Перевод: со всех языков на английский

с английского на все языки

the+engineers+(

  • 101 Taylor, David Watson

    SUBJECT AREA: Ports and shipping
    [br]
    b. 4 March 1864 Louisa County, Virginia, USA
    d. 29 July 1940 Washington, DC, USA
    [br]
    American hydrodynamicist and Rear Admiral in the United States Navy Construction Corps.
    [br]
    Taylor's first years were spent on a farm in Virginia, but at the age of 13 he went to RandolphMacon College, graduating in 1881, and from there to the US Naval Academy, Annapolis. He graduated at the head of his class, had some sea time, and then went to the Royal Naval College in Greenwich, England, where in 1888 he again came top of the class with the highest-ever marks of any student, British or overseas.
    On his return to the United States he held various posts as a constructor, ending this period at the Mare Island Navy Yard in California. In 1894 he was transferred to Washington, where he joined the Bureau of Construction and started to interest the Navy in ship model testing. Under his direction, the first ship model tank in the United States was built at Washington and for fourteen years operated under his control. The work of this establishment gave him the necessary information to write the highly acclaimed text The Speed and Power of Ships, which with revisions is still in use. By the outbreak of the First World War he was one of the world's most respected naval architects, and had been retained as a consultant by the British Government in the celebrated case of the collision between the White Star Liner Olympic and HMS Hawke.
    In December 1914 Taylor became a Rear-Admiral and was appointed Chief Constructor of the US Navy. His term of office was extremely stressful, with over 1,000 ships constructed for the war effort and with the work of the fledgling Bureau for Aeronautics also under his control. The problems were not over in 1918 as the Washington Treaty required drastic pruning of the Navy and a careful reshaping of the defence force.
    Admiral Taylor retired from active service at the beginning of 1923 but retained several consultancies in aeronautics, shipping and naval architecture. For many years he served as consultant to the ship-design company now known as Gibbs and Cox. Many honours came his way, but the most singular must be the perpetuation of his name in the David Taylor Medal, the highest award of the Society of Naval Architects and Marine Engineers in the United States. Similarly, the Navy named its ship test tank facility, which was opened in Maryland in 1937, the David W. Taylor Model Basin.
    [br]
    Principal Honours and Distinctions
    President, Society of Naval Architects and Marine Engineers 1925–7. United States Distinguished Service Medal. American Society of Civil Engineers John Fritz Medal. Institution of Naval Architects Gold Medal 1894 (the first American citizen to receive it). Society of Naval Architects and Marine Engineers David W.Taylor Medal 1936 (the first occasion of this award).
    Bibliography
    Resistance of Ships and Screw Propulsion. 1911, The Speed and Power of Ships, New York: Wiley.
    Taylor gave many papers to the Maritime Institutions of both the United States and the United Kingdom.
    FMW

    Biographical history of technology > Taylor, David Watson

  • 102 Yeoman, Thomas

    SUBJECT AREA: Civil engineering
    [br]
    b. c. 1700 probably near Northampton, England
    d. 24 January 1781 London, England
    [br]
    English surveyor and civil engineer.
    [br]
    Very little is known of his early life, but he was clearly a skilful and gifted engineer who had received comprehensive practical training, for in 1743 he erected the machinery in the world's first water-powered cotton mill at Northampton on the river Nene. In 1748 he invented a weighing machine for use by turnpike trusts for weighing wagons. Until 1757 he remained in Northampton, mainly surveying enclosures and turnpike roads and making agricultural machinery. He also gained a national reputation for building and installing very successful ventilating equipment (invented by Dr Stephen Hales) in hospitals, prisons and ships, including some ventilators of Yeoman's own design in the Houses of Parliament.
    Meanwhile he developed an interest in river improvements, and in 1744 he made his first survey of the River Nene between Thrapston and Northampton; he repeated the survey in 1753 and subsequently gave evidence in parliamentary proceedings in 1756. The following year he was in Gloucestershire surveying the line of the Stroudwater Canal, an operation that he repeated in 1776. Also in 1757, he was appointed Surveyor to the River Ivel Navigation in Bedfordshire. In 1761 he was back on the Nene. During 1762–5 he carried out surveys for the Chelmer \& Blackwater Navigation, although the work was not undertaken for another thirty years. In 1765 he reported on land-drainage improvements for the Kentish Sour. It was at this time that he became associated with John Smeaton in a major survey in 1766 of the river Lea for the Lee Navigation Trustees, having already made some surveys with Joseph Nickalls near Waltham Abbey in 1762. Yeoman modified some of Smeaton's proposals and on 1 July 1767 was officially appointed Surveyor to the Lee Navigation Trustees, a post he retained until 1771. He also advised on the work to create the Stort Navigation, and at the official opening on 24 October 1769 he made a formal speech announcing: "Now is Bishops Stortford open to all the ports of the world." Among his other works were: advice on Ferriby Sluice on the River Ancholme (1766); reports on the Forth \& Clyde Canal, the North Level and Wisbech outfall on the Nene, the Coventry Canal, and estimates for the Leeds and Selby Canal (1768–71); estimates for the extension of the Medway Navigation from Tonbridge to Edenbridge (1771); and between 1767 and 1777 he was consulted, with other engineers, by the City of London on problems regarding the Thames.
    He joined the Northampton Philosophical Society shortly after its formation in 1743 and was President several times before he moved to London. In 1760 he became a member of the Society for the Encouragement of Arts, Manufactures and Commerce, and in 1763 he was chosen as joint Chairman of the Committee on Mechanics—a position he held until 1778. He was elected a Fellow of the Royal Society on 12 January 1764. On the formation of the Smeatonian Society of Civil Engineers, the forerunner of the present Institution of Civil Engineers, he was elected first President in 1771, remaining as such until his illness in 1780.
    [br]
    Principal Honours and Distinctions
    FRS 1764. President, Smeatonian Society of Civil Engineers 1771–80; Treasurer 1771–7.
    JHB

