Перевод: со всех языков на английский

с английского на все языки

we+met+in+paris

  • 61 Brewster, Sir David

    [br]
    b. 11 December 1781 Jedburgh, Roxburghshire, Scotland
    d. 10 February 1868 Allerly, Scotland
    [br]
    Scottish scientist and popularizer of science, inventor of the kaleidoscope and lenticular stereoscope.
    [br]
    Originally destined to follow his father into the Church, Brewster studied divinity at Edinburgh University, where he met many distinguished men of science. He began to take a special interest in optics, and eventually abandoned the clerical profession. In 1813 he presented his first paper to the Royal Society on the properties of light, and within months invented the principle of the kaleidoscope. In 1844 Brewster described a binocular form of Wheatstone's reflecting stereoscope where the mirrors were replaced with lenses or prisms. The idea aroused little interest at the time, but in 1850 a model taken to Paris was brought to the notice of L.J. Duboscq, who immediately began to manufacture Brewster's stereoscope on a large scale; shown at the Great Exhibition of 1851, it attracted the attention of Queen Victoria. Stereoscopic photography rapidly became one of the fashionable preoccupations of the day arid did much to popularize photography. Although originally marketed as a scientific toy and drawing-room pastime, stereoscopy later found scientific application in such fields as microscopy, photogrammetry and radiography. Brewster was a prolific scientific author throughout his life. His income was derived mainly from his writing and he was one of the nineteenth century's most distinguished popularizers of science.
    [br]
    Principal Honours and Distinctions
    Knighted 1832. FRS 1815.
    Further Reading
    Dictionary of National Biography, 1973, Vol. II, Oxford, pp. 1,207–11.
    A.D.Morrison-Low and J.R.R.Christie (eds), 1984, Martyr of Science, Edinburgh (proceedings of a Bicentenary Symposium).
    JW

    Biographical history of technology > Brewster, Sir David

  • 62 Cross, Charles Frederick

    [br]
    b. 11 December 1855 Brentwood, Middlesex, England
    d. 15 April 1935 Hove, England
    [br]
    English chemist who contributed to the development of viscose rayon from cellulose.
    [br]
    Cross was educated at the universities of London, Zurich and Manchester. It was at Owens College, Manchester, that Cross first met E.J. Bevan and where these two first worked together on the nature of cellulose. After gaining some industrial experience, Cross joined Bevan to set up a partnership in London as analytical and consulting chemists, specializing in the chemistry and technology of cellulose and lignin. They were at the Jodrell laboratory, Kew Gardens, for a time and then set up their own laboratory at Station Avenue, Kew Gardens. In 1888, the first edition of their joint publication A Textbook of Paper-making, appeared. It went into several editions and became the standard reference and textbook on the subject. The long introductory chapter is a discourse on cellulose.
    In 1892, Cross, Bevan and Clayton Beadle took out their historic patent on the solution and regeneration of cellulose. The modern artificial-fibre industry stems from this patent. They made their discovery at New Court, Carey Street, London: wood-pulp (or another cheap form of cellulose) was dissolved in a mixture of carbon disulphide and aqueous alkali to produce sodium xanthate. After maturing, it was squirted through fine holes into dilute acid, which set the liquid to give spinnable fibres of "viscose". However, it was many years before the process became a commercial operation, partly because the use of a natural raw material such as wood involved variations in chemical content and each batch might react differently. At first it was thought that viscose might be suitable for incandescent lamp filaments, and C.H.Stearn, a collaborator with Cross, continued to investigate this possibility, but the sheen on the fibres suggested that viscose might be made into artificial silk. The original Viscose Spinning Syndicate was formed in 1894 and a place was rented at Erith in Kent. However, it was not until some skeins of artificial silk (a term to which Cross himself objected) were displayed in Paris that textile manufacturers began to take an interest in it. It was then that Courtaulds decided to investigate this new fibre, although it was not until 1904 that they bought the English patents and developed the first artificial silk that was later called "rayon". Cross was also concerned with the development of viscose films and of cellulose acetate, which became a rival to rayon in the form of "Celanese". He retained his interest in the paper industry and in publishing, in 1895 again collaborating with Bevan and publishing a book on Cellulose and other technical articles. He was a cultured man and a good musician. He was elected a Fellow of the Royal Society in 1917.
    [br]
    Principal Honours and Distinctions
    FRS 1917.
    Bibliography
    1888, with E.J.Bevan, A Text-book of Papermaking. 1892, British patent no. 8,700 (cellulose).
    Further Reading
    Obituary Notices of the Royal Society, 1935, London. Obituary, 1935, Journal of the Chemical Society 1,337. Chambers Concise Dictionary of Scientists, 1989, Cambridge.
    Edwin J.Beer, 1962–3, "The birth of viscose rayon", Transactions of the Newcomen Society 35 (an account of the problems of developing viscose rayon; Beer worked under Cross in the Kew laboratories).
    C.Singer (ed.), 1978, A History of Technology, Vol. VI, Oxford: Clarendon Press.
    RLH

