Перевод: с английского на русский

с русского на английский

tos

  • 81 set-to

    ['settuː]
    сущ.; разг.; мн. set-tos
    2) кулачный бой; схватка
    3) атака, нападение

    Англо-русский современный словарь > set-to

  • 82 set-to

    1. n разг. жаркий спор; шумная ссора

    they were having one of their usual set-tos — они, как обычно, шумно спорили

    2. n разг. борьба, состязание
    3. n разг. кулачный бой
    4. n разг. наступление, натиск
    Синонимический ряд:
    match (noun) bout; fight; match; round; run in

    English-Russian base dictionary > set-to

  • 83 TOP

    сокр. от Technical and Office Protocol ToS Type of Service
    технические и служебные протоколы; универсальный протокол учрежденческих локальных сетей

    English-Russian information technology > TOP

  • 84 set-to

    [ˈsetˈtu:]
    set-to (pl -tos, -to's) разг. кулачный бой; схватка set-to разг. шумная ссора

    English-Russian short dictionary > set-to

  • 85 top of stack

    1. вершина стека

     

    вершина стека

    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > top of stack

  • 86 differentiated service

    1. дифференцированное обслуживание

     

    дифференцированное обслуживание
    Схема, первоначально предложенная для замены поля TOS (Type of Service, тип услуги) в заголовках IP-пакетов, чтобы улучшить качество обслуживания QoS в сети. Поле DiffServ позволяет указать до 64 возможных типов услуг, т.е. приоритетов обслуживания соответствующих пакетов (МСЭ-Т О.211).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

    Англо-русский словарь нормативно-технической терминологии > differentiated service

  • 87 DiffServ

    1. дифференцированные услуги (технология разделения типов трафика)
    2. дифференцированные услуги
    3. дифференцированное обслуживание

     

    дифференцированное обслуживание
    Схема, первоначально предложенная для замены поля TOS (Type of Service, тип услуги) в заголовках IP-пакетов, чтобы улучшить качество обслуживания QoS в сети. Поле DiffServ позволяет указать до 64 возможных типов услуг, т.е. приоритетов обслуживания соответствующих пакетов (МСЭ-Т О.211).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    дифференцированные услуги
    (МСЭ-Т Y.1281, МСЭ-Т Y.1291,МСЭ-Т Y.1310, МСЭ-Т Y.2111, МСЭ-Т Х.606.1).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    дифференцированные услуги (технология разделения типов трафика)

    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > DiffServ

  • 88 COS

    1. операционная система параллельного действия
    2. операционная система для супер-ЭВМ типа CRAY-IS
    3. обслуживание покупателей по заказам
    4. корпорация COS
    5. класс обслуживания
    6. карбонилсульфид

     

    карбонилсульфид
    (напр. используется для изготовления катализаторов)
    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    корпорация COS
    Группа пользователей, занимающихся тестированием, сертификацией и продвижением продукции OSI.
    [ http://www.morepc.ru/dict/]

    Тематики

    EN

     

    обслуживание покупателей по заказам

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    операционная система для супер-ЭВМ типа CRAY-IS

    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

     

    операционная система параллельного действия

    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > COS

  • 89 quality of service

    1. показатель качества обслуживания
    2. класс обслуживания
    3. качество эксплуатации
    4. качество телекоммуникационной услуги
    5. качество сервиса (ВОС)
    6. качество обслуживания (в информационных технологиях)
    7. качество обслуживания

     

    качество обслуживания
    Комплексная характеристика степени удовлетворения пользователя предоставляемыми услугами.
    [Руководящий документ "Основные положения развития Взаимоувязанной сети связи Российской Федерации на перспективу до 2005 года"]

    качество обслуживания
    Совокупность характеристик процесса и условий обслуживания, обеспечивающих удовлетворение установленных или предполагаемых потребностей потребителя.
    [ ГОСТ Р 50646-94]

    Тематики

    Обобщающие термины

    EN

     

    качество обслуживания
    Стандарт QoS — это ряд мер, призванных обеспечить определенный уровень качества конкретного ресурса для указанного трафика в сети. Качество определяется, например, поддерживаемым уровнем пропускной способности сети, низким уровнем задержки, отсутствием случаев потери пакетов и т. д. Стандарт QoS в отношении продукции компании Axis для сетевого видеонаблюдения определяет пакеты данных для различных типов сетевого трафика исходя из характеристик конкретного устройства. Это позволяет сетевым маршрутизаторам и коммутаторам резервировать определенный объем полосы пропускания для используемого типа трафика.
    [ http://www.alltso.ru/publ/glossarij_setevoe_videonabljudenie_terminy/1-1-0-34]

    качество обслуживания
    качество и класс предоставляемых услуг передачи данных

    QoS обычно описывает сеть в терминах задержки, полосы и дрожи сигнала [http://www.citforum.ru/nets/glossary/_terms.shtml].
    Рекомендация МСЭ Y.1541 определяет значения параметров, которые должны обеспечиваться в сетях IP на международных трактах, соединяющих терминалы пользователей. Нормативы разделены по "классам обслуживания" (QoS).