    Biographical history of technology > Yeoman, Thomas

  • 103 Alexanderson, Ernst Frederik Werner

    [br]
    b. 25 January 1878 Uppsala, Sweden
    d. ? May 1975 Schenectady, New York, USA
    [br]
    Swedish-American electrical engineer and prolific radio and television inventor responsible for developing a high-frequency alternator for generating radio waves.
    [br]
    After education in Sweden at the High School and University of Lund and the Royal Institution of Technology in Stockholm, Alexanderson took a postgraduate course at the Berlin-Charlottenburg Engineering College. In 1901 he began work for the Swedish C \& C Electric Company, joining the General Electric Company, Schenectady, New York, the following year. There, in 1906, together with Fessenden, he developed a series of high-power, high-frequency alternators, which had a dramatic effect on radio communications and resulted in the first real radio broadcast. His early interest in television led to working demonstrations in his own home in 1925 and at the General Electric laboratories in 1927, and to the first public demonstration of large-screen (7 ft (2.13 m) diagonal) projection TV in 1930. Another invention of significance was the "amplidyne", a sensitive manufacturing-control system subsequently used during the Second World War for controlling anti-aircraft guns. He also contributed to developments in electric propulsion and radio aerials.
    He retired from General Electric in 1948, but continued television research as a consultant for the Radio Corporation of America (RCA), filing his 321st patent in 1955.
    [br]
    Principal Honours and Distinctions
    Institution of Radio Engineers Medal of Honour 1919. President, IERE 1921. Edison Medal 1944.
    Bibliography
    Publications relating to his work in the early days of radio include: "Magnetic properties of iron at frequencies up to 200,000 cycles", Transactions of the American Institute of Electrical Engineers (1911) 30: 2,443.
    "Transatlantic radio communication", Transactions of the American Institute of Electrical
    Engineers (1919) 38:1,269.
    The amplidyne is described in E.Alexanderson, M.Edwards and K.Boura, 1940, "Dynamo-electric amplifier for power control", Transactions of the American
    Institution of Electrical Engineers 59:937.
    Further Reading
    E.Hawkes, 1927, Pioneers of Wireless, Methuen (provides an account of Alexanderson's work on radio).
    J.H.Udelson, 1982, The Great Television Race: A History of the American Television Industry 1925–1941, University of Alabama Press (provides further details of his contribution to the development of television).
    KF

    Biographical history of technology > Alexanderson, Ernst Frederik Werner

  • 104 Black, Harold Stephen

    [br]
    b. 14 April 1898 Leominster, Massachusetts, USA
    d. 11 December 1983 Summitt, New Jersey, USA
    [br]
    American electrical engineer who discovered that the application of negative feedback to amplifiers improved their stability and reduced distortion.
    [br]
    Black graduated from Worcester Polytechnic Institute, Massachusetts, in 1921 and joined the Western Electric Company laboratories (later the Bell Telephone Laboratories) in New York City. There he worked on a variety of electronic-communication problems. His major contribution was the discovery in 1927 that the application of negative feedback to an amplifier, whereby a fraction of the output signal is fed back to the input in the opposite phase, not only increases the stability of the amplifier but also has the effect of reducing the magnitude of any distortion introduced by it. This discovery has found wide application in the design of audio hi-fi amplifiers and various control systems, and has also given valuable insight into the way in which many animal control functions operate.
    During the Second World War he developed a form of pulse code modulation (PCM) to provide a practicable, secure telephony system for the US Army Signal Corps. From 1963–6, after his retirement from the Bell Labs, he was Principal Research Scientist with General Precision Inc., Little Falls, New Jersey, following which he became an independent consultant in communications. At the time of his death he held over 300 patents.
    [br]
    Principal Honours and Distinctions
    Institute of Electronic and Radio Engineers Lamme Medal 1957.
    Bibliography
    1934, "Stabilised feedback amplifiers", Electrical Engineering 53:114 (describes the principles of negative feedback).
    21 December 1937, US patent no. 2,106,671 (for his negative feedback discovery.
    1947, with J.O.Edson, "Pulse code modulation", Transactions of the American Institute of Electrical Engineers 66:895.
    1946, "A multichannel microwave radio relay system", Transactions of the American Institute of Electrical Engineers 65:798.
    1953, Modulation Theory, New York: D.van Nostrand.
    1988, Laboratory Management: Principles \& Practice, New York: Van Nostrand Rheinhold.
    Further Reading
    For early biographical details see "Harold S. Black, 1957 Lamme Medalist", Electrical Engineering (1958) 77:720; "H.S.Black", Institute of Electrical and Electronics Engineers Spectrum (1977) 54.
    KF

    Biographical history of technology > Black, Harold Stephen

  • 105 Field, Joshua

    [br]
    b. 1786 Hackney, London, England
    d. 11 August 1863 Balham Hill, Surrey, England
    [br]
    English mechanical engineer, co-founder of the Institution of Civil Engineers.
    [br]
    Joshua Field was educated at a boarding school in Essex until the age of 16, when he obtained employment at the Royal Dockyards at Portsmouth under the Chief Mechanical Superintendent, Simon Goodrich (1773–1847), and later in the drawing office at the Admiralty in Whitehall. At this time, machinery for the manufacture of ships' blocks was being made for the Admiralty by Henry Maudslay, who was in need of a competent draughtsman, and Goodrich recommended Joshua Field. This was the beginning of Field's long association with Maudslay; he later became a partner in the firm which was for many years known as Maudslay, Sons \& Field. They undertook a variety of mechanical engineering work but were renowned for marine steam engines, with Field being responsible for much of the design work in the early years. Joshua Field was the eldest of the eight young men who in 1818 founded the Institution of Civil Engineers; he was the first Chairman of the Institution and later became a vice-president. He was the only one of the founders to be elected President and was the first mechanical engineer to hold that office. James Nasmyth in his autobiography relates that Joshua Field kept a methodical account of his technical discussions in a series of note books which were later indexed. Some of these diaries have survived, and extracts from the notes he made on a tour of the industrial areas of the Midlands and the North West in 1821 have been published.
    [br]
    Principal Honours and Distinctions
    FRS 1836. President, Institution of Civil Engineers 1848–9. Member, Smeatonian Society of Civil Engineers 1835; President 1848.
    Bibliography
    1925–6, "Joshua Field's diary of a tour in 1821 through the Midlands", introd. and notes J.W.Hall, Transactions of the Newcomen Society 6:1–41.
    1932–3, "Joshua Field's diary of a tour in 1821 through the provinces", introd. and notes E.C. Smith, Transactions of the Newcomen Society 13:15–50.
    RTS

