Перевод: со всех языков на английский

с английского на все языки

worked+up+an+interest

  • 81 Hancock, Thomas

    SUBJECT AREA: Chemical technology
    [br]
    b. 8 May 1786 Marlborough, Wiltshire, England
    d. 26 March 1865 Stoke Newington, London, England
    [br]
    English founder of the British rubber industry.
    [br]
    After education at a private school in Marlborough, Hancock spent some time in "mechanical pursuits". He went to London to better himself and c.1819 his interest was aroused in the uses of rubber, which until then had been limited. His first patent, dated 29 April 1820, was for the application of rubber in clothing where some elasticity was useful, such as braces or slip-on boots. He noticed that freshly cut pieces of rubber could be made to adhere by pressure to form larger pieces. To cut up his imported and waste rubber into small pieces, Hancock developed his "masticator". This device consisted of a spiked roller revolving in a hollow cylinder. However, when rubber was fed in to the machine, the product was not the expected shredded rubber, but a homogeneous cylindrical mass of solid rubber, formed by the heat generated by the process and pressure against the outer cylinder. This rubber could then be compacted into blocks or rolled into sheets at his factory in Goswell Road, London; the blocks and sheets could be used to make a variety of useful articles. Meanwhile Hancock entered into partnership with Charles Macintosh in Manchester to manufacture rubberized, waterproof fabrics. Despite these developments, rubber remained an unsatisfactory material, becoming sticky when warmed and losing its elasticity when cold. In 1842 Hancock encountered specimens of vulcanized rubber prepared by Charles Goodyear in America. Hancock worked out for himself that it was made by heating rubber and sulphur, and obtained a patent for the manufacture of the material on 21 November 1843. This patent also included details of a new form of rubber, hardened by heating to a higher temperature, that was later called vulcanite, or ebonite. In 1846 he began making solid rubber tyres for road vehicles. Overall Hancock took out sixteen patents, covering all aspects of the rubber industry; they were a leading factor in the development of the industry from 1820 until their expiry in 1858.
    [br]
    Bibliography
    1857, Personal Narrative of the Origin and Progress of the Caoutchouc or Indiarubber Manufacture in England, London.
    Further Reading
    H.Schurer, 1953, "The macintosh: the paternity of an invention", Transactions of the Newcomen Society 28:77–87.
    LRD

    Biographical history of technology > Hancock, Thomas

  • 82 Holland, John Philip

    SUBJECT AREA: Ports and shipping
    [br]
    b. 29 February 1840 Liscanor, Co. Clare, Ireland
    d. 12 August 1915 Newark, New Jersey, USA
    [br]
    Irish/American inventor of the successful modern submarine
    [br]
    Holland was educated first in his native town and later in Limerick, a seaport bustling with coastal trade ships. His first job was that of schoolteacher, and as such he worked in various parts of Ireland until he was about 32 years old. A combination of his burning patriotic zeal for Ireland and his interest in undersea technology (then in its infancy) made him consider designs for underwater warships for use against the British Royal Navy in the fight for Irish independence. He studied all known works on the subject and commenced drawing plans, but he was unable to make real headway owing to a lack of finance.
    In 1873 he travelled to the United States, ultimately settling in New Jersey and continuing in the profession of teaching. His work on submarine design continued, but in 1875 he suffered a grave setback when the United States Navy turned down his designs. Help came from an unexpected source, the Irish Republican Brotherhood, or Fenian Society, which had been founded in Dublin and New York in 1858. Financial help enabled Holland to build a 4 m (13 ft) one-person craft, which was tested in 1878, and then a larger boat of 19 tonnes' displacement that was tested with a crew of three to depths of 20 m (65 ft) in New York's harbour in 1883. Known as the Fenian Ram, it embodied most of the principles of modern submarines, including weight compensation. The Fenians commandeered this boat, but they were unable to operate it satisfactorily and it was relegated to history.
    Holland continued work, at times independently and sometimes with others, and continuously advocated submarines to the United States Navy. In 1895 he was successful in winning a contract for US$150,000 to build the US Submarine Plunger at Baltimore. With too much outside interference, this proved an unsatisfactory venture. However, with only US$5,000 of his capital left, Holland started again and in 1898 he launched the Holland at Elizabeth, New Jersey. This 16 m (52 ft) vessel was successful, and in 1900 it was purchased by the United States Government.
    Six more boats were ordered by the Americans, and then some by the Russians and the Japanese. The British Royal Navy ordered five, which were built by Vickers Son and Maxim (now VSEL) at Barrow-in-Furness in the years up to 1903, commencing their long run of submarine building. They were licensed by another well-known name, the Electric Boat Company, which had formerly been the J.P.Holland Torpedo Boat Company.
    Holland now had some wealth and was well known. He continued to work, trying his hand at aeronautical research, and in 1904 he invented a respirator for use in submarine rescue work. It is pleasing to record that one of his ships can be seen to this day at the Royal Navy Submarine Museum, Gosport: HM Submarine Holland No. 1, which was lost under tow in 1913 but salvaged and restored in the 1980s.
    [br]
    Principal Honours and Distinctions
    Order of the Rising Sun, Japan, 1910.
    Bibliography
    1900, "The submarine boat and its future", North American Review (December). Holland wrote several other articles of a similar nature.
    Further Reading
    R.K.Morris, 1966 John P.Holland 1841–1914, Inventor of the Modern Submarine, Annapolis, MD: US Naval Institute.
    F.W.Lipscomb, 1975, The British Submarine, London: Conway Maritime Press. A.N.Harrison, 1979, The Development of HM Submarines from Holland No. 1 (1901) to
    Porpoise (1930), Bath: MoD Ships Department (internal publication).
    FMW

    Biographical history of technology > Holland, John Philip

  • 83 Howe, Frederick Webster

    [br]
    b. 28 August 1822 Danvers, Massachusetts, USA
    d. 25 April 1891 Providence, Rhode Island, USA
    [br]
    American mechanical engineer, machine-tool designer and inventor.
    [br]
    Frederick W.Howe attended local schools until the age of 16 and then entered the machine shop of Gay \& Silver at North Chelmsford, Massachusetts, as an apprentice and remained with that firm for nine years. He then joined Robbins, Kendall \& Lawrence of Windsor, Vermont, as Assistant to Richard S. Lawrence in designing machine tools. A year later (1848) he was made Plant Superintendent. During his time with this firm, Howe designed a profiling machine which was used in all gun shops in the United States: a barrel-drilling and rifling machine, and the first commercially successful milling machine. Robbins \& Lawrence took to the Great Exhibition of 1851 in London, England, a set of rifles built on the interchangeable system. The interest this created resulted in a visit of some members of the British Royal Small Arms Commission to America and subsequently in an order for 150 machine tools, jigs and fixtures from Robbins \& Lawrence, to be installed at the small-arms factory at Enfield. From 1853 to 1856 Howe was in charge of the design and building of these machines. In 1856 he established his own armoury at Newark, New Jersey, but transferred after two years to Middletown, Connecticut, where he continued the manufacture of small arms until the outbreak of the Civil War. He then became Superintendent of the armoury of the Providence Tool Company at Providence, Rhode Island, and served in that capacity until the end of the war. In 1865 he went to Bridgeport, Connecticut, to assist Elias Howe with the manufacture of his sewing machine. After the death of Elias Howe, Frederick Howe returned to Providence to join the Brown \& Sharpe Manufacturing Company. As Superintendent of that establishment he worked with Joseph R. Brown in the development of many of the firm's products, including machinery for the Wilcox \& Gibbs sewing machine then being made by Brown \& Sharpe. From 1876 Howe was in business on his own account as a consulting mechanical engineer and in his later years he was engaged in the development of shoe machinery and in designing a one-finger typewriter, which, however, was never completed. He was granted several patents, mainly in the fields of machine tools and firearms. As a designer, Howe was said to have been a perfectionist, making frequent improvements; when completed, his designs were always sound.
    [br]
    Further Reading
    J.W.Roe, 1916, English and American Tool Builders, New Haven; repub. 1926, New York, and 1987, Bradley, 111. (provides biographical details).
    R.S.Woodbury, 1960, History of the Milling Machine, Cambridge, Mass, (describes Howe's contribution to the development of the milling machine).
    RTS