    Характеристики сети

    Классы качества обслуживания (QoS)

     

     

     

     

     

     

    0

    1

    2

    3

    4

    5

    Задержка доставки пакета IP, IPTD

    100 мс

    400 мс

    100 мс

    400 мс

    --

    Вариация задержки пакета IP, IPDV (джиттер

    50 мс

    50 мс

    --

    --

    --

    --

    Коэффициент потери пакетов IP, IPLR

    1E-3

    1E-3

    1E-3

    1E-3

    1E-3

    --

    Коэффициент ошибок пакетов IP, IPER

    1E-4

    1E-4

    1E-4

    1E-4

    1E-4

    --

    В таблице приведены верхние границы для средних значений параметров. Также в Рекомендации Y.1541 представлены спецификации набора параметров, которые связаны с измерением реальных значений сетевых характеристик: периода наблюдений, длины тестовых пакетов, их числа. Например, при оценке качества передачи пакетов речи в IP-телефонии минимальный интервал наблюдения должен быть порядка 1-20 секунд при типовой скорости передачи 50 пакетов в секунду. Рекомендуемый интервал измерений для задержки, джиттера и потерь, должен составлять не менее 60 секунд.
    Рекомендация также устанавливает соответствие между классами качества обслуживания и приложениями:
    Класс 0. Приложения реального времени, чувствительные к джиттеру, характеризуемые высоким уровнем интерактивности (VoIP, видеоконференции).
    Класс 1. Приложения реального времени, чувствительные к джиттеру, интерактивные приложения (VoIP, видеоконференции)
    Класс 2. Транзакции данных, характеризуемые высоким уровнем интерактивности, например, сигнализация
    Класс 3. Транзакции данных, интерактивные.
    Класс 4. Приложения, допускающие низкий уровень потерь (короткие транзакции, массивы данных, потоковое видео)
    Класс 5. Традиционные применения сетей IP.
    [www.mforum.ru ]
    [ http://www.morepc.ru/dict/]

    Тематики

    Синонимы

    EN

     

    качество сервиса (ВОС)
    Совокупность характеристик сервиса уровня, наблюдаемых между оконечными точками соединения.
    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

     

    качество телекоммуникационной услуги
    Совокупность специфических показателей, характеризующих потребительские свойства телекоммуникационной услуги и определяющие ее способность удовлетворить установленные и заказанные потребности потребителя услуг.
    [ http://navtel.uz/uzb/termin.html]

    Тематики

    • электросвязь, основные понятия

    EN

     

    качество эксплуатации
    качество технического обслуживания


    [ http://slovarionline.ru/anglo_russkiy_slovar_neftegazovoy_promyishlennosti/]

    Тематики

    Синонимы

    EN

     

    показатель качества обслуживания
    Гарантированный показатель качества, определяющий тип трафика и его основные вероятностно-временные характеристики: допустимую задержку в обслуживании, достоверность передачи информации, вероятность отказа в обслуживании и др.
    [Л.М.Невдяев. Мобильная связь 3-го поколения. Москва, 2000 г.]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > quality of service

  • 90 Class of Service

    Англо-русский словарь нормативно-технической терминологии > Class of Service

  • 91 ECN

    1. уведомление о завершении проектно-конструкторских работ
    2. предуведомление о перегрузке
    3. нотация управления кодированием для ASN.1

     

    нотация управления кодированием для ASN.1
    (МСЭ-Т Х.692).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

    • encoding control notation for ASN.1
    • ECN

     

    предуведомление о перегрузке
    Один из механизмов TCP, предупреждающий о близящейся перегрузке роутера.
    В поле IP пакета TOS (в настоящее время DS - Diffirentiated Service) два старших бита (6,7)выставляются в 1, явно указывая тем самым, что в сети возникла перегрузка. Принимать во внимание это поле или нет, и как реагировать, - зависит от того, как настроена политика PHB или, в простейшем случае, соседний маршрутизатор.
    [ http://www.morepc.ru/dict/]

    Тематики

    EN

     

