Перевод: с русского на все языки

со всех языков на русский

ПУЭ

  • 1 ПУЭ

    Универсальный русско-английский словарь > ПУЭ

  • 2 ПУЭ

    Универсальный русско-немецкий словарь > ПУЭ

  • 3 ПУЭ

    abbr
    electric. (Правила устройства электроустановок) règles d'installation des appareils électriques

    Dictionnaire russe-français universel > ПУЭ

  • 4 ПУЭ

    Новый русско-английский словарь > ПУЭ

  • 5 индексы курсов ценных бумаг фирмы Стэндард энд Пуэ

    n
    st.exch. indici azionari "Standard and Poor" (ÑØÀ)

    Universale dizionario russo-italiano > индексы курсов ценных бумаг фирмы Стэндард энд Пуэ

  • 6 список муниципальных облигаций, ежедневно публикуемых агентством Стандард энд Пуэ

    Universale dizionario russo-italiano > список муниципальных облигаций, ежедневно публикуемых агентством Стандард энд Пуэ

  • 7 шина (в электротехнике)

    1. Sammelschiene

     

    шина
    Проводник с низким сопротивлением, к которому можно подсоединить несколько отдельных электрических цепей.
    Примечание — Термин «шина» не включает в себя геометрическую форму, габариты или размеры проводника.
    [ ГОСТ Р 51321. 1-2000 ( МЭК 60439-1-92)]
    [ ГОСТ Р МЭК 61439.1-2013]

    шина
    Конструктивный элемент низковольтного комплектного устройства (НКУ).
    Такой конструктивный элемент предназначен для того, чтобы к нему можно было легко присоединить отдельные электрические цепи (другие шины, отдельные проводники). Такие шины могут иметь различную конструкцию, геометрическую форму и размеры.
    [Интент]

    шинопровод шина
    Медная, алюминиевая, реже стальная полоса, служащая для присоединения кабелей электрогенераторов, трансформаторов и т.д. к проводам питающей сети
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    общая шина
    -
    [IEV number 151-12-30]

    шина
    -
    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва]

    EN

    busbar
    low-impedance conductor to which several electric circuits can be connected at separate points
    NOTE – In many cases, the busbar consists of a bar.
    [IEV number 151-12-30]

    busbar
    An electrical conductor that makes a common connection between several circuits. Sometimes, electrical wire cannot accommodate high-current applications, and electricity must be conducted using a more substantial busbar — a thick bar of solid metal (usually copper or aluminum). Busbars are uninsulated, but are physically supported by insulators. They are used in electrical substations to connect incoming and outgoing transmission lines and transformers; in a power plant to connect the generator and the main transformers; in industry, to feed large amounts of electricity to equipment used in the aluminum smelting process, for example, or to distribute electricity in large buildings
    [ABB. Glossary of technical terms. 2010]

    FR

    barre omnibus, f
    conducteur de faible impédance auquel peuvent être reliés plusieurs circuits électriques en des points séparés
    NOTE – Dans de nombreux cas, une barre omnibus est constituée d’une barre.
    [IEV number 151-12-30]

     

    0079_1

    1. Сборные шины
    2. Распределительные шины

      2. Проводник прямоугольного сечения из меди, предназначенный для электротехнических целей
    (см. ГОСТ 434-78).

    Поставляется в бухтах, а также в полосах длиной не менее 2,5 м; По существу, это просто проволока прямоугольного сечения. В указанном ГОСТе и в технической документации, в которой она применяется, обязательно указываются размеры этой проволоки. Например, "Шина ШММ 8,00х40,00 ГОСТ 434-78" 0308
     

     

    шина
    Пруток прямоугольного сечения, применяемый в электротехнике в качестве проводника тока, изготовляемый прессованием или волочением.
    [ ГОСТ 25501-82]

    Тематики

    Действия

    • расположение шин «на ребро» [ПУЭ]
    • расположение шин «плашмя» [ПУЭ]

    Сопутствующие термины

    EN

    DE

    FR

    Русско-немецкий словарь нормативно-технической терминологии > шина (в электротехнике)

  • 8 шина (в электротехнике)

    1. wire
    2. strip
    3. strap
    4. power busbar
    5. line
    6. busbar
    7. bus rod
    8. bus line
    9. bus lead

     

    шина
    Проводник с низким сопротивлением, к которому можно подсоединить несколько отдельных электрических цепей.
    Примечание — Термин «шина» не включает в себя геометрическую форму, габариты или размеры проводника.
    [ ГОСТ Р 51321. 1-2000 ( МЭК 60439-1-92)]
    [ ГОСТ Р МЭК 61439.1-2013]

    шина
    Конструктивный элемент низковольтного комплектного устройства (НКУ).
    Такой конструктивный элемент предназначен для того, чтобы к нему можно было легко присоединить отдельные электрические цепи (другие шины, отдельные проводники). Такие шины могут иметь различную конструкцию, геометрическую форму и размеры.
    [Интент]

    шинопровод шина
    Медная, алюминиевая, реже стальная полоса, служащая для присоединения кабелей электрогенераторов, трансформаторов и т.д. к проводам питающей сети
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    общая шина
    -
    [IEV number 151-12-30]

    шина
    -
    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва]

    EN

    busbar
    low-impedance conductor to which several electric circuits can be connected at separate points
    NOTE – In many cases, the busbar consists of a bar.
    [IEV number 151-12-30]

    busbar
    An electrical conductor that makes a common connection between several circuits. Sometimes, electrical wire cannot accommodate high-current applications, and electricity must be conducted using a more substantial busbar — a thick bar of solid metal (usually copper or aluminum). Busbars are uninsulated, but are physically supported by insulators. They are used in electrical substations to connect incoming and outgoing transmission lines and transformers; in a power plant to connect the generator and the main transformers; in industry, to feed large amounts of electricity to equipment used in the aluminum smelting process, for example, or to distribute electricity in large buildings
    [ABB. Glossary of technical terms. 2010]

    FR

    barre omnibus, f
    conducteur de faible impédance auquel peuvent être reliés plusieurs circuits électriques en des points séparés
    NOTE – Dans de nombreux cas, une barre omnibus est constituée d’une barre.
    [IEV number 151-12-30]

     

    0079_1

    1. Сборные шины
    2. Распределительные шины

      2. Проводник прямоугольного сечения из меди, предназначенный для электротехнических целей
    (см. ГОСТ 434-78).

    Поставляется в бухтах, а также в полосах длиной не менее 2,5 м; По существу, это просто проволока прямоугольного сечения. В указанном ГОСТе и в технической документации, в которой она применяется, обязательно указываются размеры этой проволоки. Например, "Шина ШММ 8,00х40,00 ГОСТ 434-78" 0308
     

     

    шина
    Пруток прямоугольного сечения, применяемый в электротехнике в качестве проводника тока, изготовляемый прессованием или волочением.
    [ ГОСТ 25501-82]

    Тематики

    Действия

    • расположение шин «на ребро» [ПУЭ]
    • расположение шин «плашмя» [ПУЭ]

    Сопутствующие термины

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > шина (в электротехнике)

  • 9 шина (в электротехнике)

    1. barre omnibus

     

    шина
    Проводник с низким сопротивлением, к которому можно подсоединить несколько отдельных электрических цепей.
    Примечание — Термин «шина» не включает в себя геометрическую форму, габариты или размеры проводника.
    [ ГОСТ Р 51321. 1-2000 ( МЭК 60439-1-92)]
    [ ГОСТ Р МЭК 61439.1-2013]

    шина
    Конструктивный элемент низковольтного комплектного устройства (НКУ).
    Такой конструктивный элемент предназначен для того, чтобы к нему можно было легко присоединить отдельные электрические цепи (другие шины, отдельные проводники). Такие шины могут иметь различную конструкцию, геометрическую форму и размеры.
    [Интент]

    шинопровод шина
    Медная, алюминиевая, реже стальная полоса, служащая для присоединения кабелей электрогенераторов, трансформаторов и т.д. к проводам питающей сети
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    общая шина
    -
    [IEV number 151-12-30]

    шина
    -
    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва]

    EN

    busbar
    low-impedance conductor to which several electric circuits can be connected at separate points
    NOTE – In many cases, the busbar consists of a bar.
    [IEV number 151-12-30]

    busbar
    An electrical conductor that makes a common connection between several circuits. Sometimes, electrical wire cannot accommodate high-current applications, and electricity must be conducted using a more substantial busbar — a thick bar of solid metal (usually copper or aluminum). Busbars are uninsulated, but are physically supported by insulators. They are used in electrical substations to connect incoming and outgoing transmission lines and transformers; in a power plant to connect the generator and the main transformers; in industry, to feed large amounts of electricity to equipment used in the aluminum smelting process, for example, or to distribute electricity in large buildings
    [ABB. Glossary of technical terms. 2010]

    FR

    barre omnibus, f
    conducteur de faible impédance auquel peuvent être reliés plusieurs circuits électriques en des points séparés
    NOTE – Dans de nombreux cas, une barre omnibus est constituée d’une barre.
    [IEV number 151-12-30]

     

    0079_1

    1. Сборные шины
    2. Распределительные шины

      2. Проводник прямоугольного сечения из меди, предназначенный для электротехнических целей
    (см. ГОСТ 434-78).

    Поставляется в бухтах, а также в полосах длиной не менее 2,5 м; По существу, это просто проволока прямоугольного сечения. В указанном ГОСТе и в технической документации, в которой она применяется, обязательно указываются размеры этой проволоки. Например, "Шина ШММ 8,00х40,00 ГОСТ 434-78" 0308
     

     

    шина
    Пруток прямоугольного сечения, применяемый в электротехнике в качестве проводника тока, изготовляемый прессованием или волочением.
    [ ГОСТ 25501-82]

    Тематики

    Действия

    • расположение шин «на ребро» [ПУЭ]
    • расположение шин «плашмя» [ПУЭ]

    Сопутствующие термины

    EN

    DE

    FR

    Русско-французский словарь нормативно-технической терминологии > шина (в электротехнике)

  • 10 зануление

    1. nulling
    2. neutral grounding
    3. neutral earthing

     

    зануление
    Преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением
    [ ГОСТ 12.1.009-76]

    Защитное зануление в электроустановках напряжением до 1 кВ Преднамеренное соединение открытых проводящих частей с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с заземленной точкой источника в сетях постоянного тока, выполняемое в целях электробезопасности.
    [ПУЭ]

    Защитное заземление или зануление должно обеспечивать защиту людей от поражения электрическим током при прикосновении к металлическим нетоковедущим частям, которые могут оказаться под напряжением в результате повреждения изоляции.
    Защитному заземлению или занулению подлежат металлические части электроустановок, доступные для прикосновения человека и не имеющие других видов защиты, обеспечивающих электробезопасность.
    При занулении фазные и нулевые защитные проводники должны быть выбраны таким образом, чтобы при замыкании на корпус или на нулевой проводник, возникал ток короткого замыкания, обеспечивающий отключение автомата или плавление плавкой вставки ближайшего предохранителя

    [ ГОСТ 12.1.030-81]

    4687

    В сетях с глухозаземленной нейтралью корпус должен быть соединен с нулевым проводником. Нельзя соединять корпус с землей.