    Biographical history of technology > Cross, Charles Frederick

  • 63 Daimler, Gottlieb

    [br]
    b. 17 March 1834 Schorndorff, near Stuttgart, Germany
    d. 6 March 1900 Cannstatt, near Stuttgart, Germany
    [br]
    German engineer, pioneer automobile maker.
    [br]
    The son of a baker, his youthful interest in technical affairs led to his being apprenticed to a gunsmith with whom he produced his apprenticeship piece: a double-barrelled pistol with a rifled barrel and "nicely chased scrollwork", for which he received high praise. He remained there until 1852 before going to technical school in Stuttgart from 1853 to 1857. He then went to a steam-engineering company in Strasbourg to gain practical experience. He completed his formal education at Stuttgart Polytechnik, and in 1861 he left to tour France and England. There he worked in the engine-shop of Smith, Peacock \& Tanner and then with Roberts \& Co., textile machinery manufacturers of Manchester. He later moved to Coventry to work at Whitworths, and it was in that city that he was later involved with the Daimler Motor Company, who had been granted a licence by his company in Germany. In 1867 he was working at Bruderhaus Engineering Works at Reutlingen and in 1869 went to Maschinenbau Gesellschaft Karlsruhe where he became Manager and later a director. Early in the 1870s, N.A. Otto had reorganized his company into Gasmotorenfabrik Deutz and he appointed Gottlieb Daimler as Factory Manager and Wilhelm Maybach as Chief Designer. Together they developed the Otto engine to its limit, with Otto's co-operation. Daimler and Maybach had met previously when both were working at Bruderhaus. In 1875 Daimler left Deutz, taking Maybach with him to set up a factory in Stuttgart to manufacture light, high-speed internal-combustion engines. Their first patent was granted in 1883. This was for an engine fuelled by petrol and with hot tube ignition which continued to be used until Robert Bosch's low-voltage ignition became available in 1897. Two years later he produced his first vehicle, a motor cycle with outriggers. They showed a motor car at the Paris exhibition in 1889, but French manufacturers were slow to come forward and no French company could be found to undertake manufacture. Eventually Panhard and Levassor established the Daimler engine in France. Daimler Motoren GmbH was started in 1895, but soon after Daimler and Maybach parted, having provided an engine for a boat on the River Neckar in 1887 and that for the Wolfert airship in 1888. Daimler was in sole charge of the company from 1895, but his health began to decline in 1899 and he died in 1900.
    [br]
    Further Reading
    E.Johnson, 1986, The Dawn of Motoring. P.Siebetz, 1942, Gottlieb Daimler.
    IMcN

    Biographical history of technology > Daimler, Gottlieb

  • 64 Edison, Thomas Alva

    [br]
    b. 11 February 1847 Milan, Ohio, USA
    d. 18 October 1931 Glenmont
    [br]
    American inventor and pioneer electrical developer.
    [br]
    He was the son of Samuel Edison, who was in the timber business. His schooling was delayed due to scarlet fever until 1855, when he was 8½ years old, but he was an avid reader. By the age of 14 he had a job as a newsboy on the railway from Port Huron to Detroit, a distance of sixty-three miles (101 km). He worked a fourteen-hour day with a stopover of five hours, which he spent in the Detroit Free Library. He also sold sweets on the train and, later, fruit and vegetables, and was soon making a profit of $20 a week. He then started two stores in Port Huron and used a spare freight car as a laboratory. He added a hand-printing press to produce 400 copies weekly of The Grand Trunk Herald, most of which he compiled and edited himself. He set himself to learn telegraphy from the station agent at Mount Clements, whose son he had saved from being run over by a freight car.
    At the age of 16 he became a telegraphist at Port Huron. In 1863 he became railway telegraphist at the busy Stratford Junction of the Grand Trunk Railroad, arranging a clock with a notched wheel to give the hourly signal which was to prove that he was awake and at his post! He left hurriedly after failing to hold a train which was nearly involved in a head-on collision. He usually worked the night shift, allowing himself time for experiments during the day. His first invention was an arrangement of two Morse registers so that a high-speed input could be decoded at a slower speed. Moving from place to place he held many positions as a telegraphist. In Boston he invented an automatic vote recorder for Congress and patented it, but the idea was rejected. This was the first of a total of 1180 patents that he was to take out during his lifetime. After six years he resigned from the Western Union Company to devote all his time to invention, his next idea being an improved ticker-tape machine for stockbrokers. He developed a duplex telegraphy system, but this was turned down by the Western Union Company. He then moved to New York.
    Edison found accommodation in the battery room of Law's Gold Reporting Company, sleeping in the cellar, and there his repair of a broken transmitter marked him as someone of special talents. His superior soon resigned, and he was promoted with a salary of $300 a month. Western Union paid him $40,000 for the sole rights on future improvements on the duplex telegraph, and he moved to Ward Street, Newark, New Jersey, where he employed a gathering of specialist engineers. Within a year, he married one of his employees, Mary Stilwell, when she was only 16: a daughter, Marion, was born in 1872, and two sons, Thomas and William, in 1876 and 1879, respectively.
    He continued to work on the automatic telegraph, a device to send out messages faster than they could be tapped out by hand: that is, over fifty words per minute or so. An earlier machine by Alexander Bain worked at up to 400 words per minute, but was not good over long distances. Edison agreed to work on improving this feature of Bain's machine for the Automatic Telegraph Company (ATC) for $40,000. He improved it to a working speed of 500 words per minute and ran a test between Washington and New York. Hoping to sell their equipment to the Post Office in Britain, ATC sent Edison to England in 1873 to negotiate. A 500-word message was to be sent from Liverpool to London every half-hour for six hours, followed by tests on 2,200 miles (3,540 km) of cable at Greenwich. Only confused results were obtained due to induction in the cable, which lay coiled in a water tank. Edison returned to New York, where he worked on his quadruplex telegraph system, tests of which proved a success between New York and Albany in December 1874. Unfortunately, simultaneous negotiation with Western Union and ATC resulted in a lawsuit.
    Alexander Graham Bell was granted a patent for a telephone in March 1876 while Edison was still working on the same idea. His improvements allowed the device to operate over a distance of hundreds of miles instead of only a few miles. Tests were carried out over the 106 miles (170 km) between New York and Philadelphia. Edison applied for a patent on the carbon-button transmitter in April 1877, Western Union agreeing to pay him $6,000 a year for the seventeen-year duration of the patent. In these years he was also working on the development of the electric lamp and on a duplicating machine which would make up to 3,000 copies from a stencil. In 1876–7 he moved from Newark to Menlo Park, twenty-four miles (39 km) from New York on the Pennsylvania Railway, near Elizabeth. He had bought a house there around which he built the premises that would become his "inventions factory". It was there that he began the use of his 200- page pocket notebooks, each of which lasted him about two weeks, so prolific were his ideas. When he died he left 3,400 of them filled with notes and sketches.
    Late in 1877 he applied for a patent for a phonograph which was granted on 19 February 1878, and by the end of the year he had formed a company to manufacture this totally new product. At the time, Edison saw the device primarily as a business aid rather than for entertainment, rather as a dictating machine. In August 1878 he was granted a British patent. In July 1878 he tried to measure the heat from the solar corona at a solar eclipse viewed from Rawlins, Wyoming, but his "tasimeter" was too sensitive.
    Probably his greatest achievement was "The Subdivision of the Electric Light" or the "glow bulb". He tried many materials for the filament before settling on carbon. He gave a demonstration of electric light by lighting up Menlo Park and inviting the public. Edison was, of course, faced with the problem of inventing and producing all the ancillaries which go to make up the electrical system of generation and distribution-meters, fuses, insulation, switches, cabling—even generators had to be designed and built; everything was new. He started a number of manufacturing companies to produce the various components needed.
    In 1881 he built the world's largest generator, which weighed 27 tons, to light 1,200 lamps at the Paris Exhibition. It was later moved to England to be used in the world's first central power station with steam engine drive at Holborn Viaduct, London. In September 1882 he started up his Pearl Street Generating Station in New York, which led to a worldwide increase in the application of electric power, particularly for lighting. At the same time as these developments, he built a 1,300yd (1,190m) electric railway at Menlo Park.
    On 9 August 1884 his wife died of typhoid. Using his telegraphic skills, he proposed to 19-year-old Mina Miller in Morse code while in the company of others on a train. He married her in February 1885 before buying a new house and estate at West Orange, New Jersey, building a new laboratory not far away in the Orange Valley.
    Edison used direct current which was limited to around 250 volts. Alternating current was largely developed by George Westinghouse and Nicola Tesla, using transformers to step up the current to a higher voltage for long-distance transmission. The use of AC gradually overtook the Edison DC system.
    In autumn 1888 he patented a form of cinephotography, the kinetoscope, obtaining film-stock from George Eastman. In 1893 he set up the first film studio, which was pivoted so as to catch the sun, with a hinged roof which could be raised. In 1894 kinetoscope parlours with "peep shows" were starting up in cities all over America. Competition came from the Latham Brothers with a screen-projection machine, which Edison answered with his "Vitascope", shown in New York in 1896. This showed pictures with accompanying sound, but there was some difficulty with synchronization. Edison also experimented with captions at this early date.
    In 1880 he filed a patent for a magnetic ore separator, the first of nearly sixty. He bought up deposits of low-grade iron ore which had been developed in the north of New Jersey. The process was a commercial success until the discovery of iron-rich ore in Minnesota rendered it uneconomic and uncompetitive. In 1898 cement rock was discovered in New Village, west of West Orange. Edison bought the land and started cement manufacture, using kilns twice the normal length and using half as much fuel to heat them as the normal type of kiln. In 1893 he met Henry Ford, who was building his second car, at an Edison convention. This started him on the development of a battery for an electric car on which he made over 9,000 experiments. In 1903 he sold his patent for wireless telegraphy "for a song" to Guglielmo Marconi.
    In 1910 Edison designed a prefabricated concrete house. In December 1914 fire destroyed three-quarters of the West Orange plant, but it was at once rebuilt, and with the threat of war Edison started to set up his own plants for making all the chemicals that he had previously been buying from Europe, such as carbolic acid, phenol, benzol, aniline dyes, etc. He was appointed President of the Navy Consulting Board, for whom, he said, he made some forty-five inventions, "but they were pigeonholed, every one of them". Thus did Edison find that the Navy did not take kindly to civilian interference.
    In 1927 he started the Edison Botanic Research Company, founded with similar investment from Ford and Firestone with the object of finding a substitute for overseas-produced rubber. In the first year he tested no fewer than 3,327 possible plants, in the second year, over 1,400, eventually developing a variety of Golden Rod which grew to 14 ft (4.3 m) in height. However, all this effort and money was wasted, due to the discovery of synthetic rubber.
    In October 1929 he was present at Henry Ford's opening of his Dearborn Museum to celebrate the fiftieth anniversary of the incandescent lamp, including a replica of the Menlo Park laboratory. He was awarded the Congressional Gold Medal and was elected to the American Academy of Sciences. He died in 1931 at his home, Glenmont; throughout the USA, lights were dimmed temporarily on the day of his funeral.
    [br]
    Principal Honours and Distinctions
    Member of the American Academy of Sciences. Congressional Gold Medal.
    Further Reading
    M.Josephson, 1951, Edison, Eyre \& Spottiswode.
    R.W.Clark, 1977, Edison, the Man who Made the Future, Macdonald \& Jane.
    IMcN

