса Re > 30000; при Re < 10000 определение расхода практически невозможно из-за отсутствия вихрей.

    5295

    Объемные расходомеры (рис. 2,ж). В качестве измерителей объема служат счетчики с цилиндрическими или овальными шестернями, поршневые, с плавающей шайбой, лопастные, винтовые и другие. Они снабжены устройствами выдачи сигналов, пропорциональных объемному расходу вещества. Эти приборы пропускают определенный объем жидкости за один цикл хода чувствительного элемента. Мера расхода - число таких циклов. Диаметр трубопроводов 15-300 мм; температура среды до 150°С, давление до 10 МПа; диапазон измерений до 20:1. Основное достоинство - стабильность показаний. Недостатки: необходимость установки фильтров, задерживающих твердые частицы (чувствительный элемент при их проникновении может выйти из строя); износ движущихся деталей, приводящий к увеличению погрешности показаний, которая обычно составляет 0,5-1,0 от измеряемой величины.

    5296

    Струйные расходомеры (рис. 2,з). В них используется принцип действия генератора автоколебаний. В приборе часть струи потока жидкости или газа ответвляется и через так называемый канал обратной связи а поступает на вход устройства, создавая поперечное давление на струю. Последняя перебрасывается к противоположной стенке трубопровода, где от нее снова ответвляется часть потока, подаваемая через канал б на вход прибора; в результате струя переходит в первоначальное положение и т. д. Такой переброс происходит с частотой, пропорциональной расходу контролируемой среды, и сопровождается изменением давления в каналах а и б, что позволяет датчику давления воспринимать автоколебания. Диаметр трубопроводов 2-25 мм; температура среды от —263 до 500 °С, давление до 4 МПа; диапазон измерений 10:1. Основное достоинство - отсутствие подвижных элементов. Погрешность-1,5% от макс. расхода.

    5297

    Корреляционные расходомеры (рис. 2, и). В этих приборах с помощью сложных ультразвуковых и иных устройств осуществляется запоминание в заданном сечении трубопровода (I) характерного "образа" потока контролируемой среды и его последнее распознавание в другом сечении (II), расположенном на определенном расстоянии от первого. Мера расхода - время прохождения "образом" потока участка трубопровода между сечениями. Диаметр трубопроводов 15-900 мм; температура среды до 100-150°С, давление до 20 МПа; диапазон измерений 10:1. Достоинства: независимость показаний от изменений плотности, вязкости, электропроводности и других параметров жидкости; отсутствие потерь давления. Погрешность 1 % от измеряемой величины.

    [ http://www.chemport.ru/data/chemipedia/article_3233.html]

     

     

    Недопустимые, нерекомендуемые

    Тематики

    Синонимы

    EN

    DE

    FR

    14. Расходомер жидкости (газа)

    Расходомер

    Ндп. Измеритель расхода жидкости (газа)

    D. Durchflußmeßgerät

    E. Flowmeter

    F. Débitmètre

    Измерительный прибор или совокупность приборов, предназначенных для измерения расхода жидкости (газа)

    Источник: ГОСТ 15528-86: Средства измерений расхода, объема или массы протекающих жидкости и газа. Термины и определения оригинал документа

    Русско-английский словарь нормативно-технической терминологии > расходомер жидкости (газа)

  • 66 дифференциальный манометр

    1. manometre differentile

     

    дифференциальный манометр
    дифманометр

    Манометр для измерения разности двух давлений.
    Примечание
    Дифманометр с верхним пределом измерения не более 40000 Па (4000 кгс/м2) называется микроманометром.
    [ГОСТ 8.271-77]

    дифференциальный манометр
    -

    [Лугинский Я. Н. и др. Англо-русский словарь по электротехнике и электроэнергетике. 2-е издание - М.: РУССО, 1995 - 616 с.]

    EN

    differential-pressure gage
    (engineering) Apparatus to measure pressure differences between two points in a system; it can be a pressured liquid column balanced by a pressured liquid reservoir, a formed metallic pressure element with opposing force, or an electrical-electronic gage (such as strain, thermal-conductivity, or ionization).

    [ http://www.answers.com/topic/differential-pressure-gage#ixzz1gzzibWaQ]

    Малые значения дифференциального давления могут измеряться приборами на основе мембран и сильфонов.
    Манометры дифференциальные сильфонные показывающие типа ДСП-160 нашли широкое применение на территории СНГ. Принцип их действия основан на деформации двух автономных сильфонных блоков, находящихся под воздействием «плюсового» и «минусового» давления. Эти деформации преобразовываются в перемещение указательной стрелки прибора. Перемещение стрелки осуществляется до установления равновесия между «плюсовым» сильфоном, с одной стороны, и «минусовым» и цилиндрической пружиной - с другой.

    4147
    Рис. 2.23

    Дифференциальный сильфонный манометр:

    а – схема привода стрелки;
    б – блок первичного преобразования;
    1 – «плюсовый» сильфон;
    2 – «минусовый» сильфон;
    3 – шток;
    4 – рычаг;
    5 – торсионный вывод;
    6 – цилиндрическая пружина;
    7 – компенсатор;
    8 – плоскостный клапан;
    9 – основание;
    10 и 11 – крышки;
    12 – подводящий штуцер;
    13 – манжета;
    14 – дросселирующий канал;
    15 – клапан;
    16 – рычажная система;
    17 – трибко-секторный механизм;
    18 – стрелка;
    19 – регулировочный винт;
    20 – натяжная пружина;
    21 – пробка;
    22 – уплотнительное резиновое кольцо

    «Плюсовый» 1 и «минусовый» 2 сильфоны (рис. Рис. 2.23, б) соединены между собой штоком 3, функционально связанным с рычагом 4, который, в свою очередь, неподвижно закреплен на оси торсионного вывода 5. К концу штока на выходе «минусового» сильфона присоединена цилиндрическая пружина 6, закрепленная нижним основанием на компенсаторе 7 и работающая на растяжение. Каждому номинальному перепаду давления соответствует определенная пружина.

    «Плюсовый» сильфон состоит из двух частей. Его первая часть (компенсатор 7, состоящий из трех дополнительных гофр и плоскостных клапанов 8) предназначена для уменьшения температурной погрешности прибора из-за изменения объема жидкости-наполнителя, обусловленного варьированием температуры окружающего воздуха. При изменении температуры окружающей среды и соответственно рабочей жидкости ее увеличивающийся объем перетекает через плоскостный клапан во внутреннюю полость сильфонов. Вторая часть «плюсового» сильфона рабочая и идентична по конструкции «минусовому» сильфону.

    «Плюсовый» и «минусовый» сильфоны присоединены к основанию 9, на котором установлены крышки 10 и 11, образующие вместе с сильфонами «плюсовую» и «минусовую» камеры с соответствующими подводящими штуцерами 12 давления р + и р

    Внутренние объемы сильфонов, так же как и внутренняя полость основания 9, заполняются: жидкостью ПМС-5 для обычного и коррозионно-стойкого исполнений; составом ПЭФ-703110 – в кислородном варианте; дистиллированной водой – в варианте для пищевой промышленности и жидкостью ПМС-20 – для газового исполнения.

    В конструкциях дифманометров, предназначенных для измерения давления газа, на шток одета манжета 13, движение среды организовано через дросселирующий канал 14. Регулированием размера проходного канала с помощью клапана 15 обеспечивается степень демпфирования измеряемого параметра.

    Дифманометр работает следующим образом. Среды «плюсового» и «минусового» давления поступают через подводящие штуцеры в «плюсовую» и «минусовую» камеры соответственно. «Плюсовое» давление в большей степени воздействует на сильфон 1, сжимая его. Это приводит к перетоку находящейся внутри жидкости в «минусовый» сильфон, который растягивается и разжимает цилиндрическую пружину. Такая динамика происходит до уравновешивания сил взаимодействия между «плюсовым» сильфоном и парой – «минусовый» сильфон – цилиндрическая пружина. Мерой деформации сильфонов и их упругого взаимодействия служит перемещение штока, которое передается на рычаг и соответственно на ось торсионного вывода. На этой оси (рис. 2.23,а) закреплена рычажная система 16, обеспечивающая передачу вращения оси торсионного вывода к трибко-секторному механизму 17 и стрелке 18. Таким образом, воздействие на один из сильфонов приводит к угловому перемещению оси торсионного вывода и затем к повороту указательной стрелки прибора.
    Регулировочным винтом 19 с помощью натяжной пружины 20 производится корректировка нулевой точки прибора.

    Пробки 21 предназначены для продувки импульсных линий, промывки измерительных полостей сильфонного блока, слива рабочей среды, заполнения измерительных полостей разделительной жидкостью при вводе прибора в работу.
    При односторонней перегрузке одной из камер происходит сжатие сильфона и перемещение штока. Клапан в виде уплотнительного резинового кольца 22 садится в гнездо основания, перекрывает переток жидкости из внутренней полости сильфона, и таким образом предотвращается его необратимая деформация. При непродолжительных перегрузках разность «плюсового» и «минусового» давления на сильфонный блок может достигать 25 МПа, а в отдельных типах приборов не превышать 32 МПа.
    прибор может выпускаться как в общетеническом, так и в аммиачном (А), кислородном (К), коррозионно-стойком-пищевом (Пп) исполнениях.
     

    4148
    Рис. 2.24

    Показывающий дифференциальный манометр на основе мембранной коробки:

    1 – мембранная коробка;
    2 – держатель «плюсового» давления;
    3 – держатель «минусового» давления;
    4 – корпус;
    5 – передаточный механизм;
    6 – стрелка;
    7 – цифербла

    Достаточно широкое распространение получили приборы на основе мембран и мембранных коробок. В одном из вариантов (рис. 2.24) мембранная коробка 1, внутрь которой через подводящий штуцер держателя 2 поступает «плюсовое» давление, является чувствительным элементом дифманометра. Под воздействием этого давления смещается подвижный центр мембранной коробки.
    «Минусовое» давление через подводящий штуцер держателя 3 подается внутрь герметичного корпуса 4 прибора и воздействует на мембранную коробку снаружи, создавая противодействие перемещению ее подвижного центра. Таким образом «плюсовое» и «минусовое» давления уравновешивают друг друга, а перемещение подвижного центра мембранной коробки свидетельствует о величине разностного – дифференциального давления. Этот сдвиг через передаточный механизм передается на указательную стрелку 6, которая на шкале циферблата 7 показывает измеряемое дифференциальное давление.
    Диапазон измеряемого давления определяется свойствами мембран и ограничивается, как правило, в пределах от 0 до 0,4…40 кПа. При этом класс точности может составлять 1,5; 1,0; 0,6; 0,4, а в некоторых приборах 0,25.

    Обязательная конструктивная герметичность корпуса определяет высокую защищенность от внешних воздействий и определяется в основном уровнем IP66.

    В качестве материала для чувствительных элементов приборов используется бериллиевая и другие бронзы, а также нержавеющая сталь, для штуцеров, передаточных механизмов – медные сплавы, коррозионно-стойкие сплавы, включая нержавеющую сталь.
    Приборы могут изготавливаться в корпусах малых (63 мм), средних (100 мм), и больших (160 мм) диаметров.

    Мембранные показывающие дифференциальные манометры, как и приборы с мембранными коробками, используются для измерения малых значений дифференциального давления. Отличительная особенность – устойчивая работа при высоком статическом давлении.
     

    4149
    Рис. 2.25

    Мембранные показывающие дифференциальные манометры с вертикальной мембраной:

    1 – «плюсовая» камера;
    2 – «минусовая» камера;
    3 – чувствительная гофрированная мембрана;
    4 – передающий шток;
    5 – передаточный механизм;
    6 – предохранительный клапан

    Дифманометр с вертикальной мембраной (Рис. 2.25) состоит из «плюсовой» 1 и «минусовой» 2 рабочих камер, разделенных чувствительной гофрированной мембраной 3. Под воздействием давления мембрана деформируется, в результате чего перемещается ее центр вместе с закрепленным на нем передающим штоком 4. Линейное смещение штока в передаточном механизме 5 преобразуется в осевое вращение трибки, и соответственно указательной стрелки, отсчитывающей на шкале прибора измеряемое давление.

    Для сохранения работоспособности чувствительной гофрированной мембраны при превышении максимального допустимого статического давления предусмотрен открывающийся предохранительный клапан 6. Причем конструкции этих клапанов могут быть различны. Соответственно такие приборы не могут использоваться, когда не допускается контакт сред из «плюсовой» и «минусовой» камер.

    4150
    Рис. 2.26

    Мембранный показывающий дифференциальный манометр с горизонтальной мембраной:

    1 – «плюсовая» камера;
    2 – «минусовая» камера;
    3 – входной блок;
    4 - чувствительная гофрированная мембрана;
    5 – толкатель;
    6 – сектор;
    7 – трибка;
    8 – стрелка;
    9 – циферблат;
    10 – разделительный сильфон

    Дифманометр с горизонтальной чувствительной мембраной показан на рис. 2.26. Входной блок 3 состоит из двух частей, между которыми устанавливается гофрированная мембрана 4. В ее центре закреплен толкатель 5, передающий перемещение от мембраны, через сектор 6, трибку 7 к стрелке 8. В этом передаточном звене линейное перемещение толкателя преобразуется в осевое вращение стрелки 8, отслеживающей на шкале циферблата 9 измеряемое давление. В этой конструкции применена сильфонная система вывода толкателя из зоны рабочего давления. Разделительный сильфон 10 своим основанием герметично закрепляется на центре чувствительной мембраны, а верхней частью также герметично прикрепляется к входному блоку. Такая конструкция исключает контакт измеряемой и окружающей сред.
    Конструкция входного блока предусматривает возможность промывки или продувки «плюсовой» и «минусовой» камер и обеспечивает применение таких приборов для работы даже в условиях загрязненных рабочих сред.

    4151
    Рис. 2.27

    Мембранный двухкамерный показывающий дифманометр:

    1 – «плюсовая» камера;
    2 – «минусовая» камера;
    3 – передающий шток;
    4 – сектор;
    5 – трибка;
    6 – коромысло

    Двухкамерная система измерения дифференциального давления применена в конструкции прибора, показанного на рис. 2.27. Измеряемые потоки среды направляются в «плюсовую» 1 и «минусовую» 2 рабочие камеры, основными функциональными элементами которых являются автономные чувствительные мембраны. Преобладание одного давления над другим приводит к линейному перемещению передающего штока 3, которое через коромысло 6 передается соответственно на сектор 4, трибку 5 и систему стрелочной индикации измеряемого параметра.
    Дифманометры с двухкамерной системой измерения используются для измерения малых дифференциальных давлений при высоких статических нагрузках, вязких сред и сред с твердыми вкраплениями.

    4152
    Рис. 2.28.

    Дифманометр с магнитным преобразователем:

    1 – поворотный магнит;
    2 – стрелка;
    3 – корпус;
    4 – магнитный поршень;
    5 – фторопластовый сальник;
    6 – рабочий канал;
    7 – пробка;
    8 – диапазонная пружина;
    9 – блок электроконтактов

    Принципиально иной показывающий дифманометр изображен на рис. 2.28. Поворотный магнит 1, на торце которого установлена стрелка 2, размещен в корпусе 3, выполненном из немагнитного металла. Магнитный поршень, уплотненный фторопластовым сальником 5, может передвигаться в рабочем канале 6. Магнитный поршень 4 со стороны «минусового» давления подпирает пробка 7, в свою очередь поджимаемая диапазонной пружиной 8.
    Среда «плюсового» давления через соответствующий подводящий штуцер воздействует на магнитный поршень и сдвигает его вместе с пробкой 7 по каналу 6 до уравновешивания такого смещения противодействующими силами – «минусовым» давлением и диапазонной пружиной. Движение магнитного поршня приводит к осевому вращению поворотного магнита и соответственно указательной стрелки. Такой сдвиг пропорционален перемещению стрелки. Полное согласование достигается подбором упругих характеристик диапазонной пружины.
    В дифманометре с магнитным преобразователем предусмотрен блок 9, замыкающий и размыкающий соответствующие контакты при прохождении вблизи его магнитного поршня.