    ТЕХНИЧЕСКИЕ СРЕДСТВА ЗАЩИТЫ ОТ ПОРАЖЕНИЯ ЭЛЕКТРИЧЕСКИМ ТОКОМ

    ЗАНУЛЕНИЕ
    В предыдущем номере журнала мы начали разговор о технических средствах защиты от поражения электрическим током, предназначенных для уменьшения тока, проходящего через тело человека при случайном контакте с токоведущими частями или при необходимости выполнения работ под напряжением, до безопасного значения. В первой части материала были рассмотрены назначение и принцип действия защитного заземления, а также показана недопустимость применения защитного заземления в четырехпроводных сетях с глухим заземлением нейтрали. В этих сетях основным средством защиты от поражения током при замыкании фазы на корпус является зануление.

    Зануление — это намеренное соединение металлических нетоковедущих частей с нулевым проводом питающей сети (PE-проводником или PEN-проводником).

    Принцип действия
    При наличии зануления всякое замыкание фазы на корпус приводит к короткому замыканию, отключаемому штатными аппаратами максимальной защиты (автоматическими выключателями или плавкими предохранителями). На рис. 1 показан принцип действия зануления.


    Рис. 1 Принцип действия зануления

    В случае замыкания фазы В на корпус приемника К1 с помощью защитного зануляющего проводника ЗП1 формируется цепь тока короткого замыкания Iкз «фаза В — корпус К1 — зануляющий проводник ЗП1 —нулевой провод PEN — нейтраль обмотки питающего трансформатора». При этом автоматический вы-ключатель А1 снимает питание с неисправного приемника. В результате напряжение прикосновения к корпусу неисправного приемника Uпр = 0. Аналогично при замыкании фазы С на корпус электроприемника К2 срабатывает автоматический выключатель А2. После этого потенциал корпуса К2 также становится равным нулю.
    Технические требования к системе зануления, направленные на обеспечение автоматической защиты от поражения током, приведены в пп. 1.7.79 — 1.7.89 ПУЭ. Согласно п. 1.7.39 ПУЭ в этих сетях применение защитного заземления корпусов электроприемников без их зануления не допускается.

    Зануление и защитное заземление

    В реальных производственных условиях в сетях TN — C непосредственно с нулевым проводом соединяют только корпуса распределительных щитов (зануляют корпус щита). Корпуса всех приемников электроэнергии и нетоковедущие металлоконструкции заземляют, то есть соединяют их заземляющими проводниками ЗП с шиной заземления ШЗ (см. рис. 2).

    4689


    Рис. 2 Схема зануления и защитного заземления

    Так как шина ШЗ всегда имеет электрическую связь с нулевым проводом или с нейтралью обмотки трансформатора, то выполненное с ее помощью «заземление» фактически является занулением корпуса приемника электроэнергии. Например, при замыкании фазы на корпус К1 возникает ток короткого замыкания Iкз, и автоматический выключатель А1 отключает неисправный приемник.
    Пусть приемник с корпусом К3 получает питание от индивидуального трансформатора ТР (фактически от двухпроводной сети, изолированной от земли). Здесь при замыкании полюса сети на корпус будет протекать ток замыкания Iзам по контуру «полюс сети — корпус К3 — заземляющий проводник ЗП — шина заземления ШЗ — сопротивление заземления нейтрали R0 — сопротивление изоляции здорового полюса сети
    Rиз — второй полюс сети». Ток Iзам не отключается аппаратами защиты, так как его значение невелико, будучи ограниченным сопротивлением изоляции Rиз. В контуре этого тока рабочее напряжение сети падает на сопротивлениях Rиз и R0, при этом потенциал корпуса К3 равен падению напряжения на сопротивлении R0 << Rиз (напряжение прикосновения к корпусу К3 безопасно). То есть корпус К3 оказывается заземленным.
    Корпус трансформатора ТР также соединен перемычкой ЗП с шиной заземления. Что это — зануление или заземление? Оказывается, и то, и другое. Если происходит замыкание полюса первичной обмотки на корпус ТР, то перемычка ЗП работает в контуре зануления. Защита срабатывает и отключает трансформатор. Если повреждается вторичная обмотка, то та же перемычка работает в режиме защитного заземления. Трансформатор и получающий от него питание электроприемник не отключаются, а значение напряжения прикосновения к корпусу трансформатора снижается до безопасного.

    Таким образом, в реальных производственных условиях процессы зануления и защитного заземления одинаковы и заключаются в соединении металлических нетоковедущих частей с шиной заземления. Поэтому на практике используется обычно только один термин - заземление.

    Особенности зануления однофазных приемников при отсутствии шины заземления

    Именно однозначное использование термина «заземление» является причиной часто встречающегося на практике неправомерного применения защитного заземления в сетях с заземленным нулевым проводом. Особенно часто это явление встречается в двухпроводных сетях «фаза — нулевой провод» при отсутствии в помещении шины заземления.
    Зачастую в таких условиях зануление корпуса приемника выполняют с помощью заземляющего контакта в питающей трехполюсной вилке: в розетке делают перемычку между нулевым проводом и контактом заземления. При таком соединении в цепи защитного нулевого проводника возникает «разъединяющее приспособление», запрещенное ПУЭ (п. 1.7.83). Тем не менее, учитывая, что при отключении вилки одновременно отключаются и питающие приемник провода, запрещение правил на такой способ выполнения зануления, по-видимому, не распространяется. Здесь функция зануления полностью выполняется, так как обеспечивается срабатывание аппаратов защиты в случае замыкания фазы на корпус.
    Однако при таком соединении может формироваться другой вид опасности — пожароопасные ситуации. Дело в том, что когда в розетке силовые контакты расположены симметрично относительно «заземляющего», вилка может быть включена в любом положении, то есть любой ее контакт может быть подключен произвольно либо к фазному проводу (гнезду розетки), либо к нулевому проводу. При этом не исключается ситуация, когда штатный однополюсный выключатель в электроприемнике может оказаться в цепи не фазного, а нулевого провода. Тогда даже при выключенном вы-ключателе изоляция электроприемника будет непрерывно находиться под фазным напряжением и по контуру зануления будет непрерывно протекать ток утечки. Если имеется какое-либо повреждение изоляции (снижение ее сопротивления), то ток утечки возрастает и выделяющаяся тепловая энергия разогревает место повреждения. Так как изоляционные материалы имеют ионную проводимость (а не электронную, как проводники), то с увеличением температуры сопротивление изоляции уменьшается и соответственно увеличивается ток утечки. Этот процесс роста температуры при отсутствии должного теплоотвода приобретает лавинообразный характер и приводит к дуговому замыканию, то есть к формированию очага воспламенения. По данным ВНИИ противопожарной обороны (г. Балашиха), если в месте повреждения изоляции выделяется мощность 17 Вт, то возможно формирование электрической дуги через 20 часов протекания тока утечки (то есть при начальном значении тока 73 мА такой ток может чувствовать устройство защитного отключения, а не аппараты защиты от тока короткого замыкания).

    Таким образом, для обеспечения безопасного применения однофазных приемников следует применять трехполюсные розетки и вилки с ориентированным (несимметричным) расположением контактов либо дополнительно устанавливать устройство защитного отключения (УЗО). Для обеспечения срабатывания УЗО корпус приемника должен быть заземлен, то есть соединен с любой нетоковедущей металлоконструкцией, имеющей связь с землей. Другой способ обеспечения срабатывания УЗО — подключение защитного нулевого проводника не в розетке, а вне зоны защиты УЗО, то есть перед автоматическим выключателем.
    В следующем номере журнала мы продолжим разговор о технических средствах защиты от поражения электрическим током.

    [Журнал "Новости Электротехники" №4(16) 2002]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > зануление

  • 11 защита при косвенном прикосновении

    1. protection in case of indirect contact
    2. protection against indirect contact

     

    защита при косвенном прикосновении
    Защита от поражения электрическим током при прикосновении к открытым проводящим частям, оказавшимся под напряжением при повреждении изоляции.
    Термин повреждение изоляции следует понимать как единственное повреждение изоляции.
    [ПУЭ]

    защита от косвенного прикосновения при косвенном прикосновении к токоведущим частям
    Предотвращение опасного контакта персонала с открытыми проводящими частями.
    [ ГОСТ Р 51321. 1-2000 ( МЭК 60439-1-92)]

    EN

    protection in case of indirect contact
    protection of persons from hazards which could arise, in event of fault, from contact with exposed conductive parts of electrical equipment or extraneous conductive parts
    [IEC 61936-1, ed. 2.0 (2010-08)]

    FR

    protection contre le contact indirect
    protection des personnes contre les dangers susceptibles de résulter, en cas de défaut, d'un contact avec des parties conductrices accessibles de matériel électrique ou autres parties conductrices
    [IEC 61936-1, ed. 2.0 (2010-08)]

    131.2.2 Защита при повреждении (защита от косвенного прикосновения при косвенном прикосновении)
    Люди и домашние животные должны быть защищены от опасности, которая может возникать при контакте с открытыми проводящими частям электроустановки.
    Эту защиту можно осуществить одним из следующих способов:
    - предотвращением протекания электрического тока, возникающего при повреждении, через тело человека или домашнего животного;
    - ограничением тока, возникающего при повреждении, который может протекать через тело, до неопасного значения;
    - ограничением длительности протекания электрического тока, возникающего при повреждении, который может протекать через тело, до неопасного промежутка времени (автоматическое отключение питания).

