Перевод: с английского на все языки

со всех языков на английский

to+be+further+south

  • 121 Bedson, George

    SUBJECT AREA: Metallurgy
    [br]
    b. 3 November 1820 Sutton Coldfield, Warwickshire, England
    d. 12 December 1884 Manchester (?), England
    [br]
    English metallurgist, inventor of the continuous rolling mill.
    [br]
    He acquired a considerable knowledge of wire-making in his father's works before he took a position in 1839 at the works of James Edleston at Warrington. From there, in 1851, he went to Manchester as Manager of Richard Johnson \& Sons' wire mill, where he remained for the rest of his life. It was there that he initiated several important improvements in the manufacture of wire. These included a system of circulating puddling furnace water bottoms and sides, and a galvanizing process. His most important innovation, however, was the continuous mill for producing iron rod for wiredrawing. Previously the red-hot iron billets had to be handled repeatedly through a stand or set of rolls to reduce the billet to the required shape, with time and heat being lost at each handling. In Bedson's continuous mill, the billet entered the first of a succession of stands placed as closely to each other as possible and emerged from the final one as rod suitable for wiredrawing, without any intermediate handling. A second novel feature was that alternate rolls were arranged vertically to save turning the piece manually through a right angle. That improved the quality as well as the speed of production. Bedson's first continuous mill was erected in Manchester in 1862 and had sixteen stands in tandem. A mill on this principle had been patented the previous year by Charles While of Pontypridd, South Wales, but it was Bedson who made it work and brought it into use commercially. A difficult problem to overcome was that as the piece being rolled lengthened, its speed increased, so that each pair of rolls had to increase correspondingly. The only source of power was a steam engine working a single drive shaft, but Bedson achieved the greater speeds by using successively larger gear-wheels at each stand.
    Bedson's first mill was highly successful, and a second one was erected at the Manchester works; however, its application was limited to the production of small bars, rods and sections. Nevertheless, Bedson's mill established an important principle of rolling-mill design that was to have wider applications in later years.
    [br]
    Further Reading
    Obituary, 1884, Journal of the Iron and Steel Institute 27:539–40. W.K.V.Gale, 1969, Iron and Steel, London: Longmans, pp. 81–2.
    LRD

    Biographical history of technology > Bedson, George

  • 122 Behr, Fritz Bernhard

    [br]
    b. 9 October 1842 Berlin, Germany
    d. 25 February 1927
    [br]
    German (naturalized British in 1876) engineer, promoter of the Lartigue monorail system.
    [br]
    Behr trained as an engineer in Britain and had several railway engineering appointments before becoming associated with C.F.M.-T. Lartigue in promoting the Lartigue monorail system in the British Isles. In Lartigue's system, a single rail was supported on trestles; vehicles ran on the rail, their bodies suspended pannier-fashion, stabilized by horizontal rollers running against light guide rails fixed to the sides of the trestles. Behr became Managing Director of the Listowel \& Ballybunion Railway Company, which in 1888 opened its Lartigue system line between those two places in the south-west of Ireland. Three locomotives designed by J.T.A. Mallet were built for the line by Hunslet Engine Company, each with two horizontal boilers, one either side of the track. Coaches and wagons likewise were in two parts. Technically the railway was successful, but lack of traffic caused the company to go bankrupt in 1897: the railway continued to operate until 1924.
    Meanwhile Behr had been thinking in terms far more ambitious than a country branch line. Railway speeds of 150mph (240km/h) or more then lay far in the future: engineers were uncertain whether normal railway vehicles would even be stable at such speeds. Behr was convinced that a high-speed electric vehicle on a substantial Lartigue monorail track would be stable. In 1897 he demonstrated such a vehicle on a 3mile (4.8km) test track at the Brussels International Exhibition. By keeping the weight of the motors low, he was able to place the seats above rail level. Although the generating station provided by the Exhibition authorities never operated at full power, speeds over 75mph (120 km/h) were achieved.
    Behr then promoted the Manchester-Liverpool Express Railway, on which monorail trains of this type running at speeds up to 110mph (177km/h) were to link the two cities in twenty minutes. Despite strong opposition from established railway companies, an Act of Parliament authorizing it was made in 1901. The Act also contained provision for the Board of Trade to require experiments to prove the system's safety. In practice this meant that seven miles of line, and a complete generating station to enable trains to travel at full speed, must be built before it was known whether the Board would give its approval for the railway or not. Such a condition was too severe for the scheme to attract investors and it remained stillborn.
    [br]
    Further Reading
    H.Fayle, 1946, The Narrow Gauge Railways of Ireland, Greenlake Publications, Part 2, ch. 2 (describes the Listowel \& Ballybunion Railway and Behr's work there).
    D.G.Tucker, 1984, "F.B.Behr's development of the Lartigue monorail", Transactions of
    the Newcomen Society 55 (covers mainly the high speed lines).
    See also: Brennan, Louis
    PJGR