    Biographical history of technology > Field, Joshua

  • 106 Guest, James John

    [br]
    b. 24 July 1866 Handsworth, Birmingham, England
    d. 11 June 1956 Virginia Water, Surrey, England
    [br]
    English mechanical engineer, engineering teacher and researcher.
    [br]
    James John Guest was educated at Marlborough in 1880–4 and at Trinity College, Cambridge, graduating as fifth wrangler in 1888. He received practical training in several workshops and spent two years in postgraduate work at the Engineering Department of Cambridge University. After working as a draughtsman in the machine-tool, hydraulic and crane departments of Tangyes Ltd at Birmingham, he was appointed in 1896 Assistant Professor of Engineering at McGill University in Canada. After a short time he moved to the Polytechnic Institute at Worcester, Massachusetts, where he was for three years Professor of Mechanical Engineering and Head of the Engineering Department. In 1899 he returned to Britain and set up as a consulting engineer in Birmingham, being a partner in James J.Guest \& Co. For the next fifteen years he combined this work with research on grinding phenomena. He also developed a theory of grinding which he first published in a paper at the British Association for the Advancement of Science in 1914 and elaborated in a paper to the Institution of Mechanical Engineers and in his book Grinding Machinery (1915). During the First World War, in 1916–17, he was in charge of inspection in the Staffordshire and Shropshire Area, Ministry of Munitions. In 1917 he returned to teaching as Reader in Graphics and Structural Engineering at University College London. His final appointment was about 1923 as Professor of Mechanical and Electrical Engineering, Artillery College, Woolwich, which later became the Military College of Science.
    He carried out research on the strength of materials and contributed many articles on the subject to the technical press. He originated Guest's Law for a criterion of failure of materials under combined stresses, first published in 1900. He was a Member of the Institution of Mechanical Engineers in 1900–6 and from 1919 and contributed to their proceedings in many discussions and two major papers.
    [br]
    Bibliography
    Of many publications by Guest, the most important are: 1900, "Ductile materials under combined stress", Proceedings of the Physical Society 17:202.
    1915, Grinding Machinery, London.
    1915, "Theory of grinding, with reference to the selection of speeds in plain and internal work", Proceedings of the Institution of Mechanical Engineers 89:543.
    1917. "Torsional hysteresis of mild steel", Proceedings of the Royal Society A93:313.
    1918. with F.C.Lea, "Curved beams", Proceedings of the Royal Society A95:1. 1930, "Effects of rapidly acting stress", Proceedings of the Institution of Mechanical
    Engineers 119:1,273.
    RTS

    Biographical history of technology > Guest, James John

  • 107 Herbert, Sir Alfred Edward

    [br]
    b. 5 September 1866 Leicester, England
    d. 26 May 1957 Kings Somborne, Hampshire, England
    [br]
    English mechanical engineer and machine-tool manufacturer.
    [br]
    Alfred Herbert was educated at Stoneygate School, Leicester, and served an apprenticeship with Joseph Jessop \& Sons, also of Leicester, from 1881 to 1886. In 1887 he was engaged as Manager of a small engineering firm in Coventry, and before the end of that year he purchased the business in partnership with William Hubbard. They commenced the manufacture of machine-tools especially for the cycle industry. Hubbard withdrew from the partnership in 1890 and Herbert continued on his own account, the firm being established as a limited liability company, Alfred Herbert Ltd, in 1894. A steady expansion of the business continued, especially after the introduction of their capstan lathe, and by 1914 it was the largest manufacturer of machine-tools in Britain. In addition to making machine-tools of all types for the home and export market, the firm acted as an agent for the import of specialist machine-tools from abroad. During the First World War Alfred Herbert was in 1915 appointed head of machine-tool production at the War Office and when the Ministry of Munitions was set up he was transferred to that Ministry as Controller of Machine Tools. He was President of the Machine Tools Trades Association from 1919 to 1934. He was elected a member of the Institution of Mechanical Engineers in 1892 and in 1921 was a founder member of the Institution of Production Engineers. Almost to the end of his long life he continued to take an active part in the direction of his company. He expressed his views on current events affecting industry in the technical press and in his firm's house journal.
    [br]
    Principal Honours and Distinctions
    KBE 1917. Officier de la Légion d'honneur 1917. Order of St Stanislas of Russia 1918. Order of Leopold of Belgium 1918. Freeman of the City of Coventry 1933. President, Institution of Production Engineers 1927–9. Honorary Member, Institution of Mechanical Engineers 1941.
    Bibliography
    1948, Shots at the Truth, Coventry (a selection of his speeches and writings).
    Further Reading
    D.J.Jeremy (ed.), 1984–6, Dictionary of Business Biography, Vol. 3, London, pp. 174–7 (a useful account).
    Obituary, 1957, Engineering, 183:680.
    RTS