    Приборы с магнитным преобразователем устойчивы к воздействию статического давления (до 10 МПа). Они обеспечивают относительно невысокую погрешность (примерно 2 %) в диапазоне функционирования до 0,4 Мпа и используются для измерения давления воздуха, газов, различных жидкостей.

    [ http://jumas.ru/index.php?area=1&p=static&page=razdel_2_3_2]

     

    4145     4146
        Показывающий дифференциальный манометр на основе трубчатой пружины

    1 и 2 – держатели;
    3 и 4 – трубчатые пружины;
    5 и 8 – трибки;
    6 – стрелка «плюсового» давления;
    7 и 9 – шкалы избыточного давления;
    10 – стрелка «минусового» давления

    В приборах такого типа на автономных держателях 1 и 2, соединенных вместе, установлены трубчатые пружины. Каждый держатель вместе с трубчатым чувствительным элементом образовывают автономные измерительные каналы. Среда «плюсового» давления поступает через входной штуцер держателя 2 в трубку 4, деформирует ее овал, в результате чего перемещается наконечник трубки и это перемещение через соответствующий зубчатый сектор передается на трибку 5. Эта трибка соответственно приводит к отклонению указательной стрелки 6, которая показывает на шкале 7 значение «плюсового» избыточного давления.

    «Минусовое» давление посредством держателя 1, трубчатой пружины 3, трибки 8 приводит к перемещению циферблата 9, объединенного со стрелкой 10, которая на шкале 7 отслеживает значение измеряемого параметра.

    Дифференциальные манометры (далее – дифманометры), как отмечалось в п.1.3, являются названием отнесенным в нашей стране к показывающим приборам. (Устройства, обеспечивающие электрический выходной сигнал, пропорциональный измеряемому дифференциальному давлению имеют название измерительных преобразователей разности давлений). Хотя отдельные производители, а также некоторые специалисты-эксплуатанционщики измерительные преобразователи разности давлений также называют дифманометрами.

    Дифманометры нашли основное применение в технологических процессах для измерения, контроля, регистрации и регулирования следующих параметров:

    · расхода различных жидких, газообразных и парообразных сред по перепаду давления на разного рода сужающих устройствах (стандартных диафрагмах, соплах, включая сопла Вентури) и дополнительно вводимых в поток гидро- и аэродинамических сопротивлениях, например на преобразователях типа Annubar или на нестандартных гидро- и аэродинамических препятствиях;

    · перепада - разности давления, вакуумметрических, избыточных, в двух точках технологического цикла, включая потери на фильтрах систем вентиляции и кондиционирования воздуха;

    · уровня жидких сред по величине гидростатического столба.

    Согласно ГОСТ 18140–84/23/, предельные номинальные перепады давления дифманометров-расходомеров, верхние пределы или сумма абсолютных значений верхних пределов измерений дифманометров-перепадомеров должны приниматься из следующего ряда:

    10; 16; 25; 40; 63; 100; 160; 250; 400; 630 Па;

    1; 1,6; 2,5; 4; 6,3; 10; 16; 25; 40; 63; 100; 160; 250; 400; 630 кПа;

    1; 1,6; 2,5; 4; 6,3 МПа.

    У дифманометров-расходомеров верхние пределы измерений выбираются из ряда, определяемого выражением:

    А = а × 10n, (2.7)

    где а – одно из чисел следующего ряда: 1; 1,25; 1,6; 2,0; 2,5; 3,2; 4; 5; 6,3; 8; n – целое (положительное или отрицательное) число или нуль.

    Верхние пределы измерений или сумма абсолютных значений верхних пределов измерений дифманометров-уровнемеров следует выбирать и ряда:

    0,25; 0,4; 0,63; 1,0; 1,6; 2,5; 4,0; 6,3; 10; 16; 25; 40; 63; 100 и 160 метров.

    Одной из важных характеристик дифманометров является предельно допустимое рабочее избыточное давление, т. е. избыточное давление, которое могут выдержать рабочие каналы без необратимой деформации чувствительных элементов. Такое значение параметра принимается из следующего ряда:

    25; 40; 63; 100; 160; 250; 400 и 630 кПа;

    1; 1,6; 2,5; 4; 6,3; 10; 16; 25; 32; 40 и 63 МПа.

    Нижние пределы измерений дифманометров-расходо-меров из-за неустойчивости работы стандартных сужающих устройств при малых Числах Рейнольдса измеряемого потока не должны превышать 30 % шкалы прибора. У преобразователей Annubar этот предел не превышает 10 % при сохранении объявленного класса точности (1,0).

    Классы точности дифманометров принимаются из ряда: 0,25; 0,5; 1,0; 1,5.

    Дифманометры должны иметь линейную шкалу при измерении уровня или перепада, линейную или квадратичную – при измерении расхода.

    Дифманометры могут иметь условные обозначения, предложенные в методике п.1.4. Указываются модель прибора, причем на первом месте в обозначении фиксируется измеряемый параметр – тип измерителя (дифманометр), затем – принцип измерения и функция, предельный номинальный перепад, избыточное рабочее давление, класс точности. Например, дифманометр сильфонный показывающий в корпусе диаметром 160 мм, на предельный номинальный перепад давления 630 кПа, с рабочим избыточным давлением 32 МПа, класса точности 1,5 обозначается как

    ДСП 160 (0…630 кПа)-32 МПа-1,5.

    После этого допускается указывать дополнительные обозначения, например исполнение по «IP», измеряемой среде, присоединительным линиям и т. д.

    Специфика измерения дифференциального давления обусловливает наличие в дифманометрах устройств продувки импульсных линий без необходимости демонтажа прибора или его узлов.

    При испытаниях, а также в нормальных условиях отечественные дифманометры, согласно требований производителя, должны обеспечивать заданные метрологические характеристики после выдержки не менее 6-ти часов при температуре окружающей среды:

    20 ± 2 или 23 ± 2 оС – для приборов классов точности 0,5; 0,6 и 1;

    20 ± 5 или 23 ± 5 оС – для приборов класса точности 1,5.

    Современные конструкции из-за снижения металлоемкости и совершенствования преобразователей позволяют сокращать время температурной адаптации у некоторых моделей до нескольких десятков минут.

    Конкретная температура приведена в ТУ на измеритель и должна регистрироваться в техническом описании или паспорте на прибор.

    Дифманометры, не защищенные от одностороннего воздействия, должны выдерживать перегрузку со стороны среды «плюсового» давления, превышающую предельные номинальные перепады на 10…50 %. «Плюсовым», в противовес «минусовому», называют большее из двух давлений среды, поступающей на вход дифференциального манометра.

    Конструкции, у которых предусмотрены односторонние перегрузки, должны выдерживать десятикратные, стократные или двухсот пятидесятикратные односторонние перегрузки/23/.

    Показывающие дифференциальные манометры на основе трубчатой пружины находят широкое применение для визуализации расхода различных сред, гидродинамических потерь в системах теплового отопления.

    Дифференциальное давление, т. е. разность давлений р отсчитывается стрелкой на шкале циферблата.

    Дифманометры такого типа, исходя из особенностей трубчатых пружин, обеспечивают работоспособность в промышленных условиях в диапазоне от 0 до 100 МПа.

    [ http://jumas.ru/index.php?area=1&p=static&page=razdel2_2_4]

    Тематики

    Синонимы

    EN

    DE

    FR

    Русско-французский словарь нормативно-технической терминологии > дифференциальный манометр

  • 67 расходомер жидкости (газа)

    1. débitmètre

     

    расходомер жидкости (газа)
    расходомер
    Ндп. измеритель расхода жидкости (газа)
    Измерительный прибор или совокупность приборов, предназначенных для измерения расхода жидкости (газа).
    [ ГОСТ 15528-86]

    Расходомеры, служат для измерения объема (объемный расход) или массы (массовый расход) жидкостей, газов и паров, проходящих через заданное сечение трубопровода в единицу времени. Иногда расходомеры снабжают интеграторами, или счетчиками - устройствами для суммирования измеряемых объемов или масс контролируемых сред в течение заданного промежутка времени. Расходомеры разных типов рассчитаны на измерения в определенной области расходов (рис. 1).

    5288

    Рис. 1. Диапазоны измерений расходов жидкостей, газов и паров разными расходомерами.

    Основные показатели, обусловливающие выбор расходомера: значение расхода; тип контролируемой среды, ее температура, давление, вязкость, плотность, электрическая проводимость, рН; перепад давлений на первичном измерительном преобразователе (датчике); диаметр трубопровода; диапазон (отношение максимального расхода к минимальному) и погрешность измерений. В зависимости от физ.-химических свойств измеряемой и окружающей сред в расходомеры используются различные методы измерений.

    В данной статье рассматриваются наиболее важные типы расходомеры и счетчиков, применяемых в химических лабораториях, химических и смежных отраслях промышленности для высокоточных контроля и учета химических веществ при их производстве, выдаче и потреблении, а также в системах автоматизированного управления технологическими процессами.

     

    5289

    Расходомеры переменного перепада давлений (рис. 2, а). Действие их основано на зависимости перепада давлений на гидравлическом сопротивлении (диафрагмы, сопла и трубы Вентури, сопла Лаваля и др.), расположенном в потоке контролируемой среды, от ее расхода Q. Измерения разности давлений Dp = p1 - p2 осуществляются на прямолинейном участке трубопровода (длиной до 10 и не менее 5 диаметров соответственно до и после гидравлического сопротивления). Расходомеры данного типа особенно распространены благодаря следующим достоинствам: простоте конструкции и возможности измерений в широком диапазоне значений расхода и диаметров трубопроводов (от десятков до 3000 мм и более); возможности применения для различных по составу и агрессивности жидкостей и газов при температурах до 350-400 °С и давлениях до 100 МПа; возможности расчетным путем определять расход без натурной градуировки расходомеры в случае трубопроводов диаметрами 50-1000 мм. Недостатки: небольшой диапазон измерений из-за квадратичной зависимости между расходом и перепадом давлений (3:1); значительные потери давления на гидравлическом сопротивлении и связанные с этим дополнительные затраты энергии. Погрешность 1,5-2,5% от макс. расхода.

    5290

    Расходомеры постоянного перепада давлений, или ротаметры ( рис. 2, б). В этих приборах измеряется прямо пропорциональная расходу величина перемещения поплавка h внутри конической трубки под воздействием движущегося снизу вверх потока контролируемой среды. Последний поднимает поплавок до тех пор, пока подъемная сила, возникающая благодаря наличию на нем перепада давлений, не уравновесится весом поплавка. Трубки ротаметров могут быть стеклянными (рассчитаны на давление до 2,5 МПа) и металлическими (до 70 МПа). Поплавки в зависимости от свойств жидкости или газа изготовляют из различных металлов либо пластмасс. Приборы работоспособны при температурах от — 80 до 400 °С, предпочтительны для трубопроводов диаметром до 150 мм, имеют равномерные шкалы, градуированные в единицах объемного расхода. Достоинства: возможность измерений расхода жидкостей и газов от весьма малых значений (0,002 л/ч по воде, 0,03 л/ч по воздуху) до высоких (150-200 и до 3000 м3/ч); широкий диапазон измерений (10:1); малые потери давления (до 0,015 МПа). Погрешность 0,5-2,5% от макс. расхода.

    5291

    Электромагнитные расходомеры (рис. 2, в). Действие их основано на прямо пропорциональной зависимости расхода от эдс, индуцированной в потоке электропроводной жидкости (минимальная удельная электрическая проводимость 10-3-10-4 См/м), движущейся во внеш. магнитное поле, которое направлено перпендикулярно оси трубопровода. Эдс определяется с помощью двух электродов, вводимых в измеряемую среду диаметрально противоположно через электроизоляционное покрытие внутри поверхности трубопровода. Материалы покрытий - резины, фторопласты, эпоксидные компаунды, керамика и другие. Приборы позволяют измерять расход различных пульп, сиропов, агрессивных и радиоактивных жидкостей и т. д. при давлениях обычно до 2,5 МПа (иногда до 20 МПа); диаметр трубопроводов, как правило, 2-3000 мм. Во избежание поляризации электродов измерения проводят в переменном магнитном поле. Допустимые температуры контролируемой среды определяются термостойкостью электроизоляционных покрытий и могут достигать, как правило, 230 °С. При измерении расхода жидких металлов (например, Na, К и их эвтектик) указанные температуры обусловлены термостойкостью используемых конструкционных материалов, в первую очередь магнитов, создающих постоянное магнитное поле (исключает возникновение в металлах вихревых токов) и составляют 400-500 °С; в данном случае трубопроводы не имеют внутренней изоляции, а. электроды привариваются непосредственно к их наружным поверхностям. Достоинства: высокое быстродействие; широкий диапазон измерений (100:1); отсутствие потерь давления (приборы не имеют элементов, выступающих внутрь трубопровода); показания приборов не зависят от вязкости и плотности жидкостей. Погрешность 0,5-1,0% от измеряемой величины.

    5292

    Тахометрические расходомеры В турбинных расходомерах (рис. 2, г) используется зависимость измеряемой тахометром частоты вращения турбинки, приводимой в движение потоком среды (нефтепродукты, растворы кислот и щелочей, нейтральные или агрессивные газы) от ее расхода. Турбинки могут размещаться аксиально либо тангенциально по отношению к направлению движения потока. Диаметр трубопроводов 4-4000 мм; вязкость среды 0,8-750 мм2/с; температура от -240 до 550 °С, давление до 70 МПа; диапазон измерений до 100:1; потери давления 0,05 МПа. Погрешность 0,5-1,5% от макс. расхода.

    В шариковых расходомерах контролируемая жидкая среда закручивается с помощью неподвижного винтового направляющего аппарата и увлекает за собой металлический шарик, заставляя его вращаться внутри трубопровода (перемещению вдоль оси препятствуют ограничит. кольца). Мера расхода - частота вращения шарика, измеряемая, например, тахометром. Диаметр трубопроводов 5-150 мм; температура среды от -30 до 250 °С, давление до 6,4 МПа; диапазон измерений 10:1; потери давления до 0,05 МПа. В этих приборах в отличие от турбинных отсутствуют опорные подшипники, что позволяет измерять расход жидкостей с механическими включениями и увеличивает ресурс работы. Погрешность не более 1,5% от максимального расхода.

    5293

    Ультразвуковые расходомеры (рис. 2, д). В основу их работы положено использование разницы во времени прохождения ультразвуковых колебаний (более 20 кГц) в направлении потока контролируемой среды и против него. Электронное устройство формирует электрический импульс, поступающий на пьезоэлемент П1, который излучает электромеханические колебания в движущуюся среду. Эти колебания воспринимаются через некоторое время пьезоэлементом П2, преобразуются им в электрический импульс, попадающий в электронное устройство и снова направляемый им на пьезоэлемент П1 и т.д. Контур П1-П2 характеризуется частотой f1 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной разности между скоростью распространения звука в контролируемой среде и скоростью самой среды. Аналогично электронное устройство подает импульсы в обратном направлении, то есть от пьезоэлемента П2 к пьезоэлементу П1. Контур П2-П1 характеризуется частотой f2 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной сумме скоростей распространения звука в среде и самой среды. Далее электронное устройство определяет разность Df указанных частот, которая пропорциональна скорости (расходу) среды.

    Эти приборы не вызывают потерь давления, обладают высоким быстродействием и обеспечивают измерение пульсирующих расходов (частота 5-10 кГц) любых не содержащих газовых включений жидкостей (в т. ч. вязких и агрессивных), а также газов и паров. Диаметр трубопроводов 10-3000 мм и более; температура среды от —40 до 200°С (реже-от —250 до 250 °C), давление до 4 МПа; диапазон измерений 100:1. Погрешность 1,0-2,5% от макс. расхода.

