Перевод: с английского на все языки

со всех языков на английский

when+in+scotland

  • 121 Randall, Sir John Turton

    SUBJECT AREA: Medical technology
    [br]
    b. 23 March 1905 Newton-le-Willows, Lancashire, England
    d. 16 June 1984 Edinburgh, Scotland
    [br]
    English physicist and biophysicist, primarily known for the development, with Boot of the cavity magnetron.
    [br]
    Following secondary education at Ashton-inMakerfield Grammar School, Randall entered Manchester University to read physics, gaining a first class BSc in 1925 and his MSc in 1926. From 1926 to 1937 he was a research physicist at the General Electric Company (GEC) laboratories, where he worked on luminescent powders, following which he became Warren Research Fellow of the Royal Society at Birmingham University, studying electronic processes in luminescent solids. With the outbreak of the Second World War he became an honorary member of the university staff and transferred to a group working on the development of centrimetric radar. With Boot he was responsible for the development of the cavity magnetron, which had a major impact on the development of radar.
    When Birmingham resumed its atomic research programme in 1943, Randall became a temporary lecturer at the Cavendish Laboratory in Cambridge. The following year he was appointed Professor of Natural Philosophy at the University of St Andrews, but in 1946 he moved again to the Wheatstone Chair of Physics at King's College, London. There his developing interest in biophysical research led to the setting up of a multi-disciplinary group in 1951 to study connective tissues and other biological components, and in 1950– 5 he was joint Editor of Progress in Biophysics. From 1961 until his retirement in 1970 he was Professor of Biophysics at King's College and for most of that time he was also Chairman of the School of Biological Sciences. In addition, for many years he was honorary Director of the Medical Research Council Biophysics Research Unit.
    After he retired he returned to Edinburgh and continued to study biological problems in the university zoology laboratory.
    [br]
    Principal Honours and Distinctions
    Knighted 1962. FRS 1946. FRS Edinburgh 1972. DSc Manchester 1938. Royal Society of Arts Thomas Gray Memorial Prize 1943. Royal Society Hughes Medal 1946. Franklin Institute John Price Wetherill Medal 1958. City of Pennsylvania John Scott Award 1959. (All jointly with Boot for the cavity magnetron.)
    Bibliography
    1934, Diffraction of X-Rays by Amorphous Solids, Liquids \& Gases (describes his early work).
    1953, editor, Nature \& Structure of Collagen.
    1976, with H.Boot, "Historical notes on the cavity magnetron", Transactions of the Institute of Electrical and Electronics Engineers ED-23: 724 (gives an account of the cavity-magnetron development at Birmingham).
    Further Reading
    M.H.F.Wilkins, "John Turton Randall"—Bio-graphical Memoirs of Fellows of the Royal Society, London: Royal Society.
    KF

    Biographical history of technology > Randall, Sir John Turton

  • 122 Russell, John Scott

    SUBJECT AREA: Ports and shipping
    [br]
    b. 9 May 1808 Parkhead, near Glasgow, Scotland
    d. 8 June 1882 Isle of Wight, England
    [br]
    Scottish engineer, naval architect and academic.
    [br]
    A son of the manse, Russell was originally destined for the Church and commenced studies at the University of St Andrews, but shortly afterwards he transferred to Glasgow, graduating MA in 1825 when only 17 years old. He began work as a teacher in Edinburgh, working up from a school to the Mechanics Institute and then in 1832 to the University, where he took over the classes in natural philosophy following the death of the professor. During this period he designed and advised on the application of steam power to road transport and to the Forth and Clyde Canal, thereby awakening his interest in ships and naval architecture.
    Russell presented papers to the British Association over several years, and one of them, The Wave Line Theory of Ship Form (although now superseded), had great influence on ship designers of the time and helped to establish the formal study of hydromechanics. With a name that was becoming well known, Russell looked around for better opportunities, and on narrowly missing appointment to the Chair of Mathematics at Edinburgh University he joined the upand-coming Clyde shipyard of Caird \& Co., Greenock, as Manager in 1838.
    Around 1844 Russell and his family moved to London; following some business problems he was in straitened circumstances. However, appointment as Secretary to the Committee setting up the Great Exhibition of 1851 eased his path into London's intellectual society and allowed him to take on tasks such as, in 1847, the purchase of Fairbairn's shipyard on the Isle of Dogs and the subsequent building there of I.K. Brunel's Great Eastern steamship. This unhappy undertaking was a millstone around the necks of Brunel and Russell and broke the health of the former. With the yard failing to secure the order for HMS Warrior, the Royal Navy's first ironclad, Russell pulled out of shipbuilding and for the remainder of his life was a designer, consultant and at times controversial, but at all times polished and urbane, member of many important committees and societies. He is remembered as one of the founders of the Institution of Naval Architects in 1860. His last task was to design a Swiss Lake steamer for Messrs Escher Wyss, a company that coincidentally had previously retained Sir William Fairbairn.
    [br]
    Principal Honours and Distinctions
    FRS 1847.
    Bibliography
    John Scott Russell published many papers under the imprint of the British Association, the Royal Society of Arts and the Institution of Naval Architects. His most impressive work was the mammoth three-volume work on shipbuilding published in London in 1865 entitled The Modern System of Naval Architecture. Full details and plans of the Great Eastern are included.
    Further Reading
    G.S.Emmerson, 1977, John Scott Russell, a Great Victorian Engineer and Naval Architect, London: Murray
    FMW

