Перевод: со всех языков на английский

с английского на все языки

диск+управления

  • 1 диск управления

    Русско-английский большой базовый словарь > диск управления

  • 2 диск управления

    Information technology: control dial

    Универсальный русско-английский словарь > диск управления

  • 3 диск управления

    Русско-английский политехнический словарь > диск управления

  • 4 диск управления

    Русско-английский словарь по вычислительной технике и программированию > диск управления

  • 5 вспомогательный диск управления

    Универсальный русско-английский словарь > вспомогательный диск управления

  • 6 главный диск управления

    Универсальный русско-английский словарь > главный диск управления

  • 7 диск запоминающего устройства

    Русско-английский большой базовый словарь > диск запоминающего устройства

  • 8 пульт управления

    Русско-английский большой базовый словарь > пульт управления

  • 9 установочный диск

    Русско-английский военно-политический словарь > установочный диск

  • 10 блок управления

    Русско-английский большой базовый словарь > блок управления

  • 11 средства управления

    Русско-английский большой базовый словарь > средства управления

  • 12 программа управления диском

    Русско-английский словарь по информационным технологиям > программа управления диском

  • 13 белый диск - прозрачномер

    1. secchi disc

     

    белый диск - прозрачномер
    белый диск

    Белый диск диаметром 300 мм, опускаемый в воду для определения относительной прозрачности воды.
    [ ГОСТ 18458-84

    Тематики

    • средства навигации, наблюдения, управления

    Синонимы

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > белый диск - прозрачномер

  • 14 кодовый диск

    Универсальный русско-английский словарь > кодовый диск

  • 15 управление

    Русско-английский словарь по информационным технологиям > управление

  • 16 счетная машина с наборными дисками

    Русско-английский большой базовый словарь > счетная машина с наборными дисками

  • 17 человеко-машинный интерфейс

    1. operator-machine communication
    2. MMI
    3. man-machine interface
    4. man-machine communication
    5. human-machine interface
    6. human-computer interface
    7. human interface device
    8. human interface
    9. HMI
    10. computer human interface
    11. CHI

     

    человеко-машинный интерфейс (ЧМИ)
    Технические средства, предназначенные для обеспечения непосредственного взаимодействия между оператором и оборудованием и дающие возможность оператору управлять оборудованием и контролировать его функционирование.
    Примечание
    Такие средства могут включать приводимые в действие вручную органы управления, контрольные устройства, дисплеи.
    [ ГОСТ Р МЭК 60447-2000]

    человекомашинный интерфейс (ЧМИ)
    Технические средства контроля и управления, являющиеся частью оборудования, предназначенные для обеспечения непосредственного взаимодействия между оператором и оборудованием и дающие возможность оператору управлять оборудованием и контролировать его функционирование (ГОСТ Р МЭК 60447).
    Примечание
    Такие средства могут включать приводимые в действие вручную органы управления, контрольные устройства и дисплеи.
    [ ГОСТ Р МЭК 60073-2000]

    человеко-машинный интерфейс
    Средства обеспечения двусторонней связи "оператор - технологическое оборудование" (АСУ ТП). Название класса средств, в который входят подклассы:
    SCADA (Supervisory Control and Data Acquisition) - Операторское управление и сбор данных от технологического оборудования.
    DCS (Distributed Control Systems) - Распределенная система управления технологическим оборудованием.
    [ http://www.morepc.ru/dict/]

    Параллельные тексты EN-RU

    MotorSys™ iPMCC solutions can integrate a dedicated human-machine interface (HMI) or communicate via a personal computer directly on the motor starters.
    [Schneider Electric]

    Интеллектуальный центр распределения электроэнергии и управления электродвигателями MotorSys™ может иметь в своем составе специальный человеко-машинный интерфейс (ЧМИ). В качестве альтернативы используется обмен данным между персональным компьютером и пускателями.
    [Перевод Интент]


    HMI на базе операторских станций

    Самое, пожалуй, главное в системе управления - это организация взаимодействия между человеком и программно-аппаратным комплексом. Обеспечение такого взаимодействия и есть задача человеко-машинного интерфейса (HMI, human machine interface).

    На мой взгляд, в аббревиатуре “АСУ ТП” ключевым является слово “автоматизированная”, что подразумевает непосредственное участие человека в процессе реализации системой определенных задач. Очевидно, что чем лучше организован HMI, тем эффективнее человек сможет решать поставленные задачи.

    Как же организован HMI в современных АСУ ТП?
    Существует, как минимум, два подхода реализации функционала HMI:

    1. На базе специализированных рабочих станций оператора, устанавливаемых в центральной диспетчерской;
    2. На базе панелей локального управления, устанавливаемых непосредственно в цеху по близости с контролируемым технологическим объектам.

    Иногда эти два варианта комбинируют, чтобы достичь наибольшей гибкости управления. В данной статье речь пойдет о первом варианте организации операторского уровня.

    Аппаратно рабочая станция оператора (OS, operator station) представляет собой ни что иное как персональный компьютер. Как правило, станция снабжается несколькими широкоэкранными мониторами, функциональной клавиатурой и необходимыми сетевыми адаптерами для подключения к сетям верхнего уровня (например, на базе Industrial Ethernet). Станция оператора несколько отличается от привычных для нас офисных компьютеров, прежде всего, своим исполнением и эксплуатационными характеристиками (а также ценой 4000 - 10 000 долларов).
    На рисунке 1 изображена рабочая станция оператора системы SIMATIC PCS7 производства Siemens, обладающая следующими техническими характеристиками:

    Процессор: Intel Pentium 4, 3.4 ГГц;
    Память: DDR2 SDRAM до 4 ГБ;
    Материнская плата: ChipSet Intel 945G;
    Жесткий диск: SATA-RAID 1/2 x 120 ГБ;
    Слоты: 4 x PCI, 2 x PCI E x 1, 1 x PCI E x 16;
    Степень защиты: IP 31;
    Температура при эксплуатации: 5 – 45 C;
    Влажность: 5 – 95 % (без образования конденсата);
    Операционная система: Windows XP Professional/2003 Server.