    5294

    Вихревые расходомеры (рис. 2, е). Действие их основано на зависимости между расходом и частотой возникновения вихрей за твердым телом (например, металлическим прямоугольным стержнем), которое расположено в потоке жидкости или газа. Образованию вихрей способствует поочередное изменение давления па гранях этого тела. Диапазон частот образования вихрей определяется размером и конфигурацией тела и диаметром трубопроводов (25-300 мм). Температура среды обычно от - 50 до 400 °С, реже от -270 до 450 °С; давление до 4 МПа, иногда до -6,3 МПа; диапазон измерений: для жидкостей 12:1, для газов 40:1. Градуировка приборов не зависит от плотности и вязкости контролируемой среды, а также от ее температуры и давления. Погрешность 0,5-1,0% от измеряемой величины при числах Рейнольдса Re > 30000; при Re < 10000 определение расхода практически невозможно из-за отсутствия вихрей.

    5295

    Объемные расходомеры (рис. 2,ж). В качестве измерителей объема служат счетчики с цилиндрическими или овальными шестернями, поршневые, с плавающей шайбой, лопастные, винтовые и другие. Они снабжены устройствами выдачи сигналов, пропорциональных объемному расходу вещества. Эти приборы пропускают определенный объем жидкости за один цикл хода чувствительного элемента. Мера расхода - число таких циклов. Диаметр трубопроводов 15-300 мм; температура среды до 150°С, давление до 10 МПа; диапазон измерений до 20:1. Основное достоинство - стабильность показаний. Недостатки: необходимость установки фильтров, задерживающих твердые частицы (чувствительный элемент при их проникновении может выйти из строя); износ движущихся деталей, приводящий к увеличению погрешности показаний, которая обычно составляет 0,5-1,0 от измеряемой величины.

    5296

    Струйные расходомеры (рис. 2,з). В них используется принцип действия генератора автоколебаний. В приборе часть струи потока жидкости или газа ответвляется и через так называемый канал обратной связи а поступает на вход устройства, создавая поперечное давление на струю. Последняя перебрасывается к противоположной стенке трубопровода, где от нее снова ответвляется часть потока, подаваемая через канал б на вход прибора; в результате струя переходит в первоначальное положение и т. д. Такой переброс происходит с частотой, пропорциональной расходу контролируемой среды, и сопровождается изменением давления в каналах а и б, что позволяет датчику давления воспринимать автоколебания. Диаметр трубопроводов 2-25 мм; температура среды от —263 до 500 °С, давление до 4 МПа; диапазон измерений 10:1. Основное достоинство - отсутствие подвижных элементов. Погрешность-1,5% от макс. расхода.

    5297

    Корреляционные расходомеры (рис. 2, и). В этих приборах с помощью сложных ультразвуковых и иных устройств осуществляется запоминание в заданном сечении трубопровода (I) характерного "образа" потока контролируемой среды и его последнее распознавание в другом сечении (II), расположенном на определенном расстоянии от первого. Мера расхода - время прохождения "образом" потока участка трубопровода между сечениями. Диаметр трубопроводов 15-900 мм; температура среды до 100-150°С, давление до 20 МПа; диапазон измерений 10:1. Достоинства: независимость показаний от изменений плотности, вязкости, электропроводности и других параметров жидкости; отсутствие потерь давления. Погрешность 1 % от измеряемой величины.

    [ http://www.chemport.ru/data/chemipedia/article_3233.html]

     

     

    Недопустимые, нерекомендуемые

    Тематики

    Синонимы

    EN

    DE

    FR

    14. Расходомер жидкости (газа)

    Расходомер

    Ндп. Измеритель расхода жидкости (газа)

    D. Durchflußmeßgerät

    E. Flowmeter

    F. Débitmètre

    Измерительный прибор или совокупность приборов, предназначенных для измерения расхода жидкости (газа)

    Источник: ГОСТ 15528-86: Средства измерений расхода, объема или массы протекающих жидкости и газа. Термины и определения оригинал документа

    Русско-французский словарь нормативно-технической терминологии > расходомер жидкости (газа)

  • 68 Банковские инновации

    Инновация буквально означает "инвестиция в новацию". Новация представляет собой какое-то новшество, ранее не существовавшее. В соответствии с гражданским правом новация означает соглашение сторон о замене одного заключенного ими обязательства другим. Результат такой замены и означает нововведение.

    Инновация сөзбе-сөз "новацияға (жаңа енгізілімге) жұмсалған инвестиция" дегенді білдіреді. Жаңа енгізілім бұрын болмаған қайсыбір жаңалық болып табылады. Азаматтық құқыққа сәйкес жаңа енгізілім тараптар жасасқан бір міндеттемені басқасымен ауыстыру туралы олардың келісімі дегенді білдіреді. Осындай ауыстырудың нәтижесі де жаңа енгізілім дегенді білдіреді.

    Банковская инновация – это реализованный в форме нового банковского продукта или операции (технологии) конечный результат инновационной деятельности банка.

    Банк инновациясы – жаңа банк өнімі немесе операция (технология) нысанында іске асырылған банкінің инновациялық қызметінің ақырғы нәтижесі.

    Под банковским продуктом подразумевается материально оформленная часть банковской услуги (карта, сберегательная книжка, дорожный чек, электронный кошелек и т.д.). Банковский продукт имеет вид вещи, предназначенный для продажи на финансовом рынке.

    Банк өнімі деп банк көрсететін қызметтің материалдық тұрғыдан ресімделген бөлігі (карта, жинақ кітапшасы, жол чегі, электронды әмиян, т.б.). Банк өнімі қаржы нарығында сатуға арналған зат түрінде болады.

    Новый банковский продукт:

    Жаңа банк өнімі:

    - единичный;

    - жеке-дара;

    - массовый.

    - көпшілік қолды түрлерге бөлінеді.

    Единичный банковский продукт — это индивидуальный продукт. Как вещь, он имеет характерные, только ему присущие особенности, которые выделяют его среди других банковских продуктов. Например, конкретная монета из конкретного драгоценного металла определенной массы, конкретная недвижимость, облигация конкретного эмитента-банка и др. Он имеет четко определенный круг своих покупателей. Поэтому он выпускается в расчете на конкретных потребителей.

    Жеке-дара банк өнімі — жеке өнім. Зат ретінде оны басқа банк өнімдерінің арасында бөлектеп тұратын тек өзіне ғана тән сипатты ерекшеліктері болады. Мысалы, нақты асыл металдан шекілген белгілі бір салмағы бар нақты мәнет, нақты жылжымайтын мүлік, нақты эмитент-банкінің облигациясы, т.б. Оның сатып алушыларының айқын белгіленген шеңбері болады. Сондықтан ол нақты тұтынушыларға арналған есеппен шығарылады.

    Массовый банковский продукт — это продукт без четко выраженной индивидуальности. У него нет особых характерных черт. Он различается только по видам продукта или финансового актива, например, банковский депозит, банковский счет, облигации государственного внутреннего или муниципального займа всех видов и др. Массовый финансовый продукт выпускается в расчете на широкий круг потребителей и инвесторов.

    Көпшілік қолды банк өнімі — айқын жеке-дара сипаты жоқ өнім. Оның ерекше сипатты белгілері жоқ. Ол өнім түрлері немесе қаржы активі бойынша ғана ерекшеленеді, мысалы, банк депозиті, банк шоты, мемлекеттік ішкі немесе барлық түрдегі мунипицалдық қарыз облигациялары, т.б. Көпшілік қолды қаржы өнімі тұтынушылар мен инвесторлардың қалың қауымына арналған есеппен шығарылады.

    Это продукт, объем или количество которого строго квотируется. Этот объем устанавливается при выпуске. Размер объема определяется многими факторами: размером уставного капитала акционерного банка, спросом потребителей, и т.д. К лимитируемым банковским продуктам относятся акции, облигации, виды кредитных соглашений и др. Он выпускается в расчете на конкретного покупателя.

    Ол көлемі немесе саны үлестемелетін өнім. Бұл көлем шығару кезінде белгіленеді. Көлем мөлшері көптеген факторлармен: акционерлік банкінің жарғылық капиталымен, тұтынушылардың сұранымымен, т.б. айқындалады. Лимиттелетін банк өнімдеріне акциялар, облигациялар, несие келісімдерінің түрлері, т.б. жатады. Ол нақты сатып алушыға арналған есеппен шығарылады.

    Нелимитированный банковский продукт представляет собой продукт, объем (количество) выпуска которого не ограничен никакими квотами. Он выпускается в расчете на возможного потенциального покупателя. К нелимитированному банковскому продукту относятся: пластиковые расчетные и кредитные карты, банковские счета и т.п.

    Лимиттелмеген банк өнімі – шығарылу көлемі (саны) ешқандай үлестемемен шектелмеген өнім. Ол ықтимал әлеуетті сатып алушыға арналған есеппен шығарылады. Лимиттелмеген банк өніміне: пластикалық есептесу және несиелік карталар, банк шоттары, т.б. жатады.

    Новый банковский продукт может быть в форме:

    Жаңа банк өнімі:

    - имущества;

    - мүлік;

    - имущественного права.

    - мүліктік құқық нысанында болуы мүмкін.

    Имущество представляет собой материальный объект собственности, например, деньги, мерные слитки золота, монеты, ценные бумаги и др.

    Мүлік деген меншіктің материалдық объектісі, мысалы, ақша, алтынның өлшемді құймасы, мәнет, бағалы қағаздар, т.б.

    Имущественное право означает право владеть, распоряжаться и пользоваться определенным имуществом. К банковскому продукту в форме имущественных прав относятся такие документы, как договор банковского счета, кредитные соглашения и т.п.

    Мүліктік құқықтың мәнісі белгілі бір мүлікті иелену, билеу, пайдалану құқығы дегенді білдіреді. Мүліктік құқық нысанындағы банк өніміне банк шотының шарты, несиелік келісімдер, т.б. сияқтылар жатады.

    Банковские операции представляют собой процедуру действий, направленную на решение определенной задачи по управлению банковским капиталом. К банковским операциям относятся:

    Банк операциясы дегеніміз банк капиталын басқару жөніндегі белгілі бір міндеттерді шешуге бағытталған әрекеттердің рәсімі. Банк операцияларына:

    - формы контроля и учета движения денежных средств и ценных бумаг;

    - ақшалай қаражат пен бағалы қағаздар қозғалысын бақылау мен есепке алу нысандары;

    - методы планирования финансовых показателей;

    - қаржы көрсеткіштерін жоспарлау әдістері;

    - методология составления финансовых планов разных видов;

    - әртүрлі қаржы жоспарларын жасау әдіснамасы;

    - приемы финансового анализа;

    - қаржы талдауының тәсілдері;

    - формы организации финансовой работы в банке;

    - банкіде қаржы жұмысын ұйымдастыру нысандары;

    - интерактивное и другое аналогичное инвестирование капитала и другие действия.

    - капиталды интерактивтік және басқа ұқсас инвестициялау мен басқа да әрекеттер жатады.

    Жизненный цикл банковской инновации – это определенный период времени, в течение которого банковский продукт или операция обладает активной жизненной силой и приносит банку как продуценту (производителю) и продавцу инновации определенную прибыль или другую реальную выгоду. Концепция жизненного цикла имеет важное значение при планировании производства инноваций и организации инновационного процесса в банковской сфере. Это значение проявляется в том, что концепция жизненного цикла банковской инновации:

    Банк инновациясының өміршеңдік циклі – белгілі бір уақыт кезеңі, бұл кезең бойына банк өнімі немесе операция белсенді өміршеңдік күшке ие болады және банкіге өнімгер (өндіруші) және инновация сатушы ретінде белгілі бір пайда немесе басқадай нақты тиімділік әкеледі. Өміршеңдік циклі тұжырымдамасының инновациялар өндірісін жоспарлауда және банк аясындағы инновациялық үдерісті ұйымдастыруда зор маңызы бар. Оның мәні мынадан көрініс табады: банк инновациясының өміршеңдік циклінің тұжырымдамасы:

    - вынуждает руководителя банка и его маркетинговую службу анализировать хозяйственную деятельность как с позиции настоящего времени, так и с точки зрения перспектив ее развития;

    - шаруашылық қызметті қазіргі уақыт тұрғысынан да, оның даму келешегі тұрғысынан да талдауға банк басшысын және оның маркетингілік қызметін мәжбүр етеді;

    - обосновывает необходимость систематической работы по планированию выпуска инноваций (поиск идей, организация инновационного процесса, создание банковской инновации, ее продвижение на рынке и диффузия), а также по приобретению инноваций (изучение спроса, банковский маркетинг, бенгмаркетинг);

    - инновациялардың шығарылымын жоспарлау жөніндегі (идеяларды іздестіру, инновациялық үдерісті ұйымдастыру, банк инновациясын жасау, оны нарықта жылжыту және қайта тарату), сондай-ақ инновацияларды сатып алу жөніндегі (сұранымды зерттеу, банк маркетингі, бенгмаркетинг) жүйелі жұмыстың қажеттілігін негіздейді;

    - является основой механизма анализа и планирования инновации.

    - инновацияны талдау және жоспарлау тетігінің негізі болып табылады.

    На какие элементы можно разделить процесс планирования банковской инновации?

    Всю деятельность по планированию банковской инновации можно разделить на ряд элементов, которые включают в себя:

    Банк инновациясын жоспарлау жөніндегі барлық қызметті мыналарды қамтитын бірқатар нышандарға бөлуге болады:

    - исследование финансового рынка;

    - қаржы нарығын зерттеу;

    - исследование рынка банковской инновации по данному активу рынка;

    - нарықтың осы активі бойынша банк инновациясы нарығын зерттеу;

    - исследование продолжительности жизни банковской инновации;

    - банк инновациясы өміршеңдігінің ұзақтығын зерттеу;

    - разработку банковской инновации (т.е. производство банковского продукта или новой операции);

    - банк инновациясын әзірлеу (яғни банк өнімін немесе жаңа операцияны жасау);

    - политику цен;

    - баға саясаты;

    - рекламу;

    - жарнама;

    - мероприятия по продвижению банковской инновации;

    - банк инновациясын жылжыту жөніндегі шаралар;

    - организацию продажи (сбыта) банковской инновации;

    - банк инновациясын сатуды (өткізуді) ұйымдастыру;

    - диффузию банковской инновации.

    - банк инновациясын қайта тарату (диффузия).

    Жизненный цикл нового банковского продукта включает в себя семь стадий:

    Жаңа банк өнімінің өміршеңдік циклі жеті сатыны қамтиды:

    - разработка нового банковского продукта;

    - жаңа банк өнімін әзірлеу;

    - выход на рынок;

    - нарыққа шығу;

    - развитие рынка;

    - нарықтың дамуы;

    - стабилизация рынка;

    - нарықтың тұрақтануы;

    - уменьшение рынка;

    - нарықтың өрлеуі;

    - подъем рынка;

    - нарықтың азаюы;

    - падение рынка.

    - нарықтың құлдырауы.

    Своп представляет собой валютную операцию по обмену между субъектами обязательствами или активами.

    Своп субъектілер арасында міндеттемелерді немесе активтерді айырбастау жөніндегі валюталық операция болып табылады.

    Своп подразделяется на:

    Своп:

    - валютный;

    - валюталық;

    - процентный;

    - пайыздық;

    - валютно-процентный;

    - валюталық-пайыздық;

    - своп с нулевым купоном.

    - нөл купондық своп болып бөлінеді.

    Валютный своп представляет собой покупку и одновременную форвардную продажу валюты (депорт) или, наоборот, продажу и одновременную форвардную покупку валюты (репорт).

    Валюталық своп валютаны сатып алу және сонымен бір мезгілде форвардтық сату (депорт) немесе валютаны сату және сонымен бір мезгілде форвардтық сатып алу (репорт) болып табылады.

    Процентный своп – это обмен процентными ставками по заемным средствам.

    Пайыздық своп – қарыз қаражаты бойынша пайыздық мөлшерлемелерді айырбастау.

    Валютно-процентный своп представляет собой обмен как валютами, так и процентами. Этот вид свопа может быть заключен между несколькими участниками.