    Biographical history of technology > Edison, Thomas Alva

  • 65 Lubetkin, Berthold

    [br]
    b. 12 December 1901 Tiflis, Georgia
    d. 23 October 1990 Bristol, England
    [br]
    Soviet émigré architect who, through the firm of Tecton, wins influential in introducing architecture of the modern international style into England.
    [br]
    Lubetkin studied in Moscow, where in the years immediately after 1917 he met Vesnin and Rodchenko and absorbed the contemporary Constructivist ideas. He then moved on to Paris and worked with Auguste Perret, coming in on the ground floor of the modern movement. He went to England in 1930 and two years later formed the Tecton group, leading six young architects who had newly graduated from the Architectural Association in London. Lubetkin's early commissions in England were for animals rather than humans. He designed the gorilla house (1932) at the Regent's Park Zoological Gardens, after which came his award-winning Penguin Pool there, a sculptural blend of curved planes in reinforced concrete. He also worked at Whipsnade and at Dudley Zoo. The name of Tecton had quickly became synonymous with modern methods of design and structure, particularly the use of reinforced concrete; such work was not common in the 1930s in Britain. In 1938–9 the firm was responsible for another pace-setting design, the Finsbury Health Centre in London. Tecton was disbanded during the Second World War, and although it was reformed in the late 1940s it did not recover its initiative in leading the field of modern work. Lubetkin lived on to be an old man but his post-war career did not fulfil his earlier promise and brilliance. He was appointed Architect-Planner of the Peterlee New Town in 1948, but he resigned after a few years and no other notable commissions materialized. In 1982 the Royal Institute of British Architects belatedly remembered him with the award of their Gold Medal.
    [br]
    Principal Honours and Distinctions
    RIBA Gold Medal 1982.
    Further Reading
    John Allan, 1992, Architecture and the Tradition of Progress, RIBA publications. R.Furneaux Jordan, 1955, "Lubetkin", Architectural Review 36–44.
    P.Coe and M.Reading, 1981, Lubetkin and Tecton, University of Bristol Arts Council.
    DY