    Biographical history of technology > Howe, Frederick Webster

  • 84 Lawrence, Richard Smith

    SUBJECT AREA: Weapons and armour
    [br]
    b. 22 November 1817 Chester, Vermont, USA
    d. 10 March 1892 Hartford, Connecticut, USA
    [br]
    American gunsmith and inventor.
    [br]
    Richard S.Lawrence received only an elementary education and as a young man worked on local farms and later in a woodworking shop. His work there included making carpenters' and joiners' tools and he spent some of his spare time in a local gunsmith's shop. After a brief period of service in the Army, he obtained employment in 1838 with N.Kendall \& Co. of Windsor, Vermont, making guns at the Windsor prison. Within six months he was put in charge of the work, continuing in this position until 1842 when the gun-making ceased; he remained at the prison for a time in charge of the carriage shop. In 1843 he opened a gun shop in Windsor in partnership with Kendall, and the next year S.E. Robbins, a businessman, helped them obtain a contract from the Federal Government for 10,000 rifles. A new company, Robbins, Kendall \& Lawrence, was formed and a factory was built at Windsor. Three years later Kendall's share of the business was purchased by his partners and the firm became Robbins \& Lawrence. Lawrence supervised the design and production and, to improve methods of manufacture, developed new machine tools with the aid of F.W. Howe. In 1850 Lawrence introduced the lubrication of bullets, which practice ensured the success of the breech-loading rifle. Also in 1850, the company undertook to manufacture railway cars, but this involved them in a considerable financial loss. The company took to the Great Exhibition of 1851 in London, England, a set of rifles built on the interchangeable system. The interest this created resulted in a visit of some members of the British Royal Small Arms Commission to America and subsequently an order for 150 machine tools, jigs and fixtures from Robbins \& Lawrence, to be installed at the small-arms factory at Enfield. In 1852 the company contracted to manufacture Sharps rifles and carbines at a new factory to be built at Hartford, Connecticut. Lawrence moved to Hartford in 1853 to superintend the building and equipment of the plant. Shortly afterwards, however, a promised order for a large number of rifles failed to materialize and, following its earlier financial difficulties, Robbins \& Lawrence was forced into bankruptcy. The Hartford plant was acquired by the Sharps Rifle Company in 1856 and Lawrence remained there as Superintendent until 1872. From then he was for many years Superintendent of Streets in the city of Hartford and he also served on the Water Board, the Board of Aldermen and as Chairman of the Fire Board.
    [br]
    Further Reading
    J.W.Roe, 1916, English and American Tool Builders, New Haven; repub. 1926, New York; and 1987, Bradley, Ill. (provides biographical information and includes in an Appendix (pp. 281–94) autobiographical notes written by Richard S.Lawrence in 1890).
    Merritt Roe Smith, 1974, "The American Precision Museum", Technology and Culture 15 (3): 413–37 (for information on Robbins \& Lawrence and products).
    RTS

    Biographical history of technology > Lawrence, Richard Smith

  • 85 Leblanc, Nicolas

    SUBJECT AREA: Chemical technology
    [br]
    b. 6 December 1742 Ivey-le-Pré, France
    d. 16 January 1806 Paris, France
    [br]
    French chemist, inventor of the Leblanc process for the manufacture of soda.
    [br]
    Orphaned at an early age, Leblanc was sent by his guardian, a doctor, to study medicine at the Ecole de Chirurgie in Paris. Around 1780 he entered the service of the Duke of Orléans as Surgeon. There he was able to pursue his interest in chemistry by carrying out research, particularly into crystallization; this bore fruit in a paper to the Royal Academy of Sciences in 1786, published in 1812 as a separate work entitled Crystallotechnie. At that time there was much concern that supplies of natural soda were becoming insufficient to meet the increasing demands of various industries, textile above all. In 1775 the Academy offered a prize of 2,400 livres for a means of manufacturing soda from sea salt. Several chemists studied the problem, but the prize was never awarded. However, in 1789 Leblanc reported in the Journal de physique for 1789 that he had devised a process, and he applied to his patron for support. The Duke had the process subjected to tests, and when these proved favourable he, with Leblanc and the referee, formed a company in February 1790 to exploit it. A patent was granted in 1791 and, with the manufacture of a vital substance at low cost based on a raw material, salt in unlimited supply, a bright prospect seemed to open out for Leblanc. The salt was treated with sulphuric acid to form salt-cake (sodium sulphate), which was then rotated with coal and limestone to form a substance from which the soda was extracted with water followed by evaporation. Hydrochloric acid was a valuable by-product, from which could be made calcium chloride, widely used in the textile and paper industries. The factory worked until 1793, but did not achieve regular production, and then disaster struck: Leblanc's principal patron, the Duke of Orléans, perished under the guillotine in the reign of terror; the factory was sequestered by the Revolutionary government and the agreement was revoked. Leblanc laboured in vain to secure adequate compensation. Eventually a grant was made towards the cost of restoring the factory, but it was quite inadequate, and in despair, Leblanc shot himself. However, his process proved to be one of the greatest inventions in the chemical industry, and was taken up in other countries and remained the leading process for the production of soda for a century. In 1855 his family tried again to vindicate his name and achieve compensation, this time with success.
    [br]
    Further Reading
    A.A.Leblanc, 1884, Nicolas Leblanc, sa vie, ses travaux et l'histoire de la soude artificielle, Paris (the standard biography, by his grandson).
    For more critical studies, see: C.C.Gillispie, 1957, "The discovery of the Leblanc process", Isis 48:152–70; J.G.Smith, 1970, "Studies in certain chemical industries in revolutionary and Napoleonic France", unpublished PhD thesis, Leeds University.
    LRD

    Biographical history of technology > Leblanc, Nicolas

  • 86 Lebon, Philippe

    SUBJECT AREA: Public utilities
    [br]
    b. 29 May 1767 Bruchey, near Joinville, France
    d. 2 December 1804 Paris, France
    [br]
    French pioneer of gas lighting.
    [br]
    Lebon was the son of a court official under Louis XV. He entered the Ecole des Ponts et Chaussées and graduated in 1792, by which time he had acquired a considerable reputation as a scientific engineer. He is credited with the invention of the firetube steam boiler and of the superheater, and he also devised an engine to work by gas, but from 1792 until his untimely death he worked mainly on his experiments to produce an inflammable gas for lighting purposes. He submitted a paper on the subject in 1799 to the Institut National and received a patent in the same year. The patent covers the detailed making and application of gas for light, heat and power, and the recovery of by-products. It describes the production of the gas by the carbonization of coal, although Lebon in feet used only wood gas for his experiments and demonstrations. He began demonstrations in a private house in Paris, but these attracted little attention. He achieved wider public interest when he moved to the Hôtel Seignelay, where he started a series of public demonstrations in 1801, but he attracted little profit, and in fact lost his money in his experiments. He then set up a plant near Rouen to manufacture wood tar, but his career was brought to an end by his brutal murder in the Champs Elysées in Paris. William Murdock was working along similar lines in England, although Lebon knew nothing of his experiments. The German entrepreneur F.A. Winsor visited Lebon and managed to discover the essentials of his processes, which he turned to good account in England with the founding of the Gas, Light \& Coke Company.
    [br]
    Further Reading
    S.T.McCloy, 1952, French Inventors of the Eighteenth Century.
    A.Fayol, 1943, Philippe Lebon et le gaz d'éclair-age.
    LRD