    Валюталық-пайыздық своп валютамен де, пайызбен де айырбастау болып табылады. Своптың бұл түрі бірнеше қатысушылар арасында жасасылуы мүмкін.

    Сущность свопа с нулевым купоном заключается в том, что эмитент бескупонной облигации может осуществить обмен фиксированного дохода по плавающей процентной ставке путем одновременного процентного свопа и обратного ежегодного платежа.

    Нөлдік купонмен жасалатын своптың мәні мынада: купонсыз облигацияның эмитенті тіркелген кірісті бір мезгілде пайыздық своп және жыл сайынғы кері төлем жолымен өзгермелі пайыздық мөлшерлеме бойынша айырбастауы мүмкін.

    Счет НОУ представляет соединение депозитного вклада и текущего счета. Владелец счета НОУ имеет право при уведомлении за 30 дней выписать "обращающиеся приказы об изъятии" и использовать их для платежей как расчетные чеки. По счету НОУ устанавливается обязательный минимальный остаток вклада, который возвращается владельцу только после закрытия счета, а также строгое назначение вклада.

    НОУ шот депозиттік салым мен ағымдағы шоттың ұштастырылуы болып табылады. НОУ шоттың иесі 30 күн бұрын хабар алған кезде "өндіріп алу туралы айналыстағы бұйрықтар" деп жазуға және оларды есеп айырысу чектері ретінде төлемдер үшін пайдалануға құқылы болады. НОУ шот бойынша иесіне шот жабылғаннан кейін ғана қайтарылатын салымның міндетті ең аз қалдығы, сондай-ақ салымның қатаң мақсаты белгіленеді.

    Операция по складированию свопов предполагает заключение договора о свопе с банком и его страхование (обычно фьючерсами) до того момента, пока банк не подыщет вторую сторону договора о свопе. Например, банк заключает с инвестором договор об обмене процентными ставками и одновременно производит страхование величины процентной ставки.

    Своптарды жинақтау операциясы банкімен своп туралы шарт жасасуды және оны банк своп туралы шарттың екінші тарабын іздеп тапқанға дейін сақтандыруды (әдетте фьючерстермен) көздейді. Мысалы, банк инвестормен пайыздық мөлшерлемелерді айырбастау туралы шарт жасасады, сонымен бір мезгілде пайыздық мөлшерлеме шамасын сақтандырады.

    В чем состоит содержание операции по сочетанию контокоррента с овердрафтом?

    Содержание этой операции состоит в их совместном использовании при денежных платежах, особенно при валютных расчетах. Когда денежные средства поступают на счет владельца раньше наступления срока платежа по заключенным контрактам, то они зачисляются на контокоррентный счет. Если срок платежа наступает раньше срока поступления денег, то инвестор использует овердрафт банка. Возврат кредита банку по овердрафту и процентов по нему будет произведен в момент поступления денег на счет владельца.

    Бұл операцияның мазмұны ақшалай төлемдерді төлеу кезінде, әсіресе валюталық есеп айырысу кезінде оларды бірге пайдалануда. Ақшалай қаражат иеленушінің шотына жасасқан келісімшарт бойынша төлем мерзімінен бұрын түскен кезде ол конторренттік шотқа есептеледі. Егер төлем мерзімі ақшаның түсуінен бұрын басталған болса, онда инвестор банк овердрафтысын пайдаланады. Овердрафт бойынша несие және ол бойынша пайыздар банкіге ақшаның иеленуші шотына түсуі сәтінде қайтарылады.

    Русско-казахский экономический словарь > Банковские инновации

  • 69 ыштыме

    ыштыме
    Г.: ӹштӹмӹ
    1. прич. от ышташ
    2. в знач. сущ. дело, действие, деятельность, занятие

    Ыштымемлан иктаж теҥгем пуэт але уке? С. Чавайн. За мою работу дашь или нет сколько-нибудь рублей?

    Лач иктаж-кудыжо нимом ыштыме деч идымым эрыкта. «Сылн. пам.» Лишь некоторые от нечего делать (букв. от ничегонеделания) убирают ток.

    3. в знач. сущ. производство, изготовление, выработка, заготовка чего-л.

    Йыдалым ыштыме дене садак мӱшкырым темаш ок лий. О. Тыныш. Изготовлением лаптей всё равно сыт не будешь.

    4. в знач. сущ. дело, действие, поступок

    Тыге ыштымыштлан пошкудо йоча-влакым ик гана веле огыл вурсенам. «Ончыко» За такие дела я не раз ругал соседских ребят.

    5. в знач. сущ. занятие, деятельность; выполнение какой-л. работы, каких-л. действий

    Задачым ыштыме годым при выполнении задачи.

    (Эльвира) сомылым ыштымыж кокла гычак шкеж нерген каласкала. А. Мурзашев. Эльвира между дел рассказывает о себе.

    6. в знач. сущ. производство, проведение, совершение чего-л.; в сочет. с сущ. в вин. п., указывающими на род деятельности, обозначает совершение какого-л. действия

    Орденым подвигым ыштымылан веле пуатыс. М. Рыбаков. Ведь орден дают только за подвиг (букв. совершение подвига).

    Тамакым шупшмо шуэш – тамакшым, чакмажым обыск ыштыме годым поген налыныт. И. Васильев. Хочется курить – табак, огниво забрали во время обыска (букв. проведения обыска).

    7. в знач. сущ. оказание, совершение, осуществление; нанесение, причинение чего-л. кому-л.

    – Мыйын поро ыштымемым те монден улыда. М. Шкетан. – Вы забыли мою доброту (букв. делание добра).

    – Тылат шуко осалым ыштымемлан мыйынат чонем вургыжеш. В. Юксерн. – Моё сердце тоже трепещет, оттого, что я причинил (букв. из-за причинения) тебе много зла.

    8. в знач. сущ. основание, образование, составление, создание, производство чего-л., способствование появлению чего-л.

    Теве Марий автономный областьым ыштыме нерген закон. К. Васин. Вот закон об образовании Марийской автономной области.

    Фильмлан элыштына первый трудовой колонийым ыштыме историй гыч ятыр факт налалтын. Й. Кырля. В фильме использовано много фактов из истории создания первой в нашей стране трудовой колонии.

    9. в знач. сущ. строительство, сооружение, воздвижение; создание какого-л. сооружения

    – Мый пӧртым ыштыме нерген веле шонем. А. Мурзашев. – Я думаю только о строительстве дома.

    Москваште да Ленинградыште метрополитенын у линийжым ыштыме шотышто паша умбакыже ышталтын. «Мар. ком.» В Москве и Ленинграде продолжались работы по строительству новой линий метрополитена.

    10. в знач. сущ. в сочет. с нар. и сущ. с послелогами выражает действие по данному нар. или сущ.; передаётся сущ. или гл. со сходным значением

    Таче ялым коден кайыше еҥ йоҥылыш ыштымыжлан шкенжым шылталаш тӱҥалеш. М. Иванов. Человек, сегодня покинувший село, будет корить себя за свою ошибку (букв. совершение ошибки).

    Омыжым лугыч ыштымемлан (Роза) сырен дыр. М. Рыбаков. Наверно, Роза рассердилась за то, что я прервал её сон (букв. прервание её сна).

    11. в знач. сущ. роды, рождение; произведение на свет младенца, детёныша

    Аза ыштыме годым во время рождения ребёнка.

    Вӱльын кунар чома ыштымыжым Япык кугызай шкежат шинчен огыл. Я. Элексейн. Дядя Япык и сам не знал, сколько жеребят принесла кобыла.

    12. в знач. сущ. работа, труд; осуществление какой-л. деятельности по производству чего-л.

    – Еҥ ыштыме годым тыйын мӱшкырет але вует коршта шол. Г. Ефруш. – Когда другие работают (букв. во время работы других), у тебя болит живот или голова.

    – Теҥгече ыштымылан пашадаржым кунам пуэт? О. Тыныш. – Когда отдашь плату за вчерашнюю работу?

    13. в знач. сущ. работа, служба, должность, занятие

    – Министерствыште ыштымем годым (Сергей Петрович) машинам декат толеда ыле. П. Корнилов. – Когда я работал в министерстве, Сергей Петрович и к моей машине подходил.

    Николай Петрович сплав пашаште ыштымыж нерген каласкален. В. Исенеков. Николай Петрович рассказывал о своей работе на сплаве.

    Марийско-русский словарь > ыштыме

  • 70 эксплуатация


    operation, service
    - (техническое обслуживание)maintenance
    -, безаварийная (агрегата) — trouble-free operation
    -, безаварийная (самолета), — accident-free operation
    -, безопасная — safe operation
    - в аварийных условиях (разд. 3 рлэ) — emergency procedures
    данный раздел должен включать основные действия (экипажа) в аварийных условиях. — this section should contain essential operating procedures for emergency conditions.
    под аварийными условиями понимаются возможные, но необычные условия эксплуатации ла, требующие незамедлительных и точных действий для существенного уменьшения опасности. — an emergency, in this context, is defined as a foreseeable, but unusual, situation in which immediate and precise action will substantially reduce the risk of disaster.
    - в метеоусловиях категории (1, 2, 3) — operation to category (1, 2, 3) limits, category (1, 2, 3) operation
    - в нормальных условиях (разд. 4 рлэ) — normal procedures
    данный раздел должен включать действия экипажа в нормальных условиях эксплуатации и в случаях отказов /неисправностей, не указанных в разд. 3. — this section should contain normal procedures and those procedures in the event of malfunctioning which are not included in section 3.
    - в нормальных метеоусловияхnormal weather operation
    - в полетеin-flight procedures
    - в сложных метеоусловияхlow weather operation
    - в тропикахoperation in tropic area
    - в условиях высоких температурhot weather operation
    - в условиях низких (пониженных) температур — cold weather operation in cold weather operation the generator may be slow to produce stabilized power.
    -, грамотная (техническое обслуживание) — intelligent maintenance perform maintenance intelligently.
    -, дальнейшая восстановить агрегат для дальнейшей эксплуатации. — further service recondition the unit for further service.
    - летательных аппаратов тяжелее воздуха — aviation the operation of heavierthan-air aircraft.
    -, летная — flight operation
    -, наземная — ground operation
    насос предназначается для наземной эксплуатации (работы) системы. — the pump is provided for the ground operation of the system
    -, наземная (действия, производимые с ла на земле) — ground handling
    -, нормальная — normal procedures
    - по состоянию (использование в работе с контролем состояния)on-condition use
    - по состоянию, техническая — on-condition maintenance, oc maintenance

    a failure preventive maintenance process.
    - систем самолетаmanagement of airplane systems
    - систем самолета (раздел рлэ)systems
    - систем экипажем в полетеcrew operating procedures to use systems in flight
    находиться вне э. (о ла) — be inactive
    в э. — in service /operation/
    ввод в э. — introduction into service
    (случай) возможный в э. — expected in operation /service/
    дата ввода в э. — date placed in service
    заметки по э. (раздел формуляра или паспорта) — notes
    ненаходящийся в э. — out-of-serviee
    ненаходящийся в э. (временно не эксплуатируемый) — during period of idleness
    непригодный к э. — unserviceable
    опыт э. — operational experience
    особенности э. — peculiarities of operation
    практика э. — maintenance practices
    практически возможный в э. — operationally practicable
    простота э. — operational simplicity
    с момента ввода в э. — since placed in service
    с начала э. — since placed in service
    снятие с э. — withdrawal from service
    удобство э. — ease of handling
    условия э. — operating conditions
    вводить в э. — place /put/ in service
    вводиться в э. — enter service

    the а/с first entered service in may 1980 with b.e.a.
    допускать к дальнейшей э. — return to service

    return the unit to service as serviceable.
    допускать к дальнейшей э. (считать работоспособным) — consider serviceable
    не находиться в э. более чем... — be out of use for more than...
    признавать (считать) годным к (летной) эксплуатации — determine to be in airworthy condition, certify as airworthy
    считать ла или указанные части годными к эксплуатации после переборки, ремонтa, модификации или установки. — certify that an aircraft or parts thereof comply with the current airworthiness requirements after being overhauled, repaired, modified, or installed.
    снимать с э. — withdraw from service

    Русско-английский сборник авиационно-технических терминов > эксплуатация

  • 71 электросхема


    electrical diagram
    (графическая)
    - (наименование раздела описания или руководства)electrical description
    данный раздел включает описание конструкции и принципа действия (работы) основных элементов эл. системы (или агрегата). — the electrical description contains the descriptive information on the major electrical components (of the unit or system), and their function.
    -, монтажная — wiring diagram
    -, полумонтажная — wiring diagram
    -, принципиальная — schematic electrical diagram
    принципиальная схема об легчает разбор действия сложных электрических схем, отыскание и устранение в них неисправностей. условные графические обозначения применяются для элементов, необходимых для работы системы. принципиальные схемы включаются в альбом фидерных схем. — the schematic diagram facilitates tracing and trouble shooting complex circuits. it shows by means of graphic symbols all the components required to perform system operation. it shall be provided in wiring diagram manuals and other publications.
    - соединений (монтажная)wiring diagram
    монтажная схема, на которой показаны и обозначены блоки и соединительная проводка, составляющие систему. — an illustration drawing showing and identifying the units and conductors that make up the installation.
    предназначается для облегчения нахождения неисправностей, обслуживания, ремонта и доработки эл. систем ла. должна включаться в альбом фидерных схем. — it shall be designed for use as an aid in trouble shooting, servicing, repairing and modifying the aircraft installations. it shall be provided in wiring diagram manuals.