    Biographical history of technology > Herbert, Sir Alfred Edward

  • 108 Jansky, Karl Guthe

    [br]
    b. 22 October 1905 Norman, Oklahoma, USA
    d. 14 February 1950 Red Bank, New Jersey, USA
    [br]
    American radio engineer who discovered stellar radio emission.
    [br]
    Following graduation from the University of Wisconsin in 1928 and a year of postgraduate study, Jansky joined Bell Telephone Laboratories in New Jersey with the task of establishing the source of interference to telephone communications by radio. To this end he constructed a linear-directional short-wave antenna and eventually, in 1931, he concluded that the interference actually came from the stars, the major source being the constellation Sagittarius in the direction of the centre of the Milky Way. Although he continued to study the propagation of short radio waves and the nature of observed echoes, it was left to others to develop the science of radioastronomy and to use the creation of echoes for radiolocation. Although he received no scientific award for his discovery, Jansky's name is primarily honoured by its use as the unit of stellar radio-emission strength.
    [br]
    Bibliography
    1935, "Directional studies of atmospherics at high frequencies", Proceedings of the Institute of Radio Engineers 23:1,158.
    1935, "A note on the sources of stellar interference", Proceedings of the Institute of Radio
    Engineers.
    1937, "Minimum noise levels obtained on short-wave radio receiving systems", Proceedings of the Institute of Radio Engineers 25:1,517.
    1941, "Measurements of the delay and direction of arrival of echoes from nearby short-wave transmitters", Proceedings of the Institute of Radio Engineers 29:322.
    Further Reading
    P.C.Mahon, 1975, BellLabs, Mission Communication. The Story of the Bell Labs.
    W.I.Sullivan (ed.), 1984, The Early Years of Radio-Astronomy: Reflections 50 Years after Jansky's Discovery, Cambridge: Cambridge University Press.
    KF

    Biographical history of technology > Jansky, Karl Guthe

  • 109 Lauste, Eugène Augustin

    [br]
    b. 1857 Montmartre, France d. 1935
    [br]
    French inventor who devised the first practicable sound-on-film system.
    [br]
    Lauste was a prolific inventor who as a 22-year-old had more than fifty patents to his name. He joined Edison's West Orange Laboratory as Assistant to W.K.L. Dickson in 1887; he was soon involved in the development of early motion pictures, beginning an association with the cinema that was to dominate the rest of his working life. He left Edison in 1892 to pursue an interest in petrol engines, but within two years he returned to cinematography, where, in association with Major Woodville Latham, he introduced small but significant improvements to film-projection systems. In 1900 an interest in sound recording, dating back to his early days with Edison, led Lauste to begin exploring the possibility of recording sound photographically on film alongside the picture. In 1904 he moved to England, where he continued his experiments, and by 1907 he had succeeded in photographing a sound trace and picture simultaneously, each image occupying half the width of the film.
    Despite successful demonstrations of Lauste's system on both sides of the Atlantic, he enjoyed no commercial success. Handicapped by lack of capital, his efforts were finally brought to an end by the First World War. In 1906 Lauste had filed a patent for his sound-on-film system, which has been described by some authorities as the master patent for talking pictures. Although this claim is questionable, he was the first to produce a practicable scund-on-film system and establish the basic principles that were universally followed until the introduction of magnetic sound.
    [br]
    Bibliography
    11 August 1906, with Robert R.Haines and John S.Pletts, British Patent no. 18,057 (sound-on-film system).
    Further Reading
    The most complete accounts of Lauste's work and the history of sound films can be found in the Journal of the Society of Motion Picture (and Television) Engineers.
    For an excellent account of Lauste's work, see the Report of the Historical Committee, 1931, Journal of the Society of Motion Picture Engin eers 16 (January):105–9; and Merritt Crawford, 1941, Journal of the Society of Motion Picture Engineers, 17 (October) 632–44.
    For good general accounts of the evolution of sound in the cinema, see: E.I.Sponable, 1947, Journal of the Society of Motion Picture Engineers 48:275–303 and 407–22; E.W.Kellog, 1955, Journal of the Society of Motion Picture Engineers 64:291–302 and 356–74.
    JW

    Biographical history of technology > Lauste, Eugène Augustin

  • 110 Merz, Charles Hesterman

    [br]
    b. 5 October 1874 Gateshead, England
    d. 14 October 1940 London, England
    [br]
    English engineer who pioneered large-scale integration of electricity-supply networks, which led to the inauguration of the British grid system.
    [br]
    Merz was educated at Bootham School in York and Armstrong College in Newcastle. He served an apprenticeship with the Newcastle Electric Supply Company at their first power station, Pandon Dene, and part of his training was at Robey and Company of Lincoln, steam engine builders, and the British Thomson-Houston Company, electrical equipment manufacturers. After working at Bankside in London and at Croydon, he became Manager of the Croydon supply undertaking. In 1898 he went to Cork on behalf of BTH to build and manage a tramway and electricity company. It was there that he met William McLellan, who later joined him in establishing a firm of consulting engineers. Merz, with his vision of large-scale electricity supply, pioneered an integrated traction and electricity scheme in north-eastern England. He was involved in the reorganization of electricity schemes in many countries and established a reputation as a leading parliamentary witness. Merz was appointed Director of Experiments and Research at the Admiralty, where his main contribution was the creation of an organization of outstanding engineers and scientists during the First World War. In 1925 he was largely responsible for a report of the Weir Committee which led to the Electricity (Supply) Act of 1926, the formation of the Central Electricity Board and the construction of the National Grid. The choice of 132 kV as the original grid voltage was that of Merz and his associates, as was the origin of the term "grid". Merz and his firm produced many technical innovations, including the first power-system control room and Merz-Price and Merz-Hunter forms of cable and transformer protection.
    [br]
    Principal Honours and Distinctions
    Institution of Electrical Engineers Faraday Medal 1931.
    Bibliography
    1903–4, with W.McLennan, "Power station design", Journal of the Institution of Electrical Engineers 33:696–742 (a classic on its subject).
    1929, "The national scheme of electricity supply in Great Britain", Proceedings of the British Association, Johannesburg.
    Further Reading
    J.Rowland, 1960, Progress in Power. The Contribution of Charles Merz and His Associates to Sixty Years of Electrical Development 1899–1959, London (the most detailed account).
    L.Hannah, 1979, Electricity Before Nationalisation, London.
    ——, 1985, Dictionary of Business Biography, ed. J.Jeremy, London, pp. 221–7 (a short account).
    GW