    Biographical history of technology > Russell, John Scott

  • 123 Schanck, John

    SUBJECT AREA: Ports and shipping
    [br]
    b. 1740 Fife, Scotland d. 1823
    [br]
    Scottish admiral, builder of small ships with revolutionary form, pioneer of sliding keels.
    [br]
    Schanck first went to sea in the merchant service, but in 1758 he was transferred to the Royal Navy. After four years as an able seaman, he was made a midshipman (a rare occurrence in those days), and by perseverance was commissioned Lieutenant in 1776 and appointed to command a small vessel operating in the St Lawrence. Being known as an inventive and practical officer, he was soon placed in charge of shipbuilding operations for the British on the Great Lakes and quickly constructed a small fleet that operated on Lake Champlain and elsewhere. He was promoted Captain in 1783. In earlier years Schanck had built a small sliding-keel yacht and sailed it in Boston Harbor. The Admiralty accepted the idea and tested two similar small craft, one with and the other without sliding keels. The success of the keels encouraged the authorities to build further craft of increasing size, culminating in the Lady Nelson, which carried out many surveys in Australian waters at the end of the eighteenth century. Service with the Army and the transport board followed, when his special knowledge and skill were used to the full in the waterways of the Netherlands. Schanck rose to the rank of full Admiral, and advised not only the British Government on coastal defence but other groups on many aspects of hull design.
    [br]
    Further Reading
    John Charnock, 1800, A History of Marine Architecture, etc., London.
    FMW

    Biographical history of technology > Schanck, John

  • 124 Spence, Peter

    SUBJECT AREA: Chemical technology
    [br]
    b. 19 February 1806 Brechin, Forfarshire, Scotland
    d. 5 July 1883 Manchester, England
    [br]
    Scottish industrial chemist.
    [br]
    Spence was first apprenticed to a grocer and then joined his uncle's business. When that failed, he found work in a Dundee gasworks. During his spare time he had been studying chemistry, and in 1834 he established a small chemical works in London, which was none too successful. It was after a move to Burgh, near Carlisle, that his prospects brightened, with an improved method for making alum, a substance much used in the dyeing and textile industries. Spence obtained a patent in 1845 for extracting the substance from alum-containing shale by treating the burned shale and iron pyrites with sulphuric acid. He set up a plant at Pendleton, near Manchester, and enlarged the scale of his operation to become the largest manufacturer of alum in the world. The most profitable product was a crude form of alum known as aluminoferric. This came to be much in demand by the paper industry and in the treatment of sewage, an activity of growing importance in mid-Victorian Britain.
    Not all of Spence's ventures met with success; his attempts to exploit the phosphate deposits on the island of Redmonds in the West Indies lost heavily. He was an active citizen of Manchester, with a strongly Nonconformist tendency. He supported the cause against atmospheric pollution, although he himself was successfully prosecuted for pollution from his alum works at Pendleton; that prompted a move to Miles Platting, also near Manchester. In 1900, his firm became part of Laporte Industries Ltd.
    [br]
    Further Reading
    J.Fenwick Allen, 1907, Some Founders of the Chemical Industry, London.
    Proc. Manchester Lit. Phil. Soc. (1883–4) 23:121.
    LRD