    4876
    Рис. 1. Пример промышленной рабочей станции оператора.

    Системный блок может быть как настольного исполнения ( desktop), так и для монтажа в 19” стойку ( rack-mounted). Чаще применяется второй вариант: системный блок монтируется в запираемую стойку для лучшей защищенности и предотвращения несанкционированного доступа.

    Какое программное обеспечение используется?
    На станции оператора устанавливается программный пакет визуализации технологического процесса (часто называемый SCADA). Большинство пакетов визуализации работают под управлением операционных систем семейства Windows (Windows NT 4.0, Windows 2000/XP, Windows 2003 Server), что, на мой взгляд, является большим минусом.
    Программное обеспечение визуализации призвано выполнять следующие задачи:

    1. Отображение технологической информации в удобной для человека графической форме (как правило, в виде интерактивных мнемосхем) – Process Visualization;
    2. Отображение аварийных сигнализаций технологического процесса – Alarm Visualization;
    3. Архивирование технологических данных (сбор истории процесса) – Historical Archiving;
    4. Предоставление оператору возможности манипулировать (управлять) объектами управления – Operator Control.
    5. Контроль доступа и протоколирование действий оператора – Access Control and Operator’s Actions Archiving.
    6. Автоматизированное составление отчетов за произвольный интервал времени (посменные отчеты, еженедельные, ежемесячные и т.д.) – Automated Reporting.

    Как правило, SCADA состоит из двух частей:

    1. Среды разработки, где инженер рисует и программирует технологические мнемосхемы;
    2. Среды исполнения, необходимой для выполнения сконфигурированных мнемосхем в режиме runtime. Фактически это режим повседневной эксплуатации.

    Существует две схемы подключения операторских станций к системе управления, а точнее уровню управления. В рамках первой схемы каждая операторская станция подключается к контроллерам уровня управления напрямую или с помощью промежуточного коммутатора (см. рисунок 2). Подключенная таким образом операторская станция работает независимо от других станций сети, и поэтому часто называется одиночной (пусть Вас не смущает такое название, на самом деле таких станций в сети может быть несколько).

    4877
    Рис. 2. Схема подключения одиночных операторских станций к уровню управления.

    Есть и другой вариант. Часто операторские станции подключают к серверу или резервированной паре серверов, а серверы в свою очередь подключаются к промышленным контроллерам. Таким образом, сервер, являясь неким буфером, постоянно считывает данные с контроллера и предоставляет их по запросу рабочим станциям. Станции, подключенные по такой схеме, часто называют клиентами (см. рисунок 3).

    4878
    Рис. 3. Клиент-серверная архитектура операторского уровня.

    Как происходит информационный обмен?
    Для сопряжения операторской станции с промышленным контроллером на первой устанавливается специальное ПО, называемое драйвером ввода/вывода. Драйвер ввода/вывода поддерживает совместимый с контроллером коммуникационный протокол и позволяет прикладным программам считывать с контроллера параметры или наоборот записывать в него. Пакет визуализации обращается к драйверу ввода/вывода каждый раз, когда требуется обновление отображаемой информации или запись измененных оператором данных. Для взаимодействия пакета визуализации и драйвера ввода/вывода используется несколько протоколов, наиболее популярные из которых OPC (OLE for Process Control) и NetDDE (Network Dynamic Data Exchange). Обобщенно можно сказать, что OPC и NetDDE – это протоколы информационного обмена между различными приложениями, которые могут выполняться как на одном, так и на разных компьютерах. На рисунках 4 и 5 изображено, как взаимодействуют программные компоненты при различных схемах построения операторского уровня.  
    4879
    Рис. 4. Схема взаимодействия программных модулей при использовании одиночных станций.
     
    4880
    Рис. 5. Схема взаимодействия программных модулей при использовании клиент-серверной архитектуры.
    Как выглядит SCADA?
    Разберем простой пример. На рисунке 6 приведена абстрактная схема технологического процесса, хотя полноценным процессом это назвать трудно.
    4881
    Рис. 6. Пример операторской мнемосхемы.
    На рисунке 6 изображен очень упрощенный вариант операторской мнемосхемы для управления тех. процессом. Как видно, резервуар (емкость) наполняется водой. Задача системы - нагреть эту воду до определенной температуры. Для нагрева воды используется газовая горелка. Интенсивность горения регулируется клапаном подачи газа. Также должен быть насос для закачки воды в резервуар и клапан для спуска воды.

    На мнемосхеме отображаются основные технологические параметры, такие как: температура воды; уровень воды в резервуаре; работа насосов; состояние клапанов и т.д. Эти данные обновляются на экране с заданной частотой. Если какой-либо параметр достигает аварийного значения, соответствующее поле начинает мигать, привлекая внимание оператора.

    Сигналы ввода/вывода и исполнительные механизмы отображаются на мнемосхемах в виде интерактивных графических символов (иконок). Каждому типу сигналов и исполнительных механизмов присваивается свой символ: для дискретного сигнала это может быть переключатель, кнопка или лампочка; для аналогового – ползунок, диаграмма или текстовое поле; для двигателей и насосов – более сложные фейсплейты ( faceplates). Каждый символ, как правило, представляет собой отдельный ActiveX компонент. Вообще технология ActiveX широко используется в SCADA-пакетах, так как позволяет разработчику подгружать дополнительные символы, не входящие в стандартную библиотеку, а также разрабатывать свои собственные графические элементы, используя высокоуровневые языки программирования.