    уведомление о завершении проектно-конструкторских работ
    (напр. при проектировании АЭС)
    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > ECN

  • 92 Explicit Congestion Notification

    1. предуведомление о перегрузке

     

    предуведомление о перегрузке
    Один из механизмов TCP, предупреждающий о близящейся перегрузке роутера.
    В поле IP пакета TOS (в настоящее время DS - Diffirentiated Service) два старших бита (6,7)выставляются в 1, явно указывая тем самым, что в сети возникла перегрузка. Принимать во внимание это поле или нет, и как реагировать, - зависит от того, как настроена политика PHB или, в простейшем случае, соседний маршрутизатор.
    [ http://www.morepc.ru/dict/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > Explicit Congestion Notification

  • 93 switching technology

    1. технология коммутации

     

    технология коммутации
    -
    [Интент]

    Современные технологии коммутации
    [ http://www.xnets.ru/plugins/content/content.php?content.84]

    Статья подготовлена на основании материалов опубликованных в журналах "LAN", "Сети и системы связи", в книге В.Олифер и Н.Олифер "Новые технологии и оборудование IP-сетей", на сайтах www.citforum.ru и опубликована в журнале "Компьютерные решения" NN4-6 за 2000 год.

    Введение

    На сегодня практически все организации, имеющие локальные сети, остановили свой выбор на сетях типа Ethernet. Данный выбор оправдан тем, что начало внедрения такой сети сопряжено с низкой стоимостью и простотой реализации, а развитие - с хорошей масштабируемостью и экономичностью.

    Бросив взгляд назад - увидим, что развитие активного оборудования сетей шло в соответствии с требованиями к полосе пропускания и надежности. Требования, предъявляемые к большей надежности, привели к отказу от применения в качестве среды передачи коаксиального кабеля и перевода сетей на витую пару. В результате такого перехода отказ работы соединения между одной из рабочих станций и концентратором перестал сказываться на работе других рабочих станций сети. Но увеличения производительности данный переход не принес, так как концентраторы используют разделяемую (на всех пользователей в сегменте) полосу пропускания. По сути, изменилась только физическая топология сети - с общей шины на звезду, а логическая топология по-прежнему осталась - общей шиной.

    Дальнейшее развитие сетей шло по нескольким путям:

    • увеличение скорости,
    • внедрение сегментирования на основе коммутации,
    • объединение сетей при помощи маршрутизации.

    Увеличение скорости при прежней логической топологии - общая шина, привело к незначительному росту производительности в случае большого числа портов.

    Большую эффективность в работе сети принесло сегментирование сетей с использованием технология коммутации пакетов. Коммутация наиболее действенна в следующих вариантах:

    Вариант 1, именуемый связью "многие со многими" – это одноранговые сети, когда одновременно существуют потоки данных между парами рабочих станций. При этом предпочтительнее иметь коммутатор, у которого все порты имеют одинаковую скорость, (см. Рисунок 1).

    5001

    Вариант 2, именуемый связью "один со многими" – это сети клиент-сервер, когда все рабочие станции работают с файлами или базой данных сервера. В данном случае предпочтительнее иметь коммутатор, у которого порты для подключения рабочих станций имеют одинаковую небольшую скорость, а порт, к которому подключается сервер, имеет большую скорость,(см. Рисунок 2).

    5002

    Когда компании начали связывать разрозненные системы друг с другом, маршрутизация обеспечивала максимально возможную целостность и надежность передачи трафика из одной сети в другую. Но с ростом размера и сложности сети, а также в связи со все более широким применением коммутаторов в локальных сетях, базовые маршрутизаторы (зачастую они получали все данные, посылаемые коммутаторами) стали с трудом справляться со своими задачами.

    Проблемы с трафиком, связанные с маршрутизацией, проявляются наиболее остро в средних и крупных компаниях, а также в деятельности операторов Internet, так как они вынуждены иметь дело с большими объемами IP-трафика, причем этот трафик должен передаваться своевременно и эффективно.

    С подключением настольных систем непосредственно к коммутаторам на 10/100 Мбит/с между ними и магистралью оказывается все меньше промежуточных устройств. Чем выше скорость подключения настольных систем, тем более скоростной должна быть магистраль. Кроме того, на каждом уровне устройства должны справляться с приходящим трафиком, иначе возникновения заторов не избежать.

    Рассмотрению технологий коммутации и посвящена данная статья.