    Biographical history of technology > Lubetkin, Berthold

  • 66 Mitscherlich, Alexander

    SUBJECT AREA: Paper and printing
    [br]
    b. 28 May 1836 Berlin, Germany
    d. 31 May 1918 Oberstdorf, Germany
    [br]
    German inventor of sulphite wood pulp for papermaking.
    [br]
    Mitscherlich had an impeccable scientific background; his father was the celebrated chemist Eilhardt Mitscherlich, discoverer of the law of isomorphism, and his godfather was Alexander von Humboldt. At first his progress at school failed to live up to this auspicious beginning and his father would only sanction higher studies if he first qualified as a teacher so as to assure a means of livelihood. Alexander rose to the occasion and went on to gain his doctorate at the age of 25 in the field of mineralogical chemistry. He worked for a few years as Assistant to the distinguished chemists Wöhler in Göttingen and Wurtz in Paris. On his father's death in 1863, he succeeded him as teacher of chemistry in the University of Berlin. In 1868 he accepted a post in the newly established Forest Academy in Hannoversch-Munden, teaching chemistry, physics and geology. The post offered little financial advantage, but it left him more time for research. It was there that he invented the process for producing sulphite wood pulp.
    The paper industry was seeking new raw materials. Since the 1840s pulp had been produced mechanically from wood, but it was unsuitable for making fine papers. From the mid-1860s several chemists began tackling the problem of separating the cellulose fibres from the other constituents of wood by chemical means. The American Benjamin C.Tilghman was granted patents in several countries for the treatment of wood with acid or bisulphite. Carl Daniel Ekman in Sweden and Karl Kellner in Austria also made sulphite pulp, but the credit for devising the process that came into general use belongs to Mitscherlich. His brother Oskar came to him at the Academy with plans for producing pulp by the action of soda, but the results were inferior, so Mitscherlich substituted calcium bisulphite and in the laboratory obtained good results. To extend this to a large-scale process, he was forced to set up his own mill, where he devised the characteristic towers for making the calcium bisulphite, in which water trickling down through packed lime met a rising current of sulphur dioxide. He was granted a patent in Luxembourg in 1874 and a German one four years later. The sulphite process did not make him rich, for there was considerable opposition to it; government objected to the smell of sulphur dioxide, forestry authorities were anxious about the inroads that might be made into the forests and his patents were contested. In 1883, with the support of an inheritance from his mother, Mitscherlich resigned his post at the Academy to devote more time to promoting his invention. In 1897 he at last succeeded in settling the patent disputes and achieving recognition as the inventor of sulphite pulp. Without this raw material, the paper industry could never have satisfied the insatiable appetite of the newspaper presses.
    [br]
    Further Reading
    H.Voorn "Alexander Mitscherlich, inventor of sulphite wood pulp", Paper Maker 23(1): 41–4.
    LRD

    Biographical history of technology > Mitscherlich, Alexander

  • 67 Niepce, Joseph Nicéphore

    [br]
    b. 1765 France
    d. 5 July 1833 Chalon, France
    [br]
    French inventor who was the first to produce permanent photographic images with the aid of a camera.
    [br]
    Coming from a prosperous family, Niepce was educated in a Catholic seminary and destined for the priesthood. The French Revolution intervened and Niepce became an officer in an infantry regiment. An attack of typhoid fever in Italy ended his military career, and he returned to France and was married. Returning to his paternal home in Chalon in 1801, he joined with his brother Claude to construct an ingenious engine called the pyréolophore, which they patented in 1807. The French Government also encouraged the brothers in their attempts to produce large quantities of indigo-blue dye from wood, a venture that was ultimately unsuccessful.
    Nicéphore began to experiment with lithography, which led him to take an interest in the properties of light-sensitive materials. He pursued this interest after Claude moved to Paris in 1816 and is reported to have made negative images in a camera obscura using paper soaked in silver chloride. Niepce went on to experiment with bitumen of judea, a substance that hardened on exposure to light. In 1822, using bitumen of judea on glass, he produced a heliograph from an engraving. The first images from nature may have been made as early as 1824, but the world's earliest surviving photographic image was made in 1826. A view of the courtyard of Niepce's home in Chalon was captured on a pewter plate coated with bitumen of judea; an exposure of several hours was required, the softer parts of the bitumen being dissolved away by a solvent to reveal the image.
    In 1827 he took examples of his work to London where he met Francis Bauer, Secretary of the Royal Society. Nothing came of this meeting, but on returning to France Niepce continued his work and in 1829 entered into a formal partnership with L.J.M. Daguerre with a view to developing their mutual interest in capturing images formed by the camera obscura. However, the partnership made only limited progress and was terminated by Niepce's death in 1833. It was another six years before the announcement of the first practicable photographic processes was made.
    [br]
    Bibliography
    1973. Joseph Nicéphore Niepce lettres 1816–7, Pavillon de Photographie du Parc Naturel, Régional de Brotonne.
    1974, Joseph Nicéphore Niepce correspondences 1825–1829, Pavillon de Photographie du Parc Naturel, Régional de Brotonne.
    Further Reading
    J.M.Eder, 1945, History of Photography, trans. E. Epstean, New York (provides a full account of Niepce's life and work).
    H.Gernsheim and A.Gernsheim, 1969, The History of Photography, rev. edn, London (provides a full account of Niepce's life and work).
    JW