    Biographical history of technology > Lebon, Philippe

  • 87 Lucas, Anthony Francis

    [br]
    b. 9 September 1855 Spalato, Dalmatia, Austria-Hungary (now Split, Croatia)
    d. 2 September 1921 Washington, DC, USA
    [br]
    Austrian (naturalized American) mining engineer who successfully applied rotary drilling to oil extraction.
    [br]
    A former Second Lieutenant of the Austrian navy (hence his later nickname "Captain") and graduate of the Polytechnic Institute of Graz, Lucas decided to stay in Michigan when he visited his relatives in 1879. He changed his original name, Lucie, into the form his uncle had adopted and became a naturalized American citizen at the age of 30. He worked in the lumber industry for some years and then became a consulting mechanical and mining engineer in Washington, DC. He began working for a salt-mining company in Louisiana in 1893 and became interested in the geology of the Mexican Gulf region, with a view to prospecting for petroleum. In the course of this work he came to the conclusion that the hills in this elevated area, being geological structures distinct from the surrounding deposits, were natural reservoirs of petroleum. To prove his unusual theory he subsequently chose Spindle Top, near Beaumont, Texas, where in 1899 he began to bore a first oil-well. A second drill-hole, started in October 1900, was put through clay and quicksand. After many difficulties, a layer of rock containing marine shells was reached. When the "gusher" came out on 10 January 1901, it not only opened up a new era in the oil and gas business, but it also led to the future exploration of the terrestrial crust.
    Lucas's boring was a breakthrough for the rotary drilling system, which was still in its early days although its principles had been established by the English engineer Robert Beart in his patent of 1884. It proved to have advantages over the pile-driving of pipes. A pipe with a simple cutter at the lower end was driven with a constantly revolving motion, grinding down on the bottom of the well, thus gouging and chipping its way downward. To deal with the quicksand he adopted the use of large and heavy casings successively telescoped one into the other. According to Fauvelle's method, water was forced through the pipe by means of a pump, so the well was kept full of circulating liquid during drilling, flushing up the mud. When the salt-rock was reached, a diamond drill was used to test the depth and the character of the deposit.
    When the well blew out and flowed freely he developed a preventer in order to save the oil and, even more importantly at the time, to shut the well and to control the oil flow. This assembly, patented in 1903, consisted of a combined system of pipes, valves and casings diverting the stream into a horizontal direction.
    Lucas's fame spread around the world, but as he had to relinquish the larger part of his interest to the oil company supporting the exploration, his financial reward was poor. One year after his success at Spindle Top he started oil exploration in Mexico, where he stayed until 1905, when he resumed his consulting practice in Washington, DC.
    [br]
    Bibliography
    1899, "Rock-salt in Louisiana", Transactions of the American Institution of Mining Engineers 29:462–74.
    1902, "The great oil-well near Beaumont, Texas", Transactions of the American
    Institution of Mining Engineers 31:362–74.
    Further Reading
    R.S.McBeth, 1918, Pioneering the Gulf Coast, New York (a very detailed description of Lucas's important accomplishments in the development of the oil industry).
    R.T.Hill, 1903, "The Beaumont oil-field, with notes on other oil-fields of the Texas region", Transactions of the American Institution of Mining Engineers 33:363–405;
    Transactions of the American Institution of Mining Engineers 55:421–3 (contain shorter biographical notes).
    WK

    Biographical history of technology > Lucas, Anthony Francis

  • 88 Marrison, Warren Alvin

    [br]
    b. 21 May 1896 Inverary, Canada
    d. 27 March 1980 Palo Verdes Estates, California, USA
    [br]
    Canadian (naturalized American) electrical engineer, pioneer of the quartz clock.
    [br]
    Marrison received his high-school education at Kingston Collegiate Institute, Ontario, and in 1914 he entered Queen's University in Kingston. He graduated in Engineering Physics in 1920, his college career having been interrupted by war service in the Royal Flying Corps. During his service in the Flying Corps he worked on radio, and when he returned to Kingston he established his own transmitter. This interest in radio was later to influence his professional life.
    In 1921 he entered Harvard University, where he obtained an MA, and shortly afterwards he joined the Western Electric Company in New York to work on the recording of sound on film. In 1925 he transferred to Western Electric's Bell Laboratory, where he began what was to become his life's work: the development of frequency standards for radio transmission. In 1922 Cady had used the elastic vibration of a quartz crystal to control the frequency of a valve oscillator, but at that time there was no way of counting and displaying the number of vibrations as the frequency was too high. In 1927 Marrison succeeded in dividing the frequency electronically until it was low enough to drive a synchronous motor. Although his purpose was to determine the frequency accurately by counting the number of vibrations that occurred in a given time, he had incidentally produced the first quartz-crystal -ontrolled clock. The results were sufficiently encouraging for him to build an improved version the following year, specifically as a time and frequency standard.
    [br]
    Principal Honours and Distinctions
    British Horological Institute Gold Medal 1947. Clockmakers' Company Tompion Medal 1955.
    Bibliography
    1928, with J.W.Horton, "Precision measurement of frequency", Proceedings of the Institute of Radio Engineers 16:137–54 (provides details of the original quartz clock, although it was not described as such).
    1930, "The crystal clock", Proceedings of the National Academy of Sciences 16:496–507 (describes the second clock).
    Further Reading
    W.R.Topham, 1989, "Warren A.Marrison—pioneer of the quartz revolution", NAWCC Bulletin 31(2):126–34.
    J.D.Weaver, 1982, Electrical and Electronic Clocks and Watches, London (a technical assessment of his work on the quartz clock).
    DV

