-
1 temperature value
Атомная энергия: значение температуры -
2 temperature control device
термостат
Устройство для поддержания температуры в установленном диапазоне.
[ ГОСТ Р МЭК 60050-426-2006]
Тематики
EN
устройство контроля температуры
Действует на увеличение или снижение температуры машины, аппарата или окружающей среды, если температура последних снижается или поднимается ниже или выше установленных пределов
Код ANSI -23
[ Источник]EN
23. temperature control device
A device that functions to raise or lower the temperature of a machine or other apparatus, or of any medium, when its temperature falls below or rises above a predetermined value.
NOTE: An example is a thermostat that switches on a space heater in a switchgear assembly when the temperature falls to a desired value. This should be distinguished from a device that is used to provide automatic temperature regulation between close limits and would be designated as device function 90T.
[ Источник]Тематики
Обобщающие термины
EN
3.32 термостат (temperature control device): Устройство для поддержания температуры в установленном диапазоне.
Источник: ГОСТ Р МЭК 60079-30-1-2009: Взрывоопасные среды. Резистивный распределенный электронагреватель. Часть 30-1. Общие технические требования и методы испытаний оригинал документа
Англо-русский словарь нормативно-технической терминологии > temperature control device
-
3 temperature limiter
термоограничитель
Термочувствительное устройство, рабочая температура которого может быть либо установленной, либо регулируемой, и которое в условиях нормальной работы срабатывает путем размыкания или замыкания цепи, когда температура контролируемой части достигает заданного значения.
Примечание. Термоограничитель не срабатывает в обратном направлении во время нормального цикла работы прибора. Он может требовать или не требовать возврата в исходное положение вручную.
[ ГОСТ Р 52161. 1-2004 ( МЭК 60335-1: 2001)]
термоограничитель
Термочувствительное управляющее устройство, предназначенное для поддержания значения температуры ниже или выше заданного при нормальных рабочих условиях, которое может иметь средства для настройки потребителем.
Примечание - Термоограничитель может быть с автоматическим или ручным возвратом. Он не осуществляет обратного срабатывания во время нормального рабочего цикла прибора.
[ГОСТ IЕС 60730-1-2011]EN
temperature limiter
temperature-sensing device, the operating temperature of which may be either fixed or adjustable and which during normal operation operates by opening or closing a circuit when the temperature of the controlled part reaches a predetermined value
NOTE - It does not make the reverse operation during the normal duty cycle of the appliance. It may or may not require manual resetting.
[IEC 60335-1, ed. 4.0 (2001-05)]FR
limiteur de température
dispositif sensible à la température, dont la température de fonctionnement peut être soit fixée, soit réglable et qui, dans les conditions de fonctionnement normal, fonctionne par ouverture ou fermeture d'un circuit quand la température de la partie commandée atteint une valeur préalablement déterminée
NOTE - Il n'effectue pas l'opération inverse lors du cycle normal de l'appareil. Il peut nécessiter ou non un réarmement manuel.
[IEC 60335-1, ed. 4.0 (2001-05)]Тематики
- электротехника, основные понятия
EN
FR
3.8.2 термоограничитель (temperature limiter): Термочувствительное устройство, рабочая температура которого может быть либо установленной, либо регулируемой и которое при нормальной эксплуатации срабатывает путем размыкания или замыкания цепи, когда температура контролируемой части достигает заданной.
Термоограничитель не срабатывает в обратном направлении во время нормального цикла работы.
Источник: ГОСТ Р МЭК 60745-1-2005: Машины ручные электрические. Безопасность и методы испытаний. Часть 1. Общие требования оригинал документа
1.2.11.2 ограничитель температуры (temperature limiter): Термочувствительное устройство управления, предназначенное для поддержания значения температуры ниже или выше некоторого значения при нормальных условиях эксплуатации и могущее включать в себя средства регулировки оператором.
Примечание - Ограничитель температуры может быть с ручной или автоматической установкой заданного режима.
Источник: ГОСТ Р МЭК 60950-1-2009: Оборудование информационных технологий. Требования безопасности. Часть 1. Общие требования оригинал документа
1.2.11.2 ограничитель температуры (temperature limiter): Термочувствительное устройство управления, предназначенное для поддержания значения температуры ниже или выше некоторого значения при нормальных условиях эксплуатации и могущее включать в себя средства регулировки оператором.
Примечание - Ограничитель температуры может быть с ручной или автоматической установкой заданного режима.
Источник: ГОСТ Р МЭК 60950-1-2005: Оборудование информационных технологий. Требования безопасности. Часть 1. Общие требования оригинал документа
3.52 термоограничитель (temperature limiter): Термочувствительное устройство, рабочая температура которого может быть либо установленной, либо регулируемой и которое при нормальной эксплуатации срабатывает путем размыкания и замыкания цепи, когда температура контролируемой части достигает заданного значения.