    Коммутация первого уровня

    Термин "коммутация первого уровня" в современной технической литературе практически не описывается. Для начала дадим определение, с какими характеристиками имеет дело физический или первый уровень модели OSI:

    физический уровень определяет электротехнические, механические, процедурные и функциональные характеристики активации, поддержания и дезактивации физического канала между конечными системами. Спецификации физического уровня определяют такие характеристики, как уровни напряжений, синхронизацию изменения напряжений, скорость передачи физической информации, максимальные расстояния передачи информации, физические соединители и другие аналогичные характеристики.

    Смысл коммутации на первом уровне модели OSI означает физическое (по названию уровня) соединение. Из примеров коммутации первого уровня можно привести релейные коммутаторы некоторых старых телефонных и селекторных систем. В более новых телефонных системах коммутация первого уровня применяется совместно с различными способами сигнализации вызовов и усиления сигналов. В сетях передачи данных данная технология применяется в полностью оптических коммутаторах.

    Коммутация второго уровня

    Рассматривая свойства второго уровня модели OSI и его классическое определение, увидим, что данному уровню принадлежит основная доля коммутирующих свойств.

    Определение. Канальный уровень (формально называемый информационно-канальным уровнем) обеспечивает надежный транзит данных через физический канал. Канальный уровень решает вопросы физической адресации (в противоположность сетевой или логической адресации), топологии сети, линейной дисциплины (каким образом конечной системе использовать сетевой канал), уведомления о неисправностях, упорядоченной доставки блоков данных и управления потоком информации.

    На самом деле, определяемая канальным уровнем модели OSI функциональность служит платформой для некоторых из сегодняшних наиболее эффективных технологий. Большое значение функциональности второго уровня подчеркивает тот факт, что производители оборудования продолжают вкладывать значительные средства в разработку устройств с такими функциями.

    С технологической точки зрения, коммутатор локальных сетей представляет собой устройство, основное назначение которого - максимальное ускорение передачи данных за счет параллельно существующих потоков между узлами сети. В этом - его главное отличие от других традиционных устройств локальных сетей – концентраторов (Hub), предоставляющих всем потокам данных сети всего один канал передачи данных.

    Коммутатор позволяет передавать параллельно несколько потоков данных c максимально возможной для каждого потока скоростью. Эта скорость ограничена физической спецификацией протокола, которую также часто называют "скоростью провода". Это возможно благодаря наличию в коммутаторе большого числа центров обработки и продвижения кадров и шин передачи данных.

    Коммутаторы локальных сетей в своем основном варианте, ставшем классическим уже с начала 90-х годов, работают на втором уровне модели OSI, применяя свою высокопроизводительную параллельную архитектуру для продвижения кадров канальных протоколов. Другими словами, ими выполняются алгоритмы работы моста, описанные в стандартах IEEE 802.1D и 802.1H. Также они имеют и много других дополнительных функций, часть которых вошла в новую редакцию стандарта 802.1D-1998, а часть остается пока не стандартизованной.

    Коммутаторы ЛВС отличаются большим разнообразием возможностей и, следовательно, цен - стоимость 1 порта колеблется в диапазоне от 50 до 1000 долларов. Одной из причин столь больших различий является то, что они предназначены для решения различных классов задач. Коммутаторы высокого класса должны обеспечивать высокую производительность и плотность портов, а также поддерживать широкий спектр функций управления. Простые и дешевые коммутаторы имеют обычно небольшое число портов и не способны поддерживать функции управления. Одним из основных различий является используемая в коммутаторе архитектура. Поскольку большинство современных коммутаторов работают на основе патентованных контроллеров ASIC, устройство этих микросхем и их интеграция с остальными модулями коммутатора (включая буферы ввода-вывода) играет важнейшую роль. Контроллеры ASIC для коммутаторов ЛВС делятся на 2 класса - большие ASIC, способные обслуживать множество коммутируемых портов (один контроллер на устройство) и небольшие ASIC, обслуживающие по несколько портов и объединяемые в матрицы коммутации.

    Существует 3 варианта архитектуры коммутаторов:
     

    На рисунке 3 показана блок-схема коммутатора с архитектурой, используемой для поочередного соединения пар портов. В любой момент такой коммутатор может обеспечить организацию только одного соединения (пара портов). При невысоком уровне трафика не требуется хранение данных в памяти перед отправкой в порт назначения - такой вариант называется коммутацией на лету cut-through. Однако, коммутаторы cross-bar требуют буферизации на входе от каждого порта, поскольку в случае использования единственно возможного соединения коммутатор блокируется (рисунок 4). Несмотря на малую стоимость и высокую скорость продвижения на рынок, коммутаторы класса cross-bar слишком примитивны для эффективной трансляции между низкоскоростными интерфейсами Ethernet или token ring и высокоскоростными портами ATM и FDDI.