    Biographical history of technology > Spence, Peter

  • 125 Stephenson, Robert

    [br]
    b. 16 October 1803 Willington Quay, Northumberland, England
    d. 12 October 1859 London, England
    [br]
    English engineer who built the locomotive Rocket and constructed many important early trunk railways.
    [br]
    Robert Stephenson's father was George Stephenson, who ensured that his son was educated to obtain the theoretical knowledge he lacked himself. In 1821 Robert Stephenson assisted his father in his survey of the Stockton \& Darlington Railway and in 1822 he assisted William James in the first survey of the Liverpool \& Manchester Railway. He then went to Edinburgh University for six months, and the following year Robert Stephenson \& Co. was named after him as Managing Partner when it was formed by himself, his father and others. The firm was to build stationary engines, locomotives and railway rolling stock; in its early years it also built paper-making machinery and did general engineering.
    In 1824, however, Robert Stephenson accepted, perhaps in reaction to an excess of parental control, an invitation by a group of London speculators called the Colombian Mining Association to lead an expedition to South America to use steam power to reopen gold and silver mines. He subsequently visited North America before returning to England in 1827 to rejoin his father as an equal and again take charge of Robert Stephenson \& Co. There he set about altering the design of steam locomotives to improve both their riding and their steam-generating capacity. Lancashire Witch, completed in July 1828, was the first locomotive mounted on steel springs and had twin furnace tubes through the boiler to produce a large heating surface. Later that year Robert Stephenson \& Co. supplied the Stockton \& Darlington Railway with a wagon, mounted for the first time on springs and with outside bearings. It was to be the prototype of the standard British railway wagon. Between April and September 1829 Robert Stephenson built, not without difficulty, a multi-tubular boiler, as suggested by Henry Booth to George Stephenson, and incorporated it into the locomotive Rocket which the three men entered in the Liverpool \& Manchester Railway's Rainhill Trials in October. Rocket, was outstandingly successful and demonstrated that the long-distance steam railway was practicable.
    Robert Stephenson continued to develop the locomotive. Northumbrian, built in 1830, had for the first time, a smokebox at the front of the boiler and also the firebox built integrally with the rear of the boiler. Then in Planet, built later the same year, he adopted a layout for the working parts used earlier by steam road-coach pioneer Goldsworthy Gurney, placing the cylinders, for the first time, in a nearly horizontal position beneath the smokebox, with the connecting rods driving a cranked axle. He had evolved the definitive form for the steam locomotive.
    Also in 1830, Robert Stephenson surveyed the London \& Birmingham Railway, which was authorized by Act of Parliament in 1833. Stephenson became Engineer for construction of the 112-mile (180 km) railway, probably at that date the greatest task ever undertaken in of civil engineering. In this he was greatly assisted by G.P.Bidder, who as a child prodigy had been known as "The Calculating Boy", and the two men were to be associated in many subsequent projects. On the London \& Birmingham Railway there were long and deep cuttings to be excavated and difficult tunnels to be bored, notoriously at Kilsby. The line was opened in 1838.
    In 1837 Stephenson provided facilities for W.F. Cooke to make an experimental electrictelegraph installation at London Euston. The directors of the London \& Birmingham Railway company, however, did not accept his recommendation that they should adopt the electric telegraph and it was left to I.K. Brunel to instigate the first permanent installation, alongside the Great Western Railway. After Cooke formed the Electric Telegraph Company, Stephenson became a shareholder and was Chairman during 1857–8.
    Earlier, in the 1830s, Robert Stephenson assisted his father in advising on railways in Belgium and came to be increasingly in demand as a consultant. In 1840, however, he was almost ruined financially as a result of the collapse of the Stanhope \& Tyne Rail Road; in return for acting as Engineer-in-Chief he had unwisely accepted shares, with unlimited liability, instead of a fee.
    During the late 1840s Stephenson's greatest achievements were the design and construction of four great bridges, as part of railways for which he was responsible. The High Level Bridge over the Tyne at Newcastle and the Royal Border Bridge over the Tweed at Berwick were the links needed to complete the East Coast Route from London to Scotland. For the Chester \& Holyhead Railway to cross the Menai Strait, a bridge with spans as long-as 460 ft (140 m) was needed: Stephenson designed them as wrought-iron tubes of rectangular cross-section, through which the trains would pass, and eventually joined the spans together into a tube 1,511 ft (460 m) long from shore to shore. Extensive testing was done beforehand by shipbuilder William Fairbairn to prove the method, and as a preliminary it was first used for a 400 ft (122 m) span bridge at Conway.
    In 1847 Robert Stephenson was elected MP for Whitby, a position he held until his death, and he was one of the exhibition commissioners for the Great Exhibition of 1851. In the early 1850s he was Engineer-in-Chief for the Norwegian Trunk Railway, the first railway in Norway, and he also built the Alexandria \& Cairo Railway, the first railway in Africa. This included two tubular bridges with the railway running on top of the tubes. The railway was extended to Suez in 1858 and for several years provided a link in the route from Britain to India, until superseded by the Suez Canal, which Stephenson had opposed in Parliament. The greatest of all his tubular bridges was the Victoria Bridge across the River St Lawrence at Montreal: after inspecting the site in 1852 he was appointed Engineer-in-Chief for the bridge, which was 1 1/2 miles (2 km) long and was designed in his London offices. Sadly he, like Brunel, died young from self-imposed overwork, before the bridge was completed in 1859.
    [br]
    Principal Honours and Distinctions
    FRS 1849. President, Institution of Mechanical Engineers 1849. President, Institution of Civil Engineers 1856. Order of St Olaf (Norway). Order of Leopold (Belgium). Like his father, Robert Stephenson refused a knighthood.
    Further Reading
    L.T.C.Rolt, 1960, George and Robert Stephenson, London: Longman (a good modern biography).
    J.C.Jeaffreson, 1864, The Life of Robert Stephenson, London: Longman (the standard nine-teenth-century biography).
    M.R.Bailey, 1979, "Robert Stephenson \& Co. 1823–1829", Transactions of the Newcomen Society 50 (provides details of the early products of that company).
    J.Kieve, 1973, The Electric Telegraph, Newton Abbot: David \& Charles.
    PJGR