    Biographical history of technology > Merz, Charles Hesterman

  • 111 Pierce, George Washington

    [br]
    b. 11 January 1872 Austin, Texas, USA
    d. 25 August 1956 Franklin, New Hampshire, USA
    [br]
    American physicist who made various contributions to electronics, particularly crystal oscillators.
    [br]
    Pierce entered the University of Texas in 1890, gaining his BSc in physics in 1893 and his MSc in 1894. After teaching and doing various odd jobs, in 1897 he obtained a scholarship to Harvard, obtaining his PhD three years later. Following a period at the University of Leipzig, he returned to the USA in 1903 to join the teaching staff at Harvard, where he soon established new courses and began to gain a reputation as a pioneer in electronics, including the study of crystal rectifiers and publication of a textbook on wireless telegraphy. In 1912, with Kennelly, he conceived the idea of motional impedance. The same year he was made first Director of Harvard's Cruft High- Tension Electrical Laboratory, a post he held until his retirement. In 1917 he was appointed Professor of Physics, and for the remainder of the First World War he was also involved in work on submarine detection at the US Naval Base in New London. In 1921 he was appointed Rumford Professor of Physics and became interested in the work of Walter Cady on crystal-controlled circuits. As a result of this he patented the Pierce crystal oscillator in 1924. Having discovered the magnetostriction property of nickel and nichrome, in 1928 he also invented the magnetostriction oscillator. The mercury-vapour discharge lamp is also said to have been his idea. He became Gordon McKay Professor of Physics and Communications in 1935 and retired from Harvard in 1940, but he remained active for the rest of his life with the study of sound generation by birds and insects.
    [br]
    Principal Honours and Distinctions
    President, Institute of Radio Engineers 1918–19. Institute of Electrical and Electronics Engineers Medal of Honour 1929.
    Bibliography
    1910, Principles of Wireless Telegraphy.
    1914, US patent no. 1,450,749 (a mercury vapour tube control circuit). 1919, Electrical Oscillations and Electric Waves.
    1922, "The piezo-electric Resonator", Proceedings of the Institute of Radio Engineers 10:83.
    Further Reading
    F.E.Terman, 1943, Radio Engineers'Handbook, New York: McGraw-Hill (for details of piezo-electric crystal oscillator circuits).
    KF

    Biographical history of technology > Pierce, George Washington

  • 112 Pierce, John Robinson

    [br]
    b. 27 March 1910 Des Moines, Iowa, USA
    [br]
    American scientist and communications engineer said to be the "father" of communication satellites.
    [br]
    From his high-school days, Pierce showed an interest in science and in science fiction, writing under the pseudonym of J.J.Coupling. After gaining Bachelor's, Master's and PhD degrees at the California Institute of Technology (CalTech) in Pasadena in 1933, 1934 and 1936, respectively, Pierce joined the Bell Telephone Laboratories in New York City in 1936. There he worked on improvements to the travelling-wave tube, in which the passage of a beam of electrons through a helical transmission line at around 7 per cent of the speed of light was made to provide amplification at 860 MHz. He also devised a new form of electrostatically focused electron-multiplier which formed the basis of a sensitive detector of radiation. However, his main contribution to electronics at this time was the invention of the Pierce electron gun—a method of producing a high-density electron beam. In the Second World War he worked with McNally and Shepherd on the development of a low-voltage reflex klystron oscillator that was applied to military radar equipment.
    In 1952 he became Director of Electronic Research at the Bell Laboratories' establishment, Murray Hill, New Jersey. Within two years he had begun work on the possibility of round-the-world relay of signals by means of communication satellites, an idea anticipated in his early science-fiction writings (and by Arthur C. Clarke in 1945), and in 1955 he published a paper in which he examined various possibilities for communications satellites, including passive and active satellites in synchronous and non-synchronous orbits. In 1960 he used the National Aeronautics and Space Administration 30 m (98 1/2 ft) diameter, aluminium-coated Echo 1 balloon satellite to reflect telephone signals back to earth. The success of this led to the launching in 1962 of the first active relay satellite (Telstar), which weighed 170 lb (77 kg) and contained solar-powered rechargeable batteries, 1,000 transistors and a travelling-wave tube capable of amplifying the signal 10,000 times. With a maximum orbital height of 3,500 miles (5,600 km), this enabled a variety of signals, including full bandwidth television, to be relayed from the USA to large receiving dishes in Europe.
    From 1971 until his "retirement" in 1979, Pierce was Professor of Electrical Engineering at CalTech, after which he became Chief Technologist at the Jet Propulsion Laboratories, also in Pasadena, and Emeritus Professor of Engineering at Stanford University.
    [br]
    Principal Honours and Distinctions
    Institute of Electrical and Electronics Engineers Morris N.Liebmann Memorial Award 1947; Edison Medal 1963; Medal of Honour 1975. Franklin Institute Stuart Ballantine Award 1960. National Medal of Science 1963. Danish Academy of Science Valdemar Poulsen Medal 1963. Marconi Award 1974. National Academy of Engineering Founders Award 1977. Japan Prize 1985. Arthur C.Clarke Award 1987. Honorary DEng Newark College of Engineering 1961. Honorary DSc Northwest University 1961, Yale 1963, Brooklyn Polytechnic Institute 1963. Editor, Proceedings of the Institute of Radio Engineers 1954–5.
    Bibliography
    23 October 1956, US patent no. 2,768,328 (his development of the travelling-wave tube, filed on 5 November 1946).
    1947, with L.M.Field, "Travelling wave tubes", Proceedings of the Institute of Radio
    Engineers 35:108 (describes the pioneering improvements to the travelling-wave tube). 1947, "Theory of the beam-type travelling wave tube", Proceedings of the Institution of
    Radio Engineers 35:111. 1950, Travelling Wave Tubes.
    1956, Electronic Waves and Messages. 1962, Symbols, Signals and Noise.
    1981, An Introduction to Information Theory: Symbols, Signals and Noise: Dover Publications.
    1990, with M.A.Knoll, Signals: Revolution in Electronic Communication: W.H.Freeman.
    KF