    5003

    5004

    Коммутаторы с разделяемой памятью имеют общий входной буфер для всех портов, используемый как внутренняя магистраль устройства (backplane). Буферизагия данных перед их рассылкой (store-and-forward - сохранить и переслать) приводит к возникновению задержки. Однако, коммутаторы с разделяемой памятью, как показано на рисунке 5 не требуют организации специальной внутренней магистрали для передачи данных между портами, что обеспечивает им более низкую цену по сравнению с коммутаторами на базе высокоскоростной внутренней шины.

    5005

    На рисунке 6 показана блок-схема коммутатора с высокоскоростной шиной, связывающей контроллеры ASIC. После того, как данные преобразуются в приемлемый для передачи по шине формат, они помещаются на шину и далее передаются в порт назначения. Поскольку шина может обеспечивать одновременную (паралельную) передачу потока данных от всех портов, такие коммутаторы часто называют "неблокируемыми" (non-blocking) - они не создают пробок на пути передачи данных.

    5006

    Применение аналогичной параллельной архитектуры для продвижения пакетов сетевых протоколов привело к появлению коммутаторов третьего уровня модели OSI.

    Коммутация третьего уровня

    В продолжении темы о технологиях коммутации рассмотренных в предыдущем номера повторим, что применение параллельной архитектуры для продвижения пакетов сетевых протоколов привело к появлению коммутаторов третьего уровня. Это позволило существенно, в 10-100 раз повысить скорость маршрутизации по сравнению с традиционными маршрутизаторами, в которых один центральный универсальный процессор выполняет программное обеспечение маршрутизации.

    По определению Сетевой уровень (третий) - это комплексный уровень, который обеспечивает возможность соединения и выбор маршрута между двумя конечными системами, подключенными к разным "подсетям", которые могут находиться в разных географических пунктах. В данном случае "подсеть" это, по сути, независимый сетевой кабель (иногда называемый сегментом).

    Коммутация на третьем уровне - это аппаратная маршрутизация. Традиционные маршрутизаторы реализуют свои функции с помощью программно-управляемых процессоров, что будем называть программной маршрутизацией. Традиционные маршрутизаторы обычно продвигают пакеты со скоростью около 500000 пакетов в секунду. Коммутаторы третьего уровня сегодня работают со скоростью до 50 миллионов пакетов в секунду. Возможно и дальнейшее ее повышение, так как каждый интерфейсный модуль, как и в коммутаторе второго уровня, оснащен собственным процессором продвижения пакетов на основе ASIC. Так что наращивание количества модулей ведет к наращиванию производительности маршрутизации. Использование высокоскоростной технологии больших заказных интегральных схем (ASIC) является главной характеристикой, отличающей коммутаторы третьего уровня от традиционных маршрутизаторов. Коммутаторы 3-го уровня делятся на две категории: пакетные (Packet-by-Packet Layer 3 Switches, PPL3) и сквозные (Cut-Through Layer 3 Switches, CTL3). PPL3 - означает просто быструю маршрутизацию (Рисунок_7). CTL3 – маршрутизацию первого пакета и коммутацию всех остальных (Рисунок 8).

    5007

    5008

    У коммутатора третьего уровня, кроме реализации функций маршрутизации в специализированных интегральных схемах, имеется несколько особенностей, отличающих их от традиционных маршрутизаторов. Эти особенности отражают ориентацию коммутаторов 3-го уровня на работу, в основном, в локальных сетях, а также последствия совмещения в одном устройстве коммутации на 2-м и 3-м уровнях:
     

    • поддержка интерфейсов и протоколов, применяемых в локальных сетях,
    • усеченные функции маршрутизации,
    • обязательная поддержка механизма виртуальных сетей,
    • тесная интеграция функций коммутации и маршрутизации, наличие удобных для администратора операций по заданию маршрутизации между виртуальными сетями.

    Наиболее "коммутаторная" версия высокоскоростной маршрутизации выглядит следующим образом (рисунок 9). Пусть коммутатор третьего уровня построен так, что в нем имеется информация о соответствии сетевых адресов (например, IP-адресов) адресам физического уровня (например, MAC-адресам) Все эти МАС-адреса обычным образом отображены в коммутационной таблице, независимо от того, принадлежат ли они данной сети или другим сетям.