    Русско-английский сборник авиационно-технических терминов > электросхема

  • 72 по

    автомат загрузки по скоростному напору
    Q-feel system
    автомат имитации усилий по числу М
    Mach-feel system
    автоматическое сопровождение по дальности
    automatic range tracking
    автоматическое флюгирование по отрицательной тяге
    drag-actuated autofeathering
    автоматическое флюгирование по предельным оборотам
    overspeed-actuated autofeathering
    автомат стабилизации автопилота по числу М
    autopilot Mach lock
    автомат устойчивости по тангажу
    pitch autostabilizer
    агент по грузовым перевозкам
    cargo agent
    агент по оформлению
    handing agent
    агент по оформлению туристических перевозок
    travel agent
    агент по продаже билетов
    ticket medium
    агентство по отправке грузов воздушным транспортом
    air freight forwarder
    Агентство по пропорциональным тарифам
    Prorate Agency
    анализатор с интегрированием по времени
    time-integrating analyser
    Африканская конференция по авиационным тарифам
    African Air Tariff Conference
    аэропортовый комитет по разработке и утверждению расписания
    airport scheduling committee
    балансировать по тангажу
    trim in pitch
    балансировка по тангажу
    longitudinal trim
    билет по основному тарифу
    normal fare ticket
    блок контроля скорости пробега по земле
    ground run monitor
    весовая отдача по полезной нагрузке
    useful-to-takeoff load ratio
    взлетать по ветру
    takeoff downwind
    взлет по вертолетному
    no-run takeoff
    взлет по ветру
    downwind takeoff
    взлет по приборам
    instrument takeoff
    взлет по самолетному
    1. forward takeoff
    2. running takeoff визуальная посадка по наземным ориентирам
    visually judged landing
    визуальный заход на посадку по упрощенной схеме
    abbreviated visual approach
    визуальный полет по кругу
    visual circling
    воздушная перевозка по найму
    air operation for hire
    воздушное судно, загруженное не по установленной схеме
    improperly loaded aircraft
    воздушное судно, не сертифицированное по шуму
    nonnoise certificate aircraft
    воздушное судно по обмену
    interchanged aircraft
    восстановление по крену
    bank erection
    восстановление по тангажу
    pitch erection
    ВПП, не оборудованная для посадки по приборам
    noninstrument runway
    ВПП, оборудованная для посадки по приборам
    instrument runway
    вращаться по инерции
    run down
    вращение по инерции
    rundown
    время вылета по расписанию
    scheduled departure time
    время наземной тренировки по приборам
    instrument ground time
    время налета по приборам
    instrument flying time
    время налета по приборам на тренажере
    instrument flying simulated time
    время полета по внешнему контуру
    outbound time
    время полета по маршруту
    trip time
    время по расписанию
    due time
    выдерживание курса по курсовому радиомаяку
    localizer hold
    выдерживать курс по компасу
    hold the heading on the compass
    выдерживать направление по лучу
    follow the beam
    выполнять доработку по бюллетеню
    perform the service bulletin
    выполнять полет по курсу
    fly the heading
    высота по давлению
    pressure altitude
    высота полета по маршруту
    en-route altitude
    высота по радиовысотомеру
    radio height
    Генеральная конференция по мерам и весам
    General Conference of Weights and Measure
    генеральный агент по продаже
    general sales agent
    годность по состоянию здоровья
    medical fitness
    годность по уровню шума
    noiseworthiness
    градус по шкале Цельсия
    degree Celsius
    группа, выполняющая полет по туру
    tour group
    дальность видимости по наклонной прямой
    oblique visibility
    дальность видимости по прямой
    1. line-of-sight distance
    2. line-of-sight range дальность полета по замкнутому маршруту
    closed-circuit range
    дальность полета по прямой
    direct range
    датчик рассогласования по крену
    roll synchro transmitter
    датчик усилий по крену
    roll control force sensor
    движение по земле
    ground run
    движение по тангажу
    pitching motion
    дежурный по посадке
    boarding clerk
    действия по аэродрому при объявлении тревоги
    aerodrome alert measures
    действия по обнаружению и уходу
    see and avoid operations
    действующий технологический стандарт по шуму
    current noise technology standard
    деятельность по координации тарифов
    tariff coordinating activity
    диспетчер по загрузке
    load controller
    диспетчер по загрузке и центровке
    weight and balance controlled
    диспетчер по планированию
    planner
    диспетчер по планированию полетов
    flight planner
    длина разбега по воде
    water run length
    дозаправлять топливом на промежуточной посадке по маршруту
    refuel en-route
    доставка грузов по воздуху
    aerial cargo delivery
    доставлять по воздуху
    fly in
    доступ, регламентированный по времени
    time-ordered access
    доход по контракту
    contract revenue
    Европейская конференция по вопросам гражданской авиации
    European Civil Aviation Conference
    загрузочный механизм по скоростному напору
    Q-feel mechanism
    загрузочный механизм по числу М
    Mach-feel mechanism
    закрылок по всему размаху
    full-span flap
    занимать эшелон по нулям
    be on the level on the hour
    запас по оборотам несущего винта
    rotor speed margin
    запас по помпажу
    surging margin
    запас по сваливанию
    stall margin
    запас по ускорению
    acceleration margin
    заход на посадку, нормированный по времени
    timed approach
    заход на посадку по командам наземных станций
    advisory approach
    заход на посадку по коробочке
    rectangular traffic pattern approach
    заход на посадку по криволинейной траектории
    curved approach
    заход на посадку по кругу
    circling approach
    заход на посадку по крутой траектории
    steep approach
    заход на посадку по курсовому маяку
    localizer approach
    заход на посадку по маяку
    beam approach
    заход на посадку по обзорному радиолокатору
    surveillance radar approach
    заход на посадку по обычной схеме
    normal approach
    заход на посадку по осевой линии
    center line approach
    заход на посадку по полной схеме
    long approach
    заход на посадку по пологой траектории
    flat approach
    заход на посадку по приборам
    1. instrument approach landing
    2. instrument landing approach заход на посадку по прямому курсу
    front course approach
    заход на посадку по радиолокатору
    radar approach
    заход на посадку по сегментно-криволинейной схеме
    segmented approach
    заход на посадку после полета по кругу
    circle-to-land
    заход на посадку по укороченной схеме
    short approach
    заход на посадку по упрощенной схеме
    simple approach
    заход на посадку с прямой по приборам
    straight-in ILS-type approach
    звездное время по гринвичскому меридиану
    Greenwich sideral time
    зона захода на посадку по кругу
    circling approach area
    зона обзора по азимуту
    azimuth coverage
    изменение маршрута по желанию пассажира
    voluntary rerouting
    имитируемый полет по приборам
    simulated instrument flight
    инженер по навигационным средствам
    navaids engineer
    инженер по радиоэлектронному оборудованию
    radio engineer
    инженер по техническому обслуживанию воздушных судов
    aircraft maintenance engineer
    инженер по электронному оборудованию
    electronics engineer
    инспектор по летной годности
    airworthiness inspector
    инспектор по производству полетов
    operations inspector
    инспекция по расследованию авиационных происшествий
    investigating authority
    инструктаж по условиям полета по маршруту
    route briefing
    инструктор по навигационным средствам
    navaids instructor
    инструктор по производству полетов
    flight operations instructor
    инструкция по загрузке воздушного судна
    aircraft loading instruction
    инструкция по консервации и хранению воздушного судна
    aircraft storage instruction
    инструкция по обеспечению безопасности полетов
    air safety rules
    инструкция по производству полетов
    operation instruction
    инструкция по техническому обслуживанию
    maintenance instruction
    инструкция по эксплуатации воздушного судна
    aircraft operating instruction
    информация по воздушной трассе
    airway information
    информация по условиям посадки
    landing instruction
    испытание по уходу на второй круг
    go-around test
    испытания по замеру нагрузки в полете
    flight stress measurement tests
    испытания по полной программе
    full-scale tests
    Исследовательская группа по безопасности полетов
    Aviation Security Study Group
    истинное время по Гринвичу
    Greenwich apparent time
    исходные условия сертификации по шуму
    noise certification reference conditions
    калибровка чувствительности по звуковому давлению
    sound pressure sensitivity calibration
    категория ИКАО по обеспечению полета
    facility performance ICAO category
    классификация воздушных судов по типам
    aircraft category rating
    кодирование по опорному времени
    time reference coding
    Комиссия по авиационной метеорологии
    Commission for aeronautical Meteorology
    Комиссия по нарушению тарифов
    Breachers Commission
    Комиссия по основным системам
    Commission for basic Systems
    Комитет по авиационному шуму
    Committee on Aircraft Noise
    Комитет по безопасности полетов
    Safety Investigation Board
    Комитет по воздушным перевозкам
    1. Air Transport Committee
    2. Air Transportation Board Комитет по исследованиям звуковых ударов
    Sonic Boom Committee
    Комитет по координации частот
    Frequency Coordinating Body
    Комитет по незаконному вмешательству
    Committee on Unlawful Interference
    Комитет по охране окружающей среды от воздействия авиации
    Committee on Aviation Environmental Protection
    Комитет по поощрительным тарифам
    Creative Fares Board
    Комитет по рассмотрению авиационных вопросов
    Aviation Review Committee
    Комитет по расходам
    Cost Committee
    Комитет по специальным грузовым тарифам
    Specific Commodity Rates Board
    коммерческая загрузка, ограниченная по массе
    weight limited payload
    коммерческая загрузка, ограниченная по объему
    space limited payload
    компрессор по помпажу
    compressor surge margin
    конвенция по вопросам деятельности международной гражданской авиации
    convention on international civil aviation
    конвенция по управлению воздушным движением
    air traffic convention
    консультант по вопросам обучения
    training consultant
    консультант по тренажерам
    trainers consultant
    Консультативная группа по метеообеспечению
    Meteorological Advisory Group
    консультативное сообщение по устранению конфликтной ситуации
    resolution advisory
    Консультативный комитет по управлению воздушным движением
    Air Traffic Control Advisory Committee
    Консультативный комитет по упрощению формальностей
    Facilitation Advisory Committee
    контролируемое воздушное пространство предназначенное для полетов по приборам
    instrument restricted airspace
    контроль состояния посевов по пути выполнения основного задания
    associated crop control operation
    Конференция агентства по грузовым перевозкам
    Cargo Agency Conference
    Конференция агентств по пассажирским перевозкам
    Passenger Agency Conference
    Конференция по валютным вопросам
    Currency Conference
    Конференция по вопросам обслуживания пассажиров
    Passenger Services Conference
    Конференция по координации тарифов
    Tariff Co-ordinating Conference
    координационный центр по спасанию
    rescue coordination center
    коррекция траектории по полученной информации
    reply-to-track correlation
    кресло, расположенное по направлению полета
    forward facing seat
    курс захода на посадку по приборам
    instrument approach course
    курс подготовки по утвержденной программе
    approved training course
    курс по локсодромии
    rhumb-line course
    курс по маяку
    beacon course
    курс по радиомаяку
    localizer course
    курсы подготовки пилотов к полетам по приборам
    instrument pilot school
    летать по ветру
    fly downwind
    летать по глиссадному лучу
    fly the glide-slope beam
    летать по кругу
    1. circularize
    2. fly round 3. fly the circle летать по кругу над аэродромом
    circle the aerodrome
    летать по курсу
    1. fly on the heading
    2. fly on the course летать по локсодромии
    fly the rhumb line
    летать по маршруту
    fly en-route
    летать по ортодромии
    fly the great circle
    летать по приборам
    1. fly on instruments
    2. fly by instruments летать по приборам в процессе тренировок
    fly under screen
    летать по прямой
    fly straight
    лететь по лучу
    fly the beam
    летная полоса, оборудованная для полетов по приборам
    instrument strip
    линия полета по курсу
    on-course line
    линия пути по локсодромии
    rhumb-line track
    линия пути по схеме с двумя спаренными разворотами
    race track
    Международная комиссия по аэронавигации
    International commission for Air Navigation
    Международная комиссия по освещению
    Commission on Illumination
    международное сотрудничество по вопросам летной годности
    international collaboration in airworthiness
    меры по обеспечению безопасности
    safety control measures
    меры по предупреждению пожара
    fire precautions
    меры по снижению шума
    noise abatement measures
    метеоданные по аэродрому
    aerodrome forecast material
    метеосводка по трассе полета
    airway climatic data
    методика сертификации по шуму
    noise certification procedure
    метод продажи по наличию свободных мест
    space available policy
    механизм триммерного эффекта по тангажу
    pitch trim actuator
    механизм усилий по скоростному напору
    Q-feel unit
    минимальная высота полета по кругу
    minimum circling procedure height
    минимальная высота по маршруту
    minimum en-route altitude
    минимум для полетов по кругу
    circling minima
    набирать высоту при полете по курсу
    climb on the course
    набор высоты по крутой траектории
    steep climb
    набор высоты по установившейся схеме
    proper climb
    наведение по азимуту
    azimuth guidance
    наведение по азимуту при заходе на посадку
    approach azimuth guidance
    наведение по глиссаде
    glide-slope guidance
    наведение по глиссаде при заходе на посадку
    approach slope guidance
    наведение по клиренсу
    clearance guidance
    наведение по лучу
    1. beam homing
    2. beam follow guidance 3. beam riding наведение по лучу радиолокационной станции
    radar beam riding
    наведение по отраженному лучу
    back beam track guidance
    наведение по углу
    angle guidance
    навигация по визуальным ориентирам
    contact navigation
    навигация по заданным путевым углам
    angle navigation
    навигация по линии равных азимутов
    constant-bearing navigation
    навигация по наземным ориентирам
    1. landmark navigation
    2. terrestrial navigation 3. ground reference navigation навигация по ортодромии
    waypoint navigation
    навигация по условным координатам
    grid navigation
    наставление по управлению воздушным движением
    air traffic guide
    не по курсу
    off-course
    неустойчивость по крену
    roll instability
    неустойчивость по тангажу
    pitch instability
    облако, напоминающее по виду наковальню
    anvil cloud
    обобщенные характеристики по шуму
    generalized noise characteristics
    оборудование для полетов по приборам
    blind flight equipment
    обслуживание по смешанному классу
    mixed service
    обслуживание по туристическому классу
    1. economy class service
    2. coach service 3. no frills service обтекать по потоку
    streamwise
    обтекать хорду по потоку
    stream-wise chord
    Объединенная конференция по грузовым тарифам
    Composite cargo Traffic Conference
    Объединенная конференция по координации грузовым перевозкам
    Composite cargo Tariff Coordinating Conference
    Объединенная конференция по координации пассажирских тарифов
    Composite Passenger Tariff Co-ordinating Conference
    Объединенная конференция по пассажирским перевозкам
    Composite Passenger Conference
    огни по требованию
    lights on request
    ограничение по боковому ветру
    cross-wind limit
    ограничение по времени
    time limit
    ограничение по массе
    weight limitation
    ограничение по скорости полета
    air-speed limitation
    ограничения по загрузке
    loading restrictions
    ограничения по летной годности
    airworthiness limitations
    ограничивать по состоянию здоровья
    decrease in medical fitness
    операции по подготовке рейса к вылету
    departure operations
    операции по спасению
    rescue operations
    операция по рассеиванию тумана
    fog dispersal operation
    операция по спасению
    rescue mission
    опережение по фазе
    phase advance
    определение местонахождения воздушного судна по звездам
    astrofix
    определение местоположения по наземным ориентирам
    visual ground fixing
    определение местоположения по пеленгу одной станции
    one-station fixing
    определение местоположения по пройденному пути и курсу
    range-bearing fixing
    ориентировка ВПП по магнитному меридиану
    magnetic orientation of runway
    ориентировка по радиомаяку
    radio-range orientation
    остановка по расписанию
    sheduled stopping
    Отдел по соблюдению тарифов
    Compliance Department
    отклонение по дальности
    range deviation
    отклонение по крену
    bank displacement
    отставание по времени
    time lag
    отставание по фазе
    phase lag
    ошибка по дальности
    range error
    параметр потока, критический по шуму
    noise-critical flow parameter
    пассажир по полному тарифу
    adult
    пеленг по гироприбору
    gyro bearing
    перевозка грузов по воздуху
    air freight lift
    перевозка пассажиров по контракту
    contract tour
    перевозка по специальному тарифу
    unit toll transportation
    перевозки по тарифу туристического класса
    coach traffic
    персонал по обеспечению полетов
    flight operations personnel
    персонал по оформлению билетов
    ticketing personnel
    пикирование по спирали
    spiral dive
    пилотировать по приборам
    pilot by reference to instruments
    планирование воздушного судна по спирали
    aircraft spiral glide
    план полета по приборам
    instrument flight plan
    по азимуту
    in azimuth
    поверхность управления по всему размаху
    full-span control surface
    (напр. крыла) по ветру
    downwind
    по всему размаху
    tip
    погода по метеосводке
    reported weather
    погрешность отсчета по углу места
    elevation error
    подводить по трубопроводу
    deliver by pipe
    подготовка для полетов по приборам
    instrument flight training
    подготовка по утвержденной программе
    approved training
    по запросу
    1. on-request
    2. on request полет по дополнительному маршруту
    extra section flight
    полет по заданной траектории
    desired path flight
    полет по заданному маршруту
    desired track flight
    полет по замкнутому кругу
    closed-circuit flight
    полет по замкнутому маршруту
    round-trip
    полет по индикации на стекле
    head-up flight
    полет по инерции
    1. coasting flight
    2. coast полет по коробочке
    box-pattern flight
    полет по круговому маршруту
    1. round-trip flight
    2. circling полет по кругу
    circuit-circling
    полет по кругу в районе аэродрома
    aerodrome traffic circuit operation
    полет по кругу над аэродромом
    1. aerodrome circling
    2. aerodrome circuit-circling полет по курсу
    flight on heading
    полет по локсодромии
    rhumb-line flight
    полет по маршруту
    1. en-route operation
    2. en-route flight полет по маякам ВОР
    VOR course flight
    полет по наземным ориентирам
    visual navigation flight
    полет по наземным ориентирам или по командам наземных станций
    reference flight
    полет по полному маршруту
    entire flight
    полет по приборам
    1. instrument flight rules operation
    2. instrument flight 3. blind flight 4. head-down flight полет по приборам, обязательный для данной зоны
    compulsory IFR flight
    полет по размеченному маршруту
    point-to-point flight
    полет по расписанию
    1. scheduled flight
    2. regular flight полет по сигналам с земли
    directed reference flight
    полет по условным меридианам
    grid flight
    полет по установленным правилам
    flight under the rules
    полеты по воздушным трассам
    airways flying
    полеты по изобаре
    pressure flying
    полеты по контрольным точкам
    fix-to-fix flying
    полеты по кругу
    circuit flying
    полеты по наземным естественным ориентирам
    terrain fly
    полеты по низким метеоминимумам
    low weather operations
    полеты по обратному лучу
    back beam flying
    полеты по ортодромии
    great-circle flying
    полеты по прямому лучу
    front beam flying
    полеты по радиолучу
    radio-beam fly
    положение, определенное по радиолокатору
    radar track position
    положение по направлению трассы
    along-track position
    положение по тангажу
    pitch attitude
    по оси воздушного судна
    on aircraft center line
    по полету
    looking forward
    по размаху
    spanwise
    порядок действий по тревоге на аэродроме
    aerodrome alerting procedure
    посадка по вертолетному типу
    helicopter-type landing
    посадка по ветру
    downwind landing
    посадка по командам с земли
    1. ground-controlled landing
    2. talk-down landing посадка по приборам
    1. instrument landing
    2. blind landing посадка по техническим причинам
    technical stop
    Постоянный комитет по летно-техническим характеристикам
    Standing Committee of Performance
    по часовой стрелке
    clockwise
    правила полета по кругу
    circuit rules
    правила полетов по приборам
    instrument flight rules
    превышение по высоте
    gain in altitude
    предварительные меры по обеспечению безопасности полетов
    advance arrangements
    предкрылок по всему размаху
    full-span slat
    (крыла) предоставляется по запросу
    available on request
    предполетный инструктаж по метеообстановке
    flight weather briefing
    предпочтительная по уровню шума ВПП
    noise preferential runway
    предпочтительный по уровню шума маршрут
    noise preferential route
    предупреждение по аэродрому
    aerodrome warning
    преобразователь сигнала по тангажу
    pitch transformer
    пробегать по полному маршруту
    cover the route
    проведение работ по снижению высоты препятствий для полетов
    obstacle clearing
    проверка прилегания по краске
    transferred marking
    прогноз по авиатрассе
    airway forecast
    прогноз по аэродрому
    aerodrome forecast
    прогноз по высоте
    height forecast
    прогноз по маршруту
    air route forecast
    прогноз по региону
    regional forecast
    программа сертификации по шуму
    noise certification scheme
    продажа билетов по принципу наличия свободных мест
    space available basis
    продолжительность по запасу топлива
    fuel endurance
    прокладка маршрута по угловым координатам
    angle tracking
    пропускная способность по числу посадок
    landing capacity
    противопожарное патрулирование по пути выполнения основного задания
    associated fire control operation
    пульт управления по радио
    radio control board
    работы по техническому обслуживанию
    maintenance operations
    Рабочая группа по разработке основных эксплуатационных требований
    Basic Operational Requirements Group
    развертка по дальности
    range scanning
    разворачивать по ветру
    turn downwind
    разворот по приборам
    instrument turn
    разворот по стандартной схеме
    standard rate turn
    разворот по установленной схеме
    procedure turn
    разница в тарифах по классам
    class differential
    разрешающая способность по дальности
    range resolution
    разрешение в процессе полета по маршруту
    en-route clearance
    разрешение на полет по приборам
    instrument clearance
    распределение давления по крылу
    wing pressure plotting
    распределение по размаху крыла
    spanwise distribution
    распределение по хорде
    chordwise distribution
    распределение расходов по маршрутам
    cost allocation to routes
    расстояние по ортодромии
    great-circle distance
    реакция по крену
    roll response
    регламентирование по времени
    timing
    регулировать по высоте
    adjust for height
    режим работы автопилота по заданному курсу
    autopilot heading mode
    рейс с обслуживанием по первому классу
    first-class flight
    рекомендации по обеспечению безопасности полетов
    safety recommendations
    рекомендации по стандартам, практике и правилам
    recommendations for standards, practices and procedures
    руководство по обеспечению безопасности
    safety regulations
    руководство по полетам воздушных судов гражданской авиации
    civil air regulations
    руководство по предупреждению столкновений над морем
    regulations for preventing collisions over sea
    руководство по производству полетов в зоне аэродрома
    aerodrome rules
    руководство по технической эксплуатации воздушного судна
    aircraft maintenance guide
    руководство по управлению полетами
    flight control fundamentals
    руководство по упрощению формальностей
    guide to facilitation
    руление по аэродрому
    ground taxi operation
    руление по воздуху
    air taxiing
    руление по воздуху к месту взлета
    aerial taxiing to takeoff
    рыскание по курсу
    hunting
    сбор за услуги по оценке
    valuation charge
    сводка по аэродрому
    aerodrome report
    сводка погоды по данным радиолокационного наблюдения
    radar weather report
    связь по запросу с борта
    air-initiated communication
    связь по обеспечению регулярности полетов
    flight regularity communication
    сдвиг по фазе
    phase shift
    сектор наведения по клиренсу
    clearance guidance sector
    Секция расчетов по вопросам технической помощи
    Technical Assistance Accounts section
    (ИКАО) Секция расчетов по регулярной программе
    Regular Programme Accounts section
    (ИКАО) сертификат воздушного судна по шуму
    aircraft noise certificate
    сертификационный стандарт по шуму
    noise certification standard
    сертификация по шуму на взлетном режиме
    take-off noise
    сигнал полета по курсу
    on-course signal
    сигнал синхронизации по времени
    synchronized time signal
    система балансировки по числу М
    Mach trim system
    система блокировки управления по положению реверса
    thrust reverser interlock system
    система наведения по лучу
    1. beam-rider system
    2. guide beam system система наведения по приборам
    instrument guidance system
    система наведения по сканирующему лучу
    scanning beam guidance system
    система наведения по углу
    angle guidance system
    система навигации по наземным ориентирам
    ground-referenced navigation system
    система посадки по лучу маяка
    beam approach beacon system
    система посадки по приборам
    instrument landing system
    система сборов по фактической массе
    weight system
    (багажа или груза) скольжение по воде
    equaplaning
    скорость набора высоты при полете по маршруту
    en-route climb speed
    скорость по тангажу
    rate of pitch
    следовать по заданному курсу
    pursue
    служба обеспечения прогнозами по маршруту
    route forecast service
    служба по изучению рынка
    marketing service
    (воздушных перевозок) снижение по спирали
    spiral descent
    снос определенный по радиолокатору
    radar drift
    советник по авиационным вопросам
    aviation adviser
    советник по вопросам гражданской авиации
    civil aviation adviser
    советник по проектированию и строительству аэродромов
    aerodrome engineering instructor
    Совет по авиационным спутникам
    Aeronautical Satellite Council
    Совместный комитет по специальным грузовым тарифам
    Joint service Commodity Rates Board
    соглашение по вопросам летной годности
    arrangement for airworthiness
    соглашение по пассажирским и грузовым тарифам
    fares and rates agreement
    соглашение по прямому транзиту
    direct transit agreement
    соглашение по тарифам
    tariff agreement
    состояние готовности аэродрома по тревоге
    aerodrome alert status
    (состояние готовности служб аэродрома по тревоге) специализированный отдел по расследованию происшествий
    accident investigation division
    специалист по ремонту
    repairman
    специалист по ремонту воздушных судов
    aircraft repairman
    специалист по сборке
    rigger
    справочник по аэродромам
    aerodrome directory
    справочник по аэропортам
    airport directory
    средства обеспечения полетов по приборам
    nonvisual aids
    стандартная система управления заходом на посадку по лучу
    standard beam approach system
    стандартная схема вылета по приборам
    standard instrument departure
    стандартная схема посадки по приборам
    standard instrument arrival
    стандарт по шуму для дозвуковых самолетов
    subsonic noise standard
    степень помех по отношению к несущей частоте
    carrier-to-noise ratio
    строить по лицензии
    construct under license
    схема визуального полета по кругу
    visual circling procedure
    схема захода на посадку по командам с земли
    ground-controlled approach procedure
    схема захода на посадку по коробочке
    rectangular approach traffic pattern
    схема захода на посадку по приборам
    1. instrument approach chart
    2. instrument approach procedure схема полета по кругу
    1. circuit pattern
    2. circling procedure схема полета по маршруту
    en-route procedure
    схема полета по приборам
    instrument flight procedure
    схема полета по приборам в зоне ожидания
    instrument holding procedure
    схема полетов по кругу
    traffic circuit
    схема руления по аэродрому
    aerodrome taxi circuit
    тарировка по времени
    time calibration
    тарировка по дальности
    range calibration
    тарировка по числу М
    Mach number calibration
    тариф на полет по замкнутому кругу
    round trip fare
    тариф по контракту
    contract rate
    тариф по незамкнутому круговому маршруту
    open-jaw fare
    температура по шкале Цельсия
    Celsius temperature
    точность ориентировки по точечному ориентиру
    pinpoint accuracy
    траектория взлета, сертифицированная по шуму
    noise certification takeoff flight path
    траектория захода на посадку по азимуту
    azimuth approach path
    траектория захода на посадку по лучу курсового маяка
    localizer approach track
    траектория захода на посадку, сертифицированная по шуму
    noise certification approach path
    траектория полета по маршруту
    en-route flight path
    траектория полетов по низким минимумам погоды
    low weather minima path
    транспортировка по воздуху
    shipment by air
    трансформатор сигнала по крену
    roll transformer
    трансформатор сигнала по курсу
    yaw transformer
    трафарет с инструкцией по применению
    instruction plate
    требования по метеоусловиям
    meteorological requirements
    требования по ограничению высоты препятствий
    obstacle limitation requirements
    требования по снижению шума
    noise reduction requirements
    тренажер для подготовки к полетам по приборам
    instrument flight trainer
    тяга, регулируемая по величине и направлению
    vectored thrust
    угол рассогласования по крену
    bank synchro error angle
    удостоверение на право полета по авиалинии
    airline certificate
    удостоверение на право полета по приборам
    instrument certificate
    указания по выполнению руления
    taxi instruction
    указания по порядку ожидания
    holding instruction
    указания по управлению воздушным движением
    air-traffic control instruction
    указания по условиям эксплуатации в полете
    inflight operational instructions
    указатель отклонения от курса по радиомаяку
    localizer deviation pointer
    уполномоченный по расследованию
    investigator-in-charge
    управление по крену
    1. roll guidance
    2. roll control управление по угловому отклонению
    angular position control
    управление по углу рыскания
    yaw control
    управляемый по радио
    radio-controlled
    условия по заданному маршруту
    conditions on the route
    условия, по сложности превосходящие квалификацию пилота
    conditions beyond the experience
    условия сертификационных испытаний по шуму
    noise certification test conditions
    устанавливать воздушное судно по оси
    align the aircraft with the center line
    устанавливать воздушное судно по оси ВПП
    align the aircraft with the runway
    установленная схема вылета по приборам
    standard instrument departure chart
    установленная схема полета по кругу
    fixed circuit
    установленная схема ухода на второй круг по приборам
    instrument missed procedure
    устойчивость по крену
    1. rolling stability
    2. lateral stability устойчивость по скорости
    speed stability
    устойчивость по тангажу
    1. pitching stability
    2. pitch stability устойчивость по углу атаки
    angle-of-attack stability
    уточнение плана полета по сведениям, полученным в полете
    inflight operational planning
    уходить на второй круг по заданной схеме
    take a missed-approach procedure
    уход платформы по курсу
    platform drift in azimuth
    фирма по производству воздушных судов
    aircraft company
    флюгирование по отрицательному крутящему моменту
    negative torque feathering
    характеристика набора высоты при полете по маршруту
    en-route climb performance
    характеристика по наддуву
    manifold pressure characteristic
    характеристики наведения по линии пути
    track-defining characteristics
    характеристики по шуму
    noise characteristics
    чартерный рейс по заказу отдельной организации
    single-entity charter
    чартерный рейс по незамкнутому маршруту
    open-jaw charter
    чартерный рейс по объявленной программе
    programmed charter
    чартерный рейс по установленному маршруту
    on-route charter
    чувствительность к отклонению по сигналам курсового маяка
    lokalizer displacement sensitivity
    чувствительность по давлению
    pressure sensitivity
    чувствительность по курсу
    course sensitivity
    шкала корректировки по тангажу
    pitch trim scale
    шкала отклонения от курса по радиомаяку
    localizer deviation scale
    школа подготовки специалистов по управлению воздушным движением
    air traffic school
    экзамен по летной подготовке
    flight examination
    экспедитор по отправке грузов
    freight consolidator
    эксперт по вопросам ведения документации
    procedures document expert
    эксперт по контролю за качеством
    quality control expert
    эксперт по летной годности
    airworthiness expert
    эксперт по обслуживанию воздушного движения
    air traffic services expert
    эксперт по обучению пилотов
    pilot training expert
    эксперт по производству налетов
    flight operations expert
    эксперт по радиолокаторам
    radar expert
    эксперт по техническому обслуживанию
    maintenance expert
    этап полета по маршруту
    en-route flight phase
    эшелонирование по курсу
    track separation
    эшелонирование по усмотрению пилота
    own separation
    эшелонировать по высоте
    stack up

