Перевод: со всех языков на английский

с английского на все языки

valley+mills

  • 1 Valley Mills Muni Airport, Valley Mills, Texas USA

    Airports: 9F1

    Универсальный русско-английский словарь > Valley Mills Muni Airport, Valley Mills, Texas USA

  • 2 Robinson, George J.

    SUBJECT AREA: Textiles
    [br]
    b. 1712 Scotland
    d. 1798 England
    [br]
    Scottish manufacturer who installed the first Boulton \& Watt rotative steam-engine in a textile mill.
    [br]
    George Robinson is said to have been a Scots migrant who settled at Burwell, near Nottingham, in 1737, but there is no record of his occupation until 1771, when he was noticed as a bleacher. By 1783 he and his son were describing themselves as "merchants and thread manufacturers" as well as bleachers. For their thread, they were using the system of spinning on the waterframe, but it is not known whether they held a licence from Arkwright. Between 1776 and 1791, the firm G.J. \& J.Robinson built a series of six cotton mills with a complex of dams and aqueducts to supply them in the relatively flat land of the Leen valley, near Papplewick, to the north of Nottingham. By careful conservation they were able to obtain considerable power from a very small stream. Castle mill was not only the highest one owned by the Robinsons, but it was also the highest mill on the stream and was fed from a reservoir. The Robinsons might therefore have expected to have enjoyed uninterrupted use of the water, but above them lived Lord Byron in his estate of Newstead Priory. The fifth Lord Byron loved making ornamental ponds on his property so that he could have mock naval battles with his servants, and this tampered with the water supplies so much that the Robinsons found they were unable to work their mills.
    In 1785 they decided to order a rotative steam engine from the firm of Boulton \& Watt. It was erected by John Rennie; however, misfortune seemed to dog this engine, for parts went astray to Manchester and when the engine was finally running at the end of February 1786 it was found to be out of alignment so may not have been very successful. At about the same time, the lawsuit against Lord Byron was found in favour of the Robinsons, but the engine continued in use for at least twelve years and was the first of the type which was to power virtually all steamdriven mills until the 1850s to be installed in a textile mill. It was a low-pressure double-acting condensing beam engine, with a vertical cylinder, parallel motion connecting the piston toone end of a rocking beam, and a connecting rod at the other end of the beam turning the flywheel. In this case Watt's sun and planet motion was used in place of a crank.
    [br]
    Further Reading
    R.L.Hills, 1970, Power in the Industrial Revolution, Manchester (for an account of the installation of this engine).
    D.M.Smith, 1965, Industrial Archaeology of the East Midlands, Newton Abbot (describes the problems which the Robinsons had with the water supplies to power their mills).
    S.D.Chapman, 1967, The Early Factory Masters, Newton Abbot (provides details of the business activities of the Robinsons).
    J.D.Marshall, 1959, "Early application of steam power: the cotton mills of the Upper Leen", Transactions of the Thoroton Society of Nottinghamshire 60 (mentions the introduction of this steam-engine).
    RLH

    Biographical history of technology > Robinson, George J.