    [ ГОСТ Р 50571. 1-2009 ( МЭК 60364-1: 2005)]

    1.7.53. Защиту при косвенном прикосновении следует выполнять во всех случаях, если напряжение в электроустановке превышает 50 В переменного и 120 В постоянного тока.
    В помещениях с повышенной опасностью, особо опасных и в наружных установках выполнение защиты при косвенном прикосновении может потребоваться при более низких напряжениях, например, 25 В переменного и 60 В постоянного тока или 12 В переменного и 30 В постоянного тока при наличии требований соответствующих глав ПУЭ.

    1.7.58. Питание электроустановок напряжением до 1 кВ переменного тока от источника с изолированной нейтралью с применением системы IT следует выполнять, как правило, при недопустимости перерыва питания при первом замыкании на землю или на открытые проводящие части, связанные с системой уравнивания потенциалов. В таких электроустановках для защиты при косвенном прикосновении при первом замыкании на землю должно быть выполнено защитное заземление в сочетании с контролем изоляции сети или применены УЗО с номинальным отключающим дифференциальным током не более 30 мА. При двойном замыкании на землю должно быть выполнено автоматическое отключение питания в соответствии с 1.7.81.
    1.7.59. Питание электроустановок напряжением до 1 кВ от источника с глухозаземленной нейтралью и с заземлением открытых проводящих частей при помощи заземлителя, не присоединенного к нейтрали (система ТТ), допускается только в тех случаях, когда условия электробезопасности в системе TN не могут быть обеспечены. Для защиты при косвенном прикосновении в таких электроустановках должно быть выполнено автоматическое отключение питания с обязательным применением УЗО...

    1.7.62. Если время автоматического отключения питания не удовлетворяет условиям 1.7.78-1.7.79 для системы TN и 1.7.81 для системы IT, то защита при косвенном прикосновении для отдельных частей электроустановки или отдельных электроприемников может быть выполнена применением двойной или усиленной изоляции (электрооборудование класса II), сверхнизкого напряжения (электрооборудование класса III), электрического разделения цепей изолирующих (непроводящих) помещений, зон, площадок.

    Меры защиты при косвенном прикосновении

    1.7.76. Требования защиты при косвенном прикосновении распространяются на:
    1) корпуса электрических машин, трансформаторов, аппаратов, светильников и т. п.;
    2) приводы электрических аппаратов;
    3) каркасы распределительных щитов, щитов управления, щитков и шкафов, а также съемных или открывающихся частей, если на последних установлено электрооборудование напряжением выше 50 В переменного или 120 В постоянного тока (в случаях, предусмотренных соответствующими главами ПУЭ - выше 25 В переменного или 60 В постоянного тока);
    4) металлические конструкции распределительных устройств, кабельные конструкции, кабельные муфты, оболочки и броню контрольных и силовых кабелей, оболочки проводов, рукава и трубы электропроводки, оболочки и опорные конструкции шинопроводов (токопроводов), лотки, короба, струны, тросы и полосы, на которых укреплены кабели и провода (кроме струн, тросов и полос, по которым проложены кабели с зануленной или заземленной металлической оболочкой или броней), а также другие металлические конструкции, на которых устанавливается электрооборудование;
    5) металлические оболочки и броню контрольных и силовых кабелей и проводов на напряжения, не превышающие указанные в 1.7.53, проложенные на общих металлических конструкциях, в том числе в общих трубах, коробах, лотках и т. п., с кабелями и проводами на более высокие напряжения;
    6) металлические корпуса передвижных и переносных электроприемников;
    7) электрооборудование, установленное на движущихся частях станков, машин и механизмов.
    При применении в качестве защитной меры автоматического отключения питания указанные открытые проводящие части должны быть присоединены к глухозаземленной нейтрали источника питания в системе TN и заземлены в системах IT и ТТ.

    1.7.148. Питание переносных электроприемников переменного тока следует выполнять от сети напряжением не выше 380/220 В.
    В зависимости от категории помещения по уровню опасности поражения людей электрическим током (см. гл. 1.1) для защиты при косвенном прикосновении в цепях, питающих переносные электроприемники, могут быть применены автоматическое отключение питания, защитное электрическое разделение цепей, сверхнизкое напряжение, двойная изоляция.

    [ПУЭ]

    Параллельные тексты EN-RU

    Protection against indirect contact is intended to prevent hazardous situations due to an insulation fault between live parts and exposed conductive parts.

    For each circuit or part of the electrical equipment, at least one of the measures in accordance with 6.3.2 to 6.3.3 shall be applied:

    – measures to prevent the occurrence of a touch voltage;
    or
    – automatic disconnection of the supply before the time of contact with a touch voltage can become hazardous.

    [IEC 60204-1-2006]

    Защита при косвенном прикосновении предназначена для предовращения опасности, которая может возникнуть в случае повреждения изоляции между токоведущими и открытыми проводящими частями.
    Для каждой цепи или части электрооборудования должна применяться хотя бы одна из мер защиты, указанная в 6.3.2 и 6.3.3:

    - меры, препятсвующие возникновению напряжения прикосновения;
    или
    - автоматическое отключение питания до того, как возникнет опасное напряжение прикосновения.


    [Перевод Интент]

    Тематики

    EN

    FR

    Русско-английский словарь нормативно-технической терминологии > защита при косвенном прикосновении

  • 12 пыльное помещение

    1. dusty room

     

    пыльное помещение
    Помещение, в котором по условиям производства выделяется технологическая пыль, которая может оседать на токоведущих частях, проникать внутрь машин, аппаратов и т. п.
    [ПУЭ]

    • Для вентиляции камер трансформаторов, размещаемых в помещениях с воздухом, содержащим пыль либо токопроводящие или разъедающие смеси, воздух должен забираться извне или очищаться фильтрами.
      [ПУЭ. п. 4.2.115]
    • Приводы аппаратов, расположенных в помещениях, где возможно скапливание пыли, следует выполнять на одном валу с электродвигателем или применять закрытые редукторы.
      [ПБЛП - 93]

    Сопутствующие термины

    • помещение с нетокопроводящей пылью [ПУЭ]
    • помещение с токопроводящей пылью [ПУЭ]

    EN

    Русско-английский словарь нормативно-технической терминологии > пыльное помещение

  • 13 защита при косвенном прикосновении

    1. protection contre le contact indirect

     

    защита при косвенном прикосновении
    Защита от поражения электрическим током при прикосновении к открытым проводящим частям, оказавшимся под напряжением при повреждении изоляции.
    Термин повреждение изоляции следует понимать как единственное повреждение изоляции.
    [ПУЭ]

    защита от косвенного прикосновения при косвенном прикосновении к токоведущим частям
    Предотвращение опасного контакта персонала с открытыми проводящими частями.
    [ ГОСТ Р 51321. 1-2000 ( МЭК 60439-1-92)]

    EN

    protection in case of indirect contact
    protection of persons from hazards which could arise, in event of fault, from contact with exposed conductive parts of electrical equipment or extraneous conductive parts
    [IEC 61936-1, ed. 2.0 (2010-08)]

    FR

    protection contre le contact indirect
    protection des personnes contre les dangers susceptibles de résulter, en cas de défaut, d'un contact avec des parties conductrices accessibles de matériel électrique ou autres parties conductrices
    [IEC 61936-1, ed. 2.0 (2010-08)]

    131.2.2 Защита при повреждении (защита от косвенного прикосновения при косвенном прикосновении)
    Люди и домашние животные должны быть защищены от опасности, которая может возникать при контакте с открытыми проводящими частям электроустановки.
    Эту защиту можно осуществить одним из следующих способов:
    - предотвращением протекания электрического тока, возникающего при повреждении, через тело человека или домашнего животного;
    - ограничением тока, возникающего при повреждении, который может протекать через тело, до неопасного значения;
    - ограничением длительности протекания электрического тока, возникающего при повреждении, который может протекать через тело, до неопасного промежутка времени (автоматическое отключение питания).

    [ ГОСТ Р 50571. 1-2009 ( МЭК 60364-1: 2005)]

    1.7.53. Защиту при косвенном прикосновении следует выполнять во всех случаях, если напряжение в электроустановке превышает 50 В переменного и 120 В постоянного тока.
    В помещениях с повышенной опасностью, особо опасных и в наружных установках выполнение защиты при косвенном прикосновении может потребоваться при более низких напряжениях, например, 25 В переменного и 60 В постоянного тока или 12 В переменного и 30 В постоянного тока при наличии требований соответствующих глав ПУЭ.

    1.7.58. Питание электроустановок напряжением до 1 кВ переменного тока от источника с изолированной нейтралью с применением системы IT следует выполнять, как правило, при недопустимости перерыва питания при первом замыкании на землю или на открытые проводящие части, связанные с системой уравнивания потенциалов. В таких электроустановках для защиты при косвенном прикосновении при первом замыкании на землю должно быть выполнено защитное заземление в сочетании с контролем изоляции сети или применены УЗО с номинальным отключающим дифференциальным током не более 30 мА. При двойном замыкании на землю должно быть выполнено автоматическое отключение питания в соответствии с 1.7.81.
    1.7.59. Питание электроустановок напряжением до 1 кВ от источника с глухозаземленной нейтралью и с заземлением открытых проводящих частей при помощи заземлителя, не присоединенного к нейтрали (система ТТ), допускается только в тех случаях, когда условия электробезопасности в системе TN не могут быть обеспечены. Для защиты при косвенном прикосновении в таких электроустановках должно быть выполнено автоматическое отключение питания с обязательным применением УЗО...

    1.7.62. Если время автоматического отключения питания не удовлетворяет условиям 1.7.78-1.7.79 для системы TN и 1.7.81 для системы IT, то защита при косвенном прикосновении для отдельных частей электроустановки или отдельных электроприемников может быть выполнена применением двойной или усиленной изоляции (электрооборудование класса II), сверхнизкого напряжения (электрооборудование класса III), электрического разделения цепей изолирующих (непроводящих) помещений, зон, площадок.