    Допустим, оператор хочет включить насос. Для этого он щелкает по его иконке и вызывает панель управления ( faceplate). На этой панели он может выполнить определенные манипуляции: включить или выключить насос, подтвердить аварийную сигнализацию, перевести его в режим “техобслуживания” и т.д. (см. рисунок 7).  
    4882
    Рис. 7. Пример фейсплейта для управления насосом.
      Оператор также может посмотреть график изменения интересующего его технологического параметра, например, за прошедшую неделю. Для этого ему надо вызвать тренд ( trend) и выбрать соответствующий параметр для отображения. Пример тренда реального времени показан на рисунке 8.
     
    4883
    Рис. 8. Пример отображения двух параметров на тренде реального времени.
    Для более детального обзора сообщений и аварийных сигнализаций оператор может воспользоваться специальной панелью ( alarm panel), пример которой изображен на рисунке 9. Это отсортированный список сигнализаций (alarms), представленный в удобной для восприятия форме. Оператор может подтвердить ту или иную аварийную сигнализацию, применить фильтр или просто ее скрыть.
    4884
    Рис. 9. Панель сообщений и аварийных сигнализаций.
    Говоря о SCADA, инженеры часто оперируют таким важным понятием как “тэг” ( tag). Тэг является по существу некой переменной программы визуализации и может быть использован как для локального хранения данных внутри программы, так и в качестве ссылки на внешний параметр процесса. Тэги могут быть разных типов, начиная от обычных числовых данных и кончая структурой с множеством полей. Например, один визуализируемый параметр ввода/вывода – это тэг, или функциональный блок PID-регулятора, выполняемый внутри контроллера, - это тоже тэг. Ниже представлена сильно упрощенная структура тэга, соответствующего простому PID-регулятору:

    Tag Name = “MyPID”;
    Tag Type = PID;

    Fields (список параметров):

    MyPID.OP
    MyPID.SP
    MyPID.PV
    MyPID.PR
    MyPID.TI
    MyPID.DI
    MyPID.Mode
    MyPID.RemoteSP
    MyPID.Alarms и т.д.

    В комплексной прикладной программе может быть несколько тысяч тэгов. Производители SCADA-пакетов это знают и поэтому применяют политику лицензирования на основе количества используемых тэгов. Каждая купленная лицензия жестко ограничивает суммарное количество тэгов, которые можно использовать в программе. Очевидно, чем больше тегов поддерживает лицензия, тем дороже она стоит; так, например, лицензия на 60 000 тэгов может обойтись в 5000 тыс. долларов или даже дороже. В дополнение к этому многие производители SCADA формируют весьма существенную разницу в цене между “голой” средой исполнения и полноценной средой разработки; естественно, последняя с таким же количеством тэгов будет стоить заметно дороже.

    Сегодня на рынке представлено большое количество различных SCADA-пакетов, наиболее популярные из которых представлены ниже:

    1.    Wonderware Intouch;
    2.    Simatic WinCC;
    3.    Iconics Genesis32;
    4.    Citect;
    5.    Adastra Trace Mode

    Лидирующие позиции занимают Wonderware Intouch (производства Invensys) и Simatic WinCC (разработки Siemens) с суммарным количеством инсталляций более 80 тыс. в мире. Пакет визуализации технологического процесса может поставляться как в составе комплексной системы управления, так и в виде отдельного программного продукта. В последнем случае SCADA комплектуется набором драйверов ввода/вывода для коммуникации с контроллерами различных производителей.   [ http://kazanets.narod.ru/HMI_PART1.htm]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > человеко-машинный интерфейс

  • 18 программируемый логический контроллер

    1. storage-programmable logic controller
    2. Programmable Logic Controller
    3. programmable controller
    4. PLC

     

    программируемый логический контроллер
    ПЛК
    -
    [Интент]

    контроллер
    Управляющее устройство, осуществляющее автоматическое управление посредством программной реализации алгоритмов управления.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    EN

    storage-programmable logic controller
    computer-aided control equipment or system whose logic sequence can be varied via a directly or remote-control connected programming device, for example a control panel, a host computer or a portable terminal
    [IEV ref 351-32-34]

    FR

    automate programmable à mémoire
    équipement ou système de commande assisté par ordinateur dont la séquence logique peut être modifiée directement ou par l'intermédiaire d'un dispositif de programmation relié à une télécommande, par exemple un panneau de commande, un ordinateur hôte ou un terminal de données portatif
    [IEV ref 351-32-34]

      См. также:
    - архитектура контроллера;
    - производительность контроллера;
    - время реакции контроллера;
    КЛАССИФИКАЦИЯ

      Основным показателем ПЛК является количество каналов ввода-вывода. По этому признаку ПЛК делятся на следующие группы: По расположению модулей ввода-вывода ПЛК бывают:
    • моноблочными - в которых устройство ввода-вывода не может быть удалено из контроллера или заменено на другое. Конструктивно контроллер представляет собой единое целое с устройствами ввода-вывода (например, одноплатный контроллер). Моноблочный контроллер может иметь, например, 16 каналов дискретного ввода и 8 каналов релейного вывода;
    • модульные - состоящие из общей корзины (шасси), в которой располагаются модуль центрального процессора и сменные модули ввода-вывода. Состав модулей выбирается пользователем в зависимости от решаемой задачи. Типовое количество слотов для сменных модулей - от 8 до 32;
    • распределенные (с удаленными модулями ввода-вывода) - в которых модули ввода-вывода выполнены в отдельных корпусах, соединяются с модулем контроллера по сети (обычно на основе интерфейса RS-485) и могут быть расположены на расстоянии до 1,2 км от процессорного модуля.
    Часто перечисленные конструктивные типы контроллеров комбинируются, например, моноблочный контроллер может иметь несколько съемных плат; моноблочный и модульный контроллеры могут быть дополнены удаленными модулями ввода-вывода, чтобы увеличить общее количество каналов.

    Многие контроллеры имеют набор сменных процессорных плат разной производительности. Это позволяет расширить круг потенциальных пользователей системы без изменения ее конструктива.