    Biographical history of technology > Marrison, Warren Alvin

  • 89 Metcalf, John

    [br]
    b. 1717 Knaresborough, Yorkshire, England d. 1810
    [br]
    English pioneer road builder.
    [br]
    The son of poor working parents, at the age of 6 an attack of smallpox left him blind; however, this did not restrict his future activities, which included swimming and riding. He learned the violin and was much employed as the fiddle-player at country parties. He saved enough money to buy a horse on which he hunted. He took part in bowls, wrestling and boxing, being a robust six foot two inches tall. He rode to Whitby and went thence by boat to London and made other trips to York, Reading and Windsor. In 1740 Colonel Liddell offered him a seat in his coach from London to Harrogate, but he declined and got there more quickly on foot. He set up a one-horse chaise and a four-wheeler for hire in Harrogate, but the local innkeepers set up in competition in the public hire business. He went into the fish business, buying at the coast and selling in Leeds and other towns, but made little profit so he took up his violin again. During the rebellion of 1745 he recruited for Colonel Thornton and served to fight at Hexham, Newcastle and Falkirk, returning home after the Battle of Culloden. He then started travelling between Yorkshire, where be bought cotton and worsted stockings, and Aberdeen, where he sold horses. He set up a twice-weekly service of stage wagons between Knaresborough and York.
    In 1765 an Act was passed for a turnpike road between Harrogate and Boroughbridge and he offered to build the Master Surveyor, a Mr Ostler, three miles (5 km) of road between Minskip and Fearnly, selling his wagons and his interest in the carrying business. The road was built satisfactorily and on time. He then quoted for a bridge at Boroughbridge and for a turnpike road between Knaresborough and Harrogate. He built many other roads, always doing the survey of the route on his own. The roads crossed bogs on a base of ling and furze. Many of his roads outside Yorkshire were in Lancashire, Cheshire and Derbyshire. In all he built some 180 miles (290 km) of road, for which he was paid some £65,000.
    He worked for thirty years on road building, retiring in old age to a cotton business in Stockport where he had six spinning jennies and a carding engine; however, he found there was little profit in this so he gave the machinery to his son-in-law. The last road he built was from Haslington to Accrington, but due to the rise in labour costs brought about by the demand from the canal boom, he only made £40 profit on a £3,000 contract; the road was completed in 1792, when he retired to his farm at Spofforth at the age of 75. There he died, leaving a wife, four children, twenty grandchildren and ninety greatgrandchildren. His wife was the daughter of the landlord of the Granby Inn, Knaresborough.
    [br]
    Further Reading
    S.Smiles, Lives of the Engineers, Metcalfe, Telford: John Murray.
    IMcN

    Biographical history of technology > Metcalf, John

  • 90 Mole, Lancelot de

    SUBJECT AREA: Weapons and armour
    [br]
    b. 13 March 1880 Adelaide, Australia
    d. 6 May 1950 Sydney, Australia
    [br]
    Australian engineer and early tank designer.
    [br]
    De Mole's father was an architect and surveyor and he himself followed a similar avenue as a draughtsman working on mining, surveying and engineering projects in Australia. It was in 1911, while surveying in particularly rough terrain in Western Australia, that he first conceived the idea of the tank as a tracked, armoured vehicle capable of traversing the most difficult ground. He drew up detailed plans and submitted them to the War Office in London the following year, but although they were rejected, not all the plans were returned to him. When war broke out in 1914 he tried without success to interest the Australian authorities, even after he had constructed a model at their request. A further blow came in 1916, when the first tanks, built by the British, appeared on the battlefields of France and looked remarkably similar in design to his own. Believing that he could play a significant role in further tank development, but lacking the funds to travel to Britain, de Mole eventually succeeded, after an initial rejection by a medical board, in enlisting in the Australian Army, which got him to England at the beginning of 1918. He immediately took his model to the British Inventions Committee, who were sufficiently impressed to pass it to the Tank Board, who promptly mislaid it for six weeks. Meanwhile, in March 1918, Private de Mole was ordered to France and was unable to take matters further. On his return to England in early 1919 he made a formal claim for a reward for his invention, but this was turned down on the grounds that no direct link could be established between his design and the first tanks that were built. Even so, the Inventions Committee did authorize a sum of money to cover his expenses, and in 1920 de Mole was a made a Commander of the Order of the British Empire.
    Returning to Australia, de Mole worked as an engineer in the design branch of the Sydney Water Board. He continued to invent, but none of his designs, which covered a wide range of items, were ever taken up.
    [br]
    Principal Honours and Distinctions
    CBE 1920.
    Further Reading
    Australian Dictionary of Biography, 1918, Vol. 8.
    A.J.Smithers, 1986, A New Excalibur: The Development of the Tank 1909–1939, London: Leo Cooper (for illustrations of the model of his tank).
    Mention of his invention is made in a number of books on the history of the tank.
    CM

    Biographical history of technology > Mole, Lancelot de

  • 91 Monro, Philip Peter

    SUBJECT AREA: Chemical technology
    [br]
    b. 27 May 1946 London, England
    [br]
    English biologist, inventor of a water-purification process by osmosis.
    [br]
    Monro's whole family background is engineering, an interest he did not share. Instead, he preferred biology, an enthusiasm aroused by reading the celebrated Science of Life by H.G. and G.P.Wells and Julian Huxley. Educated at a London comprehensive school, Monro found it necessary to attend evening classes while at school to take his advanced level science examinations. Lacking parental support, he could not pursue a degree course until he was 21 years old, and so he gained valuable practical experience as a research technician. He resumed his studies and took a zoology degree at Portsmouth Polytechnic. He then worked in a range of zoology and medical laboratories, culminating after twelve years as a Senior Experimental Officer at Southampton Medical School. In 1989 he relinquished his post to devote himself fall time to developing his inventions as Managing Director of Hampshire Advisory and Technical Services Ltd (HATS). Also in 1988 he obtained his PhD from Southampton University, in the field of embryology.
    Monro had meanwhile been demonstrating a talent for invention, mainly in microscopy. His most important invention, however, is of a water-purification system. The idea for it came from Michael Wilson of the Institute of Dental Surgery in London, who evolved a technique for osmotic production of sterile oral rehydration solutions, of particular use in treating infants suffering from diarrhoea in third-world countries. Monro broadened the original concept to include dried food, intravenous solutions and even dried blood. The process uses simple equipment and no external power and works as follows: a dry sugar/salts mixture is sealed in one compartment of a double bag, the common wall of which is a semipermeable membrane. Impure water is placed in the empty compartment and the water transfers across the membrane by the osmotic force of the sugar/salts. As the pores in the membrane exclude all viruses, bacteria and their toxins, a sterile solution is produced.
    With the help of a research fellowship granted for humanitarian reasons at King Alfred College, Winchester, the invention was developed to functional prototype stage in 1993, with worldwide patent protection. Commercial production was expected to follow, if sufficient financial backing were forthcoming. The process is not intended to replace large installations, but will revolutionize the small-scale production of sterile water in scattered third-world communities and in disaster areas where normal services have been disrupted.
    HATS was awarded First Prize in the small business category and was overall prize winner in the Toshiba Year of Invention, received a NatWest/BP award for technology and a Prince of Wales Award for Innovation.
    [br]
    Bibliography
    1993, with M.Wilson and W.A.M.Cutting, "Osmotic production of sterile oral rehydration solutions", Tropical Doctor 23:69–72.
    LRD

