Перевод: со всех языков на английский

с английского на все языки

while+instead

  • 121 Monro, Philip Peter

    SUBJECT AREA: Chemical technology
    [br]
    b. 27 May 1946 London, England
    [br]
    English biologist, inventor of a water-purification process by osmosis.
    [br]
    Monro's whole family background is engineering, an interest he did not share. Instead, he preferred biology, an enthusiasm aroused by reading the celebrated Science of Life by H.G. and G.P.Wells and Julian Huxley. Educated at a London comprehensive school, Monro found it necessary to attend evening classes while at school to take his advanced level science examinations. Lacking parental support, he could not pursue a degree course until he was 21 years old, and so he gained valuable practical experience as a research technician. He resumed his studies and took a zoology degree at Portsmouth Polytechnic. He then worked in a range of zoology and medical laboratories, culminating after twelve years as a Senior Experimental Officer at Southampton Medical School. In 1989 he relinquished his post to devote himself fall time to developing his inventions as Managing Director of Hampshire Advisory and Technical Services Ltd (HATS). Also in 1988 he obtained his PhD from Southampton University, in the field of embryology.
    Monro had meanwhile been demonstrating a talent for invention, mainly in microscopy. His most important invention, however, is of a water-purification system. The idea for it came from Michael Wilson of the Institute of Dental Surgery in London, who evolved a technique for osmotic production of sterile oral rehydration solutions, of particular use in treating infants suffering from diarrhoea in third-world countries. Monro broadened the original concept to include dried food, intravenous solutions and even dried blood. The process uses simple equipment and no external power and works as follows: a dry sugar/salts mixture is sealed in one compartment of a double bag, the common wall of which is a semipermeable membrane. Impure water is placed in the empty compartment and the water transfers across the membrane by the osmotic force of the sugar/salts. As the pores in the membrane exclude all viruses, bacteria and their toxins, a sterile solution is produced.
    With the help of a research fellowship granted for humanitarian reasons at King Alfred College, Winchester, the invention was developed to functional prototype stage in 1993, with worldwide patent protection. Commercial production was expected to follow, if sufficient financial backing were forthcoming. The process is not intended to replace large installations, but will revolutionize the small-scale production of sterile water in scattered third-world communities and in disaster areas where normal services have been disrupted.
    HATS was awarded First Prize in the small business category and was overall prize winner in the Toshiba Year of Invention, received a NatWest/BP award for technology and a Prince of Wales Award for Innovation.
    [br]
    Bibliography
    1993, with M.Wilson and W.A.M.Cutting, "Osmotic production of sterile oral rehydration solutions", Tropical Doctor 23:69–72.
    LRD