    Biographical history of technology > Behr, Fritz Bernhard

  • 123 Bennett, Charles Harper

    [br]
    b. 1840 Clapham, London, England
    d. 1927 Sydney, Australia
    [br]
    English inventor of the "ripening" technique for increasing the sensitivity of gelatine silver halide emulsions.
    [br]
    The son of a hatter, Bennett studied medicine and was interested in mechanical devices, chemistry and later photography. An interior view shown at a South London Photographic Society meeting in March 1878 prompted requests for details of Bennett's procedure, and these were published almost immediately. It involved heating gelatine silver bromide for extremely long periods with an excess of silver bromide. The resulting emulsion had greatly enhanced sensitivity. This "ripening" process proved to be a major advance in the development of modern photographic emulsions. It was not patented and was soon widely adopted. Bennett's process became a key factor in the establishment of a new industry, the mass production of gelatine dry plates.
    [br]
    Bibliography
    1878, British Journal of Photography (29 March): 146; and 21 March 1879:71 (first published details of Bennett's process).
    Further Reading
    H.Gernsheim and A.Gernsheim, 1969, The History of Photography, rev. edn, London.
    JW

    Biographical history of technology > Bennett, Charles Harper

  • 124 Bevan, Edward John

    [br]
    b. 11 December 1856 Birkenhead, England
    d. 17 October 1921 London, England
    [br]
    English co-inventor of the " viscose rayon " process for making artificial silk.
    [br]
    Bevan began his working life as a chemist in a soap works at Runcorn, but later studied chemistry at Owens College, Manchester. It was there that he met and formed a friendship with C.F. Cross, with whom he started to work on cellulose. Bevan moved to a paper mill in Scotland but then went south to London, where he and Cross set up a partnership in 1885 as consulting and analytical chemists. Their work was mainly concerned with the industrial utilization of cellulose, and with the problems of the paper and jute industries. Their joint publication, A Text-book of Paper-making, which first appeared in 1888 and went into several editions, became the standard reference and textbook on the subject. The book has a long introductory chapter on cellulose.
    In 1892 Cross, Bevan and Clayton Beadle discovered viscose, or sodium cellulose xanthate, and took out the patent which was to be the foundation of the "viscose rayon" industry. They had their own laboratory at Station Avenue, Kew Gardens, where they carried out much work that eventually resulted in viscose: cellulose, usually in the form of wood pulp, was treated first with caustic soda and then with carbon disulphide to form the xanthate, which was then dissolved in a solution of dilute caustic soda to produce a viscous liquid. After being aged, the viscose was extruded through fine holes in a spinneret and coagulated in a dilute acid to regenerate the cellulose as spinnable fibres. At first there was no suggestion of spinning it into fibre, but the hope was to use it for filaments in incandescent electric light bulbs. The sheen on the fibres suggested their possible use in textiles and the term "artificial silk" was later introduced. Cross and Bevan also discovered the acetate "Celanese", which was cellulose triacetate dissolved in acetone and spun in air, but both inventions needed much development before they could be produced commercially.
    In 1892 Bevan turned from cellulose to food and drugs and left the partnership to become Public Analyst to Middlesex County Council, a post he held until his death, although in 1895 he and Cross published their important work Cellulose. He was prominent in the affairs of the Society of Public Analysts and became one of its officials.
    [br]
    Bibliography
    1888, with C.F.Cross, A Text-book of Papermaking.
    1892, with C.F.Cross and C.Beadle, British patent no. 8,700 (viscose). 1895, with C.F.Cross, Cellulose.
    Further Reading
    Obituary, 1921, Journal of the Chemical Society.
    Obituary, 1921, Journal of the Society of Chemical Industry.
    Edwin J.Beer, 1962–3, "The birth of viscose rayon", Transactions of the Newcomen Society 35 (an account of the problems of developing viscose rayon; Beer worked under Cross in the Kew laboratories).
    RLH