    Меры защиты при косвенном прикосновении

    1.7.76. Требования защиты при косвенном прикосновении распространяются на:
    1) корпуса электрических машин, трансформаторов, аппаратов, светильников и т. п.;
    2) приводы электрических аппаратов;
    3) каркасы распределительных щитов, щитов управления, щитков и шкафов, а также съемных или открывающихся частей, если на последних установлено электрооборудование напряжением выше 50 В переменного или 120 В постоянного тока (в случаях, предусмотренных соответствующими главами ПУЭ - выше 25 В переменного или 60 В постоянного тока);
    4) металлические конструкции распределительных устройств, кабельные конструкции, кабельные муфты, оболочки и броню контрольных и силовых кабелей, оболочки проводов, рукава и трубы электропроводки, оболочки и опорные конструкции шинопроводов (токопроводов), лотки, короба, струны, тросы и полосы, на которых укреплены кабели и провода (кроме струн, тросов и полос, по которым проложены кабели с зануленной или заземленной металлической оболочкой или броней), а также другие металлические конструкции, на которых устанавливается электрооборудование;
    5) металлические оболочки и броню контрольных и силовых кабелей и проводов на напряжения, не превышающие указанные в 1.7.53, проложенные на общих металлических конструкциях, в том числе в общих трубах, коробах, лотках и т. п., с кабелями и проводами на более высокие напряжения;
    6) металлические корпуса передвижных и переносных электроприемников;
    7) электрооборудование, установленное на движущихся частях станков, машин и механизмов.
    При применении в качестве защитной меры автоматического отключения питания указанные открытые проводящие части должны быть присоединены к глухозаземленной нейтрали источника питания в системе TN и заземлены в системах IT и ТТ.

    1.7.148. Питание переносных электроприемников переменного тока следует выполнять от сети напряжением не выше 380/220 В.
    В зависимости от категории помещения по уровню опасности поражения людей электрическим током (см. гл. 1.1) для защиты при косвенном прикосновении в цепях, питающих переносные электроприемники, могут быть применены автоматическое отключение питания, защитное электрическое разделение цепей, сверхнизкое напряжение, двойная изоляция.

    [ПУЭ]

    Параллельные тексты EN-RU

    Protection against indirect contact is intended to prevent hazardous situations due to an insulation fault between live parts and exposed conductive parts.

    For each circuit or part of the electrical equipment, at least one of the measures in accordance with 6.3.2 to 6.3.3 shall be applied:

    – measures to prevent the occurrence of a touch voltage;
    or
    – automatic disconnection of the supply before the time of contact with a touch voltage can become hazardous.

    [IEC 60204-1-2006]

    Защита при косвенном прикосновении предназначена для предовращения опасности, которая может возникнуть в случае повреждения изоляции между токоведущими и открытыми проводящими частями.
    Для каждой цепи или части электрооборудования должна применяться хотя бы одна из мер защиты, указанная в 6.3.2 и 6.3.3:

    - меры, препятсвующие возникновению напряжения прикосновения;
    или
    - автоматическое отключение питания до того, как возникнет опасное напряжение прикосновения.


    [Перевод Интент]

    Тематики

    EN

    FR

    Русско-французский словарь нормативно-технической терминологии > защита при косвенном прикосновении

  • 14 мачтовая трансформаторная подстанция

    1. Maststation

     

    мачтовая трансформаторная ПС
    МТП

    Открытая трансформаторная ПС, все оборудование которой установлено на конструкциях (в том числе на двух и более стойках опор ВЛ) с площадкой обслуживания на высоте, не требующей ограждения ПС.
    [ПУЭ, п. 4.2.11]
    [Приказ Минэнерго РФ от 20.06.2003 N 242 "Об утверждении глав Правил устройства электроустановок" (вместе с "Правилами устройства электроустановок. Седьмое издание. Раздел 4. Распределительные устройства и подстанции. Главы 4.1, 4.2")]

    мачтовая подстанция

    мачтовая трансформаторная подстанция
    Открытая трансформаторная подстанция, оборудование которой установлено на одной или нескольких опорах линии электропередачи, не требующая наземных ограждений.
    [ ГОСТ 24291-90]

    столбовая (мачтовая) трансформаторная подстанция
    Столбовой (мачтовой) трансформаторной подстанцией называется открытая трансформаторная подстанция, все оборудование которой установлено на конструкциях или на опорах ВЛ на высоте, не требующей ограждения подстанции.
    [ПУЭ, 4.2.9.]

    EN

    pole-mounted substation
    an outdoor distribution substation mounted on one or more poles
    [IEV number 605-02-19]

    FR

    poste sur poteau
    poste extérieur de distribution monté sur un ou plusieurs poteaux
    [IEV number 605-02-19]


    МТП сооружают на А-, П- или АП-образных или одностоечных конструкциях, изготавливаемых из железобетонных или деревянных стоек.

    На А-образной конструкции монтируется все оборудование ПС: разъединитель, предохранители, разрядники, однофазный трансформатор мощностью более 10 кВА и распределительный щит 0,23— 0,4 кВ. Подстанция не имеет площадки обслуживания и лестницы.

    П-образные конструкции используются для ПС с трехфазными трансформаторами мощностью до 250 кВА включительно. Трансформатор располагается на площадке на высоте от земли не менее 3,5 м.

    АП-образные конструкции применяются для ПС с трансформаторами мощностью до 400 кВА. На них монтируются все оборудование, в том числе и разъединитель. Для обслуживания МТП на высоте не менее 3 м должна быть устроена площадка с перилами. Для подъема на МТП рекомендуется применять лестницы с устройством, запрещающим подъем по ней при включенном коммутационном аппарате.

    [ http://energy-ua.com/elektricheskie-p/klassifikatsiya.html]
     

    5277
    Мачтовая трансформаторная подстанция

    Тематики

    Синонимы

    EN

    DE

    FR

    Русско-немецкий словарь нормативно-технической терминологии > мачтовая трансформаторная подстанция

  • 15 шинопровод

    1. Schienenverteiler

     

    система сборных шин
    шинопровод
    Устройство, представляющее собой систему проводников, состоящее из шин, установленных на опорах из изоляционного материала или в каналах, коробах или подобных оболочках, и прошедшее типовые испытания.
    Устройство может состоять из следующих элементов:
    - прямые секции с узлами ответвления или без них;
    - секции для изменения положения фаз, разветвления, поворота, а также вводные и переходные;
    - секции ответвленные.
    Примечание — Термин «шинопровод» не определяет геометрическую форму, габариты и размеры проводников.
    (МЭС 441-12-07, с изменением)
    [ ГОСТ Р 51321. 1-2000 ( МЭК 60439-1-92)]

    шинопровод
    Жесткий токопровод до 1 кВ заводского изготовления, поставляемый комплектными секциями.
    [ПУЭ]

    шинопровод
    Жесткий токопровод напряжением до 1000 В заводского изготовления, поставляемый комплектными секциями.
    [ОСТ 36-115-85]

    шинопровод
    Жесткий токопровод напряжением до 1 кВ, предназначенный для передачи и распределения электроэнергии, состоящий из неизолированных или изолированных проводников (шин) и относящихся к ним изоляторов, защитных оболочек, ответвительных устройств, поддерживающих и опорных конструкций.
    [ ГОСТ Р 53310-2012]

    EN

    busway
    A prefabricated assembly of standard lengths of busbars rigidly supported by solid insulation and enclosed in a sheet-metal housing.
    [ http://www.answers.com/topic/busway]

    busway
    Busway is defined by the National Electrical Manufacturers Association (NEMA) as a prefabricated electrical distribution system consisting of bus bars in a protective enclosure, including straight lengths, fittings, devices, and accessories. Busway includes bus bars, an insulating and/or support material, and a housing.
    [ http://electrical-engineering-portal.com/siemens-busway-purpose-and-definition]

    КЛАССИФИКАЦИЯ [ ГОСТ 6815-79]

    1.1. Шинопроводы по назначению подразделяются на:

    • распределительные, предназначенные для распределения электрической энергии;
    • магистральные, предназначенные для передачи электрической энергии от источника к месту распределения (распределительным пунктам, распределительным шинопроводам) или мощным приемникам электрической энергии.

    1.2. По конструктивному исполнению шинопроводы подразделяются на:

    • трехфазные;
    • трехфазные с нулевым рабочим проводником;
    • трехфазные с нулевым рабочим и нулевым защитным проводником.

    2. Основные параметры и размеры

    2.1. Основные элементы шинопроводов

    2.1.1. Основными элементами распределительных шинопроводов являются:

    а) прямые секции - для прямолинейных участков линии, имеющие места для присоединения одного или двух ответвительных устройств для секций длиной до 2 м включительно, двух, трех, четырех или более - для секций длиной 3 м;
    б) прямые прогоночные секции - для прямолинейных участков линий, где присоединение ответвительных устройств не требуется;
    в) угловые секции - для поворотов линии на 90° в горизонтальной и вертикальной плоскостях;
    г) вводные секции или вводные коробки с коммутационной, защитной и коммутационной аппаратурой или без нее - для подвода питания к шинопроводам кабелем, проводами или шинопроводом;
    д) переходные секции или устройства - для соединения двух шинопроводов на различные номинальные токи или шинопроводов разных конструкций;
    е) ответвительные устройства (коробки, штепсели) - для разъемного присоединения приемников электрической энергии. Коробки должны выпускаться с разъединителем, с разъединителем и с предохранителями или с автоматическим выключателем;
    з) присоединительные фланцы - для сочленения оболочек шинопроводов с оболочками щитов или шкафов;
    и) торцовые крышки (заглушки) - для закрытия торцов крайних секций шинопровода;
    к) устройства для крепления шинопроводов к элементам строительных конструкций зданий и сооружений;

    2.1.2. Основными элементами магистральных шинопроводов являются:

    а) прямые секции - для прямолинейных участков линий;
    б) угловые секции - для поворотов линий на 90° в горизонтальной и вертикальной плоскостях;
    в) тройниковые секции - для разветвления в трех направлениях под углом 90° в горизонтальной и вертикальной плоскостях;
    г) подгоночные секции - для подгонки линии шинопроводов до необходимой длины;
    д) разделительные секции с разъединителем - для секционирования магистральных линий шинопроводов;
    е) компенсационные секции - для компенсации температурных изменений длины линии шинопроводов;
    ж) переходные секции - для соединения шинопроводов на разные номинальные токи;
    з) ответвительные устройства (секции, коробки) - для неразборного, разборного или разъемного присоединения распределительных пунктов, распределительных шинопроводов или приемников электрической энергии. Коробки должны выпускаться с разъединителем, с разъединителем и предохранителями или с автоматическим выключателем; секции могут выпускаться без указанных аппаратов;
    и) присоединительные секции - для присоединения шинопроводов к комплектным трансформаторным подстанциям;
    к) проходные секции - для прохода через стены и перекрытия;
    л) набор деталей и материалов для изолирования мест соединения секций шинопроводов с изолированными шинами;
    м) устройства для крепления шинопроводов к элементам строительных конструкций зданий и сооружений;
    н) крышки (заглушки) торцовые и угловые для закрытия торцов концевых секций шинопровода и углов.