Источник: ГОСТ Р МЭК 60745-1-2009: Машины ручные электрические. Безопасность и методы испытаний. Часть 1. Общие требования оригинал документа
3.8.2 термоограничитель (temperature limiter): Термочувствительное устройство, рабочая температура которого может быть либо установленной, либо регулируемой и которое при нормальной эксплуатации срабатывает путем размыкания или замыкания цепи, когда температура контролируемой части достигает заданной.
Термоограничитель не срабатывает в обратном направлении во время нормального цикла работы.
3.7.2 термоограничитель (temperature limiter): Термочувствительное устройство, рабочая температура которого может быть либо установленной, либо регулируемой, и которое в условиях нормальной работы срабатывает путем размыкания или замыкания цепи, когда температура контролируемой части достигает заданного значения.
Примечание - Термоограничитель не срабатывает в обратном направлении во время нормального цикла работы прибора. Он может требовать или не требовать возврата в исходное положение вручную.
Источник: ГОСТ Р 52161.1-2004: Безопасность бытовых и аналогичных электрических приборов. Часть 1. Общие требования оригинал документа
Англо-русский словарь нормативно-технической терминологии > temperature limiter
-
4 value of relaxation loss (in %), at 1000 hours after tensioning and at a mean temperature of 20 C
значение потерь напряжения вследствие релаксации
r1000
Значение потерь напряжения вследствие релаксации, %, 1000 ч после натяжения при средней температуре 20 °C.
[Англо-русский словарь по проектированию строительных конструкций. МНТКС, Москва, 2011]Тематики
Синонимы
EN
- value of relaxation loss (in %), at 1000 hours after tensioning and at a mean temperature of 20 C
Англо-русский словарь нормативно-технической терминологии > value of relaxation loss (in %), at 1000 hours after tensioning and at a mean temperature of 20 C
-
5 value of a material property in the fire situation, generally dependant on the material temperature
- значения механических характеристик при пожаре, зависимых от температуры материала
значения механических характеристик при пожаре, зависимых от температуры материала
Xk,q
—
[Англо-русский словарь по проектированию строительных конструкций. МНТКС, Москва, 2011]Тематики
Синонимы
- Xk,q
EN
- value of a material property in the fire situation, generally dependant on the material temperature
Англо-русский словарь нормативно-технической терминологии > value of a material property in the fire situation, generally dependant on the material temperature
-
6 value index
-
7 temperature-dependent constant
English-Russian big polytechnic dictionary > temperature-dependent constant
-
8 temperature radiation
English-Russian dictionary of Information technology > temperature radiation
-
9 characteristic value for the compressive cylinder strength of concrete in the fire situation at temperature q
- нормативное значение цилиндрической прочности бетона на сжатие при пожаре и температуре q °C
нормативное значение цилиндрической прочности бетона на сжатие при пожаре и температуре q °C
fc,q
—
[Англо-русский словарь по проектированию строительных конструкций. МНТКС, Москва, 2011]Тематики
Синонимы
- fc,q
EN
- characteristic value for the compressive cylinder strength of concrete in the fire situation at temperature q
Англо-русский словарь нормативно-технической терминологии > characteristic value for the compressive cylinder strength of concrete in the fire situation at temperature q
-
10 characteristic or nominal value of a strength or deformation property form normal temperature design
- нормативное или номинальное значение прочности либо деформации в расчетах при нормальной температуре
нормативное или номинальное значение прочности либо деформации в расчетах при нормальной температуре
Xk
—
[Англо-русский словарь по проектированию строительных конструкций. МНТКС, Москва, 2011]Тематики
Синонимы
- Xk
EN
- characteristic or nominal value of a strength or deformation property form normal temperature design
Англо-русский словарь нормативно-технической терминологии > characteristic or nominal value of a strength or deformation property form normal temperature design
-
11 utilisation of calorific value
использование теплотворной способности
—
[ http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]EN
utilisation of calorific value
Calorific value is the heat per unit mass produced by complete combustion of a given substance. Calorific values are used to express the energy values of fuels; usually these are expressed in megajoules per kilogram. They are also used to measure the energy content of foodstuffs; i.e. the energy produced when the food is oxidized in the body. The units here are kilojoules per gram. Calorific values are measured using a bomb calorimeter (apparatus consisting of a strong container in which the sample is sealed with excess oxygen and ignited electrically. The heat of combustion at constant volume can be calculated from the resulting rise in temperature). (Source: DICCHE)
[http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]Тематики
EN
DE
FR
Англо-русский словарь нормативно-технической терминологии > utilisation of calorific value
-
12 ocean temperature
температура океана
—
[ http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]EN
ocean temperature
A measure, referenced to a standard value, of the heat or coldness in a body of oceanic water. (Source: RHW)
[http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]Тематики
EN
DE
FR
Англо-русский словарь нормативно-технической терминологии > ocean temperature
-
13 KV value
Общая лексика: объёмный расход воды в кубометрах в час (далее см. комментарий) (Kv value is the metric measure for the flow of a valve. It is defined as: The volume flow in cubic metres per hour of water at a temperature of between 5° and 40° celsius with) -
14 kv value
Общая лексика: объёмный расход воды в кубометрах в час (далее см. комментарий) (Kv value is the metric measure for the flow of a valve. It is defined as: The volume flow in cubic metres per hour of water at a temperature of between 5° and 40° celsius with) -
15 performance value
рабочая характеристика
-Параллельные тексты EN-RU
If an MCCB is used in an elevated area higher than 2000m sea level, its operating performance is subject to dramatic drop in atmospheric pressure and temperature.