    Biographical history of technology > Niepce, Joseph Nicéphore

  • 68 Percy, John

    SUBJECT AREA: Metallurgy
    [br]
    b. 23 March 1817 Nottingham, England
    d. 19 June 1889 London, England
    [br]
    English metallurgist, first Professor of Metallurgy at the School of Mines, London.
    [br]
    After a private education, Percy went to Paris in 1834 to study medicine and to attend lectures on chemistry by Gay-Lussac and Thenard. After 1838 he studied medicine at Edinburgh, obtaining his MD in 1839. In that year he was appointed Professor of Chemistry at Queen's College, Birmingham, moving to Queen's Hospital at Birmingham in 1843. During his time at Birmingham, Percy became well known for his analysis of blast furnace slags, and was involved in the manufacture of optical glass. On 7 June 1851 Percy was appointed Metallurgical Professor and Teacher at the Museum of Practical Geology established in Jermyn Street, London, and opened in May 1851. In November of 1851, when the Museum became the Government (later Royal) School of Mines, Percy was appointed Lecturer in Metallurgy. In addition to his work at Jermyn Street, Percy lectured on metallurgy to the Advanced Class of Artillery at Woolwich from 1864 until his death, and from 1866 he was Superintendent of Ventilation at the Houses of Parliament. He served from 1861 to 1864 on the Special Committee on Iron set up to examine the performance of armour-plate in relation to its purity, composition and structure.
    Percy is best known for his metallurgical text books, published by John Murray. Volume I of Metallurgy, published in 1861, dealt with fuels, fireclays, copper, zinc and brass; Volume II, in 1864, dealt with iron and steel; a volume on lead appeared in 1870, followed by one on fuels and refractories in 1875, and the first volume on gold and silver in 1880. Further projected volumes on iron and steel, noble metals, and on copper, did not materialize. In 1879 Percy resigned from his School of Mines appointment in protest at the proposed move from Jermyn Street to South Kensington. The rapid growth of Percy's metallurgical collection, started in 1839, eventually forced him to move to a larger house. After his death, the collection was bought by the South Kensington (later Science) Museum. Now comprising 3,709 items, it provides a comprehensive if unselective record of nineteenth-century metallurgy, the most interesting specimens being those of the first sodium-reduced aluminium made in Britain and some of the first steel produced by Bessemer in Baxter House. Metallurgy for Percy was a technique of chemical extraction, and he has been criticized for basing his system of metallurgical instruction on this assumption. He stood strangely aloof from new processes of steel making such as that of Gilchrist and Thomas, and tended to neglect early developments in physical metallurgy, but he was the first in Britain to teach metallurgy as a discipline in its own right.
    [br]
    Principal Honours and Distinctions
    FRS 1847. President, Iron and Steel Institute 1885, 1886.
    Bibliography
    1861–80, Metallurgy, 5 vols, London: John Murray.
    Further Reading
    S.J.Cackett, 1989, "Dr Percy and his metallurgical collection", Journal of the Hist. Met. Society 23(2):92–8.
    RLH

    Biographical history of technology > Percy, John

  • 69 Porsche, Ferdinand

    [br]
    b. 3 September 1875 Maffersdorf, Austria
    d. 30 January 1952 Stuttgart, Baden-Württemberg, Germany
    [br]
    Austrian automobile engineer, designer of the Volkswagen car.
    [br]
    At the age of fifteen, Porsche built a complete electrical installation for his home. In 1894 he went to technical school in Vienna. Four years later he became Manager of the test department of the Bela Egger concern, which later became part of the Brown Boveri organization where he became the first Assistant in the calculating section. In 1899 he joined the long-established coachbuilders Jacob Lohner, and in 1902 a car of his design with mixed drive won the 1,000 kg (2,200 lb) class in the Exelberg races. In 1905 he joined the Austro-Daimler Company as Technical Director; his subsequent designs included an 85 hp mixed-drive racing car in 1907 and in 1912 an air-cooled aircraft engine which came to be known in later years as the "great-grandfather" of the Volkswagen engine. In 1916, he became Managing Director of Austro-Daimler.
    In 1921 he designed his first small car, which, appearing under the name of Sasch, won its class in the 1922 Targa Florio, a gruelling road-race in Italy. In 1923 Porsche left Austro-Daimler and joined the Daimler Company in Untertürk-heim, near Stuttgart, Germany. In 1929 he joined the firm of Steyr in Austria as a director and chief engineer, and in 1930 he set up his own independent design office in Stuttgart. In 1932 he visited Russia, and in the same year completed the design calculations for the Auto-Union racing car.
    In 1934, with his son Ferry (b. 1909), he prepared a plan for the construction of the German "people's car", a project initiated by Adolf Hitler and his Nazi regime; in June of that year he signed a contract for the design work on the Volkswagen. Racing cars of his design were also successful in 1934: the rear-engined Auto-Union won the German Grand Prix, and another Au to-Union car took the Flying Kilometre speed record at 327 km/h (203.2 mph). In 1935 Daimler-Benz started preproduction on the Volkswagen. The first trials of the cars took place in the autumn of 1936, and the following year thirty experimental cars were built by Daimler-Benz. In that year, Porsche visited the United States, where he met Henry Ford; in October an Auto-Union took the Flying Five Kilometre record at 404.3 km/h (251.2 mph). On 26 May 1938, the foundation stone of the Volkswagen factory was laid in Wolfsburg, near Braunschweig, Germany.
    In October 1945 Ferdinand Porsche was arrested by a unit of the United States Army and taken to Hessen; the French army removed him to Baden-Baden, then to Paris and later to Dijon. During this time he was consulted by Renault engineers regarding the design of their 4CV and designed a diesel-engined tractor. He was finally released on 5 August 1947. His last major work before his death was the approval of the design for the Cisitalia Grand Prix car.
    [br]
    Principal Honours and Distinctions
    Poetting Medal 1905. Officer's Cross of Franz Josef 1916. Honorary PhD, Vienna Technical University 1916. Honorary PhD, University of Stuttgart 1924.
    Further Reading
    K.Ludvigsen, 1983, Porsche: Excellence Was Expected: The Complete History of the Sports and Racing Cars, London: Frederick Muller.
    T.Shuler and G.Borgeson, 1985, "Origin and Evolution of the VW Beetle", Automobile
    Quarterly (May).
    M.Toogood, 1991, Porsche—Germany's Legend, London: Apple Press.
    IMcN