    Biographical history of technology > Stephenson, Robert

  • 126 Stuart, James

    [br]
    b. 2 January 1843 Balgonie, Fife, Scotland
    d. 12 October 1913 Norwich, Norfolk, England
    [br]
    Scottish engineer and educator.
    [br]
    James Stuart established the teaching of engineering as a university discipline at Cambridge. He was born at Balgonie in Fife, where his father managed a linen mill. He attended the University of St Andrews and then studied mathematics at Cambridge University. In 1867 he took up a post as Assistant Tutor at Trinity College, Cambridge, where his skills as a teacher were quickly recognized. The University was at that time adapting itself to the new systems of instruction recommended by the Royal Commission on university reform in the 1850s, and Stuart took an active part in the organization of a new structure of inter-collegiate lecture courses. He made an even more significant contribution to the establishment of extramural courses from which the Cambridge University extension lecture programme developed. This began in 1867, when Stuart took adult classes in Manchester and Crewe. The latter, in particular, brought him into close contact with those involved in practical mechanics and stimulated his interest in the applied sciences. In 1875 he was elected to the newly created Chair of Mechanism and Engineering in Cambridge, and he set out energetically to recruit students and to build up a flourishing unit with its own workshop and foundry, training a new generation of engineers in the applied sciences.
    In November 1884 Stuart was elected to Parliament and embarked on an active but somewhat undistinguished career in politics as a radical Liberal, becoming amongst other things a keen supporter of the women's suffrage movement. This did not endear him to his academic colleagues, and the Engineering School suffered from neglect by Stuart until he resigned the Chair in 1890. By the time he left, however, the University was ready to recognize Engineering as a Tripos subject and to accept properly equipped teaching laboratories, so that his successor J.A. Ewing was able to benefit from Stuart's pioneering work. Stuart continued his political activities and was appointed a Privy Councillor in 1909. He married Elizabeth Colman after resigning the Chair, and on the death of his father-in-law in 1898 he moved to Norwich to take on the direction of the family mustard firm, J. \& J.Colman Ltd.
    [br]
    Further Reading
    Hilken, 1967, Engineering at Cambridge, Ch. 3, pp. 58–106.
    AB