    Biographical history of technology > Bevan, Edward John

  • 125 Biles, Sir John Harvard

    SUBJECT AREA: Ports and shipping
    [br]
    b. 1854 Portsmouth, England
    d. 27 October 1933 Scotland (?)
    [br]
    English naval architect, academic and successful consultant in the years when British shipbuilding was at its peak.
    [br]
    At the conclusion of his apprenticeship at the Royal Dockyard, Portsmouth, Biles entered the Royal School of Naval Architecture, South Kensington, London; as it was absorbed by the Royal Naval College, he graduated from Greenwich to the Naval Construction Branch, first at Pembroke and later at the Admiralty. From the outset of his professional career it was apparent that he had the intellectual qualities that would enable him to oversee the greatest changes in ship design of all time. He was one of the earliest proponents of the revolutionary work of the hydrodynamicist William Froude.
    In 1880 Biles turned to the merchant sector, taking the post of Naval Architect to J. \& G. Thomson (later John Brown \& Co.). Using Froude's Law of Comparisons he was able to design the record-breaking City of Paris of 1887, the ship that started the fabled succession of fast and safe Clyde bank-built North Atlantic liners. For a short spell, before returning to Scotland, Biles worked in Southampton. In 1891 Biles accepted the Chair of Naval Architecture at the University of Glasgow. Working from the campus at Gilmorehill, he was to make the University (the oldest school of engineering in the English-speaking world) renowned in naval architecture. His workload was legendary, but despite this he was admired as an excellent lecturer with cheerful ways which inspired devotion to the Department and the University. During the thirty years of his incumbency of the Chair, he served on most of the important government and international shipping committees, including those that recommended the design of HMS Dreadnought, the ordering of the Cunarders Lusitania and Mauretania and the lifesaving improvements following the Titanic disaster. An enquiry into the strength of destroyer hulls followed the loss of HMS Cobra and Viper, and he published the report on advanced experimental work carried out on HMS Wolf by his undergraduates.
    In 1906 he became Consultant Naval Architect to the India Office, having already set up his own consultancy organization, which exists today as Sir J.H.Biles and Partners. His writing was prolific, with over twenty-five papers to professional institutions, sundry articles and a two-volume textbook.
    [br]
    Principal Honours and Distinctions
    Knighted 1913. Knight Commander of the Indian Empire 1922. Master of the Worshipful Company of Shipwrights 1904.
    Bibliography
    1905, "The strength of ships with special reference to experiments and calculations made upon HMS Wolf", Transactions of the Institution of Naval Architects.
    1911, The Design and Construction of Ships, London: Griffin.
    Further Reading
    C.A.Oakley, 1973, History of a Facuity, Glasgow University.
    FMW