    Biographical history of technology > Monro, Philip Peter

  • 122 Morland, Sir Samuel

    [br]
    b. 1625 Sulhampton, near Reading, Berkshire, England
    d. 26 December 1695 Hammersmith, near London, England
    [br]
    English mathematician and inventor.
    [br]
    Morland was one of several sons of the Revd Thomas Morland and was probably initially educated by his father. He went to Winchester School from 1639 to 1644 and then to Magdalene College, Cambridge, where he graduated BA in 1648 and MA in 1652. He was appointed a tutor there in 1650. In 1653 he went to Sweden in the ambassadorial staff of Bulstrode Whitelocke and remained there until 1654. In that year he was appointed Clerk to Mr Secretary Thurloe, and in 1655 he was accredited by Oliver Cromwell to the Duke of Savoy to appeal for the Waldenses. In 1657 he married Susanne de Milleville of Boissy, France, with whom he had three children. In 1660 he went over to the Royalists, meeting King Charles at Breda, Holland. On 20 May, the King knighted him, creating him baron, for revealing a conspiracy against the king's life. He was also granted a pension of£500 per year. In 1661, at the age of 36, he decided to devote himself to mathematics and invention. He devised a mechanical calculator, probably based on the pattern of Blaise Pascal, for adding and subtracting: this was followed in 1666 by one for multiplying and other functions. A Perpetual Calendar or Almanack followed; he toyed with the idea of a "gunpowder engine" for raising water; he developed a range of speaking trum-pets, said to have a range of 1/2 to 1 mile (0.8–1.6 km) or more; also iron stoves for use on board ships, and improvements to barometers.
    By 1675 he had started selling a range of pumps for private houses, for mines or deep wells, for ships, for emptying ponds or draining low ground as well as to quench fire or wet the sails of ships. The pumps cost from £5 to £63, and the great novelty was that he used, instead of packing around the cylinder sealing against the bore of the cylinder, a neck-gland or seal around the outside diameter of the piston or piston-rod. This revolutionary step avoided the necessity of accurately boring the cylinder, replacing it with the need to machine accurately the outside diameter of the piston or rod, a much easier operation. Twenty-seven variations of size and materials were included in his schedule of'Pumps or Water Engines of Isaac Thompson of Great Russel Street', the maker of Morland's design. In 1681 the King made him "Magister mechanicorum", or Master of Machines. In that year he sailed for France to advise Louis XIV on the waterworks being built at Marly to supply the Palace of Versailles. About this time he had shown King Charles plans for a pumping engine "worked by fire alone". He petitioned for a patent for this, but did not pursue the matter.
    In 1692 he went blind. In all, he married five times. While working for Cromwell he became an expert in ciphers, in opening sealed letters and in their rapid copying.
    [br]
    Principal Honours and Distinctions
    Knighted 1660.
    Bibliography
    Further Reading
    H.W.Dickinson, 1970, Sir Samuel Morland: Diplomat and Inventor, Cambridge: Newcomen Society/Heffers.
    IMcN

    Biographical history of technology > Morland, Sir Samuel

  • 123 Murray, Matthew

    [br]
    b. 1765 near Newcastle upon Tyne, England
    d. 20 February 1826 Holbeck, Leeds, England
    [br]
    English mechanical engineer and steam engine, locomotive and machine-tool pioneer.
    [br]
    Matthew Murray was apprenticed at the age of 14 to a blacksmith who probably also did millwrighting work. He then worked as a journeyman mechanic at Stockton-on-Tees, where he had experience with machinery for a flax mill at Darlington. Trade in the Stockton area became slack in 1788 and Murray sought work in Leeds, where he was employed by John Marshall, who owned a flax mill at Adel, located about 5 miles (8 km) from Leeds. He soon became Marshall's chief mechanic, and when in 1790 a new mill was built in the Holbeck district of Leeds by Marshall and his partner Benyon, Murray was responsible for the installation of the machinery. At about this time he took out two patents relating to improvements in textile machinery.
    In 1795 he left Marshall's employment and, in partnership with David Wood (1761– 1820), established a general engineering and millwrighting business at Mill Green, Holbeck. In the following year the firm moved to a larger site at Water Lane, Holbeck, and additional capital was provided by two new partners, James Fenton (1754–1834) and William Lister (1796–1811). Lister was a sleeping partner and the firm was known as Fenton, Murray \& Wood and was organized so that Fenton kept the accounts, Wood was the administrator and took charge of the workshops, while Murray provided the technical expertise. The factory was extended in 1802 by the construction of a fitting shop of circular form, after which the establishment became known as the "Round Foundry".
    In addition to textile machinery, the firm soon began the manufacture of machine tools and steam-engines. In this field it became a serious rival to Boulton \& Watt, who privately acknowledged Murray's superior craftsmanship, particularly in foundry work, and resorted to some industrial espionage to discover details of his techniques. Murray obtained patents for improvements in steam engines in 1799, 1801 and 1802. These included automatic regulation of draught, a mechanical stoker and his short-D slide valve. The patent of 1801 was successfully opposed by Boulton \& Watt. An important contribution of Murray to the development of the steam engine was the use of a bedplate so that the engine became a compact, self-contained unit instead of separate components built into an en-gine-house.
    Murray was one of the first, if not the very first, to build machine tools for sale. However, this was not the case with the planing machine, which he is said to have invented to produce flat surfaces for his slide valves. Rather than being patented, this machine was kept secret, although it was apparently in use before 1814.
    In 1812 Murray was engaged by John Blenkinsop (1783–1831) to build locomotives for his rack railway from Middleton Colliery to Leeds (about 3 1/2 miles or 5.6 km). Murray was responsible for their design and they were fitted with two double-acting cylinders and cranks at right angles, an important step in the development of the steam locomotive. About six of these locomotives were built for the Middleton and other colliery railways and some were in use for over twenty years. Murray also supplied engines for many early steamboats. In addition, he built some hydraulic machinery and in 1814 patented a hydraulic press for baling cloth.
    Murray's son-in-law, Richard Jackson, later became a partner in the firm, which was then styled Fenton, Murray \& Jackson. The firm went out of business in 1843.
    [br]
    Principal Honours and Distinctions
    Society of Arts Gold Medal 1809 (for machine for hackling flax).
    Further Reading
    L.T.C.Rolt, 1962, Great Engineers, London (contains a good short biography).
    E.Kilburn Scott (ed.), 1928, Matthew Murray, Pioneer Engineer, Leeds (a collection of essays and source material).
    Year 1831, London.
    L.T.C.Rolt, 1965, Tools for the Job, London; repub. 1986 (provides information on Murray's machine-tool work).
    Some of Murray's correspondence with Simon Goodrich of the Admiralty has been published in Transactions of the Newcomen Society 3 (1922–3); 6(1925–6); 18(1937– 8); and 32 (1959–60).
    RTS