    2.2.3. В зависимости от вида проводников токопроводы подразделяются на гибкие (при использовании проводов) и жесткие (при использовании жестких шин).
    Жесткий токопровод до 1 кВ заводского изготовления, поставляемый комплектными секциями, называется шинопроводом.

    В зависимости от назначения шинопроводы подразделяются на:

    1. магистральные, предназначенные в основном для присоединения к ним распределительных шинопроводов и силовых распределительных пунктов, щитов и отдельных мощных электроприемников;
    2. распределительные, предназначенные в основном для присоединения к ним электроприемников;
    3. троллейные, предназначенные для питания передвижных электроприемников;
    4. осветительные, предназначенные для питания светильников и электроприемников небольшой мощности.

    [ПУЭ, часть 2]


     


    4468
    [ http://electrical-engineering-portal.com/siemens-busway-purpose-and-definition]


    4470


    4471
    [ http://electrical-engineering-portal.com/standards-and-applications-of-medium-voltage-bus-duct]
    Конструкция шинопровода на среднее напряжение

    Параллельные тексты EN-RU

    A major advantage of busway is the ease in which busway sections are connected together.

    Electrical power can be supplied to any area of a building by connecting standard lengths of busway.

    It typically takes fewer man-hours to install or change a busway system than cable and conduit assemblies.

    Основное преимущество шинопровода заключается в легкости соединения его секций.

    Соединяя эти стандартные секции можно легко снабдить электроэнергией любую часть здания.

    Как правило, установить или изменить систему шинопроводов занимает гораздо меньше времени, чем выполнить аналогичные работы, применяя разводку кабелем в защитных трубах.

    4504

    [ http://electrical-engineering-portal.com/siemens-busway-purpose-and-definition]

    The total distribution system frequently consists of a combination of busway and cable and conduit.

    In this example power from the utility company is metered and enters the plant through a distribution switchboard.

    The switchboard serves as the main disconnecting means.

    Как правило, распределение электроэнергии производится как через шинопроводы, так и через проложенные в защитных трубах кабели.

    В данном примере поступающая от питающей сети электроэнергия измеряется на вводе в главное распределительный щит (ГРЩ).

    ГРЩ является главным коммутационным устройством.

    The feeder on the left feeds a distribution switchboard, which in turn feeds a panelboard and a 480 volt, three-phase, three-wire (3Ø3W) motor.

    Распределительная цепь, изображенная слева, питает распределительный щит, который в свою очередь питает групповой щиток и электродвигатель.
    Электродвигатель получает питание через трехфазную трехпроводную линию напряжением 480 В.

    The middle feeder feeds another switchboard, which divides the power into three, three-phase, three-wire circuits. Each circuit feeds a busway run to 480 volt motors.

    Средняя (на чертеже) распределительная цепь питает другой распределительный щит, от которого электроэнергия распределяется через три трехфазные трехпроводные линии на шинопроводы.
    Каждый шинопровод используется для питания электродвигателей напряжением 480 В.

    The feeder on the right supplies 120/208 volt power, through a step-down transformer, to lighting and receptacle panelboards.

    Распределительная цепь, изображенная справа, питает напряжением 120/208 В через понижающий трансформатор щитки для отдельных групп светильников и штепсельных розеток.

    Branch circuits from the lighting and receptacle panelboards supply power for lighting and outlets throughout the plant.
    [ http://electrical-engineering-portal.com/siemens-busway-purpose-and-definition]

    Групповые электрические цепи, идущие от групповых щитков, предназначены для питания всех светильников и штепсельных розеток предприятия.

    [Перевод Интент]

     

    Selection of the busbar trunking system based on voltage drop.
    [Legrand]

    Выбор шинопровода по падению напряжения.
    [Перевод Интент]


     

    Недопустимые, нерекомендуемые

    Примечание(1)- Мнение автора карточки

    Тематики

    Обобщающие термины

    Близкие понятия

    • электропроводки, выполненные шинопроводами

    Действия

    Сопутствующие термины

    EN

    DE

    FR

    Русско-немецкий словарь нормативно-технической терминологии > шинопровод

  • 16 мачтовая трансформаторная подстанция

    1. pole-mounted substation

     

    мачтовая трансформаторная ПС
    МТП

    Открытая трансформаторная ПС, все оборудование которой установлено на конструкциях (в том числе на двух и более стойках опор ВЛ) с площадкой обслуживания на высоте, не требующей ограждения ПС.
    [ПУЭ, п. 4.2.11]
    [Приказ Минэнерго РФ от 20.06.2003 N 242 "Об утверждении глав Правил устройства электроустановок" (вместе с "Правилами устройства электроустановок. Седьмое издание. Раздел 4. Распределительные устройства и подстанции. Главы 4.1, 4.2")]

    мачтовая подстанция

    мачтовая трансформаторная подстанция
    Открытая трансформаторная подстанция, оборудование которой установлено на одной или нескольких опорах линии электропередачи, не требующая наземных ограждений.
    [ ГОСТ 24291-90]

    столбовая (мачтовая) трансформаторная подстанция
    Столбовой (мачтовой) трансформаторной подстанцией называется открытая трансформаторная подстанция, все оборудование которой установлено на конструкциях или на опорах ВЛ на высоте, не требующей ограждения подстанции.
    [ПУЭ, 4.2.9.]

    EN

    pole-mounted substation
    an outdoor distribution substation mounted on one or more poles
    [IEV number 605-02-19]

    FR

    poste sur poteau
    poste extérieur de distribution monté sur un ou plusieurs poteaux
    [IEV number 605-02-19]


    МТП сооружают на А-, П- или АП-образных или одностоечных конструкциях, изготавливаемых из железобетонных или деревянных стоек.

    На А-образной конструкции монтируется все оборудование ПС: разъединитель, предохранители, разрядники, однофазный трансформатор мощностью более 10 кВА и распределительный щит 0,23— 0,4 кВ. Подстанция не имеет площадки обслуживания и лестницы.

    П-образные конструкции используются для ПС с трехфазными трансформаторами мощностью до 250 кВА включительно. Трансформатор располагается на площадке на высоте от земли не менее 3,5 м.

    АП-образные конструкции применяются для ПС с трансформаторами мощностью до 400 кВА. На них монтируются все оборудование, в том числе и разъединитель. Для обслуживания МТП на высоте не менее 3 м должна быть устроена площадка с перилами. Для подъема на МТП рекомендуется применять лестницы с устройством, запрещающим подъем по ней при включенном коммутационном аппарате.

    [ http://energy-ua.com/elektricheskie-p/klassifikatsiya.html]
     

    5277
    Мачтовая трансформаторная подстанция

    Тематики

    Синонимы

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > мачтовая трансформаторная подстанция

  • 17 управление электропитанием

    1. power management

     

    управление электропитанием
    -
    [Интент]


    Управление электропитанием ЦОД

    Автор: Жилкина Наталья
    Опубликовано 23 апреля 2009 года


    Источники бесперебойного питания, функционирующие в ЦОД, составляют важный элемент общей системы его энергообеспечения. Вписываясь в контур управления ЦОД, система мониторинга и управления ИБП становится ядром для реализации эксплуатационных функций.

    Три задачи

    Системы мониторинга, диагностики и управления питанием нагрузки решают три основные задачи: позволяют ИБП выполнять свои функции, оповещать персонал о происходящих с ними событиях и посылать команды для автоматического завершения работы защищаемого устройства.

    Мониторинг параметров ИБП предполагает отображение и протоколирование состояния устройства и всех событий, связанных с его изменением. Диагностика реализуется функциями самотестирования системы. Управляющие же функции предполагают активное вмешательство в логику работы устройства.

    Многие специалисты этого рынка, отмечая важность процедуры мониторинга, считают, что управление должно быть сведено к минимуму. «Функция управления ИБП тоже нужна, но скорее факультативно, — говорит Сергей Ермаков, технический директор компании Inelt и эксперт в области систем Chloride. — Я глубоко убежден, что решения об активном управляющем вмешательстве в работу систем защиты электропитания ответственной нагрузки должен принимать человек, а не автоматизированная система. Завершение работы современных мощных серверов, на которых функционируют ответственные приложения, — это, как правило, весьма длительный процесс. ИБП зачастую не способны обеспечивать необходимое для него время, не говоря уж о времени запуска какого-то сервиса». Функция же мониторинга позволяет предотвратить наступление нежелательного события — либо, если таковое произошло, проанализировать его причины, опираясь не на слова, а на запротоколированные данные, хранящиеся в памяти адаптера или файлах на рабочей станции мониторинга.

    Эту точку зрения поддерживает и Алексей Сарыгин, технический директор компании Radius Group: «Дистанционное управление мощных ИБП — это вопрос, к которому надо подходить чрезвычайно аккуратно. Если функции дистанционного мониторинга и диспетчеризации необходимы, то практика предоставления доступа персоналу к функциям дистанционного управления представляется радикально неверной. Доступность модулей управления извне потенциально несет в себе риск нарушения безопасности и категорически снижает надежность системы. Если существует физическая возможность дистанционно воздействовать на ИБП, на его параметры, отключение, снятие нагрузки, закрытие выходных тиристорных ключей или блокирование цепи байпаса, то это чревато потерей питания всего ЦОД».

    Практически на всех трехфазных ИБП предусмотрена кнопка E.P.O. (Emergency Power Off), дублер которой может быть выведен на пульт управления диспетчерской. Она обеспечивает аварийное дистанционное отключение блоков ИБП при наступлении аварийных событий. Это, пожалуй, единственная возможность обесточить нагрузку, питаемую от трехфазного аппарата, но реализуется она в исключительных случаях.

    Что же касается диагностики электропитания, то, как отмечает Юрий Копылов, технический директор московского офиса корпорации Eaton, в последнее время характерной тенденцией в управляющем программном обеспечении стал отказ от предоставления функций удаленного тестирования батарей даже системному администратору.

    — Адекватно сравнивать состояние батарей необходимо под нагрузкой, — говорит он, — сам тест запускать не чаще чем раз в два дня, а разряжать батареи надо при одном и том же токе и уровне нагрузки. К тому же процесс заряда — довольно долгий. Все это не идет батареям на пользу.

    Средства мониторинга

    Производители ИБП предоставляют, как правило, сразу несколько средств мониторинга и в некоторых случаях даже управления ИБП — все они основаны на трех основных методах.