  • 3 Strutt, Jedediah

    SUBJECT AREA: Textiles
    [br]
    b. 26 July 1726 South Normanton, near Alfreton, Derbyshire, England
    d. 7 May 1797 Derby, England
    [br]
    English inventor of a machine for making ribbed knitting.
    [br]
    Jedediah Strutt was the second of three sons of William, a small farmer and maltster at South Normanton, near Alfreton, Derbyshire, where the only industry was a little framework knitting. At the age of 14 Jedediah was apprenticed to Ralph Massey, a wheelwright near Derby, and lodged with the Woollats, whose daughter Elizabeth he later married in 1755. He moved to Leicester and in 1754 started farming at Blackwell, where an uncle had died and left him the stock on his farm. It was here that he made his knitting invention.
    William Lee's knitting machine remained in virtually the same form as he left it until the middle of the eighteenth century. The knitting industry moved away from London into the Midlands and in 1730 a Nottingham workman, using Indian spun yarn, produced the first pair of cotton hose ever made by mechanical means. This industry developed quickly and by 1750 was providing employment for 1,200 frameworkers using both wool and cotton in the Nottingham and Derby areas. It was against this background that Jedediah Strutt obtained patents for his Derby rib machine in 1758 and 1759.
    The machine was a highly ingenious mechanism, which when placed in front of an ordinary stocking frame enabled the fashionable ribbed stockings to be made by machine instead of by hand. To develop this invention, he formed a partnership first with his brother-in-law, William Woollat, and two leading Derby hosiers, John Bloodworth and Thomas Stamford. This partnership was dissolved in 1762 and another was formed with Woollat and the Nottingham hosier Samuel Need. Strutt's invention was followed by a succession of innovations which enabled framework knitters to produce almost every kind of mesh on their machines. In 1764 the stocking frame was adapted to the making of eyelet holes, and this later lead to the production of lace. In 1767 velvet was made on these frames, and two years later brocade. In this way Strutt's original invention opened up a new era for knitting. Although all these later improvements were not his, he was able to make a fortune from his invention. In 1762 he was made a freeman of Nottingham, but by then he was living in Derby. His business at Derby was concerned mainly with silk hose and he had a silk mill there.
    It was partly his need for cotton yarn and partly his wealth which led him into partnership with Richard Arkwright, John Smalley and David Thornley to exploit Arkwright's patent for spinning cotton by rollers. Together with Samuel Need, they financed the Arkwright partnership in 1770 to develop the horse-powered mill in Nottingham and then the water-powered mill at Cromford. Strutt gave advice to Arkwright about improving the machinery and helped to hold the partnership together when Arkwright fell out with his first partners. Strutt was also involved, in London, where he had a house, with the parliamentary proceedings over the passing of the Calico Act in 1774, which opened up the trade in British-manufactured all-cotton cloth.
    In 1776 Strutt financed the construction of his own mill at Helper, about seven miles (11 km) further down the Derwent valley below Cromford. This was followed by another at Milford, a little lower on the river. Strutt was also a partner with Arkwright and others in the mill at Birkacre, near Chorley in Lancashire. The Strutt mills were developed into large complexes for cotton spinning and many experiments were later carried out in them, both in textile machinery and in fireproof construction for the mills themselves. They were also important training schools for engineers.
    Elizabeth Strutt died in 1774 and Jedediah never married again. The family seem to have lived frugally in spite of their wealth, probably influenced by their Nonconformist background. He had built a house near the mills at Milford, but it was in his Derby house that Jedediah died in 1797. By the time of his death, his son William had long been involved with the business and became a more important cotton spinner than Jedediah.
    [br]
    Bibliography
    1758. British patent no. 722 (Derby rib machine). 1759. British patent no. 734 (Derby rib machine).
    Further Reading
    For the involvement of Strutt in Arkwright's spinning ventures, there are two books, the earlier of which is R.S.Fitton and A.P.Wadsworth, 1958, The Strutts and the Arkwrights, 1758–1830, Manchester, which has most of the details about Strutt's life. This has been followed by R.S.Fitton, 1989, The Arkwrights, Spinners of Fortune, Manchester.
    R.L.Hills, 1970, Power in the Industrial Revolution, Manchester (for a general background to the textile industry of the period).
    W.Felkin, 1967, History of the Machine-wrought Hosiery and Lace Manufactures, reprint, Newton Abbot (orig. pub. 1867) (covers Strutt's knitting inventions).
    RLH