    Biographical history of technology > Porsche, Ferdinand

  • 70 Porter, Charles Talbot

    [br]
    b. 18 January 1826 Auburn, New York, USA
    d. 1910 USA
    [br]
    American inventor of a stone dressing machine, an improved centrifugal governor and a high-speed steam engine.
    [br]
    Porter graduated from Hamilton College, New York, in 1845, read law in his father's office, and in the autumn of 1847 was admitted to the Bar. He practised for six or seven years in Rochester, New York, and then in New York City. He was drawn into engineering when aged about 30, first through a client who claimed to have invented a revolutionary type of engine and offered Porter the rights to it as payment of a debt. Having lent more money, Porter saw neither the man nor the engine again. Porter followed this with a similar experience over a patent for a stone dressing machine, except this time the machine was built. It proved to be a failure, but Porter set about redesigning it and found that it was vastly improved when it ran faster. His improved machine went into production. It was while trying to get the steam engine that drove the stone dressing machine to run more smoothly that he made a discovery that formed the basis for his subsequent work.
    Porter took the ordinary Watt centrifugal governor and increased the speed by a factor of about ten; although he had to reduce the size of the weights, he gained a motion that was powerful. To make the device sufficiently responsive at the right speed, he balanced the centrifugal forces by a counterweight. This prevented the weights flying outwards until the optimum speed was reached, so that the steam valves remained fully open until that point and then the weights reacted more quickly to variations in speed. He took out a patent in 1858, and its importance was quickly recognized. At first he manufactured and sold the governors himself in a specially equipped factory, because this was the only way he felt he could get sufficient accuracy to ensure a perfect action. For marine use, the counterweight was replaced by a spring.
    Higher speed had brought the advantage of smoother running and so he thought that the same principles could be applied to the steam engine itself, but it was to take extensive design modifications over several years before his vision was realized. In the winter of 1860–1, J.F. Allen met Porter and sketched out his idea of a new type of steam inlet valve. Porter saw the potential of this for his high-speed engine and Allen took out patents for it in 1862. The valves were driven by a new valve gear designed by Pius Fink. Porter decided to display his engine at the International Exhibition in London in 1862, but it had to be assembled on site because the parts were finished in America only just in time to be shipped to meet the deadline. Running at 150 rpm, the engine caused a sensation, but as it was non-condensing there were few orders. Porter added condensing apparatus and, after the failure of Ormerod Grierson \& Co., entered into an agreement with Joseph Whitworth to build the engines. Four were exhibited at the 1867 Paris Exposition Universelle, but Whitworth and Porter fell out and in 1868 Porter returned to America.
    Porter established another factory to build his engine in America, but he ran into all sorts of difficulties, both mechanical and financial. Some engines were built, and serious production was started c. 1874, but again there were further problems and Porter had to leave his firm. High-speed engines based on his designs continued to be made until after 1907 by the Southwark Foundry and Machine Company, Philadelphia, so Porter's ideas were proved viable and led to many other high-speed designs.
    [br]
    Bibliography
    1908, Engineering Reminiscences, New York: J. Wiley \& Sons; reprinted 1985, Bradley, Ill.: Lindsay (autobiography; the main source of information about his life).
    Further Reading
    R.L.Hills, 1989, Power from Steam. A History of the Stationary Steam Engine, Cambridge University Press (examines his governor and steam engine).
    O.Mayr, 1974, "Yankee practice and engineering theory; Charles T.Porter and the dynamics of the high-speed engine", Technology and Culture 16 (4) (examines his governor and steam engine).
    RLH

    Biographical history of technology > Porter, Charles Talbot

  • 71 Renold, Hans

    [br]
    b. 31 July 1852 Aarau, Switzerland
    d. 2 May 1943 Grange-over-Sands, Lancashire, England
    [br]
    Swiss (naturalized British 1881) mechanical engineer, inventor and pioneer of the precision chain industry.
    [br]
    Hans Renold was educated at the cantonal school of his native town and at the Polytechnic in Zurich. He worked in two or three small workshops during the polytechnic vacations and served an apprenticeship of eighteen months in an engineering works at Neuchâtel, Switzerland. After a short period of military service he found employment as a draughtsman in an engineering firm at Saint-Denis, near Paris, from 1871 to 1873. In 1873 Renold moved first to London and then to Manchester as a draughtsman and inspector with a firm of machinery exporters. From 1877 to 1879 he was a partner in his own firm of machine exporters. In 1879 he purchased a small firm in Salford making chain for the textile industry. At about this time J.K.Starley introduced the "safety" bicycle, which, however, lacked a satisfactory drive chain. Renold met this need with the invention of the bush roller chain, which he patented in 1880. The new chain formed the basis of the precision chain industry: the business expanded and new premises were acquired in Brook Street, Manchester, in 1881. In the same year Renold became a naturalized British subject.
    Continued expansion of the business necessitated the opening of a new factory in Brook Street in 1889. The factory was extended in 1895, but by 1906 more accommodation was needed and a site of 11 ½ acres was acquired in the Manchester suburb of Burnage: the move to the new building was finally completed in 1914. Over the years, further developments in the techniques of chain manufacture were made, including the invention in 1895 of the inverted tooth or silent chain. Renold made his first visit to America in 1891 to study machine-tool developments and designed for his own works special machine tools, including centreless grinding machines for dealing with wire rods up to 10 ft (3 m) in length.
    The business was established as a private limited company in 1903 and merged with the Coventry Chain Company Ltd in 1930. Good industrial relations were always of concern to Renold and he established a 48-hour week as early as 1896, in which year a works canteen was opened. Joint consultation with shop stewards date2 from 1917. Renold was elected a Member of the Institution of Mechanical Engineers in 1902 and in 1917 he was made a magistrate of the City of Manchester.
    [br]
    Principal Honours and Distinctions
    Honorary DSc University of Manchester 1940.
    Further Reading
    Basil H.Tripp, 1956, Renold Chains: A History of the Company and the Rise of the Precision Chain Industry 1879–1955, London.
    J.J.Guest, 1915, Grinding Machinery, London, pp. 289, 380 (describes grinding machines developed by Renold).
    RTS