    По конструктивному исполнению и способу крепления контроллеры делятся на:
    По области применения контроллеры делятся на следующие типы:
    • универсальные общепромышленные;
    • для управления роботами;
    • для управления позиционированием и перемещением;
    • коммуникационные;
    • ПИД-контроллеры;
    • специализированные.

    По способу программирования контроллеры бывают:
    • программируемые с лицевой панели контроллера;
    • программируемые переносным программатором;
    • программируемые с помощью дисплея, мыши и клавиатуры;
    • программируемые с помощью персонального компьютера.

    Контроллеры могут программироваться на следующих языках:
    • на классических алгоритмических языках (C, С#, Visual Basic);
    • на языках МЭК 61131-3.

    Контроллеры могут содержать в своем составе модули ввода-вывода или не содержать их. Примерами контроллеров без модулей ввода-вывода являются коммуникационные контроллеры, которые выполняют функцию межсетевого шлюза, или контроллеры, получающие данные от контроллеров нижнего уровня иерархии АСУ ТП.   Контроллеры для систем автоматизации

    Слово "контроллер" произошло от английского "control" (управление), а не от русского "контроль" (учет, проверка). Контроллером в системах автоматизации называют устройство, выполняющее управление физическими процессами по записанному в него алгоритму, с использованием информации, получаемой от датчиков и выводимой в исполнительные устройства.

    Первые контроллеры появились на рубеже 60-х и 70-х годов в автомобильной промышленности, где использовались для автоматизации сборочных линий. В то время компьютеры стоили чрезвычайно дорого, поэтому контроллеры строились на жесткой логике (программировались аппаратно), что было гораздо дешевле. Однако перенастройка с одной технологической линии на другую требовала фактически изготовления нового контроллера. Поэтому появились контроллеры, алгоритм работы которых мог быть изменен несколько проще - с помощью схемы соединений реле. Такие контроллеры получили название программируемых логических контроллеров (ПЛК), и этот термин сохранился до настоящего времени. Везде ниже термины "контроллер" и "ПЛК" мы будем употреблять как синонимы.

    Немного позже появились ПЛК, которые можно было программировать на машинно-ориентированном языке, что было проще конструктивно, но требовало участия специально обученного программиста для внесения даже незначительных изменений в алгоритм управления. С этого момента началась борьба за упрощение процесса программирования ПЛК, которая привела сначала к созданию языков высокого уровня, затем - специализированных языков визуального программирования, похожих на язык релейной логики. В настоящее время этот процесс завершился созданием международного стандарта IEC (МЭК) 1131-3, который позже был переименован в МЭК 61131-3. Стандарт МЭК 61131-3 поддерживает пять языков технологического программирования, что исключает необходимость привлечения профессиональных программистов при построении систем с контроллерами, оставляя для них решение нестандартных задач.

    В связи с тем, что способ программирования является наиболее существенным классифицирующим признаком контроллера, понятие "ПЛК" все реже используется для обозначения управляющих контроллеров, которые не поддерживают технологические языки программирования.   Жесткие ограничения на стоимость и огромное разнообразие целей автоматизации привели к невозможности создания универсального ПЛК, как это случилось с офисными компьютерами. Область автоматизации выдвигает множество задач, в соответствии с которыми развивается и рынок, содержащий сотни непохожих друг на друга контроллеров, различающихся десятками параметров.

    Выбор оптимального для конкретной задачи контроллера основывается обычно на соответствии функциональных характеристик контроллера решаемой задаче при условии минимальной его стоимости. Учитываются также другие важные характеристики (температурный диапазон, надежность, бренд изготовителя, наличие разрешений Ростехнадзора, сертификатов и т. п.).

    Несмотря на огромное разнообразие контроллеров, в их развитии заметны следующие общие тенденции:
    • уменьшение габаритов;
    • расширение функциональных возможностей;
    • увеличение количества поддерживаемых интерфейсов и сетей;
    • использование идеологии "открытых систем";
    • использование языков программирования стандарта МЭК 61131-3;
    • снижение цены.
    Еще одной тенденцией является появление в контроллерах признаков компьютера (наличие мыши, клавиатуры, монитора, ОС Windows, возможности подключения жесткого диска), а в компьютерах - признаков контроллера (расширенный температурный диапазон, электронный диск, защита от пыли и влаги, крепление на DIN-рейку, наличие сторожевого таймера, увеличенное количество коммуникационных портов, использование ОС жесткого реального времени, функции самотестирования и диагностики, контроль целостности прикладной программы). Появились компьютеры в конструктивах для жестких условий эксплуатации. Аппаратные различия между компьютером и контроллером постепенно исчезают. Основными отличительными признаками контроллера остаются его назначение и наличие технологического языка программирования.

    [ http://bookasutp.ru/Chapter6_1.aspx]  
    Программируемый логический контроллер (ПЛК, PLC) – микропроцессорное устройство, предназначенное для управления технологическим процессом и другими сложными технологическими объектами.
    Принцип работы контроллера состоит в выполнение следующего цикла операций:

    1.    Сбор сигналов с датчиков;
    2.    Обработка сигналов согласно прикладному алгоритму управления;
    3.    Выдача управляющих воздействий на исполнительные устройства.

    В нормальном режиме работы контроллер непрерывно выполняет этот цикл с частотой от 50 раз в секунду. Время, затрачиваемое контроллером на выполнение полного цикла, часто называют временем (или периодом) сканирования; в большинстве современных ПЛК сканирование может настраиваться пользователем в диапазоне от 20 до 30000 миллисекунд. Для быстрых технологических процессов, где критична скорость реакции системы и требуется оперативное регулирование, время сканирования может составлять 20 мс, однако для большинства непрерывных процессов период 100 мс считается вполне приемлемым.