    Русско-английский авиационный словарь > по

  • 73 локальная вычислительная сеть

    1. local area network
    2. LAN

     

    локальная вычислительная сеть
    ЛВС

    Вычислительная сеть, охватывающая небольшую территорию и использующая ориентированные на эту территорию средства и методы передачи данных.
    Примечание
    Под небольшой территорией понимают здание, предприятие, учреждение
    [ ГОСТ 24402-88]
    [ ГОСТ 29099-91]

    сеть локальная вычислительная
    Вычислительная сеть, объединяющая компьютеры или другие вычислительные средства, расположенные в одном или нескольких близстоящих зданиях (сооружениях).
    [РД 01.120.00-КТН-228-06]

    локальная вычислительная сеть
    Вычислительная сеть, которая обычно охватывает территорию в пределах одного здания или небольшого промышленного комплекса.
    [ ГОСТ Р 54325-2011 (IEC/TS 61850-2:2003)]

    локальная сеть
    Локальная сеть образуется соединением нескольких электронных устройств при помощи кабелей или технологий беспроводной связи, подключенных при помощи маршрутизаторов публичного доступа к глобальной (WAN) или городской сети (MAN). Локальной называют сеть малого или среднего масштаба (от 100 метров до 5 километров). Такие сети создаются в жилых домах, небольших офисах или в пределах территории, занимаемой компанией. Локальные сети считают частными сетями, поскольку для подключения к такой сети Ваш компьютер должен иметь к ней права доступа. Персональная вычислительная сеть (PAN) это особый случай локальной сети.
    [ http://www.sotovik.ru/lib/news_article/news_26322.html]

    FR


    Локальная вычислительная сеть (ЛВС, LAN – Local Area Network) – это совокупность аппаратного и программного обеспечения, позволяющего объединить компьютеры в единую распределенную систему обработки и хранения информации. К аппаратному обеспечению относятся компьютеры, с установленными в них сетевыми адаптерами, повторители, концентраторы, коммутаторы, мосты, маршрутизаторы и др., соединенные между собой при помощи кабельной системы или по беспроводному каналу. К программному обеспечению можно отнести сетевые операционные системы, системные и прикладные программы, использующие для сетевого взаимодействия соответствующие протоколы передачи информации. Расстояние между компьютерами объединяемыми в ЛВС обычно не превышает нескольких километров (термин "локальные сети"), что связано с затуханием электрического сигнала в кабелях. Технология виртуальных частных сетей (VPN – Virtual Private Network) позволяет через Internet и линии телекоммуникаций объединять в единую ЛВС несколько ЛВС, разнесенных на тысячи километров, однако это скорее именно объединение сетей, а сами ЛВС ограничены небольшим диаметром.