    Biographical history of technology > Strutt, Jedediah

  • 4 Bateman, John Frederick La Trobe

    [br]
    b. 30 May 1810 Lower Wyke, near Halifax, Yorkshire, England
    d. 10 June 1889 Moor Park, Farnham, Surrey, England
    [br]
    English civil engineer whose principal works were concerned with reservoirs, water-supply schemes and pipelines.
    [br]
    Bateman's maternal grandfather was a Moravian missionary, and from the age of 7 he was educated at the Moravian schools at Fairfield and Ockbrook. At the age of 15 he was apprenticed to a "civil engineer, land surveyor and agent" in Oldham. After this apprenticeship, Bateman commenced his own practice in 1833. One of his early schemes and reports was in regard to the flooding of the river Medlock in the Manchester area. He came to the attention of William Fairbairn, the engine builder and millwright of Canal Street, Ancoats, Manchester. Fairbairn used Bateman as his site surveyor and as such he prepared much of the groundwork for the Bann reservoirs in Northern Ireland. Whilst the reports on the proposals were in the name of Fairbairn, Bateman was, in fact, appointed by the company as their engineer for the execution of the works. One scheme of Bateman's which was carried forward was the Kendal Reservoirs. The Act for these was signed in 1845 and was implemented not for the purpose of water supply but for the conservation of water to supply power to the many mills which stood on the river Kent between Kentmere and Morecambe Bay. The Kentmere Head dam is the only one of the five proposed for the scheme to survive, although not all the others were built as they would have retained only small volumes of water.
    Perhaps the greatest monument to the work of J.F.La Trobe Bateman is Manchester's water supply; he was consulted about this in 1844, and construction began four years later. He first built reservoirs in the Longdendale valley, which has a very complicated geological stratification. Bateman favoured earth embankment dams and gravity feed rather than pumping; the five reservoirs in the valley that impound the river Etherow were complex, cored earth dams. However, when completed they were greatly at risk from landslips and ground movement. Later dams were inserted by Bateman to prevent water loss should the older dams fail. The scheme was not completed until 1877, by which time Manchester's population had exceeded the capacity of the original scheme; Thirlmere in Cumbria was chosen by Manchester Corporation as the site of the first of the Lake District water-supply schemes. Bateman, as Consulting Engineer, designed the great stone-faced dam at the west end of the lake, the "gothic" straining well in the middle of the east shore of the lake, and the 100-mile (160 km) pipeline to Manchester. The Act for the Thirlmere reservoir was signed in 1879 and, whilst Bateman continued as Consulting Engineer, the work was supervised by G.H. Hill and was completed in 1894.
    Bateman was also consulted by the authorities in Glasgow, with the result that he constructed an impressive water-supply scheme derived from Loch Katrine during the years 1856–60. It was claimed that the scheme bore comparison with "the most extensive aqueducts in the world, not excluding those of ancient Rome". Bateman went on to superintend the waterworks of many cities, mainly in the north of England but also in Dublin and Belfast. In 1865 he published a pamphlet, On the Supply of Water to London from the Sources of the River Severn, based on a survey funded from his own pocket; a Royal Commission examined various schemes but favoured Bateman's.
    Bateman was also responsible for harbour and dock works, notably on the rivers Clyde and Shannon, and also for a number of important water-supply works on the Continent of Europe and beyond. Dams and the associated reservoirs were the principal work of J.F.La Trobe Bateman; he completed forty-three such schemes during his professional career. He also prepared many studies of water-supply schemes, and appeared as professional witness before the appropriate Parliamentary Committees.
    [br]
    Principal Honours and Distinctions
    FRS 1860. President, Institution of Civil Engineers 1878, 1879.
    Bibliography
    Among his publications History and Description of the Manchester Waterworks, (1884, London), and The Present State of Our Knowledge on the Supply of Water to Towns, (1855, London: British Association for the Advancement of Science) are notable.
    Further Reading
    Obituary, 1889, Proceedings of the Royal Society 46:xlii-xlviii. G.M.Binnie, 1981, Early Victorian Water Engineers, London.
    P.N.Wilson, 1973, "Kendal reservoirs", Transactions of the Cumberland and Westmorland Antiquarian and Archaeological Society 73.
    KM / LRD