    Аппаратно контроллеры имеют модульную архитектуру и могут состоять из следующих компонентов:

    1.    Базовая панель ( Baseplate). Она служит для размещения на ней других модулей системы, устанавливаемых в специально отведенные позиции (слоты). Внутри базовой панели проходят две шины: одна - для подачи питания на электронные модули, другая – для пересылки данных и информационного обмена между модулями.

    2.    Модуль центрального вычислительного устройства ( СPU). Это мозг системы. Собственно в нем и происходит математическая обработка данных. Для связи с другими устройствами CPU часто оснащается сетевым интерфейсом, поддерживающим тот или иной коммуникационный стандарт.

    3.    Дополнительные коммуникационные модули. Необходимы для добавления сетевых интерфейсов, неподдерживаемых напрямую самим CPU. Коммуникационные модули существенно расширяют возможности ПЛК по сетевому взаимодействию. C их помощью к контроллеру подключают узлы распределенного ввода/вывода, интеллектуальные полевые приборы и станции операторского уровня.

    4.    Блок питания. Нужен для запитки системы от 220 V. Однако многие ПЛК не имеют стандартного блока питания и запитываются от внешнего.  
    4906
    Рис.1. Контроллер РСУ с коммуникациями Profibus и Ethernet.
     
    Иногда на базовую панель, помимо указанных выше, допускается устанавливать модули ввода/вывода полевых сигналов, которые образуют так называемый локальный ввод/вывод. Однако для большинства РСУ (DCS) характерно использование именно распределенного (удаленного) ввода/вывода.

    Отличительной особенностью контроллеров, применяемых в DCS, является возможность их резервирования. Резервирование нужно для повышения отказоустойчивости системы и заключается, как правило, в дублировании аппаратных модулей системы.
     
    4907
    Рис. 2. Резервированный контроллер с коммуникациями Profibus и Ethernet.
     
    Резервируемые модули работают параллельно и выполняют одни и те же функции. При этом один модуль находится в активном состоянии, а другой, являясь резервом, – в режиме “standby”. В случае отказа активного модуля, система автоматически переключается на резерв (это называется “горячий резерв”).

    Обратите внимание, контроллеры связаны шиной синхронизации, по которой они мониторят состояние друг друга. Это решение позволяет разнести резервированные модули на значительное расстояние друг от друга (например, расположить их в разных шкафах или даже аппаратных).

    Допустим, в данный момент активен левый контроллер, правый – находится в резерве. При этом, даже находясь в резерве, правый контроллер располагает всеми процессными данными и выполняет те же самые математические операции, что и левый. Контроллеры синхронизированы. Предположим, случается отказ левого контроллера, а именно модуля CPU. Управление автоматически передается резервному контроллеру, и теперь он становится главным. Здесь очень большое значение имеют время, которое система тратит на переключение на резерв (обычно меньше 0.5 с) и отсутствие возмущений (удара). Теперь система работает на резерве. Как только инженер заменит отказавший модуль CPU на исправный, система автоматически передаст ему управление и возвратится в исходное состояние.

    На рис. 3 изображен резервированный контроллер S7-400H производства Siemens. Данный контроллер входит в состав РСУ Simatic PCS7.
     
     
    4908
    Рис. 3. Резервированный контроллер S7-400H. Несколько другое техническое решение показано на примере резервированного контроллера FCP270 производства Foxboro (рис. 4). Данный контроллер входит в состав системы управления Foxboro IA Series.  
    4909
    Рис. 4. Резервированный контроллер FCP270.
    На базовой панели инсталлировано два процессорных модуля, работающих как резервированная пара, и коммуникационный модуль для сопряжения с оптическими сетями стандарта Ethernet. Взаимодействие между модулями происходит по внутренней шине (тоже резервированной), спрятанной непосредственно в базовую панель (ее не видно на рисунке).

    На рисунке ниже показан контроллер AC800M производства ABB (часть РСУ Extended Automation System 800xA).  
    4910
    Рис. 5. Контроллер AC800M.
     
    Это не резервированный вариант. Контроллер состоит из двух коммуникационных модулей, одного СPU и одного локального модуля ввода/вывода. Кроме этого, к контроллеру можно подключить до 64 внешних модулей ввода/вывода.

    При построении РСУ важно выбрать контроллер, удовлетворяющий всем техническим условиям и требованиям конкретного производства. Подбирая оптимальную конфигурацию, инженеры оперируют определенными техническими характеристиками промышленных контроллеров. Наиболее значимые перечислены ниже:

    1.    Возможность полного резервирования. Для задач, где отказоустойчивость критична (химия, нефтехимия, металлургия и т.д.), применение резервированных конфигураций вполне оправдано, тогда как для других менее ответственных производств резервирование зачастую оказывается избыточным решением.

    2.    Количество и тип поддерживаемых коммуникационных интерфейсов. Это определяет гибкость и масштабируемость системы управления в целом. Современные контроллеры способны поддерживать до 10 стандартов передачи данных одновременно, что во многом определяет их универсальность.

    3.    Быстродействие. Измеряется, как правило, в количестве выполняемых в секунду элементарных операций (до 200 млн.). Иногда быстродействие измеряется количеством обрабатываемых за секунду функциональных блоков (что такое функциональный блок – будет рассказано в следующей статье). Быстродействие зависит от типа центрального процессора (популярные производители - Intel, AMD, Motorola, Texas Instruments и т.д.)

    4.    Объем оперативной памяти. Во время работы контроллера в его оперативную память загружены запрограммированные пользователем алгоритмы автоматизированного управления, операционная система, библиотечные модули и т.д. Очевидно, чем больше оперативной памяти, тем сложнее и объемнее алгоритмы контроллер может выполнять, тем больше простора для творчества у программиста. Варьируется от 256 килобайт до 32 мегабайт.

    5.    Надежность. Наработка на отказ до 10-12 лет.

    6. Наличие специализированных средств разработки и поддержка различных языков программирования. Очевидно, что существование специализированный среды разработки прикладных программ – это стандарт для современного контроллера АСУ ТП. Для удобства программиста реализуется поддержка сразу нескольких языков как визуального, так и текстового (процедурного) программирования (FBD, SFC, IL, LAD, ST; об этом в следующей статье).