[LS Industrial Systems]На рабочие характеристики автоматических выключателей в литом корпусе, работающих на высоте более 2000 м над уровнем моря, оказывают серьезное воздействие понижение атмосферного давления и температуры.
[Перевод Интент]Тематики
- электротехника, основные понятия
EN
Англо-русский словарь нормативно-технической терминологии > performance value
-
16 continuous current-carrying capacity
длительная пропускная способность по току
—
[Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]Тематики
- электротехника, основные понятия
EN
(длительный) допустимый ток
Максимальное значение электрического тока, который может протекать длительно по проводнику, устройству или аппарату при определенных условиях без превышения определенного значения их температуры в установившемся режиме
[ ГОСТ Р МЭК 60050-826-2009]
Этот ток обозначают IZ
[ ГОСТ Р 50571. 1-2009 ( МЭК 60364-1: 2005)]EN
(continuous) current-carrying capacity
ampacity (US)
maximum value of electric current which can be carried continuously by a conductor, a device or an apparatus, under specified conditions without its steady-state temperature exceeding a specified value
[IEV number 826-11-13]
ampacity
The current in amperes that a conductor can carry continuously under the conditions of use without exceeding its temperature rating.
[National Electrical Cod]FR
courant (permanent) admissible, m
valeur maximale du courant électrique qui peut parcourir en permanence, un conducteur, un dispositif ou un appareil, sans que sa température de régime permanent, dans des conditions données, soit supérieure à la valeur spécifiée
[IEV number 826-11-13]Ampacity, the term is defined as the maximum amount of current a cable can carry before sustaining immediate or progressive deterioration. Also described as current rating or current-carrying capacity, is the RMS electric current which a device can continuously carry while remaining within its temperature rating. The ampacity of a cable depends on:
- its insulation temperature rating;
- conductor electrical properties for current;
- frequency, in the case of alternating currents;
- ability to dissipate heat, which depends on cable geometry and its surroundings;
- ambient temperature.
Electric wires have some resistance, and electric current flowing through them causes voltage drop and power dissipation, which heats the cable. Copper or aluminum can conduct a large amount of current before melting, but long before the conductors melt, their insulation would be damaged by the heat.
The ampacity for a power cable is thus based on physical and electrical properties of the material & construction of the conductor and of its insulation, ambient temperature, and environmental conditions adjacent to the cable. Having a large overall surface area may dissipate heat well if the environment can absorb the heat.
In a long run of cable, different conditions govern, and installation regulations normally specify that the most severe condition along the run governs the cable's rating. Cables run in wet or oily locations may carry a lower temperature rating than in a dry installation. Derating is necessary for multiple circuits in close proximity. When multiple cables are near, each contributes heat to the others and diminishes the amount of cooling air that can flow past the individual cables. The overall ampacity of the insulated conductors in a bundle of more than 3 must be derated, whether in a raceway or cable. Usually the de-rating factor is tabulated in a nation's wiring regulations.
Depending on the type of insulating material, common maximum allowable temperatures at the surface of the conductor are 60, 75 and 90 degrees Celsius, often with an ambient air temperature of 30°C. In the U.S., 105°C is allowed with ambient of 40°C, for larger power cables, especially those operating at more than 2 kV. Likewise, specific insulations are rated 150, 200 or 250°C.
The allowed current in cables generally needs to be decreased (derated) when the cable is covered with fireproofing material.
For example, the United States National Electric Code, Table 310-16, specifies that up to three 8 AWG copper wires having a common insulating material (THWN) in a raceway, cable, or direct burial has an ampacity of 50 A when the ambient air is 30°C, the conductor surface temperature allowed to be 75°C. A single insulated conductor in air has 70 A rating.
Ampacity rating is normally for continuous current, and short periods of overcurrent occur without harm in most cabling systems. The acceptable magnitude and duration of overcurrent is a more complex topic than ampacity.