    Biographical history of technology > Biles, Sir John Harvard

  • 126 Bosch, Robert August

    [br]
    b. 23 September 1861 Albeck, near Ulm, Germany
    d. 9 March 1942 Stuttgart, Germany
    [br]
    German engineer, industrialist and pioneer of internal combustion engine electrical systems.
    [br]
    Robert was the eighth of twelve children of the landlord of a hotel in the village of Albeck. He wanted to be a botanist and zoologist, but at the age of 18 he was apprenticed as a precision mechanic. He travelled widely in the south of Germany, which is unusual for an apprenticeship. In 1884, he went to the USA, where he found employment with Thomas A. Edison and his colleague, the German electrical engineer Siegmund Bergmann. During this period he became interested and involved in the rights of workers.
    In 1886 he set up his own workshop in Stuttgart, having spent a short time with Siemens in England. He built up a sound reputation for quality, but the firm outgrew its capital and in 1892 he had to sack nearly all his employees. Fortunately, among the few that he was able to retain were Arnold Zähringer, who later became Manager, and an apprentice, Gottlieb Harold. These two, under Bosch, were responsible for the development of the low-tension (1897) and the high-tension (1902) magneto. They also developed the Bosch sparking plug, again in 1902. The distributor for multi-cylinder engines followed in 1910. These developments, with a strong automotive bias, were stimulated by Bosch's association with Frederick Simms, an Englishman domiciled in Hamburg, who had become a director of Daimler in Canstatt and had secured the UK patent rights of the Daimler engine. Simms went on to invent, in about 1898, a means of varying ignition timing with low-tension magnetos.
    It must be emphasized, as pointed out above, that the invention of neither type of magneto was due to Bosch. Nikolaus Otto introduced a crude low-tension magneto in 1884, but it was not patented in Germany, while the high-tension magneto was invented by Paul Winand, a nephew of Otto's partner Eugen Langen, in 1887, this patent being allowed to lapse in 1890.
    Bosch's social views were advanced for his time. He introduced an eight-hour day in 1906 and advocated industrial arbitration and free trade, and in 1932 he wrote a book on the prevention of world economic crises, Die Verhütung künftiger Krisen in der Weltwirtschaft. Other industrialists called him the "Red Bosch" because of his short hours and high wages; he is reputed to have replied, "I do not pay good wages because I have a lot of money, I have a lot of money because I pay good wages." The firm exists to this day as the giant multi-national company Robert Bosch GmbH, with headquarters still in Stuttgart.
    [br]
    Further Reading
    T.Heuss, 1994, Robert Bosch: His Life and Achievements (trans. S.Gillespie and J. Kapczynski), New York: Henry Holt \& Co.
    JB

    Biographical history of technology > Bosch, Robert August

  • 127 Briggs, Henry

    [br]
    b. February 1561 Warley Wood, Yorkshire, England
    d. 26 January 1630 Oxford, England
    [br]
    English mathematician who invented common, or Briggsian, logarithms and whose writings led to their general acceptance throughout Europe.
    [br]
    After education at Warley Grammar School, Briggs entered St John's College, Cambridge, in 1577 and became a fellow in 1588. Having been Reader of the Linacre Lecture in 1592, he was appointed to the new Chair in Geometry at Gresham House (subsequently Gresham College), London, in 1596. Shortly after, he concluded that the logarithms developed by John Napier would be much more useful if they were calculated to the decimal base 10, rather than to the base e (the "natural" number 2.71828…), a suggestion with which Napier concurred. Until the advent of modern computing these decimal logarithms were invaluable for the accurate calculations involved in surveying, navigation and astronomy. In 1619 he accepted the Savilian Chair in Geometry at Oxford University, having two years previously published the base 10 logarithms of 1,000 numbers. The year 1624 saw the completion of his monumental Arithmetica Logarithmica, which contained fourteen-figure logarithms of 30,000 numbers, together with their trigonometric sines to fifteen decimal places and their tangents and secants to ten places!
    [br]
    Bibliography
    1617, Logarithmorum Chilias Primi (the first published reference to base 10 logarithms). 1622, A Treatise of the North West Passage to the South Sea: Through the Continent of
    Virginia and by Fretum Hudson.
    1633, Arithmetica Logarithmica, Gouda, the Netherlands; pub. in 1633 as Trigonmetria Britannica, London.
    Further Reading
    E.T.Bell, 1937, Men of Mathematics, London: Victor Gollancz. See also Burgi, Jost.
    KF