    В первом случае устройство подключается напрямую через интерфейс RS-232 (Com-порт) к консоли администратора. Дальность такого подключения не превышает 15 метров, но может быть увеличена с помощью конверторов RS-232/485 и RS-485/232 на концах провода, связывающего ИБП с консолью администратора. Такой способ обеспечивает низкую скорость обмена информацией и пригоден лишь для топологии «точка — точка».

    Второй способ предполагает использование SNMP-адаптера — встроенной или внешней интерфейсной карты, позволяющей из любой точки локальной сети получить информацию об основных параметрах ИБП. В принципе, для доступа к ИБП через SNMP достаточно веб-браузера. Однако для большего комфорта производители оснащают свои системы более развитым графическим интерфейсом, обеспечивающим функции мониторинга и корректного завершения работы. На базе SNMP-протокола функционируют все основные системы мониторинга и управления ИБП, поставляемые штатно или опционально вместе с ИБП.

    Стандартные SNMP-адаптеры поддерживают подключение нескольких аналоговых или пороговых устройств — датчик температуры, движения, открытия двери и проч. Интеграция таких устройств в общую систему мониторинга крупного объекта (например, дата-центра) позволяет охватить огромное количество точек наблюдения и отразить эту информацию на экране диспетчера.

    Большое удобство предоставляет метод эксплуатационного удаленного контроля T.SERVICE, позволяющий отследить работу оборудования посредством телефонной линии (через модем GSM) или через Интернет (с помощью интерфейса Net Vision путем рассылки e-mail на электронный адрес потребителя). T.SERVICE обеспечивает диагностирование оборудования в режиме реального времени в течение 24 часов в сутки 365 дней в году. ИБП автоматически отправляет в центр технического обслуживания регулярные отчеты или отчеты при обнаружении неисправности. В зависимости от контролируемых параметров могут отправляться уведомления о неправильной эксплуатации (с пользователем связывается опытный специалист и рекомендует выполнить простые операции для предотвращения ухудшения рабочих характеристик оборудования) или о наличии отказа (пользователь информируется о состоянии устройства, а на место установки немедленно отправляется технический специалист).

    Профессиональное мнение

    Наталья Маркина, коммерческий директор представительства компании SOCOMEC

    Управляющее ПО фирмы SOCOMEC легко интегрируется в общий контур управления инженерной инфраструктурой ЦОД посредством разнообразных интерфейсов передачи данных ИБП. Установленное в аппаратной или ЦОД оборудование SOCOMEC может дистанционно обмениваться информацией о своих рабочих параметрах с системами централизованного управления и компьютерными сетями посредством сухих контактов, последовательных портов RS232, RS422, RS485, а также через интерфейс MODBUS TCP и GSS.

    Интерфейс GSS предназначен для коммуникации с генераторными установками и включает в себя 4 входа (внешние контакты) и 1 выход (60 В). Это позволяет программировать особые процедуры управления, Global Supply System, которые обеспечивают полную совместимость ИБП с генераторными установками.

    У компании Socomec имеется широкий выбор интерфейсов и коммуникационного программного обеспечения для установки диалога между ИБП и удаленными системами мониторинга промышленного и компьютерного оборудования. Такие опции связи, как панель дистанционного управления, интерфейс ADC (реконфигурируемые сухие контакты), обеспечивающий ввод и вывод данных при помощи сигналов сухих контактов, интерфейсы последовательной передачи данных RS232, RS422, RS485 по протоколам JBUS/MODBUS, PROFIBUS или DEVICENET, MODBUS TCP (JBUS/MODBUS-туннелирование), интерфейс NET VISION для локальной сети Ethernet, программное обеспечение TOP VISION для выполнения мониторинга с помощью рабочей станции Windows XP PRO — все это позволяет контролировать работу ИБП удобным для пользователя способом.

    Весь контроль управления ИБП, ДГУ, контроль окружающей среды сводится в единый диспетчерский пункт посредством протоколов JBUS/MODBUS.
     

    Индустриальный подход

    Третий метод основан на использовании высокоскоростной индустриальной интерфейсной шины: CANBus, JBus, MODBus, PROFIBus и проч. Некоторые модели ИБП поддерживают разновидность универсального smart-слота для установки как карточек SNMP, так и интерфейсной шины. Система мониторинга на базе индустриальной шины может быть интегрирована в уже существующую промышленную SCADA-систему контроля и получения данных либо создана как заказное решение на базе многофункциональных стандартных контроллеров с выходом на шину. Промышленная шина через шлюзы передает информацию на удаленный диспетчерский пункт или в систему управления зданием (Building Management System, BMS). В эту систему могут быть интегрированы и контроллеры, управляющие ИБП.

    Универсальные SCADA-системы поддерживают датчики и контроллеры широкого перечня производителей, но они недешевы и к тому же неудобны для внесения изменений. Но если подобная система уже функционирует на объекте, то интеграция в нее дополнительных ИБП не представляет труда.

    Сергей Ермаков, технический директор компании Inelt, считает, что применение универсальных систем управления на базе промышленных контроллеров нецелесообразно, если используется для мониторинга только ИБП и ДГУ. Один из практичных подходов — создание заказной системы, с удобной для заказчика графической оболочкой и необходимым уровнем детализации — от карты местности до поэтажного плана и погружения в мнемосхему компонентов ИБП.

    — ИБП может передавать одинаковое количество информации о своем состоянии и по прямому соединению, и по SNMP, и по Bus-шине, — говорит Сергей Ермаков. — Применение того или иного метода зависит от конкретной задачи и бюджета. Создав первоначально систему UPS Look для мониторинга ИБП, мы интегрировали в нее систему мониторинга ДГУ на основе SNMP-протокола, после чего по желанию одного из заказчиков конвертировали эту систему на промышленную шину Jbus. Новое ПО JSLook для мониторинга неограниченного количества ИБП и ДГУ по протоколу JBus является полнофункциональным средством мониторинга всей системы электроснабжения объекта.

    Профессиональное мение

    Денис Андреев, руководитель департамента ИБП компании Landata

    Практически все ИБП Eaton позволяют использовать коммуникационную Web-SNMP плату Connect UPS и датчик EMP (Environmental Monitoring Probe). Такой комплект позволяет в числе прочего осуществлять мониторинг температуры, влажности и состояния пары «сухих» контактов, к которым можно подключить внешние датчики.

    Решение Eaton Environmental Rack Monitor представляет собой аналог такой связки, но с существенно более широким функционалом. Внешне эта система мониторинга температуры, влажности и состояния «сухих» контактов выполнена в виде компактного устройства, которое занимает минимум места в шкафу или в помещении.

    Благодаря наличию у Eaton Environmental Rack Monitor (ERM) двух выходов датчики температуры или влажности можно разместить в разных точках стойки или помещения. Поскольку каждый из двух датчиков имеет еще по два сухих контакта, с них дополнительно можно принимать сигналы от датчиков задымления, утечки и проч. В центре обработки данных такая недорогая система ERM, состоящая из неограниченного количества датчиков, может транслировать информацию по протоколу SNMP в HTML-страницу и позволяет, не приобретая специального ПО, получить сводную таблицу измеряемых величин через веб-браузер.

    Проблему дефицита пространства и высокой плотности размещения оборудования в серверных и ЦОД решают системы распределения питания линейки Eaton eDPU, которые можно установить как внутри стойки, так и на группу стоек.

    Все модели этой линейки представляют четыре семейства: системы базового исполнения, системы с индикацией потребляемого тока, с мониторингом (локальным и удаленным, по сети) и управляемые, с возможностью мониторинга и управления электропитанием вплоть до каждой розетки. С помощью этих устройств можно компактным способом увеличить количество розеток в одной стойке, обеспечить контроль уровня тока и напряжения критичной нагрузки.

    Контроль уровня потребляемой мощности может осуществляться с высокой степенью детализации, вплоть до сервера, подключенного к конкретной розетке. Это позволяет выяснить, какой сервер перегревается, где вышел из строя вентилятор, блок питания и т. д. Программным образом можно запустить сервер, подключенный к розетке ePDU. Интеграция системы контроля ePDU в платформу управления Eaton находится в процессе реализации.

    Требование объекта

    Как поясняет Олег Письменский, в критичных объектах, таких как ЦОД, можно условно выделить две области контроля и управления. Первая, Grey Space, — это собственно здание и соответствующая система его энергообеспечения и энергораспределения. Вторая, White Space, — непосредственно машинный зал с его системами.

    Выбор системы управления энергообеспечением ЦОД определяется типом объекта, требуемым функционалом системы управления и отведенным на эти цели бюджетом. В большинстве случаев кратковременная задержка между наступлением события и получением информации о нем системой мониторинга по SNMP-протоколу допустима. Тем не менее в целом ряде случаев, если характеристики объекта подразумевают непрерывность его функционирования, объект является комплексным и содержит большое количество элементов, требующих контроля и управления в реальном времени, ни одна стандартная система SNMP-мониторинга не обеспечит требуемого функционала. Для таких объектов применяют системы управления real-time, построенные на базе программно-аппаратных комплексов сбора данных, в том числе c функциями Softlogic.

    Системы диспетчеризации и управления крупными объектами реализуются SCADA-системами, широкий перечень которых сегодня присутствует на рынке; представлены они и в портфеле решений Schneider Electric. Тип SCADA-системы зависит от класса и размера объекта, от количества его элементов, требующих контроля и управления, от уровня надежности. Частный вид реализации SCADA — это BMS-система(Building Management System).

    «Дата-центры с объемом потребляемой мощности до 1,5 МВт и уровнем надежности Tier I, II и, с оговорками, даже Tier III, могут обслуживаться без дополнительной SCADA-системы, — говорит Олег Письменский. — На таких объектах целесообразно применять ISX Central — программно-аппаратный комплекс, использующий SNMP. Если же категория и мощность однозначно предполагают непрерывность управления, в таких случаях оправданна комбинация SNMP- и SCADA-системы. Например, для машинного зала (White Space) применяется ISX Central с возможными расширениями как Change & Capacity Manager, в комбинации со SCADA-системой, управляющей непосредственно объектом (Grey Space)».

    Профессиональное мнение

    Олег Письменский, директор департамента консалтинга APC by Schneider Electric в России и СНГ

    Подход APC by Schneider Electric к реализации полномасштабного полноуправляемого и надежного ЦОД изначально был основан на базисных принципах управления ИТ-инфраструктурой в рамках концепции ITIL/ITSM. И история развития системы управления инфраструктурой ЦОД ISX Manager, которая затем интегрировалась с программно-аппаратным комплексом NetBotz и трансформировалась в портал диспетчеризации ISX Central, — лучшее тому доказательство.