    5009

    Первый коммутатор, на который поступает пакет, частично выполняет функции маршрутизатора, а именно, функции фильтрации, обеспечивающие безопасность. Он решает, пропускать или нет данный пакет в другую сеть Если пакет пропускать нужно, то коммутатор по IP-адресу назначения определяет МАС-адрес узла назначения и формирует новый заголовок второго уровня с найденным МАС-адресом. Затем выполняется обычная процедура коммутации по данному МАС-адресу с просмотром адресной таблицы коммутатора. Все последующие коммутаторы, построенные по этому же принципу, обрабатывают данный кадр как обычные коммутаторы второго уровня, не привлекая функций маршрутизации, что значительно ускоряет его обработку. Однако функции маршрутизации не являются для них избыточными, поскольку и на эти коммутаторы могут поступать первичные пакеты (непосредственно от рабочих станций), для которых необходимо выполнять фильтрацию и подстановку МАС-адресов.

    Это описание носит схематический характер и не раскрывает способов решения возникающих при этом многочисленных проблем, например, проблемы построения таблицы соответствия IP-адресов и МАС-адресов

    Примерами коммутаторов третьего уровня, работающих по этой схеме, являются коммутаторы SmartSwitch компании Cabletron. Компания Cabletron реализовала в них свой протокол ускоренной маршрутизации SecureFast Virtual Network, SFVN.

    Для организации непосредственного взаимодействия рабочих станций без промежуточного маршрутизатора необходимо сконфигурировать каждую из них так, чтобы она считала собственный интерфейс маршрутизатором по умолчанию. При такой конфигурации станция пытается самостоятельно отправить любой пакет конечному узлу, даже если этот узел находится в другой сети. Так как в общем случае (см. рисунок 10) станции неизвестен МАС-адрес узла назначения, то она генерирует соответствующий ARP-запрос, который перехватывает коммутатор, поддерживающий протокол SFVN. В сети предполагается наличие сервера SFVN Server, являющегося полноценным маршрутизатором и поддерживающего общую ARP-таблицу всех узлов SFVN-сети. Сервер возвращает коммутатору МАС-адрес узла назначения, а коммутатор, в свою очередь, передает его исходной станции. Одновременно сервер SFVN передает коммутаторам сети инструкции о разрешении прохождения пакета с МАС-адресом узла назначения через границы виртуальных сетей. Затем исходная станция передает пакет в кадре, содержащем МАС-адрес узла назначения. Этот кадр проходит через коммутаторы, не вызывая обращения к их блокам маршрутизации. Отличие протокола SFVN компании Cabletron от - описанной выше общей схемы в том, что для нахождения МАС-адреса по IP-адресу в сети используется выделенный сервер.

    5010

    Протокол Fast IP компании 3Com является еще одним примером реализации подхода с отображением IP-адреса на МАС-адрес. В этом протоколе основными действующими лицами являются сетевые адаптеры (что не удивительно, так как компания 3Com является признанным лидером в производстве сетевых адаптеров Ethernet) С одной стороны, такой подход требует изменения программного обеспечения драйверов сетевых адаптеров, и это минус Но зато не требуется изменять все остальное сетевое оборудование.

    При необходимости передать пакет узлу назначения другой сети, исходный узел в соответствии с технологией Fast IP должен передать запрос по протоколу NHRP (Next Hop Routing Protocol) маршрутизатору сети. Маршрутизатор переправляет этот запрос узлу назначения, как обычный пакет Узел назначения, который также поддерживает Fast IP и NHRP, получив запрос, отвечает кадром, отсылаемым уже не маршрутизатору, а непосредственно узлу-источнику (по его МАС-адресу, содержащемуся в NHRP-запросе). После этого обмен идет на канальном уровне на основе известных МАС-адресов. Таким образом, снова маршрутизировался только первый пакет потока (как на рисунке 9 кратковременный поток), а все остальные коммутировались (как на рисунке 9 долговременный поток).

    Еще один тип коммутаторов третьего уровня — это коммутаторы, работающие с протоколами локальных сетей типа Ethernet и FDDI. Эти коммутаторы выполняют функции маршрутизации не так, как классические маршрутизаторы. Они маршрутизируют не отдельные пакеты, а потоки пакетов.

    Поток — это последовательность пакетов, имеющих некоторые общие свойства. По меньшей мере, у них должны совпадать адрес отправителя и адрес получателя, и тогда их можно отправлять по одному и тому же маршруту. Если классический способ маршрутизации использовать только для первого пакета потока, а все остальные обрабатывать на основании опыта первого (или нескольких первых) пакетов, то можно значительно ускорить маршрутизацию всего потока.