    Biographical history of technology > Renold, Hans

  • 72 Seguin, Marc

    [br]
    b. 20 April 1786 Annonay, Ardèche, France
    d. 24 February 1875 Annonay, Ardèche, France
    [br]
    French engineer, inventor of multi-tubular firetube boiler.
    [br]
    Seguin trained under Joseph Montgolfier, one of the inventors of the hot-air balloon, and became a pioneer of suspension bridges. In 1825 he was involved in an attempt to introduce steam navigation to the River Rhône using a tug fitted with a winding drum to wind itself upstream along a cable attached to a point on the bank, with a separate boat to transfer the cable from point to point. The attempt proved unsuccessful and was short-lived, but in 1825 Seguin had decided also to seek a government concession for a railway from Saint-Etienne to Lyons as a feeder of traffic to the river. He inspected the Stockton \& Darlington Railway and met George Stephenson; the concession was granted in 1826 to Seguin Frères \& Ed. Biot and two steam locomotives were built to their order by Robert Stephenson \& Co. The locomotives were shipped to France in the spring of 1828 for evaluation prior to construction of others there; each had two vertical cylinders, one each side between front and rear wheels, and a boiler with a single large-diameter furnace tube, with a watertube grate. Meanwhile, in 1827 Seguin, who was still attempting to produce a steamboat powerful enough to navigate the fast-flowing Rhône, had conceived the idea of increasing the heating surface of a boiler by causing the hot gases from combustion to pass through a series of tubes immersed in the water. He was soon considering application of this type of boiler to a locomotive. He applied for a patent for a multi-tubular boiler on 12 December 1827 and carried out numerous experiments with various means of producing a forced draught to overcome the perceived obstruction caused by the small tubes. By May 1829 the steam-navigation venture had collapsed, but Seguin had a locomotive under construction in the workshops of the Lyons-Sain t- Etienne Railway: he retained the cylinder layout of its Stephenson locomotives, but incorporated a boiler of his own design. The fire was beneath the barrel, surrounded by a water-jacket: a single large flue ran towards the front of the boiler, whence hot gases returned via many small tubes through the boiler barrel to a chimney above the firedoor. Draught was provided by axle-driven fans on the tender.
    Seguin was not aware of the contemporary construction of Rocket, with a multi-tubular boiler, by Robert Stephenson; Rocket had its first trial run on 5 September 1829, but the precise date on which Seguin's locomotive first ran appears to be unknown, although by 20 October many experiments had been carried out upon it. Seguin's concept of a multi-tubular locomotive boiler therefore considerably antedated that of Henry Booth, and his first locomotive was completed about the same date as Rocket. It was from Rocket's boiler, however, rather than from that of Seguin's locomotive, that the conventional locomotive boiler was descended.
    [br]
    Bibliography
    February 1828, French patent no. 3,744 (multi-tubular boiler).
    1839, De l'Influence des chemins de fer et de l'art de les tracer et de les construire, Paris.
    Further Reading
    F.Achard and L.Seguin, 1928, "Marc Seguin and the invention of the tubular boiler", Transactions of the Newcomen Society 7 (traces the chronology of Seguin's boilers).
    ——1928, "British railways of 1825 as seen by Marc Seguin", Transactions of the Newcomen Society 7.
    J.B.Snell, 1964, Early Railways, London: Weidenfeld \& Nicolson.
    J.-M.Combe and B.Escudié, 1991, Vapeurs sur le Rhône, Lyons: Presses Universitaires de Lyon.
    PJGR

    Biographical history of technology > Seguin, Marc

  • 73 Sullivan, Louis Henry

    [br]
    b. 3 September 1856 Boston, Massachusetts, USA
    d. 14 April 1924 Chicago, Illinois, USA
    [br]
    American architect whose work came to be known as the "Chicago School of Architecture" and who created a new style of architecture suited specifically to steel-frame, high-rise structures.
    [br]
    Sullivan, a Bostonian, studied at the Massachusetts Institute of Technology. Soon he joined his parents, who had moved to Chicago, and worked for a while in the office of William Le Baron Jenney, the pioneer of steel-frame construction. After spending some time studying at the Ecole des Beaux Arts in Paris, in 1875 Sullivan returned to Chicago, where he later met and worked for the Danish architect Dankmar Adler, who was practising there. In 1881 the two architects became partners, and during the succeeding fifteen years they produced their finest work and the buildings for which Sullivan is especially known.
    During the early 1880s in Chicago, load-bearing, metal-framework structures that made lofty skyscrapers possible had been developed (see Jenney and Holabird). Louis H.Sullivan initiated building design to stress and complement the metal structure rather than hide it. Moving onwards from H.H.Richardson's treatment of his Marshall Field Wholesale Store in Chicago, Sullivan took the concept several stages further. His first outstanding work, built with Adler in 1886–9, was the Auditorium Building in Chicago. The exterior, in particular, was derived largely from Richardson's Field Store, and the building—now restored—is of bold but simple design, massively built in granite and stone, its form stressing the structure beneath. The architects' reputation was established with this building.
    The firm of Sullivan \& Adler established itself during the early 1890s, when they built their most famous skyscrapers. Adler was largely responsible for the structure, the acoustics and function, while Sullivan was responsible for the architectural design, concerning himself particularly with the limitation and careful handling of ornament. In 1892 he published his ideas in Ornament in Architecture, where he preached restraint in its quality and disposition. He established himself as a master of design in the building itself, producing a rhythmic simplicity of form, closely related to the structural shape beneath. The two great examples of this successful approach were the Wainwright Building in St Louis, Missouri (1890–1) and the Guaranty Building in Buffalo, New York (1894–5). The Wainwright Building was a ten-storeyed structure built in stone and brick and decorated with terracotta. The vertical line was stressed throughout but especially at the corners, where pilasters were wider. These rose unbroken to an Art Nouveau type of decorative frieze and a deeply projecting cornice above. The thirteen-storeyed Guaranty Building is Sullivan's masterpiece, a simple, bold, finely proportioned and essentially modern structure. The pilaster verticals are even more boldly stressed and decoration is at a minimum. In the twentieth century the almost free-standing supporting pillars on the ground floor have come to be called pilotis. As late as the 1920s, particularly in New York, the architectural style and decoration of skyscrapers remained traditionally eclectic, based chiefly upon Gothic or classical forms; in view of this, Sullivan's Guaranty Building was far ahead of its time.
    [br]
    Bibliography
    Article by Louis H.Sullivan. Address delivered to architectural students June 1899, published in Canadian Architecture Vol. 18(7):52–3.
    Further Reading
    Hugh Morrison, 1962, Louis Sullivan: Prophet of Modern Architecture.
    Willard Connely, 1961, Louis Sullivan as He Lived, New York: Horizon Press.
    DY