    Biographical history of technology > Monro, Philip Peter

  • 92 Morse, Samuel Finley Breeze

    SUBJECT AREA: Telecommunications
    [br]
    b. 27 April 1791 Charlestown, Massachusetts, USA
    d. 2 April 1872 New York City, New York, USA
    [br]
    American portrait painter and inventor, b est known for his invention of the telegraph and so-called Morse code.
    [br]
    Following early education at Phillips Academy, Andover, at the age of 14 years Morse went to Yale College, where he developed interests in painting and electricity. Upon graduating in 1810 he became a clerk to a Washington publisher and a pupil of Washington Allston, a well-known American painter. The following year he travelled to Europe and entered the London studio of another American artist, Benjamin West, successfully exhibiting at the Royal Academy as well as winning a prize and medal for his sculpture. Returning to Boston and finding little success as a "historical-style" painter, he built up a thriving portrait business, moving in 1818 to Charleston, South Carolina, where three years later he established the (now defunct) South Carolina Academy of Fine Arts. In 1825 he was back in New York, but following the death of his wife and both of his parents that year, he embarked on an extended tour of European art galleries. In 1832, on the boat back to America, he met Charles T.Jackson, who told him of the discovery of the electromagnet and fired his interest in telegraphy to the extent that Morse immediately began to make suggestions for electrical communications and, apparently, devised a form of printing telegraph. Although he returned to his painting and in 1835 was appointed the first Professor of the Literature of Art and Design at the University of New York City, he began to spend more and more time experimenting in telegraphy. In 1836 he invented a relay as a means of extending the cable distance over which telegraph signals could be sent. At this time he became acquainted with Alfred Vail, and the following year, when the US government published the requirements for a national telegraph service, they set out to produce a workable system, with finance provided by Vail's father (who, usefully, owned an ironworks). A patent was filed on 6 October 1837 and a successful demonstration using the so-called Morse code was given on 6 January 1838; the work was, in fact, almost certainly largely that of Vail. As a result of the demonstration a Bill was put forward to Congress for $30,000 for an experimental line between Washington and Baltimore. This was eventually passed and the line was completed, and on 24 May 1844 the first message, "What hath God wrought", was sent between the two cities. In the meantime Morse also worked on the insulation of submarine cables by means of pitch tar and indiarubber.
    With success achieved, Morse offered his invention to the Government for $100,000, but this was declined, so the invention remained in private hands. To exploit it, Morse founded the Magnetic Telephone Company in 1845, amalgamating the following year with the telegraph company of a Henry O'Reilly to form Western Union. Having failed to obtain patents in Europe, he now found himself in litigation with others in the USA, but eventually, in 1854, the US Supreme Court decided in his favour and he soon became very wealthy. In 1857 a proposal was made for a telegraph service across the whole of the USA; this was completed in just over four months in 1861. Four years later work began on a link to Europe via Canada, Alaska, the Aleutian Islands and Russia, but it was abandoned with the completion of the transatlantic cable, a venture in which he also had some involvement. Showered with honours, Morse became a generous philanthropist in his later years. By 1883 the company he had created was worth $80 million and had a virtual monopoly in the USA.
    [br]
    Principal Honours and Distinctions
    LLD, Yale 1846. Fellow of the Academy of Arts and Sciences 1849. Celebratory Banquet, New York, 1869. Statue in New York Central Park 1871. Austrian Gold Medal of Scientific Merit. Danish Knight of the Danneborg. French Légion d'honneur. Italian Knight of St Lazaro and Mauritio. Portuguese Knight of the Tower and Sword. Turkish Order of Glory.
    Bibliography
    E.L.Morse (ed.), 1975, Letters and Journals, New York: Da Capo Press (facsimile of a 1914 edition).
    Further Reading
    J.Munro, 1891, Heroes of the Telegraph (discusses his telegraphic work and its context).
    C.Mabee, 1943, The American Leonardo: A Life of Samuel Morse; reprinted 1969 (a detailed biography).
    KF

    Biographical history of technology > Morse, Samuel Finley Breeze

  • 93 Nobel, Alfred Bernhard

    [br]
    b. 21 October 1833 Stockholm, Sweden
    d. 10 December 1896 San Remo, Italy
    [br]
    Swedish industrialist, inventor of dynamite, founder of the Nobel Prizes.
    [br]
    Alfred's father, Immanuel Nobel, builder, industrialist and inventor, encouraged his sons to follow his example of inventiveness. Alfred's education was interrupted when the family moved to St Petersburg, but was continued privately and was followed by a period of travel. He thus acquired a good knowledge of chemistry and became an excellent linguist.
    During the Crimean War, Nobel worked for his father's firm in supplying war materials. The cancellation of agreements with the Russian Government at the end of the war bankrupted the firm, but Alfred and his brother Immanuel continued their interest in explosives, working on improved methods of making nitroglycerine. In 1863 Nobel patented his first major invention, a detonator that introduced the principle of detonation by shock, by using a small charge of nitroglycerine in a metal cap with detonating or fulminating mercury. Two years later Nobel set up the world's first nitroglycerine factory in an isolated area outside Stockholm. This led to several other plants and improved methods for making and handling the explosive. Yet Nobel remained aware of the dangers of liquid nitroglycerine, and after many experiments he was able in 1867 to take out a patent for dynamite, a safe, solid and pliable form of nitroglycerine, mixed with kieselguhr. At last, nitroglycerine, discovered by Sobrero in 1847, had been transformed into a useful explosive; Nobel began to promote a worldwide industry for its manufacture. Dynamite still had disadvantages, and Nobel continued his researches until, in 1875, he achieved blasting gelatin, a colloidal solution of nitrocellulose (gun cotton) in nitroglycerine. In many ways it proved to be the ideal explosive, more powerful than nitroglycerine alone, less sensitive to shock and resistant to moisture. It was variously called Nobel's Extra Dynamite, blasting gelatin and gelignite. It immediately went into production.
    Next, Nobel sought a smokeless powder for military purposes, and in 1887 he obtained a nearly smokeless blasting powder using nitroglycerine and nitrocellulose with 10 per cent camphor. Finally, a progressive, smokeless blasting powder was developed in 1896 at his San Remo laboratory.
    Nobel's interests went beyond explosives into other areas, such as electrochemistry, optics and biology; his patents amounted to 355 in various countries. However, it was the manufacture of explosives that made him a multimillionaire. At his death he left over £2 million, which he willed to funding awards "to those who during the preceding year, shall have conferred the greatest benefit on mankind".
    [br]
    Bibliography
    1875, On Modern Blasting Agents, Glasgow (his only book).
    Further Reading
    H.Schuck et al., 1962, Nobel, the Man and His Prizes, Amsterdam.
    E.Bergengren, 1962, Alfred Nobel, the Man and His Work, London and New York (includes a supplement on the prizes and the Nobel institution).
    LRD

    Biographical history of technology > Nobel, Alfred Bernhard

  • 94 Noyce, Robert

    [br]
    b. 12 December 1927 Burlington, Iowa, USA
    [br]
    American engineer responsible for the development of integrated circuits and the microprocessor chip.
    [br]
    Noyce was the son of a Congregational minister whose family, after a number of moves, finally settled in Grinnell, some 50 miles (80 km) east of Des Moines, Iowa. Encouraged to follow his interest in science, in his teens he worked as a baby-sitter and mower of lawns to earn money for his hobby. One of his clients was Professor of Physics at Grinnell College, where Noyce enrolled to study mathematics and physics and eventually gained a top-grade BA. It was while there that he learned of the invention of the transistor by the team at Bell Laboratories, which included John Bardeen, a former fellow student of his professor. After taking a PhD in physical electronics at the Massachusetts Institute of Technology in 1953, he joined the Philco Corporation in Philadelphia to work on the development of transistors. Then in January 1956 he accepted an invitation from William Shockley, another of the Bell transistor team, to join the newly formed Shockley Transistor Company, the first electronic firm to set up shop in Palo Alto, California, in what later became known as "Silicon Valley".
    From the start things at the company did not go well and eventually Noyce and Gordon Moore and six colleagues decided to offer themselves as a complete development team; with the aid of the Fairchild Camera and Instrument Company, the Fairchild Semiconductor Corporation was born. It was there that in 1958, contemporaneously with Jack K. Wilby at Texas Instruments, Noyce had the idea for monolithic integration of transistor circuits. Eventually, after extended patent litigation involving study of laboratory notebooks and careful examination of the original claims, priority was assigned to Noyce. The invention was most timely. The Apollo Moon-landing programme announced by President Kennedy in May 1961 called for lightweight sophisticated navigation and control computer systems, which could only be met by the rapid development of the new technology, and Fairchild was well placed to deliver the micrologic chips required by NASA.
    In 1968 the founders sold Fairchild Semicon-ductors to the parent company. Noyce and Moore promptly found new backers and set up the Intel Corporation, primarily to make high-density memory chips. The first product was a 1,024-bit random access memory (1 K RAM) and by 1973 sales had reached $60 million. However, Noyce and Moore had already realized that it was possible to make a complete microcomputer by putting all the logic needed to go with the memory chip(s) on a single integrated circuit (1C) chip in the form of a general purpose central processing unit (CPU). By 1971 they had produced the Intel 4004 microprocessor, which sold for US$200, and within a year the 8008 followed. The personal computer (PC) revolution had begun! Noyce eventually left Intel, but he remained active in microchip technology and subsequently founded Sematech Inc.
    [br]
    Principal Honours and Distinctions
    Franklin Institute Stuart Ballantine Medal 1966. National Academy of Engineering 1969. National Academy of Science. Institute of Electrical and Electronics Engineers Medal of Honour 1978; Cledo Brunetti Award (jointly with Kilby) 1978. Institution of Electrical Engineers Faraday Medal 1979. National Medal of Science 1979. National Medal of Engineering 1987.
    Bibliography
    1955, "Base-widening punch-through", Proceedings of the American Physical Society.
    30 July 1959, US patent no. 2,981,877.
    Further Reading
    T.R.Reid, 1985, Microchip: The Story of a Revolution and the Men Who Made It, London: Pan Books.
    KF