    Первым итогом поэтапного приближения к намеченной цели стало наращивание функций контроля параметров энергообеспечения. Затем в этот контур подключилась система управления кондиционированием, система контроля параметров окружающей среды. Очередным шагом стало измерение скорости воздуха, влажности, пыли, радиации, интеграция сигналов от камер аудио- и видеонаблюдения, системы управления блоками розеток, завершения работы сервера и т. д.

    Эта система не может и не должна отвечать абсолютно всем принципам ITSM, потому что не все они касаются существа поставленной задачи. Но как только в отношении политик и некоторых тактик управления емкостью и изменениями в ЦОД потребовался соответствующий инструментарий — это нашло отражение в расширении функционала ISX Central, который в настоящее время реализуют ПО APC by Schneider Electric Capacity Manager и APC by Schneider Electric Change Manager. С появлением этих двух решений, интегрированных в систему управления реальным объектом, АРС предоставляет возможность службе эксплуатации оптимально планировать изменения количественного и качественного состава оборудования машинного зала — как на ежедневном оперативном уровне, так и на уровне стратегических задач массовых будущих изменений.

    Решение APC by Schneider Electric Capacity обеспечивает автоматизированную обработку информации о свободных ресурсах инженерной инфраструктуры, реальном потреблении мощности и пространстве в стойках. Обращаясь к серверу ISX Central, системы APC by Schneider Electric Capacity Manager и APC by Schneider Electric Change Manager оценивают степень загрузки ИБП и систем охлаждения InRow, прогнозируют воздействие предполагаемых изменений и предлагают оптимальное место для установки нового или перестановки имеющегося оборудования. Новые решения позволяют, выявив последствия от предполагаемых изменений, правильно спланировать замену оборудования в ЦОД.

    Переход от частного к общему может потребовать интеграции ISX Central в такие, например, порталы управления, как Tivoli или Open View. Возможны и другие сценарии, когда ISX Central вписывается и в SCADA–систему. В этом случае ISX Central выполняет роль диспетчерской настройки, функционал которой распространяется на серверную комнату, но не охватывает целиком периметр объекта.

    Случай из практики

    Решение задачи управления энергообеспечением ЦОД иногда вступает в противоречие с правилами устройств электроустановок (ПУЭ). Может оказаться, что в соответствии с ПУЭ в ряде случаев (например, при компоновке щитов ВРУ) необходимо обеспечить механические блокировки. Однако далеко не всегда это удается сделать. Поэтому такая задача часто требует нетривиального решения.

    — В одном из проектов, — вспоминает Алексей Сарыгин, — где система управления включала большое количество точек со взаимными пересечениями блокировок, требовалось не допустить снижения общей надежности системы. В этом случае мы пришли к осознанному компромиссу, сделали систему полуавтоматической. Там, где это было возможно, присутствовали механические блокировки, за пультом дежурной смены были оставлены функции мониторинга и анализа, куда сводились все данные о положении всех автоматов. Но исполнительную часть вывели на отдельную панель управления уже внутри ВРУ, где были расположены подробные пользовательские инструкции по оперативному переключению. Таким образом мы избавились от излишней автоматизации, но постарались минимизировать потери в надежности и защититься от ошибок персонала.

    [ http://www.computerra.ru/cio/old/products/infrastructure/421312/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > управление электропитанием

  • 18 фазный проводник

    1. supplying AC line
    2. phase current
    3. phase conductor
    4. phase
    5. hot wire
    6. AC line

     

    фазный проводник
    L

    Линейный проводник, используемый в электрической цепи переменного тока.
    [ ГОСТ Р 50571. 1-2009 ( МЭК 60364-1: 2005)]

    фазный проводник
    L

    Линейный проводник, используемый в электрической цепи переменного тока.
    Термин «фазный проводник» признан недопустимым Международным электротехническим словарем (МЭС). Вместо него МЭС предписывает применять термин «линейный проводник». Однако рассматриваемый термин целесообразно использовать в национальной нормативной и правовой документации.
    Фазный проводник представляет собой частный случай линейного проводника, применяемого в электрической цепи переменного тока. Фазные проводники совместно с нейтральными проводниками и PEN-проводниками используют в электроустановках зданий для обеспечения электроэнергией применяемого в них электрооборудования переменного тока.
    [ http://www.volt-m.ru/glossary/letter/%D4/view/87/]

    EN

    line conductor
    phase conductor (in AC systems) (deprecated)
    pole conductor (in DC systems) (deprecated)

    conductor which is energized in normal operation and capable of contributing to the transmission or distribution of electric energy but which is not a neutral or mid-point conductor
    [IEV number 195-02-08]

    FR

    conducteur de ligne
    conducteur de phase (déconseillé)

    conducteur sous tension en service normal et capable de participer au transport ou à la distribution de l'énergie électrique, mais qui n'est ni un conducteur de neutre ni un conducteur de point milieu
    [IEV number 195-02-08]

    Параллельные тексты EN-RU

     

    Ensure in the installation that the Neutral will never be disconnected before the supplying AC lines.
    [Delta Energy Systems]

    Электроустановка должна быть устроена таким образом, чтобы отключение нулевого рабочего проводника происходило только после того, как будут отключены фазные проводники.
    [Перевод Интент]

    If the phase currents are connected correctly...
    [Schneider Electric]

    Если  фазные проводники подключены правильно...
    [Перевод Интент]

    Phases must at least be marked L1, L2, L3, at the end and at connection points.
    [Schneider Electric]

    Фазные проводники должны иметь маркировку L1, L2, L3 по крайней мере на концах и в точках присоединения.
    [Перевод Интент]

    6.6.28. В трех- или двухпроводных однофазных линиях сетей с заземленной нейтралью могут использоваться однополюсные выключатели, которые должны устанавливаться в цепи фазного провода, или двухполюсные, при этом должна исключаться возможность отключения одного нулевого рабочего проводника без отключения фазного.
    [ПУЭ]

    ОПН (или РВ) на ВЛИ должны быть присоединены к фазному проводу посредством прокалывающих зажимов
    [Методические указания по защите распределительных электрических сетей]

    2.4.19. На опорах допускается любое расположение фазных проводов независимо от района климатических условий. Нулевой провод, как правило, следует располагать ниже фазных проводов. Провода наружного освещения, прокладываемые на опорах совместно с проводами ВЛ, должны располагаться, как правило, над нулевым проводом.
    [ПУЭ]

    Недопустимые, нерекомендуемые

    Тематики

    Синонимы

    EN

    FR

    Русско-английский словарь нормативно-технической терминологии > фазный проводник

  • 19 шинопровод

    1. trunking
    2. power track
    3. busway
    4. busline
    5. busduct
    6. busbar trunking system
    7. busbar trunking
    8. busbar
    9. bus duct

     

    система сборных шин
    шинопровод
    Устройство, представляющее собой систему проводников, состоящее из шин, установленных на опорах из изоляционного материала или в каналах, коробах или подобных оболочках, и прошедшее типовые испытания.
    Устройство может состоять из следующих элементов:
    - прямые секции с узлами ответвления или без них;
    - секции для изменения положения фаз, разветвления, поворота, а также вводные и переходные;
    - секции ответвленные.
    Примечание — Термин «шинопровод» не определяет геометрическую форму, габариты и размеры проводников.
    (МЭС 441-12-07, с изменением)
    [ ГОСТ Р 51321. 1-2000 ( МЭК 60439-1-92)]

    шинопровод
    Жесткий токопровод до 1 кВ заводского изготовления, поставляемый комплектными секциями.
    [ПУЭ]

    шинопровод
    Жесткий токопровод напряжением до 1000 В заводского изготовления, поставляемый комплектными секциями.
    [ОСТ 36-115-85]

    шинопровод
    Жесткий токопровод напряжением до 1 кВ, предназначенный для передачи и распределения электроэнергии, состоящий из неизолированных или изолированных проводников (шин) и относящихся к ним изоляторов, защитных оболочек, ответвительных устройств, поддерживающих и опорных конструкций.
    [ ГОСТ Р 53310-2012]

    EN

    busway
    A prefabricated assembly of standard lengths of busbars rigidly supported by solid insulation and enclosed in a sheet-metal housing.
    [ http://www.answers.com/topic/busway]

    busway
    Busway is defined by the National Electrical Manufacturers Association (NEMA) as a prefabricated electrical distribution system consisting of bus bars in a protective enclosure, including straight lengths, fittings, devices, and accessories. Busway includes bus bars, an insulating and/or support material, and a housing.
    [ http://electrical-engineering-portal.com/siemens-busway-purpose-and-definition]

    КЛАССИФИКАЦИЯ [ ГОСТ 6815-79]

    1.1. Шинопроводы по назначению подразделяются на:

    • распределительные, предназначенные для распределения электрической энергии;
    • магистральные, предназначенные для передачи электрической энергии от источника к месту распределения (распределительным пунктам, распределительным шинопроводам) или мощным приемникам электрической энергии.

    1.2. По конструктивному исполнению шинопроводы подразделяются на:

    • трехфазные;
    • трехфазные с нулевым рабочим проводником;
    • трехфазные с нулевым рабочим и нулевым защитным проводником.