    Biographical history of technology > Bateman, John Frederick La Trobe

  • 5 Reynolds, Edwin

    [br]
    b. 1831 Mansfield, Connecticut, USA
    d. 1909 Milwaukee, Wisconsin, USA
    [br]
    American contributor to the development of the Corliss valve steam engine, including the "Manhattan" layout.
    [br]
    Edwin Reynolds grew up at a time when formal engineering education in America was almost unavailable, but through his genius and his experience working under such masters as G.H. Corliss and William Wright, he developed into one of the best mechanical engineers in the country. When he was Plant Superintendent for the Corliss Steam Engine Company, he built the giant Corliss valve steam engine displayed at the 1876 Centennial Exhibition. In July 1877 he left the Corliss Steam Engine Company to join Edward Allis at his Reliance Works, although he was offered a lower salary. In 1861 Allis had moved his business to the Menomonee Valley, where he had the largest foundry in the area. Immediately on his arrival with Allis, Reynolds began desig-ning and building the "Reliance-Corliss" engine, which becamea symbol of simplicity, economy and reliability. By early 1878 the new engine was so successful that the firm had a six-month backlog of orders. In 1888 he built the first triple-expansion waterworks-pumping engine in the United States for the city of Milwaukee, and in the same year he patented a new design of blowing engine for blast furnaces. He followed this in March 1892 with the first steam engine sets coupled directly to electric generators when Allis-Chalmers contracted to build two Corliss cross-compound engines for the Narragansett Light Company of Providence, Rhode Island. In 1893, one of the impressive attractions at the World's Columbian Exposition in Chicago was the 3,000 hp (2,200 kW) quadruple-expansion Reynolds-Corliss engine designed by Reynolds, who continued to make significant improvements and gained worldwide recognition of his outstanding achievements in engine building.
    Reynolds was asked to go to New York in 1898 for consultation about some high-horsepower engines for the Manhattan transport system. There, 225 railway locomotives were to be replaced by electric trains, which would be supplied from one generating station producing 60,000 hp (45,000 kW). Reynolds sketched out his ideas for 10,000 hp (7,500 kW) engines while on the train. Because space was limited, he suggested a four-cylinder design with two horizontal-high-pressure cylinders and two vertical, low-pressure ones. One cylinder of each type was placed on each side of the flywheel generator, which with cranks at 135° gave an exceptionally smooth-running compact engine known as the "Manhattan". A further nine similar engines that were superheated and generated three-phase current were supplied in 1902 to the New York Interborough Rapid Transit Company. These were the largest reciprocating steam engines built for use on land, and a few smaller ones with a similar layout were installed in British textile mills.
    [br]
    Further Reading
    Concise Dictionary of American Biography, 1964, New York: C.Scribner's Sons (contains a brief biography).
    R.L.Hills, 1989, Power from Steam. A History of the Stationary Steam Engine, Cambridge University Press (provides a brief account of the Manhattan engines) Part of the information for this biography is derived from a typescript in the Smithsonian Institution, Washington, DC: T.H.Fehring, "Technological contributions of Milwaukee's Menomonee Valley industries".
    RLH