    Biographical history of technology > Murray, Matthew

  • 124 Pääbo, Max

    SUBJECT AREA: Textiles
    [br]
    b. Estonia fl. 1950s Sweden
    [br]
    Estonian inventor of one of the most successful looms, in which the weft is sent across the warp by a jet of air.
    [br]
    The earliest patent for using a jet of air to propel a shuttle across a loom was granted to J.C. Brooks in 1914. A different method was tried by E.H.Ballou in 1929, but the really important patent was taken out by Max Pääbo, a refugee from Estonia. He exhibited his machine in Sweden in 1951, weaving cotton cloth 80 cm (31 1/2 in.) wide at a speed of 350 picks per minute, but it was not widely publicized until 1954. One shown in Manchester in 1958 ran at 410 picks per minute while weaving 90 cm (35 1/2 in.) cloth. His looms were called "Maxbo" after him. They had no shuttle; instead a jet of air drove a measured amount of weft drawn from a supply package across the warp threads. Efficient control of the airstream was the main reason for its success; not only was weaving much quicker, but it was also much quieter than traditional methods, and as the warp was nearly vertical the looms took up little space. Manufacture of these looms in Sweden ceased in 1962, but development continued in other countries.
    [br]
    Further Reading
    J.J.Vincent, 1980, Shuttle less Looms, Manchester (a good account of the development of modern looms).
    RLH

    Biographical history of technology > Pääbo, Max

  • 125 Pratt, Francis Ashbury

    [br]
    b. 15 February 1827 Woodstock, Vermont, USA
    d. 10 February 1902 Hartford, Connecticut, USA
    [br]
    American mechanical engineer and machine-tool manufacturer.
    [br]
    Francis A.Pratt served an apprenticeship as a machinist with Warren Aldrich, and on completing it in 1848 he entered the Gloucester Machine Works as a journeyman machinist. From 1852 to 1854 he worked at the Colt Armory in Hartford, Connecticut, where he met his future partner, Amos Whitney. He then became Superintendent of the Phoenix Iron Works, also at Hartford and run by George S.Lincoln \& Company. While there he designed the well-known "Lincoln" miller, which was first produced in 1855. This was a development of the milling machine built by Robbins \& Lawrence and designed by F.W. Howe, and incorporated a screw drive for the table instead of the rack and pinion used in the earlier machine.
    Whitney also moved to the Phoenix Iron Works, and in 1860 the two men started in a small way doing machine work on their own account. In 1862 they took a third partner, Monroe Stannard, and enlarged their workshop. The business continued to expand, but Pratt and Whitney remained at the Phoenix Iron Works until 1864 and in the following year they built their first new factory. The Pratt \& Whitney Company was incorporated in 1869 with a capital of $350,000, F.A.Pratt being elected President. The firm specialized in making machine tools and tools particularly for the armament industry. In the 1870s Pratt made no less than ten trips to Europe gaining orders for equipping armouries in many different countries. Pratt \& Whitney was one of the leading firms developing the system of interchangeable manufacture which led to the need to establish national standards of measurement. The Rogers-Bond Comparator, developed with the backing of Pratt \& Whitney, played an important part in the establishment of these standards, which formed the basis of the gauges of many various types made by the firm. Pratt remained President of the company until 1898, after which he served as their Consulting Engineer for a short time before retiring from professional life. He was granted a number of patents relating to machine tools. He was a founder member of the American Society of Mechanical Engineers in 1880 and was elected a vice-president in 1881. He was an alderman of the city of Hartford.
    [br]
    Principal Honours and Distinctions
    Vice-President, American Society of Mechanical Engineers 1881.
    Further Reading
    J.W.Roe, 1916, English and American Tool Builders, New Haven; reprinted 1926, New York, and 1987, Bradley, 111. (describes the origin and development of the Pratt \& Whitney Company).
    RTS