    Biographical history of technology > Briggs, Henry

  • 128 Cardew, Philip

    [br]
    b. 24 September 1851 Leatherhead, Surrey, England
    d. 17 May 1910 Godalming, Surrey, England
    [br]
    English electrical engineer and inventory adviser to the Board of Trade.
    [br]
    After education at the Royal Military Academy in Woolwich, Cardew was placed in charge of Bermudan military telegraphs in 1876. In 1889 he was appointed the first Electrical Adviser to the Board of Trade, where he formulated valuable regulations for the safety and control of public electricity supplies. In 1883 Cardew invented the thermogalvanometer, a hot-wire measuring instrument, that became widely used as a voltmeter but was obsolete by 1907. The device depended for its action on the heating and subsequent elongation of a platinum wire and could be used on alternating currents of high frequency. Retiring from the Board of Trade in 1899, Cardew joined a partnership of consulting engineers with Sir William Preece and his son. Taking a particular interest in railway electrification, he became a director of the London Brighton \& South Coast Railway.
    [br]
    Principal Honours and Distinctions
    Inventions Exhibition Gold Medal 1885.
    Bibliography
    1881, Journal of the Society of Telegraph Engineers 10:111–14 (describes the application of electricity to railways).
    5 February 1883, British patent no. 623 (Cardew's hot-wire instrument).
    1898, Journal of the Institution of Electrical Engineers 19:425–47 (his account of Board of Trade legislation).
    Further Reading
    J.T.Stock and D.Vaughan, 1983, The Development of Instruments to Measure Electric Current, London: Science Museum (for instrument origins).
    Dictionary of National Biographyr, 1912, Vol. I, Suppl. 2, pp. 313–14.
    GW

    Biographical history of technology > Cardew, Philip

См. также в других словарях:

  • South West Coast Path — The starting point at Minehead Length 630 miles (1,014 km) Location England: Somerset, Devon, Cornwall …   Wikipedia

  • South Georgia and the South Sandwich Islands — South Georgia and the South Sandwich Islands …   Wikipedia

  • South Cross Route — (SCR) was the designation for the southern section of Ringway 1, the innermost circuit of the London Ringways network, a complex and comprehensive plan for a network of high speed roads circling and radiating out from central London designed to… …   Wikipedia

  • South Jutlandic — or South Jutish (South Jutish: Synnejysk ; da. Sønderjysk; de. Südjütisch or Plattdänisch) is a dialect of the Danish language. South Jutlandic is spoken in Slesvig (German Schleswig ), also called South Jutland ( Sønderjylland ), on both sides… …   Wikipedia

  • South Andros — is a district of the nation of The Bahamas. Geographically, South Andros is the southernmost third of the land mass colloquially called Andros, which includes the districts of North Andros, Central Andros and South Andros. The districts are… …   Wikipedia

  • South East Cape — is the southernmost point of the main island of Tasmania and also the southernmost point of the mainlands of Australia and Tasmania together.South East Cape is located at coord|43|38|37|S|146|49|39|E|. South of the South Coast Tasmania and still… …   Wikipedia

  • South Side High School (Rockville Centre, New York) — South Side High School is the only public high school in the town of Rockville Centre, New York. South Side serves grades 9 through 12 and boasts a variety of academic, extra curricular and athletic programs, including the International… …   Wikipedia

  • South Circular Road — redirects here. For other uses, see South Circular Road (disambiguation). A205 redirects here. For the Fujifilm A205 camera, see Fujifilm FinePix A series. A205 road …   Wikipedia

  • South Dock railway station — was a railway station in the Isle of Dogs, east London. It was located between Millwall Junction and Millwall Docks on the Millwall Extension Railway (MER) branch of the London and Blackwall Railway. It opened on December 18 1871 and served the… …   Wikipedia

  • South West Cape, New Zealand — South West Cape, located at coord|47|17|24|S|167|32|16|E|, is a cape on the south coast of Stewart Island, New Zealand. It is the southernmost point on the island, and as such is almost the southernmost point on the main chain of islands that… …   Wikipedia

  • South Province (Cameroon) — Geobox|Province name = South Province country = Cameroon country capital = Ebolowa map caption = Location of South Province within Cameroon coordinates type = adm1st lat d = 2 |lat m = 30 |lat NS = N long d = 11 |long m =45 |long EW = E area =… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»