    7.    Возможность изменения алгоритмов управления на “лету” (online changes), т.е. без остановки работы контроллера. Для большинства контроллеров, применяемых в РСУ, поддержка online changes жизненно необходима, так как позволяет тонко настраивать систему или расширять ее функционал прямо на работающем производстве.

    8.    Возможность локального ввода/вывода. Как видно из рис. 4 контроллер Foxboro FCP270 рассчитан на работу только с удаленной подсистемой ввода/вывода, подключаемой к нему по оптическим каналам. Simatic S7-400 может спокойно работать как с локальными модулями ввода/вывода (свободные слоты на базовой панели есть), так и удаленными узлами.

    9.    Вес, габаритные размеры, вид монтажа (на DIN-рейку, на монтажную панель или в стойку 19”). Важно учитывать при проектировании и сборке системных шкафов.

    10.  Условия эксплуатации (температура, влажность, механические нагрузки). Большинство промышленных контроллеров могут работать в нечеловеческих условиях от 0 до 65 °С и при влажности до 95-98%.

    [ http://kazanets.narod.ru/PLC_PART1.htm]

    Тематики

    Синонимы

    EN

    DE

    • speicherprogrammierbare Steuerung, f

    FR

    Русско-английский словарь нормативно-технической терминологии > программируемый логический контроллер