    Biographical history of technology > Sullivan, Louis Henry

  • 74 Watt, James

    [br]
    b. 19 January 1735 Greenock, Renfrewshire, Scotland
    d. 19 August 1819 Handsworth Heath, Birmingham, England
    [br]
    Scottish engineer and inventor of the separate condenser for the steam engine.
    [br]
    The sixth child of James Watt, merchant and general contractor, and Agnes Muirhead, Watt was a weak and sickly child; he was one of only two to survive childhood out of a total of eight, yet, like his father, he was to live to an age of over 80. He was educated at local schools, including Greenock Grammar School where he was an uninspired pupil. At the age of 17 he was sent to live with relatives in Glasgow and then in 1755 to London to become an apprentice to a mathematical instrument maker, John Morgan of Finch Lane, Cornhill. Less than a year later he returned to Greenock and then to Glasgow, where he was appointed mathematical instrument maker to the University and was permitted in 1757 to set up a workshop within the University grounds. In this position he came to know many of the University professors and staff, and it was thus that he became involved in work on the steam engine when in 1764 he was asked to put in working order a defective Newcomen engine model. It did not take Watt long to perceive that the great inefficiency of the Newcomen engine was due to the repeated heating and cooling of the cylinder. His idea was to drive the steam out of the cylinder and to condense it in a separate vessel. The story is told of Watt's flash of inspiration as he was walking across Glasgow Green one Sunday afternoon; the idea formed perfectly in his mind and he became anxious to get back to his workshop to construct the necessary apparatus, but this was the Sabbath and work had to wait until the morrow, so Watt forced himself to wait until the Monday morning.
    Watt designed a condensing engine and was lent money for its development by Joseph Black, the Glasgow University professor who had established the concept of latent heat. In 1768 Watt went into partnership with John Roebuck, who required the steam engine for the drainage of a coal-mine that he was opening up at Bo'ness, West Lothian. In 1769, Watt took out his patent for "A New Invented Method of Lessening the Consumption of Steam and Fuel in Fire Engines". When Roebuck went bankrupt in 1772, Matthew Boulton, proprietor of the Soho Engineering Works near Birmingham, bought Roebuck's share in Watt's patent. Watt had met Boulton four years earlier at the Soho works, where power was obtained at that time by means of a water-wheel and a steam engine to pump the water back up again above the wheel. Watt moved to Birmingham in 1774, and after the patent had been extended by Parliament in 1775 he and Boulton embarked on a highly profitable partnership. While Boulton endeavoured to keep the business supplied with capital, Watt continued to refine his engine, making several improvements over the years; he was also involved frequently in legal proceedings over infringements of his patent.
    In 1794 Watt and Boulton founded the new company of Boulton \& Watt, with a view to their retirement; Watt's son James and Boulton's son Matthew assumed management of the company. Watt retired in 1800, but continued to spend much of his time in the workshop he had set up in the garret of his Heathfield home; principal amongst his work after retirement was the invention of a pantograph sculpturing machine.
    James Watt was hard-working, ingenious and essentially practical, but it is doubtful that he would have succeeded as he did without the business sense of his partner, Matthew Boulton. Watt coined the term "horsepower" for quantifying the output of engines, and the SI unit of power, the watt, is named in his honour.
    [br]
    Principal Honours and Distinctions
    FRS 1785. Honorary LLD, University of Glasgow 1806. Foreign Associate, Académie des Sciences, Paris 1814.
    Further Reading
    H.W.Dickinson and R Jenkins, 1927, James Watt and the Steam Engine, Oxford: Clarendon Press.
    L.T.C.Rolt, 1962, James Watt, London: B.T. Batsford.
    R.Wailes, 1963, James Watt, Instrument Maker (The Great Masters: Engineering Heritage, Vol. 1), London: Institution of Mechanical Engineers.
    IMcN

    Biographical history of technology > Watt, James

См. также в других словарях:

  • mét- — mét(a) ♦ Élément, du gr. meta, exprimant la succession, le changement, la participation, et en philosophie et dans les sciences humaines « ce qui dépasse, englobe » (un objet, une science) : métalangage, métamathématique. ⇒MÉT(A) , (MÉT , MÉTA… …   Encyclopédie Universelle

  • Paris-roubaix — Informations Nom Paris Roubaix Pays …   Wikipédia en Français

  • Paris Roubaix — Informations Nom Paris Roubaix Pays …   Wikipédia en Français

  • Paris et Hélène — Pâris Pour les articles homonymes, voir Paris (homonymie). Archer troyen dit « Pâris », figure fronton ouest du temple d …   Wikipédia en Français

  • Paris (France) — Paris  Cet article concerne la capitale française. Pour les autres significations, voir Paris (homonymie). Paris …   Wikipédia en Français

  • Paris intra-muros — Paris  Cet article concerne la capitale française. Pour les autres significations, voir Paris (homonymie). Paris …   Wikipédia en Français

  • Paris Hilton : une amie pour la vie ? — Paris Hilton en 2008. Paris Hilton : une amie pour la vie ?, titré au Québec Paris un jour, Paris toujours ! (en anglais Paris Hilton s My New BFF, le sigle BFF signifiant Best Friend Forever, soit « meilleur(e) ami(e) pour… …   Wikipédia en Français

  • PARIS SCHOOL OF ART — (Jewish School of). In the history and criticism of 20th century painting, School of Paris has become a widely used term, generally designating a style that is not necessarily or typically French, but which is followed by a large number of… …   Encyclopedia of Judaism

  • Paris Pike — Paris Pike, as it is called by the locals, is the 14 mile (23 km) road leading from Paris, Kentucky to Lexington, Kentucky. It is also known as US 27/68.For years, this stretch of road had only two side by side lanes and no emergency breakdown… …   Wikipedia

  • Paris-Tours 1998 — Une carte du parcours serait la bienvenue. Généralités Édition 92 …   Wikipédia en Français

  • Paris-Nice 1971 — Une carte du parcours serait la bienvenue. Généralités Édition …   Wikipédia en Français

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»