    Biographical history of technology > Reynolds, Edwin

  • 6 Smalley, John

    SUBJECT AREA: Textiles
    [br]
    b. c. 1729 England
    d. 28 January 1782 Holywell, Wales.
    [br]
    English helped Arkwright to build and finance the waterframe.
    [br]
    John Smalley of Preston was the second son of John, a chapman of Blackburn. He was a distant relative of Richard Arkwright through marrying, in 1751, Elizabeth Baxter, whose mother Ellen was the widow of Arkwright's uncle, Richard. In the Preston Guild Rolls of 1762 he was described as a grocer and painter, and he was also Landlord of the Bull Inn. The following year he became a bailiff of Preston and in 1765 he became a Corporation steward. On 14 May 1768 Arkwright, Smalley and David Thornley became partners in a cotton-spinning venture in Nottingham. They agreed to apply for a patent for Arkwright's invention of spinning by rollers, and Smalley signed as a witness. It is said that Smalley provided much of the capital for this new venture as he sold his business at Preston for about £1,600, but this was soon found to be insufficient and the partnership had to be enlarged to include Samuel Need and Jedediah Strutt.
    Smalley may have helped to establish the spinning mill at Nottingham, but by 28 February 1771 he was back in Preston, for on that day he was chosen a "Councilman in the room of Mr. Thomas Jackson deceased" (Fitton 1989:38). He attended meetings for over a year, but either in 1772 or the following year he sold the Bull Inn, and certainly by August 1774 the Smalleys were living in Cromford, where he became Manager of the mill. He soon found himself at logger-heads with Arkwright; however, Strutt was able to smooth the dispute over for a while. Things came to a head in January 1777 when Arkwright was determined to get rid of Smalley, and the three remaining partners agreed to buy out Smalley's share for the sum of £10,751.
    Although he had agreed not to set up any textile machinery, Smalley moved to Holywell in North Wales, where in the spring of 1777 he built a cotton-spinning mill in the Greenfield valley. He prospered there and his son was later to build two more mills in the same valley. Smalley used to go to Wrexham to sell his yarn, and there met John Peers, a leather merchant, who was able to provide a better quality leather for covering the drawing rollers which came to be used in Lancashire. Smalley died in 1782, shortly before Arkwright could sue him for infringement of his patents.
    [br]
    Further Reading
    R.S.Fitton, 1989, The Arkwrights, Spinners of Fortune, Manchester (draws together the fullest details of John Smalley).
    R.L.Hills, 1969, Power in the Industrial Revolution, Manchester (includes details of the agreement with Arkwright).
    A.H.Dodd, 1971, The Industrial Revolution in North Wales, Cardiff; E.J.Foulkes, 1964, "The cotton spinning factories of Flintshire, 1777–1866", Flintshire Historical Society
    Journal 21 (provide more information about his cotton mill at Holywell).
    RLH

    Biographical history of technology > Smalley, John

  • 7 Rennie, John

    SUBJECT AREA: Canals, Civil engineering
    [br]
    b. 7 June 1761 Phantassie, East Linton, East Lothian, Scotland
    d. 4 October 1821 Stamford Street, London, England
    [br]
    Scottish civil engineer.
    [br]
    Born into a prosperous farming family, he early demonstrated his natural mechanical and structural aptitude. As a boy he spent a great deal of time, often as a truant, near his home in the workshop of Andrew Meikle. Meikle was a millwright and the inventor of a threshing machine. After local education and an apprenticeship with Meikle, Rennie went to Edinburgh University until he was 22. He then travelled south and met James Watt, who in 1784 offered him the post of Engineer at the Albion Flour Mills, London, which was then under construction. Rennie designed all the mill machinery, and it was while there that he began to develop an interest in canals, opening his own business in 1791 in Blackfriars. He carried out work on the Kennet and Avon Canal and in 1794 became Engineer for the company. He meanwhile carried out other surveys, including a proposed extension of the River Stort Navigation to the Little Ouse and a Basingstoke-to-Salisbury canal, neither of which were built. From 1791 he was also engaged on the Rochdale Canal and the Lancaster Canal, as well as the great masonry aqueduct carrying the latter canal across the river Lune at Lancaster. He also surveyed the Ipswich and Stowmarket and the Chelmer and Blackwater Navigations. He advised on the Horncastle Canal in 1799 and on the River Ancholme in 1799, both of which are in Lincolnshire. In 1802 he was engaged on the Royal Canal in Ireland, and in the same year he was commissioned by the Government to prepare a plan for flooding the Lea Valley as a defence on the eastern approach to London in case Napoleon invaded England across the Essex marshes. In 1809 he surveyed improvements on the Thames, and in the following year he was involved in a proposed canal from Taunton to Bristol. Some of his schemes, particularly in the Fens and Lincolnshire, were a combination of improvements for both drainage and navigation. Apart from his canal work he engaged extensively in the construction and development of docks and harbours including the East and West India Docks in London, Holyhead, Hull, Ramsgate and the dockyards at Chatham and Sheerness. In 1806 he proposed the great breakwater at Plymouth, where work commenced on 22 June 1811.
    He was also highly regarded for his bridge construction. These included Kelso and Musselburgh, as well as his famous Thames bridges: London Bridge (uncompleted at the time of his death), Waterloo Bridge (1810–17) and Southwark Bridge (1815–19). He was elected a Fellow of the Royal Society in 1798.
    [br]
    Principal Honours and Distinctions
    FRS 1798.
    Further Reading
    C.T.G.Boucher, 1963, John Rennie 1761–1821, Manchester University Press. W.Reyburn, 1972, Bridge Across the Atlantic, London: Harrap.
    JHB