    Biographical history of technology > Pierce, John Robinson

  • 113 Ransome, Frederick

    [br]
    b. 18 June 1818 Rushmere, Suffolk, England
    d. 19 April 1893 London, England
    [br]
    English engineer and inventor of a type of artificial stone.
    [br]
    Frederick Ransome was the son of James Ransome (1782–1849) and grandson of Robert Ransome, founder of the well-known Ipswich firm of engineers. He did not become a partner in the family firm, but devoted his life to experiments to develop an artificial stone. These experiments were recorded in a paper which he presented to the Institution of Civil Engineers in 1848 and in a long series of over thirty patents dating from 1844. The material so formed was a sandstone, the particles of which were bonded together by a silicate of lime. It could be moulded into any required form while in its initial soft state, and when hard was suitable for surface-dressing or carving. It was used for many public buildings, but time proved it unsuitable for outside work. Ransome also used his artificial stone to make grinding wheels by incorporating emery powder in the mixture. These were found to be much superior to those made of natural stone. Another use of the artificial stone was in a porous form which could be used as a filter. In later years Ransome turned his attention to the manufacture of Portland cement and of a cheaper substitute incorporating blast-furnace slag. He also invented a rotary kiln for burning the cement, the first of these being built in 1887. It was 26 ft (7.9 m) long and 5 ft (1.5 m) in diameter; although reasonably successful, the development of such kilns of much greater length was carried out in America rather than England. Ransome was elected an Associate of the Institution of Civil Engineers in 1848 and served as an Associate of
    [br]
    Bibliography
    1848, "On the manufacture of artificial stone with a silica base", Minutes of the Proceedings of the Institution of Civil Engineers 7:57.
    RTS

    Biographical history of technology > Ransome, Frederick

  • 114 Shoenberg, Isaac

    [br]
    b. 1 March 1880 Kiev, Ukraine
    d. 25 January 1963 Willesden, London, England
    [br]
    Russian engineer and friend of Vladimir Zworykin; Director of Research at EMI, responsible for creating the team that successfully developed the world's first all-electronic television system.
    [br]
    After his initial engineering education at Kiev Polytechnic, Shoenberg went to London to undertake further studies at the Royal College of Science. In 1905 he returned to Russia and rose to become Chief Engineer of the Russian Wireless Telegraphy Company. He then returned to England, where he was a consultant in charge of the Patent Department and then joint General Manager of the Marconi Wireless Telegraphy Company (see Marconi). In 1929 he joined the Columbia Graphophone Company, but two years later this amalgamated with the Gramophone Company, by then known as His Master's voice (HMV), to form EMI (Electric and Musical Industries), a company in which the Radio Corporation of America (RCA) had a significant shareholding. Appointed Director of the new company's Research Laboratories in 1931, Shoenberg gathered together a team of highly skilled engineers, including Blumlein, Browne, Willans, McGee, Lubszynski, Broadway and White, with the objective of producing an all-electronic television system suitable for public broadcasting. A 150-line system had already been demonstrated using film as the source material; a photoemissive camera tube similar to Zworykin's iconoscope soon followed. With alternate demonstrations of the EMI system and the mechanical system of Baird arranged with the object of selecting a broadcast system for the UK, Shoenberg took the bold decision to aim for a 405-line "high-definition" standard, using interlaced scanning based on an RCA patent and further developed by Blumlein. This was so successful that it was formally adopted as the British standard in 1935 and regular broadcasts, the first in the world, began in 1937. It is a tribute to Shoenberg's vision and the skills of his team that this standard was to remain in use, apart from the war years, until finally superseded in 1985.
    [br]
    Principal Honours and Distinctions
    Knighted 1954. Institution of Electrical Engineers Faraday Medal 1954.
    Further Reading
    A.D.Blumlein et al., 1938, "The Marconi-EMI television system", Journal of the Institution of Electrical Engineers 83:729 (provides a description of the development of the 405-line system).
    For more background information, see Proceedings of the International Conference on the History of Television. From Early Days to the Present, November 1986, Institution of Electrical Engineers Publication No. 271.
    KF

    Biographical history of technology > Shoenberg, Isaac

  • 115 Smith, Willoughby

    [br]
    b. 16 April 1828 Great Yarmouth, England
    d. 17 July 1891 Eastbourne, England
    [br]
    English engineer of submarine telegraph cables who observed that light reduced the resistance of selenium.
    [br]
    Smith joined the Gutta Percha Company, London, in 1848 and successfully experimented with the use of gutta-percha, a natural form of latex, for the insulation of conducting wires. As a result, he was made responsible for the laying of the first cross-Channel cable between Dover and Calais in 1850. Four years later he laid the first Mediterranean cable between Spezia, Italy, and Corsica and Sardinia, later extending it to Algeria. On its completion he became Manager of the Gutta Percha works, which in 1864 became the Telegraph and Construction Company. In 1865 he assisted on board the Great Eastern with the laying of the transatlantic cable by Bright.
    Clearly his management responsibilities did not stop him from experimenting practically. In 1866 he discovered that the resistance of a selenium rod was reduced by the action of incident light, an early discovery of the photoelectric effect more explicitly observed by Hertz and subsequently explained by Einstein. In 1883 he read a paper to the Society of Telegraph Engineers (later the Institution of Electrical Engineers), suggesting the possibility of wireless communication with moving trains, an idea that was later successfully taken up by others, and in 1888 he demonstrated the use of water as a practical means of communication with a lighthouse. Four years later, after his death, the system was tried between Alum Bay and the Needles in the Isle of Wight, and it was used subsequently for the Fastnet Rock lighthouse some 10 miles (16 km) off the south-west coast of Ireland.
    [br]
    Principal Honours and Distinctions
    Founder and Council Member of the Society of Telegraph Engineers 1871; President 1873.
    Bibliography
    The effect of light on the resistance of selenium was reported in a letter to the Vice- Chairman of the Society of Telegraph Engineers on 4 February 1873.
    7 June 1897, British patent no. 8,159 (the use of water, instead of cable, as a conductor).
    November 1888, article in Electrician (describes his idea of using water as a conductor, rather than cable).
    Further Reading
    E.Hawkes, 1927, Pioneers of Wireless, London: Methuen.
    C.T.Bright, 1898, Submarine Cables, Their History, Construction and Working.
    KF