    Biographical history of technology > Pratt, Francis Ashbury

  • 126 Reichenbach, Georg Friedrich von

    [br]
    b. 24 August 1772 Durlach, Baden, Germany
    d. 21 May 1826 Munich, Germany
    [br]
    German engineer.
    [br]
    While he was attending the Military School at Mannheim, Reichenbach drew attention to himself due to the mathematical instruments that he had designed. On the recommendation of Count Rumford in Munich, the Bavarian government financed a two-year stay in Britain so that Reichenbach could become acquainted with modern mechanical engineering. He returned to Mannheim in 1793, and during the Napoleonic Wars he was involved in the manufacture of arms. In Munich, where he was in the service of the Bavarian state from 1796, he started producing precision instruments in his own time. His basic invention was the design of a dividing machine for circles, produced at the end of the eighteenth century. The astronomic and geodetic instruments he produced excelled all the others for their precision. His telescopes in particular, being perfect in use and of solid construction, soon brought him an international reputation. They were manufactured at the MathematicMechanical Institute, which he had jointly founded with Joseph Utzschneider and Joseph Liebherr in 1804 and which became a renowned training establishment. The glasses and lenses were produced by Joseph Fraunhofer who joined the company in 1807.
    In the same year he was put in charge of the technical reorganization of the salt-works at Reichenhall. After he had finished the brine-transport line from Reichenhall to Traunstein in 1810, he started on the one from Berchtesgaden to Reichenhall which was an extremely difficult task because of the mountainous area that had to be crossed. As water was the only source of energy available he decided to use water-column engines for pumping the brine in the pipes of both lines. Such devices had been in use for pumping purposes in different mining areas since the middle of the eighteenth century. Reichenbach knew about the one constructed by Joseph Karl Hell in Slovakia, which in principle had just been a simple piston-pump driven by water which did not work satisfactorily. Instead he constructed a really effective double-action water-column engine; this was a short time after Richard Trevithick had constructed a similar machine in England. For the second line he improved the system and built a single-action pump. All the parts of it were made of metal, which made them easy to produce, and the pumps proved to be extremely reliable, working for over 100 years.
    At the official opening of the line in 1817 the Bavarian king rewarded him generously. He remained in the state's service, becoming head of the department for roads and waterways in 1820, and he contributed to the development of Bavarian industry as well as the public infrastructure in many ways as a result of his mechanical skill and his innovative engineering mind.
    [br]
    Further Reading
    Bauernfeind, "Georg von Reichenbach" Allgemeine deutsche Biographie 27:656–67 (a reliable nineteenth-century account).
    W.Dyck, 1912, Georg v. Reichenbach, Munich.
    K.Matschoss, 1941, Grosse Ingenieure, Munich and Berlin, 3rd edn. 121–32 (a concise description of his achievements in the development of optical instruments and engineering).
    WK