    Рассмотрим этот подход на примере технологии NetFlow компании Cisco, реализованной в ее маршрутизаторах и коммутаторах. Для каждого пакета, поступающего на порт маршрутизатора, вычисляется хэш-функция от IP-адресов источника, назначения, портов UDP или TCP и поля TOS, характеризующего требуемое качество обслуживания. Во всех маршрутизаторах, поддерживающих данную технологию, через которые проходит данный пакет, в кэш-памяти портов запоминается соответствие значения хэш-функции и адресной информации, необходимой для быстрой передачи пакета следующему маршрутизатору. Таким образом, образуется квазивиртуальный канал (см. Рисунок 11), который позволяет быстро передавать по сети маршрутизаторов все последующие пакеты этого потока. При этом ускорение достигается за счет упрощения процедуры обработки пакета маршрутизатором - не просматриваются таблицы маршрутизации, не выполняются ARP-запросы.

    5011

    Этот прием может использоваться в маршрутизаторах, вообще не поддерживающих коммутацию, а может быть перенесен в коммутаторы. В этом случае такие коммутаторы тоже называют коммутаторами третьего уровня. Примеров маршрутизаторов, использующих данный подход, являются маршрутизаторы Cisco 7500, а коммутаторов третьего уровня — коммутаторы Catalyst 5000 и 5500. Коммутаторы Catalyst выполняют усеченные функции описанной схемы, они не могут обрабатывать первые пакеты потоков и создавать новые записи о хэш-функциях и адресной информации потоков. Они просто получают данную информацию от маршрутизаторов 7500 и обрабатывают пакеты уже распознанных маршрутизаторами потоков.

    Выше был рассмотрен способ ускоренной маршрутизации, основанный на концепции потока. Его сущность заключается в создании квазивиртуальных каналов в сетях, которые не поддерживают виртуальные каналы в обычном понимании этого термина, то есть сетях Ethernet, FDDI, Token Ring и т п. Следует отличать этот способ от способа ускоренной работы маршрутизаторов в сетях, поддерживающих технологию виртуальных каналов — АТМ, frame relay, X 25. В таких сетях создание виртуального канала является штатным режимом работы сетевых устройств. Виртуальные каналы создаются между двумя конечными точками, причем для потоков данных, требующих разного качества обслуживания (например, для данных разных приложений) может создаваться отдельный виртуальный канал. Хотя время создания виртуального канала существенно превышает время маршрутизации одного пакета, выигрыш достигается за счет последующей быстрой передачи потока данных по виртуальному каналу. Но в таких сетях возникает другая проблема — неэффективная передача коротких потоков, то есть потоков, состоящих из небольшого количества пакетов (классический пример — пакеты протокола DNS).

    Накладные расходы, связанные с созданием виртуального канала, приходящиеся на один пакет, снижаются при передаче объемных потоков данных. Однако они становятся неприемлемо высокими при передаче коротких потоков. Для того чтобы эффективно передавать короткие потоки, предлагается следующий вариант, при передаче нескольких первых пакетов выполняется обычная маршрутизация. Затем, после того как распознается устойчивый поток, для него строится виртуальный канал, и дальнейшая передача данных происходит с высокой скоростью по этому виртуальному каналу. Таким образом, для коротких потоков виртуальный канал вообще не создается, что и повышает эффективность передачи.

    По такой схеме работает ставшая уже классической технология IP Switching компании Ipsilon. Для того чтобы сети коммутаторов АТМ передавали бы пакеты коротких потоков без установления виртуального канала, компания Ipsilon предложила встроить во все коммутаторы АТМ блоки IP-маршрутизации (рисунок 12), строящие обычные таблицы маршрутизации по обычным протоколам RIP и OSPF.

    5012

    Компания Cisco Systems выдвинула в качестве альтернативы технологии IP Switching свою собственную технологию Tag Switching, но она не стала стандартной. В настоящее время IETF работает над стандартным протоколом обмена метками MPLS (Multi-Protocol Label Switching), который обобщает предложение компаний Ipsilon и Cisco, а также вносит некоторые новые детали и механизмы. Этот протокол ориентирован на поддержку качества обслуживания для виртуальных каналов, образованных метками.

    Коммутация четвертого уровня

    Свойства четвертого или транспортного уровня модели OSI следующие: транспортный уровень обеспечивает услуги по транспортировке данных. В частности, заботой транспортного уровня является решение таких вопросов, как выполнение надежной транспортировки данных через объединенную сеть. Предоставляя надежные услуги, транспортный уровень обеспечивает механизмы для установки, поддержания и упорядоченного завершения действия виртуальных каналов, систем обнаружения и устранения неисправностей транспортировки и управления информационным потоком (с целью предотвращения переполнения данными из другой системы).