    Biographical history of technology > Smith, Willoughby

  • 116 Wallace, Sir William

    SUBJECT AREA: Ports and shipping
    [br]
    b. 25 August 1881 Leicester, England
    d. 27 May 1963 Edinburgh, Scotland
    [br]
    English engineer; developer of the Denny-Brown fin stabilizer for ships.
    [br]
    Wallace was brought up just outside Glasgow, and educated at Paisley Grammar School and later at the Anderson College in Glasgow. The next few years were typical of the early years in the life of many young engineers: he served an apprenticeship at the Paisley shipyard of Bow, MacLachlan, before joining the British and Burmese Steam Navigation Company (Paddy Henderson's Line) as a junior engineer. After some years on the Glasgow to Rangoon service, he rose to the rank of Chief Engineer early in life and then came ashore in 1911.
    He joined the old established Edinburgh engineering company of Brown Brothers as a draughtsman, but by 1917 had been promoted Managing Director. He was appointed Chairman in 1946. During his near thirty years at the helm, he experimented widely and was the engineering force behind the development of the Denny-Brown ship stabilizer which was jointly pursued by Brown Brothers and the Dumbarton shipyard of William Denny \& Brothers. The first important installation was on the cross-channel steamer Isle of Sark, built at Dumbarton for the Southern Railway in 1932. Over the years countless thousands of these installations have been fitted on liners, warships and luxury yachts. Brown Brothers produced many other important engineering innovations at this time, including the steam catapult for aircraft carriers.
    In later years Sir William (now knighted) took an active part in the cultural life of Edinburgh and of Scotland. From 1952 to 1954 he served as President of the Institution of Engineers and Shipbuilders in Scotland.
    [br]
    Principal Honours and Distinctions
    Knighted 1951. CBE 1944. Fellow of the Royal Society of Edinburgh. President, Institution of Engineers and Shipbuilders in Scotland 1952–4; Gold Medal.
    Bibliography
    1954–5 "Experiences in the stabilization of ships", Transactions of the Institution of Engineers and Shipbuilders in Scotland 98:197–266.
    FMW

    Biographical history of technology > Wallace, Sir William

  • 117 Whitworth, Sir Joseph

    [br]
    b. 21 December 1803 Stockport, Cheshire, England
    d. 22 January 1887 Monte Carlo, Monaco
    [br]
    English mechanical engineer and pioneer of precision measurement.
    [br]
    Joseph Whitworth received his early education in a school kept by his father, but from the age of 12 he attended a school near Leeds. At 14 he joined his uncle's mill near Ambergate, Derbyshire, to learn the business of cotton spinning. In the four years he spent there he realized that he was more interested in the machinery than in managing a cotton mill. In 1821 he obtained employment as a mechanic with Crighton \& Co., Manchester. In 1825 he moved to London and worked for Henry Maudslay and later for the Holtzapffels and Joseph Clement. After these years spent gaining experience, he returned to Manchester in 1833 and set up in a small workshop under a sign "Joseph Whitworth, Tool Maker, from London".
    The business expanded steadily and the firm made machine tools of all types and other engineering products including steam engines. From 1834 Whitworth obtained many patents in the fields of machine tools, textile and knitting machinery and road-sweeping machines. By 1851 the company was generally regarded as the leading manufacturer of machine tools in the country. Whitworth was a pioneer of precise measurement and demonstrated the fundamental mode of producing a true plane by making surface plates in sets of three. He advocated the use of the decimal system and made use of limit gauges, and he established a standard screw thread which was adopted as the national standard. In 1853 Whitworth visited America as a member of a Royal Commission and reported on American industry. At the time of the Crimean War in 1854 he was asked to provide machinery for manufacturing rifles and this led him to design an improved rifle of his own. Although tests in 1857 showed this to be much superior to all others, it was not adopted by the War Office. Whitworth's experiments with small arms led on to the construction of big guns and projectiles. To improve the quality of the steel used for these guns, he subjected the molten metal to pressure during its solidification, this fluid-compressed steel being then known as "Whitworth steel".
    In 1868 Whitworth established thirty annual scholarships for engineering students. After his death his executors permanently endowed the Whitworth Scholarships and distributed his estate of nearly half a million pounds to various educational and charitable institutions. Whitworth was elected an Associate of the Institution of Civil Engineers in 1841 and a Member in 1848 and served on its Council for many years. He was elected a Member of the Institution of Mechanical Engineers in 1847, the year of its foundation.
    [br]
    Principal Honours and Distinctions
    Baronet 1869. FRS 1857. President, Institution of Mechanical Engineers 1856, 1857 and 1866. Hon. LLD Trinity College, Dublin, 1863. Hon. DCL Oxford University 1868. Member of the Smeatonian Society of Civil Engineers 1864. Légion d'honneur 1868. Society of Arts Albert Medal 1868.
    Bibliography
    1858, Miscellaneous Papers on Mechanical Subjects, London; 1873, Miscellaneous Papers on Practical Subjects: Guns and Steel, London (both are collections of his papers to technical societies).
    1854, with G.Wallis, The Industry of the United States in Machinery, Manufactures, and
    Useful and Ornamental Arts, London.
    Further Reading
    F.C.Lea, 1946, A Pioneer of Mechanical Engineering: Sir Joseph Whitworth, London (a short biographical account).
    A.E.Musson, 1963, "Joseph Whitworth: toolmaker and manufacturer", Engineering Heritage, Vol. 1, London, 124–9 (a short biography).
    D.J.Jeremy (ed.), 1984–6, Dictionary of Business Biography, Vol. 5, London, 797–802 (a short biography).
    W.Steeds, 1969, A History of Machine Tools 1700–1910, Oxford (describes Whitworth's machine tools).
    RTS