    Biographical history of technology > Noyce, Robert

  • 95 Peter the Great (Pyotr Alekseyevich Romanov)

    SUBJECT AREA: Ports and shipping
    [br]
    b. 10 June 1672 (30 May 1672 Old Style) Moscow, Russia
    d. 8 February 1725 (28 January 1725 Old Style) St Petersburg, Russia
    [br]
    Russian Tsar (1682–1725), Emperor of all the Russias (1722–5), founder of the Russian Navy, shipbuilder and scientist; as a shipbuilder he was known by the pseudonym Petr Mikhailov.
    [br]
    Peter the Great was a man with a single-minded approach to problems and with passionate and lifelong interests in matters scientific, military and above all maritime. The unusual and dominating rule of his vast lands brought about the age of Russian enlightenment, and ensured that his country became one of the most powerful states in Europe.
    Peter's interest in ships and shipbuilding started in his childhood; c. 1687 he had an old English-built day sailing boat repaired and launched, and on it he learned the rudiments of sailing and navigation. This craft (still preserved in St Petersburg) became known as the "Grandfather of the Russian Navy". In the years 1688 to 1693 he established a shipyard on Lake Plestsheev and then began his lifelong study of shipbuilding by visiting and giving encouragement to the industry at Archangelsk on the White Sea and Voronezh in the Sea of Azov. In October 1696, Peter took Azov from the Turks, and the Russian Fleet ever since has regarded that date as their birthday. Setting an example to the young aristocracy, Peter travelled to Western Europe to widen his experience and contacts and also to learn the trade of shipbuilding. He worked in the shipyards of Amsterdam and then at the Naval Base of Deptford on the Thames.
    The war with Sweden concentrated his attention on the Baltic and, to establish a base for trading and for the Navy, the City of St Petersburg was constructed on marshland. The Admiralty was built in the city and many new shipyards in the surrounding countryside, one being the Olonez yard which in 1703 built the frigate Standart, the first for the Baltic Fleet, which Peter himself commanded on its first voyage. The military defence of St Petersburg was effected by the construction of Kronstadt, seawards of the city.
    Throughout his life Peter was involved in ship design and it is estimated that one thousand ships were built during his reign. He introduced the building of standard ship types and also, centuries ahead of its time, the concept of prefabrication, unit assembly and the building of part hulls in different places. Officially he was the designer of the ninety-gun ship Lesnoe of 1718, and this may have influenced him in instituting Rules for Shipbuilders and for Seamen. In 1716 he commanded the joint fleets of the four naval powers: Denmark, Britain, Holland and Russia.
    He established the Marine Academy, organized and encouraged exploration and scientific research, and on his edict the St Petersburg Academy of Science was opened. He was not averse to the recruitment of foreigners to key posts in the nation's service. Peter the Great was a remarkable man, with the unusual quality of being a theorist and an innovator, in addition to the endowments of practicality and common sense.
    [br]
    Further Reading
    Robert K.Massie, 1981, Peter the Great: His Life and Work, London: Gollancz.
    Henri Troyat, 1979, Pierre le Grand; pub. in English 1988 as Peter the Great, London: Hamish Hamilton (a good all-round biography).
    AK / FMW

    Biographical history of technology > Peter the Great (Pyotr Alekseyevich Romanov)

  • 96 Pretsch, Paul

    [br]
    b. 1808 Vienna, Austria
    d. 1873 Vienna, Austria
    [br]
    Austrian printer and inventor of photogalvanography, one of the earliest commercial photomechanical printing processes.
    [br]
    The son of a goldsmith, Pretsch learned the printing trade in Vienna, where he worked until 1831. He then took up a series of posts in Germany, Belgium and Holland before returning to Vienna, where in 1842 he joined the Imperial State Printing Office. The office was equipped with a photographic studio, and Pretsch was encouraged to explore applications of photography to printing and the graphic arts. In 1851 he was sent to London to take responsibility for the Austrian printing exhibits of the Great Exhibition. This event proved to be a significant international show case for photography and Pretsch saw a great number of recent innovations and made many useful contacts. On returning to Vienna, he began to develop a process for producing printing plates from photographs. Using Talbot's discovery that bichromated gelatine swells in water after exposure to light, he electrotyped the relief image obtained. In 1854 Pretsch resigned from his post in Vienna and travelled back to London, where he patented his process, calling it photogalvanography. He went on to form a business, the Photo-Galvano-Graphic Company, to print and market his pictures.
    The Photographic Manager of the company was the celebrated photographer Roger Fenton, recently returned from his exploits on the battlefields of the Crimea. In 1856 the company issued a large serial work, Photographic Art Treasures, illustrated with Pretsch's pictures, which created considerable interest. The venture did not prove a commercial success, however, and although further plates were made and issued, Fenton found other interests to pursue and Pretsch was left to try to apply some of his ideas to lithography. This too had no successful outcome, and in 1863 Pretsch returned to Vienna. He was reappointed to a post at the Imperial State Printing Office, but his health failed and he made no further progress with his processes.
    [br]
    Bibliography
    9 November 1854, British patent no. 2,373. 11 August 1855, British patent no. 1,824.
    Further Reading
    J.M.Eder, 1945, History of Photography, trans. E. Epstean, New York.
    H.Gernsheim and A.Gernsheim, 1969, The History of Photography, rev. edn, London. H.J.P.Arnold, 1977, William Henry Fox Talbot, London (an account of the relationship with Talbot's process).
    JW