    Biographical history of technology > Reichenbach, Georg Friedrich von

  • 127 Smeaton, John

    [br]
    b. 8 June 1724 Austhorpe, near Leeds, Yorkshire, England
    d. 28 October 1792 Austhorpe, near Leeds, Yorkshire, England
    [br]
    English mechanical and civil engineer.
    [br]
    As a boy, Smeaton showed mechanical ability, making for himself a number of tools and models. This practical skill was backed by a sound education, probably at Leeds Grammar School. At the age of 16 he entered his father's office; he seemed set to follow his father's profession in the law. In 1742 he went to London to continue his legal studies, but he preferred instead, with his father's reluctant permission, to set up as a scientific instrument maker and dealer and opened a shop of his own in 1748. About this time he began attending meetings of the Royal Society and presented several papers on instruments and mechanical subjects, being elected a Fellow in 1753. His interests were turning towards engineering but were informed by scientific principles grounded in careful and accurate observation.
    In 1755 the second Eddystone lighthouse, on a reef some 14 miles (23 km) off the English coast at Plymouth, was destroyed by fire. The President of the Royal Society was consulted as to a suitable engineer to undertake the task of constructing a new one, and he unhesitatingly suggested Smeaton. Work began in 1756 and was completed in three years to produce the first great wave-swept stone lighthouse. It was constructed of Portland stone blocks, shaped and pegged both together and to the base rock, and bonded by hydraulic cement, scientifically developed by Smeaton. It withstood the storms of the English Channel for over a century, but by 1876 erosion of the rock had weakened the structure and a replacement had to be built. The upper portion of Smeaton's lighthouse was re-erected on a suitable base on Plymouth Hoe, leaving the original base portion on the reef as a memorial to the engineer.
    The Eddystone lighthouse made Smeaton's reputation and from then on he was constantly in demand as a consultant in all kinds of engineering projects. He carried out a number himself, notably the 38 mile (61 km) long Forth and Clyde canal with thirty-nine locks, begun in 1768 but for financial reasons not completed until 1790. In 1774 he took charge of the Ramsgate Harbour works.
    On the mechanical side, Smeaton undertook a systematic study of water-and windmills, to determine the design and construction to achieve the greatest power output. This work issued forth as the paper "An experimental enquiry concerning the natural powers of water and wind to turn mills" and exerted a considerable influence on mill design during the early part of the Industrial Revolution. Between 1753 and 1790 Smeaton constructed no fewer than forty-four mills.
    Meanwhile, in 1756 he had returned to Austhorpe, which continued to be his home base for the rest of his life. In 1767, as a result of the disappointing performance of an engine he had been involved with at New River Head, Islington, London, Smeaton began his important study of the steam-engine. Smeaton was the first to apply scientific principles to the steam-engine and achieved the most notable improvements in its efficiency since its invention by Newcomen, until its radical overhaul by James Watt. To compare the performance of engines quantitatively, he introduced the concept of "duty", i.e. the weight of water that could be raised 1 ft (30 cm) while burning one bushel (84 lb or 38 kg) of coal. The first engine to embody his improvements was erected at Long Benton colliery in Northumberland in 1772, with a duty of 9.45 million pounds, compared to the best figure obtained previously of 7.44 million pounds. One source of heat loss he attributed to inaccurate boring of the cylinder, which he was able to improve through his close association with Carron Ironworks near Falkirk, Scotland.
    [br]
    Principal Honours and Distinctions
    FRS 1753.
    Bibliography
    1759, "An experimental enquiry concerning the natural powers of water and wind to turn mills", Philosophical Transactions of the Royal Society.
    Towards the end of his life, Smeaton intended to write accounts of his many works but only completed A Narrative of the Eddystone Lighthouse, 1791, London.
    Further Reading
    S.Smiles, 1874, Lives of the Engineers: Smeaton and Rennie, London. A.W.Skempton, (ed.), 1981, John Smeaton FRS, London: Thomas Telford. L.T.C.Rolt and J.S.Allen, 1977, The Steam Engine of Thomas Newcomen, 2nd edn, Hartington: Moorland Publishing, esp. pp. 108–18 (gives a good description of his work on the steam-engine).
    LRD