    Biographical history of technology > Stuart, James

  • 127 Symington, William

    SUBJECT AREA: Ports and shipping
    [br]
    b. 1764 Leadhills, Lanarkshire, Scotland
    d. 22 March 1831 Wapping, London, England
    [br]
    Scottish pioneer of steam navigation.
    [br]
    Symington was the son of the Superintendent of the Mines Company in Lanarkshire, and attended the local school. When he was 22 years old he was sent by Gilbert Meason, Manager of the Wanlockhead mines, to Edinburgh University. In 1779 he was working on the assembly of a Watt engine as an apprentice to his brother, George, and in 1786 he started experiments to modify a Watt engine in order to avoid infringing the separate condenser patent. He sought a patent for his alternative, which was paid for by Meason. He constructed a model steam road carriage which was completed in 1786; it was shown in Edinburgh by Meason, attracting interest but inadequate financial support. It had a horizontal cylinder and was non-condensing. No full-sized engine was ever built but the model secured the interest of Patrick Miller, an Edinburgh banker, who ordered an engine from Symington to drive an experimental boat, 25 ft (7.6 m) long with a dual hull, which performed satisfactorily on Dalswinton Loch in 1788. In the following year Miller ordered a larger engine for a bigger boat which was tried on the Forth \& Clyde Canal in December 1789, the component parts having been made by the Carron Company. The engine worked perfectly but had the effect of breaking the paddle wheels. These were repaired and further trials were successful but Miller lost interest and his experiments lapsed. Symington devoted himself thereafter to building stationary engines. He built other engines for mine pumping at Sanquhar and Leadhills before going further afield. In all, he built over thirty engines, about half of them being rotary. In 1800–1 he designed the engine for a boat for Lord Dundas, the Charlotte Dundas; this was apparently the first boat of that name and sailed on both the Forth and Clyde rivers. A second Charlotte Dundas with a horizontal cylinder was to follow and first sailed in January 1803 for the Forth \& Clyde Canal Company. The speed of the boat was only 2 mph (3 km/h) and much was made by its detractors of the damage said to be caused to the canal banks by its wash. Lord Dundas declined to authorize payment of outstanding accounts; Symington received little reward for his efforts. He died in the house of his son-in-law, Dr Robert Bowie, in Wapping, amidst heated controversy about the true inventor of steam navigation.
    [br]
    Further Reading
    W.S.Harvey and G.Downs-Rose, 1980, William Symington, Inventor and Engine- Builder, London: Mechanical Engineering Publications.
    IMcN