    Biographical history of technology > Pretsch, Paul

  • 97 Randall, Sir John Turton

    SUBJECT AREA: Medical technology
    [br]
    b. 23 March 1905 Newton-le-Willows, Lancashire, England
    d. 16 June 1984 Edinburgh, Scotland
    [br]
    English physicist and biophysicist, primarily known for the development, with Boot of the cavity magnetron.
    [br]
    Following secondary education at Ashton-inMakerfield Grammar School, Randall entered Manchester University to read physics, gaining a first class BSc in 1925 and his MSc in 1926. From 1926 to 1937 he was a research physicist at the General Electric Company (GEC) laboratories, where he worked on luminescent powders, following which he became Warren Research Fellow of the Royal Society at Birmingham University, studying electronic processes in luminescent solids. With the outbreak of the Second World War he became an honorary member of the university staff and transferred to a group working on the development of centrimetric radar. With Boot he was responsible for the development of the cavity magnetron, which had a major impact on the development of radar.
    When Birmingham resumed its atomic research programme in 1943, Randall became a temporary lecturer at the Cavendish Laboratory in Cambridge. The following year he was appointed Professor of Natural Philosophy at the University of St Andrews, but in 1946 he moved again to the Wheatstone Chair of Physics at King's College, London. There his developing interest in biophysical research led to the setting up of a multi-disciplinary group in 1951 to study connective tissues and other biological components, and in 1950– 5 he was joint Editor of Progress in Biophysics. From 1961 until his retirement in 1970 he was Professor of Biophysics at King's College and for most of that time he was also Chairman of the School of Biological Sciences. In addition, for many years he was honorary Director of the Medical Research Council Biophysics Research Unit.
    After he retired he returned to Edinburgh and continued to study biological problems in the university zoology laboratory.
    [br]
    Principal Honours and Distinctions
    Knighted 1962. FRS 1946. FRS Edinburgh 1972. DSc Manchester 1938. Royal Society of Arts Thomas Gray Memorial Prize 1943. Royal Society Hughes Medal 1946. Franklin Institute John Price Wetherill Medal 1958. City of Pennsylvania John Scott Award 1959. (All jointly with Boot for the cavity magnetron.)
    Bibliography
    1934, Diffraction of X-Rays by Amorphous Solids, Liquids \& Gases (describes his early work).
    1953, editor, Nature \& Structure of Collagen.
    1976, with H.Boot, "Historical notes on the cavity magnetron", Transactions of the Institute of Electrical and Electronics Engineers ED-23: 724 (gives an account of the cavity-magnetron development at Birmingham).
    Further Reading
    M.H.F.Wilkins, "John Turton Randall"—Bio-graphical Memoirs of Fellows of the Royal Society, London: Royal Society.
    KF

    Biographical history of technology > Randall, Sir John Turton

  • 98 Rankine, William John Macquorn

    [br]
    b. 5 July 1820 Edinburgh, Scotland
    d. 1872
    [br]
    [br]
    Rankine was educated at Ayr Academy and Glasgow High School, although he appears to have learned much of his basic mathematics and physics through private study. He attended Edinburgh University and then assisted his father, who was acting as Superintendent of the Edinburgh and Dalkeith Railway. This introduction to engineering practice was followed in 1838 by his appointment as a pupil to Sir John MacNeill, and for the next four years he served under MacNeill on his Irish railway projects. While still in his early twenties, Rankine presented pioneering papers on metal fatigue and other subjects to the Institution of Civil Engineers, for which he won a prize, but he appears to have resigned from the Civils in 1857 after an argument because the Institution would not transfer his Associate Membership into full Membership. From 1844 to 1848 Rankine worked on various projects for the Caledonian Railway Company, but his interests were becoming increasingly theoretical and a series of distinguished papers for learned societies established his reputation as a leading scholar in the new science of thermodynamics. He was elected Fellow of the Royal Society in 1853. At the same time, he remained intimately involved with practical questions of applied science, in shipbuilding, marine engineering and electric telegraphy, becoming associated with the influential coterie of fellow Scots such as the Thomson brothers, Napier, Elder, and Lewis Gordon. Gordon was then the head of a large and successful engineering practice, but he was also Regius Professor of Engineering at the University of Glasgow, and when he retired from the Chair to pursue his business interests, Rankine, who had become his Assistant, was appointed in his place.
    From 1855 until his premature death in 1872, Rankine built up an impressive engineering department, providing a firm theoretical basis with a series of text books that he wrote himself and most of which remained in print for many decades. Despite his quarrel with the Institution of Civil Engineers, Rankine took a keen interest in the institutional development of the engineering profession, becoming the first President of the Institution of Engineers and Shipbuilders in Scotland, which he helped to establish in 1857. Rankine campaigned vigorously for the recognition of engineering studies as a full university degree at Glasgow, and he achieved this in 1872, the year of his death. Rankine was one of the handful of mid-nineteenth century engineers who virtually created engineering as an academic discipline.
    [br]
    Principal Honours and Distinctions
    FRS 1853. First President, Institution of Engineers and Shipbuilders in Scotland, 1857.
    Bibliography
    1858, Manual of Applied Mechanics.
    1859, Manual of the Steam Engine and Other Prime Movers.
    1862, Manual of Civil Engineering.
    1869, Manual of Machinery and Millwork.
    Further Reading
    J.Small, 1957, "The institution's first president", Proceedings of the Institution of Engineers and Shipbuilders in Scotland: 687–97.
    H.B.Sutherland, 1972, Rankine. His Life and Times.
    AB

    Biographical history of technology > Rankine, William John Macquorn

  • 99 Smith, Sir Francis Pettit

    SUBJECT AREA: Ports and shipping
    [br]
    b. 9 February 1808 Copperhurst Farm, near Hythe, Kent, England
    d. 12 February 1874 South Kensington, London, England
    [br]
    English inventor of the screw propeller.
    [br]
    Smith was the only son of Charles Smith, Postmaster at Hythe, and his wife Sarah (née Pettit). After education at a private school in Ashford, Kent, he took to farming, first on Romney Marsh, then at Hendon, Middlesex. As a boy, he showed much skill in the construction of model boats, especially in devising their means of propulsion. He maintained this interest into adult life and in 1835 he made a model propelled by a screw driven by a spring. This worked so well that he became convinced that the screw propeller offered a better method of propulsion than the paddle wheels that were then in general use. This notion so fired his enthusiasm that he virtually gave up farming to devote himself to perfecting his invention. The following year he produced a better model, which he successfully demonstrated to friends on his farm at Hendon and afterwards to the public at the Adelaide Gallery in London. On 31 May 1836 Smith was granted a patent for the propulsion of vessels by means of a screw.
    The idea of screw propulsion was not new, however, for it had been mooted as early as the seventeenth century and since then several proposals had been advanced, but without successful practical application. Indeed, simultaneously but quite independently of Smith, the Swedish engineer John Ericsson had invented the ship's propeller and obtained a patent on 13 July 1836, just weeks after Smith. But Smith was completely unaware of this and pursued his own device in the belief that he was the sole inventor.
    With some financial and technical backing, Smith was able to construct a 10 ton boat driven by a screw and powered by a steam engine of about 6 hp (4.5 kW). After showing it off to the public, Smith tried it out at sea, from Ramsgate round to Dover and Hythe, returning in stormy weather. The screw performed well in both calm and rough water. The engineering world seemed opposed to the new method of propulsion, but the Admiralty gave cautious encouragement in 1839 by ordering that the 237 ton Archimedes be equipped with a screw. It showed itself superior to the Vulcan, one of the fastest paddle-driven ships in the Navy. The ship was put through its paces in several ports, including Bristol, where Isambard Kingdom Brunel was constructing his Great Britain, the first large iron ocean-going vessel. Brunel was so impressed that he adapted his ship for screw propulsion.
    Meanwhile, in spite of favourable reports, the Admiralty were dragging their feet and ordered further trials, fitting Smith's four-bladed propeller to the Rattler, then under construction and completed in 1844. The trials were a complete success and propelled their lordships of the Admiralty to a decision to equip twenty ships with screw propulsion, under Smith's supervision.
    At last the superiority of screw propulsion was generally accepted and virtually universally adopted. Yet Smith gained little financial reward for his invention and in 1850 he retired to Guernsey to resume his farming life. In 1860 financial pressures compelled him to accept the position of Curator of Patent Models at the Patent Museum in South Kensington, London, a post he held until his death. Belated recognition by the Government, then headed by Lord Palmerston, came in 1855 with the grant of an annual pension of £200. Two years later Smith received unofficial recognition when he was presented with a national testimonial, consisting of a service of plate and nearly £3,000 in cash subscribed largely by the shipbuilding and engineering community. Finally, in 1871 Smith was honoured with a knighthood.
    [br]
    Principal Honours and Distinctions
    Knighted 1871.
    Further Reading
    Obituary, 1874, Illustrated London News (7 February).
    1856, On the Invention and Progress of the Screw Propeller, London (provides biographical details).
    Smith and his invention are referred to in papers in Transactions of the Newcomen Society, 14 (1934): 9; 19 (1939): 145–8, 155–7, 161–4, 237–9.
    LRD