    2. Основные параметры и размеры

    2.1. Основные элементы шинопроводов

    2.1.1. Основными элементами распределительных шинопроводов являются:

    а) прямые секции - для прямолинейных участков линии, имеющие места для присоединения одного или двух ответвительных устройств для секций длиной до 2 м включительно, двух, трех, четырех или более - для секций длиной 3 м;
    б) прямые прогоночные секции - для прямолинейных участков линий, где присоединение ответвительных устройств не требуется;
    в) угловые секции - для поворотов линии на 90° в горизонтальной и вертикальной плоскостях;
    г) вводные секции или вводные коробки с коммутационной, защитной и коммутационной аппаратурой или без нее - для подвода питания к шинопроводам кабелем, проводами или шинопроводом;
    д) переходные секции или устройства - для соединения двух шинопроводов на различные номинальные токи или шинопроводов разных конструкций;
    е) ответвительные устройства (коробки, штепсели) - для разъемного присоединения приемников электрической энергии. Коробки должны выпускаться с разъединителем, с разъединителем и с предохранителями или с автоматическим выключателем;
    з) присоединительные фланцы - для сочленения оболочек шинопроводов с оболочками щитов или шкафов;
    и) торцовые крышки (заглушки) - для закрытия торцов крайних секций шинопровода;
    к) устройства для крепления шинопроводов к элементам строительных конструкций зданий и сооружений;

    2.1.2. Основными элементами магистральных шинопроводов являются:

    а) прямые секции - для прямолинейных участков линий;
    б) угловые секции - для поворотов линий на 90° в горизонтальной и вертикальной плоскостях;
    в) тройниковые секции - для разветвления в трех направлениях под углом 90° в горизонтальной и вертикальной плоскостях;
    г) подгоночные секции - для подгонки линии шинопроводов до необходимой длины;
    д) разделительные секции с разъединителем - для секционирования магистральных линий шинопроводов;
    е) компенсационные секции - для компенсации температурных изменений длины линии шинопроводов;
    ж) переходные секции - для соединения шинопроводов на разные номинальные токи;
    з) ответвительные устройства (секции, коробки) - для неразборного, разборного или разъемного присоединения распределительных пунктов, распределительных шинопроводов или приемников электрической энергии. Коробки должны выпускаться с разъединителем, с разъединителем и предохранителями или с автоматическим выключателем; секции могут выпускаться без указанных аппаратов;
    и) присоединительные секции - для присоединения шинопроводов к комплектным трансформаторным подстанциям;
    к) проходные секции - для прохода через стены и перекрытия;
    л) набор деталей и материалов для изолирования мест соединения секций шинопроводов с изолированными шинами;
    м) устройства для крепления шинопроводов к элементам строительных конструкций зданий и сооружений;
    н) крышки (заглушки) торцовые и угловые для закрытия торцов концевых секций шинопровода и углов.


    2.2.3. В зависимости от вида проводников токопроводы подразделяются на гибкие (при использовании проводов) и жесткие (при использовании жестких шин).
    Жесткий токопровод до 1 кВ заводского изготовления, поставляемый комплектными секциями, называется шинопроводом.

    В зависимости от назначения шинопроводы подразделяются на:

    1. магистральные, предназначенные в основном для присоединения к ним распределительных шинопроводов и силовых распределительных пунктов, щитов и отдельных мощных электроприемников;
    2. распределительные, предназначенные в основном для присоединения к ним электроприемников;
    3. троллейные, предназначенные для питания передвижных электроприемников;
    4. осветительные, предназначенные для питания светильников и электроприемников небольшой мощности.

    [ПУЭ, часть 2]


     


    4468
    [ http://electrical-engineering-portal.com/siemens-busway-purpose-and-definition]


    4470


    4471
    [ http://electrical-engineering-portal.com/standards-and-applications-of-medium-voltage-bus-duct]
    Конструкция шинопровода на среднее напряжение

    Параллельные тексты EN-RU

    A major advantage of busway is the ease in which busway sections are connected together.

    Electrical power can be supplied to any area of a building by connecting standard lengths of busway.

    It typically takes fewer man-hours to install or change a busway system than cable and conduit assemblies.

    Основное преимущество шинопровода заключается в легкости соединения его секций.

    Соединяя эти стандартные секции можно легко снабдить электроэнергией любую часть здания.

    Как правило, установить или изменить систему шинопроводов занимает гораздо меньше времени, чем выполнить аналогичные работы, применяя разводку кабелем в защитных трубах.

    4504

    [ http://electrical-engineering-portal.com/siemens-busway-purpose-and-definition]

    The total distribution system frequently consists of a combination of busway and cable and conduit.

    In this example power from the utility company is metered and enters the plant through a distribution switchboard.

    The switchboard serves as the main disconnecting means.

    Как правило, распределение электроэнергии производится как через шинопроводы, так и через проложенные в защитных трубах кабели.

    В данном примере поступающая от питающей сети электроэнергия измеряется на вводе в главное распределительный щит (ГРЩ).

    ГРЩ является главным коммутационным устройством.

    The feeder on the left feeds a distribution switchboard, which in turn feeds a panelboard and a 480 volt, three-phase, three-wire (3Ø3W) motor.

    Распределительная цепь, изображенная слева, питает распределительный щит, который в свою очередь питает групповой щиток и электродвигатель.
    Электродвигатель получает питание через трехфазную трехпроводную линию напряжением 480 В.

    The middle feeder feeds another switchboard, which divides the power into three, three-phase, three-wire circuits. Each circuit feeds a busway run to 480 volt motors.

    Средняя (на чертеже) распределительная цепь питает другой распределительный щит, от которого электроэнергия распределяется через три трехфазные трехпроводные линии на шинопроводы.
    Каждый шинопровод используется для питания электродвигателей напряжением 480 В.

    The feeder on the right supplies 120/208 volt power, through a step-down transformer, to lighting and receptacle panelboards.

    Распределительная цепь, изображенная справа, питает напряжением 120/208 В через понижающий трансформатор щитки для отдельных групп светильников и штепсельных розеток.

    Branch circuits from the lighting and receptacle panelboards supply power for lighting and outlets throughout the plant.
    [ http://electrical-engineering-portal.com/siemens-busway-purpose-and-definition]

    Групповые электрические цепи, идущие от групповых щитков, предназначены для питания всех светильников и штепсельных розеток предприятия.

    [Перевод Интент]

     

    Selection of the busbar trunking system based on voltage drop.
    [Legrand]

    Выбор шинопровода по падению напряжения.
    [Перевод Интент]


     

    Недопустимые, нерекомендуемые

    Примечание(1)- Мнение автора карточки

    Тематики

    Обобщающие термины

    Близкие понятия

    • электропроводки, выполненные шинопроводами

    Действия

    Сопутствующие термины

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > шинопровод

  • 20 электротехническое помещение

    1. electrical room

     

    электротехническое помещение
    -

    [Интент]

    электропомещение

    Помещения или отгороженные (например, сетками) части помещения, в которых расположено электрооборудование, доступное только для квалифицированного обслуживающего персонала.
    [ПУЭ]

    4.8. На втором этапе должны быть произведены пусконаладочные работы, совмещенные с электромонтажными работами, с подачей напряжения по временной схеме. Совмещенные работы должны выполняться в соответствии с действующими правилами техники безопасности. Начало пусконаладочных работ на этом этапе определяется степенью готовности строительно-монтажных работ: в электротехнических помещениях должны быть закончены все строительные работы, включая и отделочные, закрыты все проемы, колодцы и кабельные каналы, выполнено освещение, отопление и вентиляция, закончена установка электрооборудования и выполнено его заземление.
    [СНиП 3.05.06-85 "Электротехнические устройства"]

    1.20. При проектировании электротехнических помещений должны учитываться требования технической эстетики в части цветовой отделки помещений и электрооборудования, согласно Указаниям по проектированию цветовой отделки интерьеров производственных зданий промышленных предприятий, утвержденным Госстроем СССР.
    [ИНСТРУКЦИЯ ПО ПРОЕКТИРОВАНИЮ ЭЛЕКТРОСНАБЖЕНИЯ ПРОМЫШЛЕННЫХ ПРЕДПРИЯТИЙ СН 174-75]

    В электротехнических помещениях высота прокладки кабелей не нормируется.

    [ИНСТРУКЦИЯ ПО МОНТАЖУ ЭЛЕКТРООБОРУДОВАНИЯ, СИЛОВЫХ И ОСВЕТИТЕЛЬНЫХ СЕТЕЙ ВЗРЫВООПАСНЫХ ЗОН ВСН 332-74]

    10.2.7. Батареи конденсаторов до 1 кВ могут размещаться в электротехнических
    помещениях
    или непосредственно в производственных помещениях.

    [ПРОЕКТИРОВАНИЕ ЭЛЕКТРОСНАБЖЕНИЯ ПРОМЫШЛЕННЫХ ПРЕДПРИЯТИЙ. Нормы технологического проектирования. НТП ЭПП-94]

    7.10.75. Пусковая аппаратура и аппаратура управления механизмами установок электролиза, по возможности, должна располагаться в специальных электротехнических помещениях.
    [ПУЭ]

    Тематики

    Синонимы

    Сопутствующие термины

    EN

    Русско-английский словарь нормативно-технической терминологии > электротехническое помещение

См. также в других словарях:

  • ПУЭ — Правила устройства электроустановок Правила устройства электроустановок (ПУЭ)  основной документ РФ, регламентирующий установку и безопасное использование электроустановок. Надзор за исполнением ПУЭ осуществляет «Энергонадзор». Требования ПУЭ… …   Википедия

  • ПУЭ — ПУЗ ПУЭ правила устройства электроустановок техн. ПУЭ Словарь: С. Фадеев. Словарь сокращений современного русского языка. С. Пб.: Политехника, 1997. 527 с. ПУЭ пробой на убегающих электронах физ. Источник: http://ufn.ru/ru/articles/2001/11/b/ …   Словарь сокращений и аббревиатур

  • пуэ́бло — пуэбло, нескл., мн. (племена), м. и ж. (народ), с. (поселение) …   Русское словесное ударение

  • пуэ́рто-рика́нский — пуэрто риканский …   Русское словесное ударение

  • пуэ́рторика́нец — пуэрториканец, нца; р. мн. нцев …   Русское словесное ударение

  • ПУЭ: Правила устройства электроустановок. Издание 6 — Терминология ПУЭ: Правила устройства электроустановок. Издание 6: 2. Анализ масла перед включением оборудования. Масло, отбираемое из оборудования перед его включением под напряжением после монтажа, подвергается сокращенному анализу в объеме,… …   Словарь-справочник терминов нормативно-технической документации

  • ПУЭ — – Правила устройства электроустановок …   Коммерческая электроэнергетика. Словарь-справочник

  • ПУЭ — Правила устройства электроустановок (мн.ч.) Правила устройства электроустановок …   Словарь сокращений русского языка

  • Пуэ́нте — Асеве́до хейли́т — (Puente; A. Acevedo; син. хейлит гландулярный простой) хейлит, характеризующийся гипертрофией слюнных желез, расположенных на внутренней поверхности губ, расширением их устьев и (часто) появлением вокруг устьев ободка ороговения эпителия …   Медицинская энциклопедия

  • пуэ́рто-рика́нский — ая, ое. прил. к пуэрториканцы, к Пуэрто Рико …   Малый академический словарь

  • О-Ле-Пупу-Пуэ — (О Le Pupu Pu’e), нац. парк в Самоа (Полинезия). Создан в 1978 г. на пл. 2,8 тыс. га на юж. побережье о. Уполу. Охраняются ландшафты вулканического плато с влажными тропическими высокоствольными и горными лесами, древовидными папоротниками. Много …   Географическая энциклопедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»