  • 19 блок


    unit, block;
    - (агрегат)unit
    - (ролик, тросовый) — pulley
    - (такелажный, погрузочный) — pulley block
    - а, д, е (бытовых приборов) — unit а, d, е
    - аварийных и предупреждающих сигналов (бап) — warning/caution signal unit
    - автоматики (ба, инерц. сист.) — automatic control unit
    - автоматического триммирования (бат), автотриммирования — autotrim control unit
    -, антенно-электронный — antenna/electronic unit
    - баланса (электрического баланса, системы сп-50) — balance control unit
    -, балансировки (бб) — stable platform gyro bias drift
    дпя компенсации систематической составляющей собственного дрейфа гироскопов гироплатформы по трем осям. — compensator
    - ввода начальных данных (пв, инерциальной системы) — control display unit (cdu)
    - воздушных параметров (бвп)air data unit
    -, "врубной" — plug-in unit
    - bcmb (системы cbc, вычислитепь скорости, чиспа м и высоты) — air data computer
    -, вычислительно-усилительный (вуб, инерциальной системы) — computer-amplifier unit
    - гиромагнитной коррекции (бгмк) — gyro/mag monitor
    -, гидравлический — hydraulic unit (pack)
    - датчиков угловых скоростей — rate gyro unit /group/
    - демпфирующих гироскоповrate gyro unit
    - дистанционной (дискретной) коррекции (бдк)navigation computer correction selector
    задатчик, устанавливаемый на приборной доске и служащий для компенсации систематической погрешности курсовой системы или цепи счисления пути в нав. вычислитепь (нву) (рис. 69). — selector is installed on сopilot's instrument panel, and is used to compensate systematic errors оf compass system or а/с position reckoning circuit in navigation computer.
    - добавочного сопротивления (для ограничения токов в цепи якоря электродвигателя.) — additional resistance unit
    - заданной информации по траектории полетаflight path data storage unit (fdsu)
    - задатчика скорости (приборной)ias selector unit
    - задающий (в сист. управления) — master unit
    - зажиганияignition unit
    -, законченный — definite-purpose unit
    - защиты двигателя (бзд)engine protection unit
    - защиты и управления (бзу)protection and control unit
    -, инерциально-навигационный (с гироплатформой) — inertial navigation unit (inu)
    - искрогашения (рад.) — spark quench unit
    -, исполнительный — actuating unit
    - камеры сгоранияcombustion section
    - кислородного питания, переносной — portable oxygen unit
    - кислородного питания (бкп), переносной (аварийный баллон с редуктором и манометром) — (emergency) portable /walkaround/ oxygen cylinder
    - кислородного питания (бкп), стационарный — oxygen supply cylinder (unit)
    - кислородного оборудования (бко состоит из укладочного блока и кислородной маски) — oxygen unit
    - коммутацииswitching unit
    - коммутации навигационного оборудования (бкн)navigation equipment switching unit
    - коммутации шин (автомат переключения шин)bus tie relay (unit)
    -, конструктивно-законченный — definite-purpose unit
    - контроляmonitor
    - контроля (переносного типа "тестер") — tester
    - контроля исправности (системы) — (system) integrity monitor /monitoring unit/
    - контроля кренов (бкк) (сравнивает углы крена и тангажа, индицируемые на обоих пкп и измеряемые резервной курсовертикалью, и при необходимости вырабатывает сигнал отказа.) — attitude monitor (атт mntr)
    - коррекции и связи (бкс, инерциальной навигационной системы) — coupler
    - кресел (пассажирских)seat unit
    - кресел, двухместный — double-place seat unit
    - кресел, трехместный — triple-place seat unit
    -, легкосъемный (со штырьевым разъемом) — plug-and-socket quick release unit
    - масляных насосов (маслоагрегат)oil pump block
    -, модульный — module
    - на твердых схемах (электронный) — solid state circuitry unit (all-solid state circuitry is used in many key chassis areas.)
    - наведения (бн)guidance unit
    в системе сау для управления механизмом триммерного эффекта продольного канала. — directs an aircraft with referеncе 'to selection of a flight path.
    -, натяжной (для регулирования натяжения тросовой проводки) — cable tensioning pulley
    -, натяжной (оттяжной, тросовой проводки) — idle pulley block
    - неуправляемых ракет (подвесной)rocket pod
    - ограничения режимов (автопилота, бор) — mode limiter
    - опасной высоты (автопилота,бов) — preselected radio altitude unit
    - оперативной памяти (устройство) — random-access memory (ram) ram output data is transferred on the memory bus.
    - (иммитации) отказов (системы сау)failure simulator
    - отключения генератора (бог)generator cut-out unit
    -, оттяжной (тросовой проводки) — idle pulley block
    - очередности (очереди работы озу) — queue control block (а block that is used to regulate the sequential use of a programmer.)
    - памяти (внешней)storage unit
    - памяти воздушных сигналовair data storage unit
    - передачи данныхdata transmitter
    -, перекидной (роликовый) — guide pulley block
    - переключения потребителей (бпп)load monitor relay (unit) (lmr)
    - переключения шин (автомат)bus tie relay unit (btr)
    - перекрестных связей (бпс)cross-coupling unit
    - питанияpower unit
    - питания потребителей (бпп)power unit
    - пластин (аккумулятора), отрицательный — negative plate group
    - пластин (аккумулятора), положительный — positive plate group
    -, погрузочный (тросовой проводки с лебедкой) — (cargo) loading /handling/ pulley block
    - подрыва (сро)destructor (unit)
    - подшипника, внутренний — bearing inner race and cage assembly
    -, полностью собранный на транзисторах — all-transistorized unit
    - полупроводниковых приборов(бпп)semiconductor module
    - постоянной памяти (устройство) — read-only memory (rom) rom output data is transferred on the memory bus.
    - постоянной памяти (внешнее устройство)permanent storage
    - преобразования (системы свс)converter
    - преобразования сигналов (системы мсрп)signal conditioning unit
    - приема данныхdata receiver
    - приема и обработки сигналов (навигац.системы "омега") — receiver-processor unit (rpu)
    -,приемо-вычислительный (системы "омега") — receiver processor unit (rpu)
    -,приемо-процессорный (системы "омега") — receiver processor unit (rpu) contains the circuitry to process the received omega and vlf signals.
    -, процессорно-вычислительный (пb, системы "омега") — receiver-processor unit (rpu)
    - разовых команд (брк)event signal unit
    - распределения углов (бру, крена, курса, тангажа инерциальной системы) — pitch, roll and heading angular information distributor (used to transfer pitch, roll and heading angular information to respective systems.)
    - растормаживания (блок тормоза)brake retraction mechanism
    - реактивных орудий (подвесной)rocket pod
    - регулирования частоты генератора (брч)generator frequency control unit
    - регулировочно-коммутационный (автопилота)coupler
    - речевой информации (ри)voice warning unit (vwu)
    - речевых команд (брк)voice warding unit (vwu)
    - (2-х) роликовый(twin) pulley block
    -,рулевой (рб,автопилота) — servo (unit)
    - ручного триммированияmanual trim control unit
    - связи — coupling unit, coupler
    -, связи аналого-цифровой (ацбс) — analog-digital coupler
    служит для преобразования входных данных в цифровой код и цифрового кода в выходные данные. — converts input data into digital code, and then digital code into output signals.
    - связи, антенный (системы "омега") — antenna coupler (acu)
    - связи низкой частоты доплеровского измерителя скорости и сносаdoppler lf coupler
    - связи с антеннойantenna coupler unit
    - связи с курсовой системой — compass system coupling unit /coupler/
    - связи с радиолокационным оборудованием — radar coupling unit /coupler/
    - сигнализации нарушения питания (снп)power fail relay (unit)
    - сигнализации предельных кренов (бспк для включения табло крен лев (прав) велик) — limit bank warn(ing) unit (to operate high l(r) bank annunciators)
    - сигналов отказа (бсо)failure signal unit
    - сидений (кресел, двух-трехместный) — (double-, triple-place) seat unit
    - скоростных гироскопов — rate gyro unit/group/
    - собранный на транзисторахtransistorized unit
    - согласования (автопилота)synchronizer
    - согласования (сарпп)signal conditioning unit
    - согласования (сист. высотноскоростных параметров) — synchronizer
    - согласования курса (бск, сист. бскв) — heading synchronizer
    - согласующих устройств (бсу, системы мсрп) — signal conditioning unit
    - сопряжения антенн (системы омега)antenna coupler unit (acu)
    - специализированного питания (бсп, инерциональной системы) — power unit
    - сравненияcomparator
    - сравнения гировертикалей (бсг) — vertical gyro comparator, vg comparator
    - сравнения сигналов компасовcompass signal comparator
    - страницpage block

    а normal blank page within a page block (e.g. the back of a fold-out page) shall be identified as follows. pages 823/824 (ata-1oo, 1-1-1, p.2)
    - страниц раздела технология обслуживания, включает: обслуживание (стр. 301-400) демонтаж/монтаж (стр. 401-500) регулировка/испытание (стр. 501-600) осмотр/проверка (стр. 601-700) очистка/окраска (стр. 701-800) 1 текущий ремонт (стр. 801-900) — maintenance practices page number blocks are as follows: servicing (pages 301-400) removal/installation (401-500) adjustment/test (501-600) inspection/check (601-700) cleaning/painting (701-800) approved repairs (801-900)
    - страниц, стандартный — standard page number block

    standard page number blocks to be used for the maintenance manual are as follows:
    (напр. описание и работа стр. 1-1oo — description and operation, pages 1 to 100
    отыскание неисправности стр. 101-200 и т.д.) — trouble shooting, pages 101-200