    Biographical history of technology > Whitworth, Sir Joseph

  • 118 Kennelly, Arthur Edwin

    [br]
    b. 17 December 1871 Colaba, Bombay, India
    d. 18 June 1939 Boston, Massachusetts, USA
    [br]
    Anglo-American electrical engineer who predicted the ionosphere and developed mathematical analysis for electronic circuits.
    [br]
    As a young man, Kennelly worked as office boy for a London engineering society, as an electrician and on a cable-laying ship. In 1887 he went to work for Thomas Edison at West Orange, New Jersey, USA, becoming his chief assistant. In 1894, with Edwin J.Houston, he formed the Philadelphia company of Houston and Kennelly, but eight years later he took up the Chair of Electrical Engineering at Harvard, a post he held until his retirement in 1930. In 1902 he noticed that the radio signals received by Marconi in Nova Scotia from the transmitter in England were stronger than predicted and postulated a reflecting ionized layer in the upper atmosphere. Almost simultaneously the same prediction was made in England by Heaviside, so the layer became known as the Kennelly-Heaviside layer. Throughout most of his working life Kennelly was concerned with the application of mathematical techniques, particularly the use of complex theory, to the analysis of electrical circuits. With others he also contributed to an understanding of the high-frequency skin-effect in conductors.
    [br]
    Principal Honours and Distinctions
    President, American Institute of Electrical Engineers 1898–1900. President, Institution of Electrical Engineers 1916. Institute of Electrical and Electronics Engineers Medal of Honour 1932; Edison Medal 1933.
    Bibliography
    1915, with F.A.Laws \& P.H.Pierce "Experimental research on the skin effect in conductors", Transactions of the American Institute of Electrical Engineers 34:1,953.
    1924, Hyperbolic Functions as Applied to Electrical Engineering.
    1924, Check Atlas of Complex Hyperbolic \& Circular Functions (both on mathematics for circuit analysis).
    Further Reading
    K.Davies, 1990, Ionospheric Radio, London: Peter Peregrinus. See also Appleton, Sir Edward Victor.
    KF

    Biographical history of technology > Kennelly, Arthur Edwin

  • 119 Taylor, Albert Hoyt

    [br]
    b. 1 January 1874 Chicago, Illinois, USA
    d. 11 December 1961 Claremont, California, USA
    [br]
    American radio engineer whose work on radio-detection helped lay the foundations for radar.
    [br]
    Taylor gained his degree in engineering from Northwest University, Evanston, Illinois, then spent a time at the University of Gottingen. On his return to the USA he taught successively at Michigan State University, at Lansing, and at the universities of Wisconsin at Madison and North Dakota at Grand Forks. From 1923 until 1945 he supervised the Radio Division at the US Naval Research Laboratories. There he carried out studies of short-wave radio propagation and confirmed Heaviside's 1925 theory of the reflection characteristics of the ionosphere. In the 1920s and 1930s he investigated radio echoes, and in 1933, with L.C.Young and L.A.Hyland, he filed a patent for a system of radio-detection that contributed to the subsequent development of radar.
    [br]
    Principal Honours and Distinctions
    Institute of Electrical and Electronics Engineers Morris N.Liebmann Memorial Award 1927. President, Institute of Radio Engineers 1929. Institute of Electrical and Electronics Engineers Medal of Honour 1942.
    Bibliography
    1926, with E.O.Hulbert, "The propagation of radio waves over the earth", Physical Review 27:189.
    1936, "The measurement of RF power", Proceedings of the Institute of Radio Engineers 24: 1,342.
    Further Reading
    S.S.Swords, 1986, Technical History of the Beginnings of Radar, London: Peter Peregrinus.
    KF

    Biographical history of technology > Taylor, Albert Hoyt

  • 120 Cuerpo de Zapadores

    Ex. The purpose of the system is to assist architecture firms under contract with the Army Corps Engineers in locating regulations or guidelines on the planning, design or construction of army facilities.
    * * *

    Ex: The purpose of the system is to assist architecture firms under contract with the Army Corps Engineers in locating regulations or guidelines on the planning, design or construction of army facilities.

    Spanish-English dictionary > Cuerpo de Zapadores

См. также в других словарях:

  • The Mote in God's Eye —   …   Wikipedia

  • Engineers Without Borders (USA) — Engineers Without Borders – USA (EWB USA) is a non profit organization established in 2000 to help developing areas worldwide with their engineering needs, while involving and training a new kind of internationally responsible engineering student …   Wikipedia

  • Engineers Australia — The Institution of Engineers Australia, often shortened to IEAust and trading as Engineers Australia, is a professional body and not for profit organization dedicated to being the national forum for the advancement of the engineering field within …   Wikipedia

  • Engineers (Gary Numan track) — Engineers is a Gary Numan song, probably based on the novel The Penultimate Truth by Philip K. Dick, which is about people who work in underground shelters as engineers building robots for the ruling classes up above. In his autobiography, Numan… …   Wikipedia

  • Engineers Without Borders (Palestine) — Engineers Without Borders (EWB) Palestine (or EWB Palestine) is a Palestine based registered charity and NGO. Its mission is to partner with Palestinian disadvantaged communities to improve their quality of life through the implementation of… …   Wikipedia

  • Engineers of the human soul — ( ru. Инженеры человеческих душ) (Chinese:人类灵魂的工程师 ) a concept of culture promoted by Joseph Stalin. The phrase was originally coined by Yury Olesha and then used by Joseph Stalin, firstly during his meeting with the Soviet writers in preparation …   Wikipedia

  • Engineers Without Borders (India) — is a non governmental organization involved in development work. It is a member of the Engineers Without Borders International network. External links* [http://www.ewb india.org/ Engineers Without Borders – India ] …   Wikipedia

  • The Naked Now — Star Trek: The Next Generation episode Lt. jg. Geordi La Forge investigates strange deaths on a federation science vessel …   Wikipedia

  • The Diane Rehm Show — Genre Talk radio Running time 102 minutes 40 seconds Country United States …   Wikipedia

  • The Continuing Saga of the Ageing Orphans — Compilation album by Thin Lizzy Released 1979 …   Wikipedia

  • The Old Gate — (Altpoertel) was the west city gate of Speyer. With a height of 55 meters it is one of the highest and most important city gates of Germany. It was first mentioned in documents in 1176. It was one of 68 wall and gate towers of the free imperial… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»