    Некоторые производители заявляют, что их системы могут работать на втором, третьем и даже четвертом уровнях. Однако рассмотрение описания стека TCP/IP (рисунок 1), а также структуры пакетов IP и TCP (рисунки 2, 3), показывает, что коммутация четвертого уровня является фикцией, так как все относящиеся к коммутации функции осуществляются на уровне не выше третьего. А именно, термин коммутация четвертого уровня с точки зрения описания стека TCP/IP противоречий не имеет, за исключением того, что при коммутации должны указываться адреса компьютера (маршрутизатора) источника и компьютера (маршрутизатора) получателя. Пакеты TCP имеют поля локальный порт отправителя и локальный порт получателя (рисунок 3), несущие смысл точек входа в приложение (в программу), например Telnet с одной стороны, и точки входа (в данном контексте инкапсуляции) в уровень IP. Кроме того, в стеке TCP/IP именно уровень TCP занимается формированием пакетов из потока данных идущих от приложения. Пакеты IP (рисунок 2) имеют поля адреса компьютера (маршрутизатора) источника и компьютера (маршрутизатора) получателя и следовательно могут наряду с MAC адресами использоваться для коммутации. Тем не менее, название прижилось, к тому же практика показывает, что способность системы анализировать информацию прикладного уровня может оказаться полезной — в частности для управления трафиком. Таким образом, термин "зависимый от приложения" более точно отражает функции так называемых коммутаторов четвертого уровня.

    5013

    5014

    5015

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > switching technology

См. также в других словарях:

  • TOS-1 — TOS 1A[1] TOS 1 Buratino …   Wikipedia Español

  • tos — (Del lat. tussis). f. Movimiento convulsivo y sonoro del aparato respiratorio del hombre y de algunos animales. tos convulsiva, o tos convulsa. f. Med. La que da por accesos violentos, intermitentes y sofocantes. 2. tos ferina. tos ferina. f. Med …   Diccionario de la lengua española

  • tos — f. neumol. Expulsión súbita y ruidosa de aire de los pulmones, generalmente de forma reiterada. Medical Dictionary. 2011. tos expulsión súbita …   Diccionario médico

  • TOS — steht als Abkürzung für: Temple of Set, eine satanistische Gemeinschaft Therapieoptimierungsstudie in der Medizin Thoroughbred Operating System, ein Multi User Betriebssystem für Intel 80286 TOS/360 (Tape Operating System) von IBM TOS… …   Deutsch Wikipedia

  • tos — adj. (În sintagma) Zahăr tos = zahăr care se prezintă sub formă de cristale mărunte. – Din tc. toz praf . Trimis de LauraGellner, 28.06.2004. Sursa: DEX 98  tos adj. n. Trimis de siveco, 10.08.2004. Sursa: Dicţionar ortografic  TOS adj …   Dicționar Român

  • TOS — may refer to:General* Terms of Service * TOSLINK a standardized optical fibre connection system. * TOS Truck Operating System a standardized production system of Mercedes Benz * T.O.S. Termination on Sight, slang used by street gangs ordering… …   Wikipedia

  • TOS-1 — TOS 1A während der Übung zur Truppenparade am 8. Mai 2010 in Moskau. Der TOS 1 Buratino ( …   Deutsch Wikipedia

  • TOS —   [Abk. für Tramiels Operating System, dt. »Tramiels Betriebssystem«, später auch interpretiert als The Operating System, dt. »das Betriebssystem«], das Betriebssystem des Atari ST und dessen Nachfolgegeräten. Es wurde nach dem Chef des… …   Universal-Lexikon

  • TOS — Saltar a navegación, búsqueda El TOS es un sistema operativo monotarea, en esencia limitando al usuario a ejecutar una única aplicación en el sistema. Una pequeña excepción a esta regla son los accesorios de escritorio,programas pequeños que son… …   Wikipedia Español

  • TOS — TOS: Tape Operating System предшественник IBM DOS. Atari TOS операционная система для линейки компьютеров Atari ST. TinyOS операционная система с открытым кодом для беспроводных встроенных сенсорных сетей. Type of Service (тип обслуживания) одно… …   Википедия

  • Tos — Tos, ein veraltetes Stammwort, welches noch in Getöse übrig ist, S. dasselbe. In einigen gemeinen Mundarten gebraucht man noch tosen, lärmen, ein Getöse machen, in Meißen tebsen, wo Tebs, ein Getöse ist …   Grammatisch-kritisches Wörterbuch der Hochdeutschen Mundart

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»