    Biographical history of technology > Symington, William

  • 128 Thomson, James

    [br]
    b. 16 February 1822 Belfast, Ireland (now Northern Ireland)
    d. 8 May 1892 Glasgow, Scotland
    [br]
    Irish civil engineer noted for his work in hydraulics and for his design of the "Vortex" turbine.
    [br]
    James Thomson was a pupil in several civil-engineering offices, but the nature of the work was beyond his physical capacity and from 1843 onwards he devoted himself to theoretical studies. Hhe first concentrated on the problems associated with the expansion of liquids when they reach their freezing point: water is one such example. He continued this work with his younger brother, Lord Kelvin (see Thomson, Sir William).
    After experimentation with a "feathered" paddle wheel as a young man, he turned his attention to water power. In 1850 he made his first patent application, "Hydraulic machinery and steam engines": this patent became his "Vortex" turbine design. He settled in Belfast, the home of the MacAdam-Fourneyron turbine, in 1851, and as a civil engineer became the Resident Engineer to the Belfast Water Commissioners in 1853. In 1857 he was appointed Professor of Civil Engineering and Surveying at Queen's College, Belfast.
    Whilst it is understood that he made his first turbine models in Belfast, he came to an arrangement with the Williamson Brothers of Kendal to make his turbine. In 1856 Williamsons produced their first turbine to Thomson's design and drawings. This was the Vortex Williamson Number 1, which produced 5 hp (3.7 kW) under a fall of 31 ft (9.4 m) on a 9 in. (23 cm) diameter supply. The rotor of this turbine ran in a horizontal plane. For several years the Williamson catalogue described their Vortex turbine as "designed by Professor James Thomson".
    Thomson continued with his study of hydraulics and water flow both at Queen's College, Belfast, and, later, at Glasgow University, where he became Professor in 1873, succeeding Macquorn Rankine, another famous engineer. At Glasgow, James Thomson studied the flow in rivers and the effects of erosion on river beds. He was also an authority on geological formations such as the development of the basalt structure of the Giant's Causeway, north of Belfast.
    James Thomson was an extremely active engineer and a very profound teacher of civil engineering. His form of water turbine had a long life before being displaced by the turbines designed in the twentieth century.
    [br]
    Bibliography
    1850, British patent no. 13,156 "Hydraulic machinery and steam engines".
    Further Reading
    Gilkes, 1956, One Hundred Years of Water Power, Kendal.
    KM

    Biographical history of technology > Thomson, James

См. также в других словарях:

  • Scotland — • The northern portion of the Island of Great Britain Catholic Encyclopedia. Kevin Knight. 2006. Scotland     Scotland     † …   Catholic encyclopedia

  • Scotland during the Roman Empire — encompasses a period of time that is both part of genuine history and of protohistory. It is complicated by the fact that although the Roman Empire influenced every part of Scotland during the period from the arrival of the legions in c. AD 71 to …   Wikipedia

  • Scotland the Brave — (Alba an Aigh en gaélique écossais) est, avec The Flower of Scotland, considéré comme l hymne national écossais. Sommaire 1 Origine 2 Utilisation 2.1 Un favori des Écossais …   Wikipédia en Français

  • Scotland v Peru (1978) — was a game played between two nations in Group D of the 1978 FIFA World Cup held in Argentina.BackgroundThe Scotland team had qualified for the World Cup Finals for the second time in succession; once again the sole representatives from the… …   Wikipedia

  • Scotland the brave — (Alba an Aigh en gaélique écossais) est, avec The Flower of Scotland, considéré comme l hymne national écossais. Sommaire 1 Origine 2 Utilisation 2.1 Un favori des Écossais …   Wikipédia en Français

  • Scotland v England (1872) — was the first ever official international football match to be played. It was contested by the national teams of Scotland and England. The match took place on 30 November 1872 at West of Scotland Cricket Club s ground at Hamilton Crescent in… …   Wikipedia

  • When The Saints Go Marching In (sport) — When The Saints Go Marching In is used by a number of teams in various sports. It may be used as the team s theme song or reserved for when they score. It may be used with the standard lyrics, specialized lyrics, or no lyrics at all. Teams /… …   Wikipedia

  • Scotland the What? — were a Scottish comedy revue act comprising William Buff Hardie, Stephen Robertson and George Donald. The trio played to sell out audiences from Bangkok to London and, of course, in their home city of Aberdeen where the members had first met as… …   Wikipedia

  • Scotland the brave — (in schottischem Gälisch Alba an Aigh) ist neben Flower of Scotland und Scots Wha Hae eine der drei inoffiziellen Nationalhymnen Schottlands. [1] Sie wird als schottische Nationalhymne bei den Commonwealth Games verwendet. Des Weiteren ist sie… …   Deutsch Wikipedia

  • Scotland the Brave — (en gaélico escocés, Alba an Aigh) es una canción patriótica escocesa, y una de las candidatas para ser el himno nacional de Escocia. En junio de 2006, en una encuesta en internet organizada por la Royal Scottish National Orchestra, esta canción… …   Wikipedia Español

  • Scotland the Brave — (in schottischem Gälisch Alba an Aigh) ist neben Flower of Scotland und Scots Wha Hae eine der drei inoffiziellen Nationalhymnen Schottlands. [1] Sie wird als schottische Nationalhymne bei den Commonwealth Games verwendet. Des Weiteren ist sie… …   Deutsch Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»