    Biographical history of technology > Smeaton, John

  • 128 Wedgwood, Ralph

    SUBJECT AREA: Paper and printing
    [br]
    fl. late eighteenth/early nineteenth century London, England
    [br]
    English inventor of carbon paper.
    [br]
    Wedgwood was descended from Thomas Wedgwood, the father of Josiah Wedgwood, the founder of the famous pottery firm. In 1806, he patented an apparatus for making copies of handwritten documents, Wedgwood's Stylographic Writer. It was originally developed with the intention of helping the blind to write and had a metal stylus instead of a quill pen: a piece of paper that had been soaked in printer's ink and then dried was placed between two sheets of paper, and wires placed across the page guided the stylus in the hand of the blind writer.
    A few years later Wedgwood developed this apparatus into a way of making a copy of a letter at the time of writing. He used impregnated paper, which he called carbonic or carbonated paper, the first known reference to carbon paper. It was placed between a sheet of good quality writing paper and one of thin, transparent paper. By writing with the stylus on the thin paper, a good copy appeared on the lower sheet, while a reverse copy appeared on the underside of the other, which could be read right way round through the transparent paper. In its final form, the Manifold Stylographic Writer was put on sale, elegantly presented between marbled covers. Eventually a company was established to make and sell the writer, and by 1818 it was in the name of Wedgwood's son, R.Wedgwood Jun. of Rathbone Place, Oxford Street, London. Many of the writers were sold, although they never came into general use in offices, which preferred battalions of Dickensian Bob Cratchits armed with quill pens. Wedgwood himself did not share in the family prosperity, for his pathetic letters to his daughter show that he had to hawk his apparatus to raise the price of his next meal.
    [br]
    Further Reading
    W.B.Proudfoot, 1972, The Origin of Stencil Duplicating, London: Hutchinson.
    LRD

    Biographical history of technology > Wedgwood, Ralph

См. также в других словарях:

  • While My Guitar Gently Weeps — Song by The Beatles from the album The Beatles Released 22 November 1968 (1968 11 22) Recorded 5 September 1968 …   Wikipedia

  • While — and whilst are conjunctions whose primary meaning is during the time that . An example is::The days were hot while we were on vacation.:I read a magazine whilst I was waiting. While and whilst can nowadays legitimately be used in the contrastive… …   Wikipedia

  • While You Were Out — infobox television show name = While You Were Out caption = While You Were Out format = Reality runtime = 60 Minutes creator = starring = Anna Bocci Teresa Strasser Evan Farmer country = USA network = TLC first aired = July 6, 2002 last aired =… …   Wikipedia

  • While the City Sleeps (1956 film) — Infobox Film name = While the City Sleeps caption = Theatrical poster director = Fritz Lang producer = Bert E. Friedlob writer = Story: Charles Einstein Screenplay: Casey Robinson starring = Dana Andrews Rhonda Fleming music = Herschel Burke… …   Wikipedia

  • While Broken Hearts Prevail — Infobox Album Name = While Broken Hearts Prevail Type = ep Artist = Emery Released = October 28, 2008 Recorded = Genre = Post hardcore Length = Label = Tooth Nail Producer = Reviews = Last album = I m Only a Man (2007) This album = While Broken… …   Wikipedia

  • While I Was Gone (film) — Infobox Film name = While I Was Gone caption = imdb id = 0428044 writer = Sue Miller (novel) and Alan Sharp (teleplay) starring = Kirstie Alley Bill Smitrovich Peter Horton Janaya Stephens Kim Poirier and Deborah Odell director = Mike Robe… …   Wikipedia

  • Texting while driving — Main article: Distracted driving Texting while driving leads to increased distraction Texting while driving is the act of composing, sending, reading text messages, email, or making other similar use of the web on a mobile phone while operating a …   Wikipedia

  • Once in a While (Madeleine Peyroux song) — Once in a While Single by Madeleine Peyroux from the album Half the Perfect World Released 2007 Recorded 2006 …   Wikipedia

  • Measurement while drilling — Well logging Gamma ray logging Spontaneous potential logging Resistivity logging Density logging Sonic logging Caliper logging Mud logging LWD/MWD v · …   Wikipedia

  • Trading while insolvent (UK) — In many legal systems, once a company becomes insolvent, the directors have to take particular care. Under UK law, trading while insolvent can trigger several provisions under the Insolvency Act 1986 which may have the effect of making directors… …   Wikipedia

  • Trading while insolvent — is unlawful in a number of legal systems, and may result in the directors becoming personally liable for a company s assets. Under UK insolvency law trading once a company is legally insolvent can trigger several provisions of the Insolvency Act… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»