    Задачи, решаемые ЛВС:

    Передача файлов. Во-первых, экономится бумага и чернила принтера. Во-вторых, электрический сигнал по кабелю из отдела в отдел движется гораздо быстрее, чем любой сотрудник с документом. Он не болтает о футболе и не забывает в курилке важные документы. Кроме того, за электричество Вы платите гораздо меньше, чем зарплата курьера.
    Разделение (совместное использование) файлов данных и программ. Отпадает необходимость дублировать данные на каждом компьютере. В случае если данные бухгалтерии одновременно нужны дирекции, планово экономическому отделу и отделу маркетинга, то нет необходимости отнимать время и нервы у бухгалтера, отвлекая его от калькуляции себестоимости каждые три секунды. Кроме того, если бухгалтерию ведут несколько человек, то 20 независимых копий бухгалтерской программы и соответственно 20 копий главной книги (1 человек занимается зарплатой, 2-ой материалами и т.д.) создали бы большие трудности для совместной работы и невероятные трудности при попытке объединить все копии в одну. Сеть позволяет бухгалтерам работать с программой одновременно и видеть данные, вносимые друг другом.
    Разделение (совместное использование) принтеров и другого оборудования.
    Значительно экономятся средства на приобретение и ремонт техники, т.к. нет никакой необходимости устанавливать принтер у каждого компьютера, достаточно установить сетевой принтер.
    Электронная почта. Помимо экономии бумаги и оперативности доставки, исключается проблема "Был, но только что вышел. Зайдите (подождите) через полчаса", а также проблема "Мне не передали" и "А вы точно оставляли документы?". Когда бы занятый товарищ ни вернулся, письмо будет ждать его.
    Координация совместной работы. При совместном решении задач, каждый может оставаться на рабочем месте, но работать "в команде". Для менеджера проекта значительно упрощается задача контроля и координирования действий, т.к. сеть создает единое, легко наблюдаемое виртуальное пространство с большой скоростью взаимодействия территориально разнесенных участников.
    Упорядочивание делопроизводства, контроль доступа к информации, защита информации. Чем меньше потенциальных возможностей потерять (забыть, положить не в ту папку) документ, тем меньше таких случаев будет. В любом случае, гораздо легче найти документ на сервере (автоматический поиск, всегда известно авторство документа), чем в груде бумаг на столе. Сеть также позволяет проводить единую политику безопасности на предприятии, меньше полагаясь на сознательность сотрудников:
    всегда можно четко определить права доступа к документам и протоколировать все действия сотрудников.
    Стиль и престиж. Играют не последнюю роль, особенно в высокотехнологичных областях.

    [Ляхевич А.Г. Сетевые технологии и базы данных. Учебное пособие. Белорусский национальный технический университет.]

    Тематики

    Синонимы

    EN

    93. Локальная вычислительная сеть

    ЛВС

    Local area network

    LAN

    Вычислительная сеть, охватывающая небольшую территорию и использующая ориентированные на эту территорию средства и методы передачи данных.

    Примечание. Под небольшой территорией понимают здание, предприятие, учреждение

    Источник: ГОСТ 24402-88: Телеобработка данных и вычислительные сети. Термины и определения оригинал документа

    Русско-английский словарь нормативно-технической терминологии > локальная вычислительная сеть

  • 74 учения

    1. exercising
    2. exercise

     

    учения
    Мероприятия, в процессе которых частично или полностью проходит отработка действий (репетиция), предусмотренных планом(ами) обеспечения непрерывности бизнеса, направленные на то, чтобы план(ы) содержал(и) необходимую информацию и при выполнении приводил(и) к запланированным результатам.
    Примечание - Учения обычно включают в себя инициирование процедуры непрерывности бизнеса, но чаще объявленную или необъявленную имитацию инцидента нарушения непрерывности бизнеса, в процессе которого участники инсценируют возможную ситуацию с целью оценки потенциальных проблем, связанных с их преодолением до наступления реального инцидента.
    [ ГОСТ Р 53647.1-2009]

    Тематики

    EN

    2.17 учения (exercise): Мероприятия, в процессе которых частично или полностью проходит отработка действий (репетиция), предусмотренных планом(ами) обеспечения непрерывности бизнеса, направленные на то, чтобы план(ы) содержал(и) необходимую информацию и при выполнении приводили к запланированным результатам.

    Примечание - Учения обычно включают в себя инициирование процедуры непрерывности бизнеса, но чаще объявленную или необъявленную имитацию инцидента нарушения непрерывности бизнеса, в процессе которого участники инсценируют возможную ситуацию с целью оценки потенциальных проблем, связанных с их преодолением до наступления реального инцидента.

    Источник: ГОСТ Р 53647.2-2009: Менеджмент непрерывности бизнеса. Часть 2. Требования оригинал документа

    2.15 учения (exercise): Мероприятия, в процессе которых частично или полностью проходит отработка действий (репетиция), предусмотренных планом(ами) обеспечения непрерывности бизнеса, направленные на то, чтобы план(ы) содержал(и) необходимую информацию и при выполнении приводил(и) к запланированным результатам.

    Примечание - Учения обычно включают в себя инициирование процедуры непрерывности бизнеса, но чаще объявленную или необъявленную имитацию инцидента нарушения непрерывности бизнеса, в процессе которого участники инсценируют возможную ситуацию с целью оценки потенциальных проблем, связанных с их преодолением до наступления реального инцидента.

    Источник: ГОСТ Р 53647.1-2009: Менеджмент непрерывности бизнеса. Часть 1. Практическое руководство оригинал документа

    3.7 учения (exercising): Мероприятия, в процессе которых частично или полностью проходит отработка (репетиция) действий, обязанностей, способов восстановления и обеспечения непрерывности работы систем организации (например, технологий, систем связи и управления), предусмотренных программой IPOCM3), предназначенных для оценки содержания программы, ее соответствия запланированным результатам и компетентности персонала.

    3) IPOCM - Incident preparedness and operational (business) continuity management (Обеспечение готовности к инцидентам и непрерывности деятельности).

    Примечание 1 - Учения включают в себя действия, выполняемые обычно с целью обучения и поддержания навыков членов рабочих групп и персонала в сложных ситуациях и в условиях инцидента, с целью достижения максимальной отработки необходимых ответных мер.

    Примечание 2 - Учения обычно включают в себя действия процедур по обеспечению непрерывности бизнеса, но чаще объявленную или необъявленную имитацию инцидента, нарушающего непрерывность бизнеса, в процессе которого участники инсценируют возможную ситуацию, что позволяет оценить возможные проблемы до наступления реального инцидента.

    Источник: ГОСТ Р 53647.4-2011: Менеджмент непрерывности бизнеса. Руководящие указания по обеспечению готовности к инцидентам и непрерывности деятельности оригинал документа

    Русско-английский словарь нормативно-технической терминологии > учения

  • 75 дуговая электропечь

    1. Lichtbogenofen
    2. elektrischer Lichtbogenofen

     

    дуговая электропечь
    Электропечь, в которой металл плавится за счет тепла от электрической дуги, горящей между электродами и металлом или между электродами.
    [ ГОСТ 18111-93]

    дуговая электропечь (электротермическое устройство)
    Электропечь (электротермическое устройство), в которой электротермический процесс осуществляется дуговым нагревом
    [ ГОСТ 16382-87

    печь дуговая
    Электрическая печь, в которой теплогенерацию создают электрической дугой постоянного или переменного тока.
    Дуговые печи применяют для выплавки стали (тип ДС), чугуна (тип ДЧ), цветных металлов (тип ДМ), ферросплавов (ферросплавные печи) и других материалов.
    Дуговая сталеплавильная печь по сравнению с мартеновской печкой имеет ряд преимуществ. В дуговой печи можно получить более высокую температуру, чем в мартенах, что и требуется для получения легированных сталей. Это позволяет получать тугоплавкие сплавы. В дуговой печи отсутствует окислительное пламя, что позволяет создать в печах восстановительную атмосферу (газовую среду печи), а также обеспечивает меньший по сравнению с мартеновской печью угар легирующих элементов. В электродуговых печах можно выплавлять сталь с разнообразным содержанием углерода при любом количестве легирующих элементов, а также получать на рядовой шихте металл с весьма низким содержанием серы. В этом отношении дуговые печи идеально отвечали задачам производства высококачественных и легированных сталей.
    Первые лабораторные дуговые печи были построены во второй половине XIX в. (фр. физик Депре, химик Пишон, нем. инж. В. Сименс, русский инж. Н. Г. Славянов и др.).
    Первые промышленные дуговые печи были построены в 1898 г. фр. инж. Э. Стассано для выплавки чугуна емкостью 800 кг и в 1899 г. фр. инж. П. Эру для плавки стали емкостью до 3000 кг и мощностью до 450 кВт.

    Дуговые печи являются печами-теплообменниками с радиационным режимом тепловой работы. В зависимости от условий горения электрической дуги различают:
    - дуговую печь прямого действия, в которой электрическая дуга горит между вертикальным электродом и металлом (с зависимой дугой). Такие печи применяются в черной металлургии;
    - дуговую печь косвенного действия, в которой электрическая дуга горит между двумя горизонтальными электродами над металлом (с независимой дугой). Такие печи иногда применяют в цветной металлургии;
    - дуговую печь с закрытой (погруженной) дугой, в которой электрические дуги горят под слоем твердой шихты или жидкого шлака, куда погружены вертикальные электроды. Такие печи применяют для произвоства металлов и сплавов из руд (рудно-термические печи). Дуговые печи работают при атм. давлении (0,1 МПа), в разреженных парах переплавляемых металлов с давлением до 1 Па (вакуумно-дуговые печи) или в плазмообразующих газах (плазменные печи).

    В зависимости от рода электрического тока дуговая печь может быть постоянного и переменного тока как однофазного, так и трехфазного (с тремя или шестью вертикальными электродами).
    [ http://www.manual-steel.ru/eng-a.html]

    Тематики

    Обобщающие термины

    EN

    DE

    FR

    Русско-немецкий словарь нормативно-технической терминологии > дуговая электропечь

  • 76 дуговая электропечь

    1. electric arc furnace
    2. EAF
    3. arc furnace

     

    дуговая электропечь
    Электропечь, в которой металл плавится за счет тепла от электрической дуги, горящей между электродами и металлом или между электродами.
    [ ГОСТ 18111-93]

    дуговая электропечь (электротермическое устройство)
    Электропечь (электротермическое устройство), в которой электротермический процесс осуществляется дуговым нагревом
    [ ГОСТ 16382-87

    печь дуговая
    Электрическая печь, в которой теплогенерацию создают электрической дугой постоянного или переменного тока.
    Дуговые печи применяют для выплавки стали (тип ДС), чугуна (тип ДЧ), цветных металлов (тип ДМ), ферросплавов (ферросплавные печи) и других материалов.
    Дуговая сталеплавильная печь по сравнению с мартеновской печкой имеет ряд преимуществ. В дуговой печи можно получить более высокую температуру, чем в мартенах, что и требуется для получения легированных сталей. Это позволяет получать тугоплавкие сплавы. В дуговой печи отсутствует окислительное пламя, что позволяет создать в печах восстановительную атмосферу (газовую среду печи), а также обеспечивает меньший по сравнению с мартеновской печью угар легирующих элементов. В электродуговых печах можно выплавлять сталь с разнообразным содержанием углерода при любом количестве легирующих элементов, а также получать на рядовой шихте металл с весьма низким содержанием серы. В этом отношении дуговые печи идеально отвечали задачам производства высококачественных и легированных сталей.
    Первые лабораторные дуговые печи были построены во второй половине XIX в. (фр. физик Депре, химик Пишон, нем. инж. В. Сименс, русский инж. Н. Г. Славянов и др.).
    Первые промышленные дуговые печи были построены в 1898 г. фр. инж. Э. Стассано для выплавки чугуна емкостью 800 кг и в 1899 г. фр. инж. П. Эру для плавки стали емкостью до 3000 кг и мощностью до 450 кВт.

    Дуговые печи являются печами-теплообменниками с радиационным режимом тепловой работы. В зависимости от условий горения электрической дуги различают:
    - дуговую печь прямого действия, в которой электрическая дуга горит между вертикальным электродом и металлом (с зависимой дугой). Такие печи применяются в черной металлургии;
    - дуговую печь косвенного действия, в которой электрическая дуга горит между двумя горизонтальными электродами над металлом (с независимой дугой). Такие печи иногда применяют в цветной металлургии;
    - дуговую печь с закрытой (погруженной) дугой, в которой электрические дуги горят под слоем твердой шихты или жидкого шлака, куда погружены вертикальные электроды. Такие печи применяют для произвоства металлов и сплавов из руд (рудно-термические печи). Дуговые печи работают при атм. давлении (0,1 МПа), в разреженных парах переплавляемых металлов с давлением до 1 Па (вакуумно-дуговые печи) или в плазмообразующих газах (плазменные печи).

    В зависимости от рода электрического тока дуговая печь может быть постоянного и переменного тока как однофазного, так и трехфазного (с тремя или шестью вертикальными электродами).
    [ http://www.manual-steel.ru/eng-a.html]

    Тематики

    Обобщающие термины

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > дуговая электропечь

  • 77 предупредительная сигнализация

    1. warning signalling
    2. warning signal system
    3. warning alarm
    4. safety alarm
    5. alarm actions

     

    предупредительная сигнализация
    -
    [Интент]

    3.8. Требования к предупредительной сигнализации, надписям и табличкам
    3.8.1. Сигнализация должна быть выполнена световой или звуковой.
    Световая сигнализация может быть осуществлена как с помощью непрерывно горящих, так и мигающих огней.
    3.8.2. Для световых сигналов должны применяться следующие цвета:
    красный - для запрещающих и аварийных сигналов, а также для предупреждения о перегрузках, неправильных действиях, опасности и о состоянии, требующем немедленного вмешательства (при пожаре и т.п.);
    желтый - для привлечения внимания (предупреждения о достижении предельных значений, о переходе на автоматическую работу и т.п.);
    зеленый - для сигнализации безопасности (нормального режима работы изделия, разрешения на начале действия и т.п.);
    белый - для обозначения включенного состояния выключателя, когда нерационально применение красного, желтого и зеленого цветов,
    синий - для применения в специальных случаях, когда не могут быть применены красный, желтый, зеленый и белый цвета.

    [ ГОСТ 12.2.007.0-75]

    2.1. Для обеспечения защиты от случайного прикосновения к токоведущим частям необходимо применять следующие способы и средства:

    • защитные оболочки;
    • защитные ограждения (временные или стационарные);
    • безопасное расположение токоведущих частей;
    • изоляцию токоведущих частей (рабочую, дополнительную, усиленную, двойную);
    • изоляцию рабочего места;
    • малое напряжение;
    • защитное отключение;
    • предупредительная сигнализация, блокировка, знаки безопасности.

    [ ГОСТ 12.1.019-79]

    6.3 Сигналы и устройства предупредительной сигнализации
    Для предупреждения о надвигающихся опасностях, например о пуске машин или о скорости, превышающей допустимое значение, могут использоваться визуальные сигналы (например, мигающий свет) и/или звуковые сигналы (например, сирена).
    Такие сигналы также допускается использовать для предупреждения оператора перед включением автоматических средств защиты (см.5.2.7).
    Необходимо, чтобы эти сигналы:
    - подавались до опасного события;
    - были однозначными;
    - были четкими и отличались от всех других используемых сигналов;
    - легко узнавались оператором и другими лицами.
    Устройства предупредительной сигнализации должны быть спроектированы и размещены так, чтобы процедура проверки была простой. Информация для пользователей должна предписывать регулярную проверку таких устройств.
    Конструкторы не должны допускать «перенасыщение предупреждающими сигналами», возникающее из-за слишком большого числа визуальных и/или звуковых сигналов, что может привести к игнорированию предупредительной сигнализации.