    Biographical history of technology > Rennie, John

См. также в других словарях:

  • Valley Mills — can refer to: *Derwent Valley Mills, a World Heritage Site along the River Derwent in Derbyshire, England. *Valley Mills, Iowa, in Garnavillo, listed on the U.S. National Register of Historic Places. *Valley Mills, Texas a city in the United… …   Wikipedia

  • Valley Mills — ist der Name mehrerer Orte in den Vereinigten Staaten: Valley Mills (Iowa) Valley Mills (New York) Valley Mills (Texas) Diese Seite ist eine Begriffsklärung zur Unterscheidung mehrerer mit demselben Wort bezeichneter Begriffe …   Deutsch Wikipedia

  • Valley Mills — Valley Mills, TX U.S. city in Texas Population (2000): 1123 Housing Units (2000): 487 Land area (2000): 0.701348 sq. miles (1.816483 sq. km) Water area (2000): 0.000000 sq. miles (0.000000 sq. km) Total area (2000): 0.701348 sq. miles (1.816483… …   StarDict's U.S. Gazetteer Places

  • Valley Mills, TX — U.S. city in Texas Population (2000): 1123 Housing Units (2000): 487 Land area (2000): 0.701348 sq. miles (1.816483 sq. km) Water area (2000): 0.000000 sq. miles (0.000000 sq. km) Total area (2000): 0.701348 sq. miles (1.816483 sq. km) FIPS code …   StarDict's U.S. Gazetteer Places

  • Valley Mills — Original name in latin Valley Mills Name in other language State code US Continent/City America/Chicago longitude 31.65933 latitude 97.47224 altitude 185 Population 1203 Date 2011 05 14 …   Cities with a population over 1000 database

  • Valley Mills (Texas) — Valley Mills Ciudad de los Estados Unidos …   Wikipedia Español

  • Valley Mills Independent School District — is a public school district based in Valley Mills, Texas (USA).The district is located in southern Bosque County and portions of McLennan and Coryell counties.Valley Mills ISD has three campuses Valley Mills High (Grades 9 12), Valley Mills… …   Wikipedia

  • Valley Mills, Texas — Infobox Settlement official name = Valley Mills, Texas settlement type = City nickname = motto = imagesize = image caption = image mapsize = 250px map caption = Location of Valley Mills, Texas mapsize1 = 250px map caption1 = subdivision type =… …   Wikipedia

  • Derwent Valley Mills — Derwent Valley Mills * UNESCO World Heritage Site Country Unit …   Wikipedia

  • Quequechan Valley Mills Historic District — Infobox nrhp | name =Quequechan Valley Mills Historic District nrhp type = hd caption = Quequechan Street location= Fall River, Massachusetts lat degrees = 41 lat minutes = 40 lat seconds = 59 lat direction = N long degrees = 71 long minutes = 8… …   Wikipedia

  • Derwent Valley Mills — Masson Mills, Derwent Valley Derwent Valley Mills ist seit 2001 eine Stätte des UNESCO Weltkulturerbes entlang des Flusses Derwent in Derbyshire in England. Im 18. Jahrhundert entstanden hier die ersten modernen Fabriken zur Fertigung von… …   Deutsch Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»