    maintenance practices, pages 201-300 servicing pages 301-400 (ata-1oo, 2-1-1 p.2)
    - суммарного измерения (топливомера (бси)fuel quantity totalizer
    - суммарной сигнализации (топливомера) (бсс)total fuel indication unit
    - (-) схемаblock diagram
    блок-схемы используются в описательной части руководств для общего ознакомления с работой и соединениями сложной эпектрической или электронной системы (рис. 95). — the block diagram shall be used in the descriptive portion of the manuals to simplify complex circuits to understand the system function and operation.
    - (-) схема (подрисуночная надпись, напр. "блоксхема доплеровекого измерителя) — block schematic туре 72 doppler - block schematic
    - топливомера (электронный)fuel quantity unit
    - тормоза (колеса)brake unit
    - траекторного управления (бту системы сту) — flight director unit, fd unit
    - трансформаторно-выпрямительный — transformer-rectifier unit (tr, tru, t/r;
    -, укладочный (для кислородной маски и шланга) — (oxygen mask) container
    -, унифицированный (уб для pc) — rocket pod (rkt pod)
    - управленияcontrol unit
    - управления и индикации (нав. сист. "омега") — control display unit (cdu)
    - управления и индикации расстояния до пункта назначения и отклонения от курса — along/across track display controller
    - управления сигнализациейwarning system control unit
    - усилителя сервопривода крена (бус крена)aileron servo amplifier (unit)
    - усилителя сервопривода тангажа (бус тангажа)elevator servo amplifier (unit)
    - усилителей сервоприводов (бус, автопилота) — servo amplifier unit, autopilot amplifier unit

    provides power outputs to drive the control surface servos.
    -, усилительный (автопилота) — autopilot amplifier
    -, усилительный, крена (тангажа, рыскания) — roll (pitch, yaw) channel amplifier unit
    - формирования (сигналов) и контроляsignal conditioning and monitor unit
    бфк, формирует сигналы h, m, vпр) и вырабат. сигналы отказа датчиков
    -, функционально-законченный — definite-purpose unit
    - центровки самолета (сист. топливомера) (бцс) — fuel equalizer
    - цилиндровcylinder block
    соединение нескольких цилиндров в общем конструктивном узле
    - цилиндров (тормоза колеса) (рис. 32) — cylinder block
    силовой узел тормоза, воздействующий при подаче давления на нажимной диск, сжимающий тормозные (вращающиеся и неподвижные) диски, — the two sets of four piston and cylinder assemblies are incorporated in the torque plate of the cylinder block to provide fully dupplicated and independent application of brake.
    - чередования фаз (бчф)phase-sequence (relay) unit
    - электроники (бэ, инерц. сист.) — electronic unit

    Русско-английский сборник авиационно-технических терминов > блок

  • 20 средство идентификации

    1. token

    3.72 средство идентификации (token): Контролируемое пользователем устройство (например, диск, смарт-карта, компьютерный файл), содержащее информацию, которая может использоваться в электронной торговле для аутентификации или управления доступом.

    Источник: ГОСТ Р ИСО/ТО 13569-2007: Финансовые услуги. Рекомендации по информационной безопасности

    3.72 средство идентификации (token): Контролируемое пользователем устройство (например диск, смарт-карта, компьютерный файл), содержащее информацию, которая может использоваться в электронной торговле для аутентификации или управления доступом.

    Источник: ГОСТ Р ИСО ТО 13569-2007: Финансовые услуги. Рекомендации по информационной безопасности

    Русско-английский словарь нормативно-технической терминологии > средство идентификации

См. также в других словарях:

  • Диск режимов фотоаппарата — Основная статья: Устройство цифрового фотоаппарата Типичный диск режимов DSLR Pentax …   Википедия

  • Жёсткий диск — Запрос «HDD» перенаправляется сюда; см. также другие значения …   Википедия

  • Жесткий диск — Запрос «HDD» перенаправляется сюда. Cм. также другие значения. Схема устройства накопителя на жёстких магнитных дисках. Накопитель на жёстких магнитных дисках, НЖМД, жёсткий диск, винчестер (англ. Hard (Magnetic) Disk Drive, HDD, HMDD; в… …   Википедия

  • Жёсткий магнитный диск — Запрос «HDD» перенаправляется сюда. Cм. также другие значения. Схема устройства накопителя на жёстких магнитных дисках. Накопитель на жёстких магнитных дисках, НЖМД, жёсткий диск, винчестер (англ. Hard (Magnetic) Disk Drive, HDD, HMDD; в… …   Википедия

  • Логический диск — или том (англ. volume)  часть долговременной памяти компьютера, рассматриваемая как единое целое для удобства работы. Термин «логический диск» используется в противоположность «физическому диску», под которым рассматривается память… …   Википедия

  • Московская школа управления СКОЛКОВО — (СКОЛКОВО) Международное название Moscow School of Management SKOLKOVO Девиз Помогать успешным стать более успешными. Готовить людей, способных развиваться и развивать стран …   Википедия

  • Московская школа управления «Сколково» — Логотип школы Московская школа управления «Сколково»  российская бизнес школа, расположенная около деревни Сколково и городского поселения Заречье Московской области. Основана в 2 …   Википедия

  • Система управления версиями — (от англ. Version Control System, VCS или Revision Control System)  программное обеспечение для облегчения работы с изменяющейся информацией. Система управления версиями позволяет хранить несколько версий одного и того же документа, при …   Википедия

  • Полупроводниковый твердотельный диск — Запрос «SSD» перенаправляется сюда. Cм. также другие значения. Твердотельный накопитель (англ. SSD, Solid State Drive, Solid State Disk) энергонезависимое, перезаписываемое компьютерное запоминающее устройство без движущихся механических частей.… …   Википедия

  • белый диск - прозрачномер — белый диск Белый диск диаметром 300 мм, опускаемый в воду для определения относительной прозрачности воды. [ГОСТ 18458 84] Тематики средства навигации, наблюдения, управления Синонимы белый диск EN secchi disc DE secchische Scheibe FR disque de… …   Справочник технического переводчика

  • Магнитный диск —         Запоминающее устройство ЦВМ, в котором носителем информации является тонкий алюминиевый или пластмассовый диск, покрытый слоем магнитного материала. Применяются М. д. диаметром от 180 до 1200 мм при толщине 2,5 5 мм, в качестве магнитного …   Большая советская энциклопедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»