    [ГОСТ Р ISO 12100-2:2003]

    Тематики

    Действия

    Сопутствующие термины

    EN

    Русско-английский словарь нормативно-технической терминологии > предупредительная сигнализация

  • 78 дуговая электропечь

    1. four à arc

     

    дуговая электропечь
    Электропечь, в которой металл плавится за счет тепла от электрической дуги, горящей между электродами и металлом или между электродами.
    [ ГОСТ 18111-93]

    дуговая электропечь (электротермическое устройство)
    Электропечь (электротермическое устройство), в которой электротермический процесс осуществляется дуговым нагревом
    [ ГОСТ 16382-87

    печь дуговая
    Электрическая печь, в которой теплогенерацию создают электрической дугой постоянного или переменного тока.
    Дуговые печи применяют для выплавки стали (тип ДС), чугуна (тип ДЧ), цветных металлов (тип ДМ), ферросплавов (ферросплавные печи) и других материалов.
    Дуговая сталеплавильная печь по сравнению с мартеновской печкой имеет ряд преимуществ. В дуговой печи можно получить более высокую температуру, чем в мартенах, что и требуется для получения легированных сталей. Это позволяет получать тугоплавкие сплавы. В дуговой печи отсутствует окислительное пламя, что позволяет создать в печах восстановительную атмосферу (газовую среду печи), а также обеспечивает меньший по сравнению с мартеновской печью угар легирующих элементов. В электродуговых печах можно выплавлять сталь с разнообразным содержанием углерода при любом количестве легирующих элементов, а также получать на рядовой шихте металл с весьма низким содержанием серы. В этом отношении дуговые печи идеально отвечали задачам производства высококачественных и легированных сталей.
    Первые лабораторные дуговые печи были построены во второй половине XIX в. (фр. физик Депре, химик Пишон, нем. инж. В. Сименс, русский инж. Н. Г. Славянов и др.).
    Первые промышленные дуговые печи были построены в 1898 г. фр. инж. Э. Стассано для выплавки чугуна емкостью 800 кг и в 1899 г. фр. инж. П. Эру для плавки стали емкостью до 3000 кг и мощностью до 450 кВт.

    Дуговые печи являются печами-теплообменниками с радиационным режимом тепловой работы. В зависимости от условий горения электрической дуги различают:
    - дуговую печь прямого действия, в которой электрическая дуга горит между вертикальным электродом и металлом (с зависимой дугой). Такие печи применяются в черной металлургии;
    - дуговую печь косвенного действия, в которой электрическая дуга горит между двумя горизонтальными электродами над металлом (с независимой дугой). Такие печи иногда применяют в цветной металлургии;
    - дуговую печь с закрытой (погруженной) дугой, в которой электрические дуги горят под слоем твердой шихты или жидкого шлака, куда погружены вертикальные электроды. Такие печи применяют для произвоства металлов и сплавов из руд (рудно-термические печи). Дуговые печи работают при атм. давлении (0,1 МПа), в разреженных парах переплавляемых металлов с давлением до 1 Па (вакуумно-дуговые печи) или в плазмообразующих газах (плазменные печи).

    В зависимости от рода электрического тока дуговая печь может быть постоянного и переменного тока как однофазного, так и трехфазного (с тремя или шестью вертикальными электродами).
    [ http://www.manual-steel.ru/eng-a.html]

    Тематики

    Обобщающие термины

    EN

    DE

    FR

    Русско-французский словарь нормативно-технической терминологии > дуговая электропечь

  • 79 на

    I
    предлог
    1. с вин. (указывает на-правление действия) ба, ба рӯи…, ба болои…; бар; идти на улицу ба кӯча рафтан; сесть на своё место ба ҷои худ нишастан; положить на стол ба рӯи миз гузоштан; не попадайся мне на глаза! ба назарам нанамо!; обижаться на кого-л. аз касе хафа шудан; ответ на вопрос ҷавоби савол; подписка на газеты ба газетаҳо обунашавӣ
    2. с вин. (при обозначении срока) ба, дар, ба муддати…, барои; работа на завтра кор барои фардо; увидеться на другой день дар рӯзи дигар вохӯрдан; запасти дров на зиму барои зимиетон ҳезум тайёр- кардан; работы ещё на целую неделю кор боз ба як ҳафтаи тамом мерасад
    3. с вин. (при обозна-чении колцчественной разницы, ше-пени превосходства или недостатка): опоздать на пять минӯт панҷ дақиқа дер мондан; старше на два года ду сол калон; на мёсяц раньше як моҳ пеш; на двадцать рублей больше бист сӯм зиёдтар
    4. с вин. (при обозначении множителя или делителя) ба; раз-делйть на три ба се тақсим кардан; помножить пять на четыре панҷро ба чор зарб задан; разделйть на две части ба ду ҳисса тақсим кардан; разрё-зать на кускй пора-пора кардан
    5. с вин. (при обозначении меры, коли-чества, определяющих границы чего-л.) ба; купить на дёсять рублёй ба даҳ сӯм харидан; хватит на всех ба ҳама мерасад. свин. (при обозначении цели, назначения) ба; взять на воспитание ба тарбия гирифтан; испытывать что-л. на прочность маҳкамии чизеро сан-ҷидан; комната на двух человек хонаи дукаса; обед на пять человек хӯрок барои панҷ кас
    7. с вин. (при обозна-чении условий, обстоятельств) бо; на голодный желудок бо дили наҳор, бо дили гурусна; на свёжую голову баъди истироҳат // (при словах, выра-жающих эмоциональную оценку события) барои, ба; на горе ба бадбахтӣ, бадбахтона; на мою радость хушбахтона
    8. с вин. (при обозначении образа действия) ба; верить кому-л. на слово ба қавли касе бовар кардан; говорить на память ёдакӣ гап задан, аз ёд гуфтан
    9. с вин. (при обозначении ка-кого-л. признака) бо, ба; хромать на одну ногу ба як пой лангидан; нечист на руку дасташ қалб, каҷдаст
    10. с предл. (при обозначении места) дар, ба, ба болои…,бар болои…, даррӯи…, дар пеши…; жить на юге дар ҷануб зиндагӣ кардан; сидёть на заседании дар маҷлис нишастан; оставить на столе ба болои стол монда рафтан; на ногах ботинки дар пояш ботинка // (соответствует предлогу «в») дар; на воённой слӯжбе дар хизмати ҳарбӣ; первый на селе работник беҳтарин коркуни деҳа; тоска на сердце дил хафа // (при обозначении предметов, лиц, в присутствии которых что-л. совершается) дар пеши…; на людях дар пеши мардум; на моих глазах дар пеши назари ман; на миру и смерть красна посл. марги бо ёрон (бо дӯстон) тӯй аст
    11. с предл. (на вопрос «когда») дар, дар вақти…; на каникулах дар вакти таътил; на той неделе дар ҳафтаи оянда; на этих днях дар ҳамин рӯзҳо; на нашей памяти дар хотири (дар ёди) мо
    12. с предл. (при обозначении средства передвижения) бо; лететь на самолёте бо самолёт паридан; плыть на пароходе бо киштй рафтан; кататься на лодке бо қаик сайр кардан
    13. с предл; (при обозначении образа действия): на всем скаку чорхезза-нон; на бегу давдавон, давон-давон; на лету 1) дар айни парвоз, парвозку-нон 2) перен. якбора, дарҳол, тез; он схватывает мой мысли на лету ӯ ба фикри ман дарҳол пай мебарад
    14. с предл. (при посредстве) дар, бо; жарить на масле дар равған бирён кардан
    15. с предл. (при обозначении устройства, свойства, состояния) гдор; вагон на рессорах вагони рессордор; матрац на пружинах матраси пружинадор 1
    6. с предл. в сочет. с гл.: играть на рояле рояль навохтан; говорить на русском языке бо забони русй гап задан; перевести книгу на таджикский язык китобро ба [забони] тоҷикӣ тарҷима кардан; свободно читать на английском языке ба забони англисӣ бемалол хондан 1
    7. с предл. (при обозначении пребываныя в ка-ком-л. состоянии) дар; стоять на часах дар посбонӣ истодан, каровулӣ кардан <> на что [уж] (как ни, хотя и очень) ҳар чанд ки, агар чанде
    II
    частица в знач. сказ. разг. ма, мана; на, возьми ма, гир; на тебе книгу мана ба ту китоб <> вот те (тебё) [и] на! ана!, оббо!, ана халос!; на тебе! ана инро бин!; ана халос!, оббо!
    частица: какой ни на есть чй хеле ки бошад, ҳар навъе ки бо-шад; кто ни на есть касе ки (кӣ ки) бошад, ҳар кӣ бошад, хар кас; что ни на есть бисёр, ҷудо, ниҳоят да-раҷа, гузаро
    IV
    приставка
    1. префиксест, ки барои сохтани феъл ва исмҳои феълӣ кор фармуда шуда, маъноҳои зеринро ифода мекунад: 1) равона шудани амал ба сатҳи предмет - набежать давида баромадан, давида рӯи чизеро пӯшондан; налететь парида омада хамла овардан; наскочить бархӯрдан, дучор шудан; дарафтодан; наехать бархӯрдан 2) болои предмет гузоштан - намотать печондан; нашить аз рӯй дӯхтан, дӯхта часпондан 3) ба ҷо овардани амал дар сатҳи чизе - намёрзнуть қирав бастан; ях бастан (кардан) 4) пурӣ, аз ҳад зиёд будани амал - наговорить бисёр гап задан, лаққидан; напечь пухтан, пухта тайёр кардан; навозить бисёр кашонда овардан; насолить намак (шӯр) кардан, дар намак хобондан; натопить гарм кардан, тафсондан 5) дар феълҳои бо «-ся» тамом мешудагӣ - сершавӣ, пурра қаноат кардани шахси амалкунанда - наболтаться хуб гап зада гирифтан; наработаться бисёр (хуб) кор кардан 6) дар феълҳои дорои суффиксҳои «ива», «ыва», «сва» - сустшавӣ, андак рӯй додани амал - напевать замзама кардан; насвистывать паст-паст ҳуштак кашидан 7) барои сохтани намуди мутлақи феъл хизмат мекунад - написать навишта тамом кардан, навишта шудан; нарисовать кашидан, сурат кашидан
    2. барои сохтани сифату исмҳои дорои маънои зерин кор фармуда мешавад: болои чизе мавҷудбуда - нарукавный рӯиостинӣ; нагрудник пешгир
    3. барои сохтани зарфҳо кор фармуда шуда, дараҷаи олӣ, ҳадди ниҳоӣ ва аломати чизеро ифода мекунад - накрепко бисёр сахт; насгрого бисёр ҷиддӣ

    Русско-таджикский словарь > на

  • 80 аварийная сигнализация

    1. trouble signaling
    2. fault signalling
    3. emergency alarm
    4. alarming
    5. alarm system
    6. alarm signaling
    7. alarm actions
    8. alarm

     

    аварийная сигнализация
    Сигнализация, извещающая персонал о возникновении аварийного режима работы объекта или целого участка обслуживаемой установки
    [ОАО РАО "ЕЭС России" СТО 17330282.27.010.001-2008]

    аварийная сигнализация
    Совокупность датчиков и устройств, с помощью которых осуществляется контроль за состоянием работающей системы и оповещение о неисправности с помощью световых или звуковых сигналов.
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    Должны быть предусмотрены также аварийная сигнализация по всем видам защиты и предупредительная сигнализация.
    [ ГОСТ 30533-97]

    Каждая медицинская система IT должна иметь устройство для звуковой и световой аварийной сигнализации, которое устанавливают так, чтобы оно находилось под постоянным контролем медицинского персонала и было оборудовано:
    - зеленой сигнальной лампой (лампами) для индикации нормальной работы;
    - желтой сигнальной лампой, которая загорается, когда сопротивление изоляции достигает минимально допустимого значения. Для данной сигнализации не допускается возможность сброса или отключения;
    - желтой сигнальной лампой, которая загорается при превышении нормируемой температуры обмоток трансформатора. Для данной сигнализации не допускается возможность сброса или отключения;
    - желтой сигнальной лампой, которая загорается, когда возникает перегрузка трансформатора, не превышающая нормируемую двухчасовую перегрузку, и переходит в мигающий режим, когда перегрузка превышает нормируемую величину двухчасовой перегрузки. Для данной сигнализации не допускается возможность сброса или отключения.

    [ГОСТ Р  50571.28-2006(МЭК 60364-7-710:2002)]

    Если резервный вентилятор не установлен, то следует предусмотреть включение аварийной сигнализации.





     

    Тематики

    • автоматизация, основные понятия
    • электросвязь, основные понятия

    Действия

    Сопутствующие термины

    EN

    Русско-английский словарь нормативно-технической терминологии > аварийная сигнализация

См. также в других словарях:

  • Основания приостановления действия или аннулирования свидетельства о регистрации лица, совершающего операции с нефтепродуктами — налоговые органы приостанавливают действие свидетельства или аннулируют его в случаях: представления налогоплательщиком соответствующего заявления; невыполнения налогоплательщиком письменных указаний МНС России или его территориальных органов,… …   Энциклопедический словарь-справочник руководителя предприятия

  • РАБОТЫ МАЛЯРНЫЕ — работы, связанные с применением лаков, красок, белил и др. материалов. При выполнении этих работ необходимо соблюдать следующие правила безопасности: перед началом работ, особенно с материалами на нитрооснове, необходимо проверить вентиляцию и… …   Российская энциклопедия по охране труда

  • ДЕЙСТВИЯ ПРОТИВ ПРЕДПРИНИМАТЕЛЕЙ ИЛИ АДМИНИСТРАЦИИ — (industrial action) Любая форма скоординированных действий в ходе трудового конфликта (industrial dispute), которые предпринимают работники при или без поддержки профсоюзов и которые направлены на то, чтобы заставить работодателей согласиться на… …   Словарь бизнес-терминов

  • Бетонные работы —         работы при возведении монолитных бетонных и железобетонных конструкций и сооружений из цементного бетона. (Б. р. при производстве сборного железобетона см. в ст. Железобетонные конструкции и изделия). Б. р. включают следующие основные… …   Большая советская энциклопедия

  • Работы пусконаладочные — 3.24. Работы пусконаладочные комплекс мероприятий и работ, выполняемых в период подготовки проведения индивидуального испытания в соответствии с приложением Е и в период комплексного опробования оборудования в соответствии с приложением Д.… …   Словарь-справочник терминов нормативно-технической документации

  • время защитного действия — 3.5 время защитного действия: Показатель, определяемый временем, необходимым для достижения нормированной проскоковой концентрации тест вещества за противогазовым фильтром/фильтрующей полумаской в заданных условиях испытаний. Источник …   Словарь-справочник терминов нормативно-технической документации

  • Лишение права занимать определённые должности или заниматься определённой деятельностью — Лишение права занимать определённые должности или заниматься определённой деятельностью  вид уголовного наказания, заключающийся в ограничениях по службе или в запрете заниматься профессиональной или иной деятельностью. Содержание …   Википедия

  • КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ — или коэффициент отдачи (Efficiency) характеристика качества работы любой машины или аппарата со стороны ее экономичности. Под К. П. Д. подразумевается отношение количества полученной от машины работы или энергии от аппарата к тому количеству… …   Морской словарь

  • Циклично-поточного действия комплекс —         (a. cyclic and continuous system, cyclic and continuous complex; н. Ausrustung fur zyklischkontinuierliche Gewinnung; ф. complexe а fonctionnement cyclique continu; и. complejo de accion ciclico continuo) технологически и организационно… …   Геологическая энциклопедия

  • селективность действия защиты — селективность защиты селективность устройств защиты [Интент] 3.1.15. Аппараты защиты следует устанавливать, как правило, в местах сети, где сечение проводника уменьшается (по направлению к месту потребления электроэнергии) или где это необходимо… …   Справочник технического переводчика

  • МЕХАНИЧЕСКИЙ КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ — отношение работы или мощности на валу машины к работе или мощности, развиваемой в цилиндре машины. М. К. П. Д. характеризует потери энергии на трение в частях машины, передающих движение поршня валу. Самойлов К. И. Морской словарь. М. Л.:… …   Морской словарь

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»