    Biographical history of technology > Smith, Sir Francis Pettit

  • 100 Sperry, Elmer Ambrose

    [br]
    b. 21 October 1860 Cincinnatus, Cortland County, New York, USA
    d. 16 June 1930 Brooklyn, New York, USA
    [br]
    American entrepreneur who invented the gyrocompass.
    [br]
    Sperry was born into a farming community in Cortland County. He received a rudimentary education at the local school, but an interest in mechanical devices was aroused by the agricultural machinery he saw around him. His attendance at the Normal School in Cortland provided a useful theoretical background to his practical knowledge. He emerged in 1880 with an urge to pursue invention in electrical engineering, then a new and growing branch of technology. Within two years he was able to patent and demonstrate his arc lighting system, complete with its own generator, incorporating new methods of regulating its output. The Sperry Electric Light, Motor and Car Brake Company was set up to make and market the system, but it was difficult to keep pace with electric-lighting developments such as the incandescent lamp and alternating current, and the company ceased in 1887 and was replaced by the Sperry Electric Company, which itself was taken over by the General Electric Company.
    In the 1890s Sperry made useful inventions in electric mining machinery and then in electric street-or tramcars, with his patent electric brake and control system. The patents for the brake were important enough to be bought by General Electric. From 1894 to 1900 he was manufacturing electric motor cars of his own design, and in 1900 he set up a laboratory in Washington, where he pursued various electrochemical processes.
    In 1896 he began to work on the practical application of the principle of the gyroscope, where Sperry achieved his most notable inventions, the first of which was the gyrostabilizer for ships. The relatively narrow-hulled steamship rolled badly in heavy seas and in 1904 Ernst Otto Schuck, a German naval engineer, and Louis Brennan in England began experiments to correct this; their work stimulated Sperry to develop his own device. In 1908 he patented the active gyrostabilizer, which acted to correct a ship's roll as soon as it started. Three years later the US Navy agreed to try it on a destroyer, the USS Worden. The successful trials of the following year led to widespread adoption. Meanwhile, in 1910, Sperry set up the Sperry Gyroscope Company to extend the application to commercial shipping.
    At the same time, Sperry was working to apply the gyroscope principle to the ship's compass. The magnetic compass had worked well in wooden ships, but iron hulls and electrical machinery confused it. The great powers' race to build up their navies instigated an urgent search for a solution. In Germany, Anschütz-Kämpfe (1872–1931) in 1903 tested a form of gyrocompass and was encouraged by the authorities to demonstrate the device on the German flagship, the Deutschland. Its success led Sperry to develop his own version: fortunately for him, the US Navy preferred a home-grown product to a German one and gave Sperry all the backing he needed. A successful trial on a destroyer led to widespread acceptance in the US Navy, and Sperry was soon receiving orders from the British Admiralty and the Russian Navy.
    In the rapidly developing field of aeronautics, automatic stabilization was becoming an urgent need. In 1912 Sperry began work on a gyrostabilizer for aircraft. Two years later he was able to stage a spectacular demonstration of such a device at an air show near Paris.
    Sperry continued research, development and promotion in military and aviation technology almost to the last. In 1926 he sold the Sperry Gyroscope Company to enable him to devote more time to invention.
    [br]
    Principal Honours and Distinctions
    John Fritz Medal 1927. President, American Society of Mechanical Engineers 1928.
    Bibliography
    Sperry filed over 400 patents, of which two can be singled out: 1908. US patent no. 434,048 (ship gyroscope); 1909. US patent no. 519,533 (ship gyrocompass set).
    Further Reading
    T.P.Hughes, 1971, Elmer Sperry, Inventor and Engineer, Baltimore: Johns Hopkins University Press (a full and well-documented biography, with lists of his patents and published writings).
    LRD

    Biographical history of technology > Sperry, Elmer Ambrose

См. также в других словарях:

  • interest group — a group of people drawn or acting together in support of a common interest or to voice a common concern: Political interest groups seek to influence legislation. [1905 10] * * * ▪ political science Introduction also called  special interest group …   Universalium

  • Council for the National Interest — at June 2007 rally. The Council for the National Interest ( CNI ) is a 501(c) organization in the United States advocating a new direction for U.S. Middle East policy. With its sister organization the Council for the National Interest Foundation… …   Wikipedia

  • Minnesota Public Interest Research Group — Established 1971 Exec. Dir. Joshua Winters Chair Natalie Cook Vice Chair Lucas Felts Treasurer …   Wikipedia

  • Compound interest — The effect of earning 20% annual interest on an initial $1,000 investment at various compounding frequencies Compound interest arises when interest is added to the principal, so that from that moment on, the interest that has been added also… …   Wikipedia

  • Real interest rate — The real interest rate is approximately the nominal interest rate minus the inflation rate (see Fisher equation and below for exact equation). Since the inflation rate over the course of a loan is not known initially, volatility in inflation… …   Wikipedia

  • Loans and interest in Judaism — The combination of loans and interest, in Judaism, is a complicated and detailed subject. The biblical Hebrew terms for interest are neshekh (Heb.: נשך), literally meaning a bite , in reference to its painfulness to the debtor, and marbit /… …   Wikipedia

  • Psychology of Interest —     Psychology of Interest     † Catholic Encyclopedia ► Psychology of Interest     (Lat. interest; Fr. intérêt; Germ. interesse). The mental state called interest has received much attention in recent psychological literature. This is largely… …   Catholic encyclopedia

  • Center for Science in the Public Interest — Abbreviation CSPI Formation 1971 Type Non profit …   Wikipedia

  • Anthology of Interest I — Infobox Futurama episode episode name = Anthology of Interest I caption = What would happen if Leela was a tiny bit more impulsive? episode no = 29 prod code = 2ACV16 airdate = May 21, 2000 country = USA writer = Terror at 500 Feet: Eric Rogers… …   Wikipedia

  • A Person of Interest — Infobox Television episode Title=A Person of Interest Series= Season=2 Episode=23 (#45 overall) Airdate=May 18 2003 Production=E3220 Writer=Dick Wolf (creator) René Balcer (story and teleplay) Warren Leight (story) Stephanie Sengupta (story… …   Wikipedia

  • Harvard Law School Public Interest Auction — The Harvard Law School Public Interest Auction began in 1994 as a student run fundraising event to support Harvard Law students working in full time public interest positions during the summer. Since then, it has raised over $800,000 for students …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»