When designing an electrical system, one will normally need to know the current rating for the following:- Wires
- Printed Circuit Board traces, where included
- Fuses
- Circuit breakers
- All or nearly all components used
Some devices are limited by power rating, and when this power rating occurs below their current limit, it is not necessary to know the current limit to design a system. A common example of this is lightbulb holders.
[http://en.wikipedia.org/wiki/Ampacity]
Тематики
- электротехника, основные понятия
Синонимы
EN
DE
- Dauerstrombelastbarkeit, f
- Strombelastbarkeit, f
FR
- courant admissible, m
- courant permanent admissible, m
Англо-русский словарь нормативно-технической терминологии > continuous current-carrying capacity
-
17 ampacity (US)
(длительный) допустимый ток
Максимальное значение электрического тока, который может протекать длительно по проводнику, устройству или аппарату при определенных условиях без превышения определенного значения их температуры в установившемся режиме
[ ГОСТ Р МЭК 60050-826-2009]
Этот ток обозначают IZ
[ ГОСТ Р 50571. 1-2009 ( МЭК 60364-1: 2005)]EN
(continuous) current-carrying capacity
ampacity (US)
maximum value of electric current which can be carried continuously by a conductor, a device or an apparatus, under specified conditions without its steady-state temperature exceeding a specified value
[IEV number 826-11-13]
ampacity
The current in amperes that a conductor can carry continuously under the conditions of use without exceeding its temperature rating.
[National Electrical Cod]FR
courant (permanent) admissible, m
valeur maximale du courant électrique qui peut parcourir en permanence, un conducteur, un dispositif ou un appareil, sans que sa température de régime permanent, dans des conditions données, soit supérieure à la valeur spécifiée
[IEV number 826-11-13]Ampacity, the term is defined as the maximum amount of current a cable can carry before sustaining immediate or progressive deterioration. Also described as current rating or current-carrying capacity, is the RMS electric current which a device can continuously carry while remaining within its temperature rating. The ampacity of a cable depends on:
- its insulation temperature rating;
- conductor electrical properties for current;
- frequency, in the case of alternating currents;
- ability to dissipate heat, which depends on cable geometry and its surroundings;
- ambient temperature.
Electric wires have some resistance, and electric current flowing through them causes voltage drop and power dissipation, which heats the cable. Copper or aluminum can conduct a large amount of current before melting, but long before the conductors melt, their insulation would be damaged by the heat.
The ampacity for a power cable is thus based on physical and electrical properties of the material & construction of the conductor and of its insulation, ambient temperature, and environmental conditions adjacent to the cable. Having a large overall surface area may dissipate heat well if the environment can absorb the heat.
In a long run of cable, different conditions govern, and installation regulations normally specify that the most severe condition along the run governs the cable's rating. Cables run in wet or oily locations may carry a lower temperature rating than in a dry installation. Derating is necessary for multiple circuits in close proximity. When multiple cables are near, each contributes heat to the others and diminishes the amount of cooling air that can flow past the individual cables. The overall ampacity of the insulated conductors in a bundle of more than 3 must be derated, whether in a raceway or cable. Usually the de-rating factor is tabulated in a nation's wiring regulations.
Depending on the type of insulating material, common maximum allowable temperatures at the surface of the conductor are 60, 75 and 90 degrees Celsius, often with an ambient air temperature of 30°C. In the U.S., 105°C is allowed with ambient of 40°C, for larger power cables, especially those operating at more than 2 kV. Likewise, specific insulations are rated 150, 200 or 250°C.
The allowed current in cables generally needs to be decreased (derated) when the cable is covered with fireproofing material.
For example, the United States National Electric Code, Table 310-16, specifies that up to three 8 AWG copper wires having a common insulating material (THWN) in a raceway, cable, or direct burial has an ampacity of 50 A when the ambient air is 30°C, the conductor surface temperature allowed to be 75°C. A single insulated conductor in air has 70 A rating.
Ampacity rating is normally for continuous current, and short periods of overcurrent occur without harm in most cabling systems. The acceptable magnitude and duration of overcurrent is a more complex topic than ampacity.
When designing an electrical system, one will normally need to know the current rating for the following:- Wires
- Printed Circuit Board traces, where included
- Fuses
- Circuit breakers
- All or nearly all components used
Some devices are limited by power rating, and when this power rating occurs below their current limit, it is not necessary to know the current limit to design a system. A common example of this is lightbulb holders.
[http://en.wikipedia.org/wiki/Ampacity]
Тематики
- электротехника, основные понятия
Синонимы
EN
DE
- Dauerstrombelastbarkeit, f
- Strombelastbarkeit, f
FR
- courant admissible, m
- courant permanent admissible, m
Англо-русский словарь нормативно-технической терминологии > ampacity (US)
-
18 continuous current
(длительный) допустимый ток
Максимальное значение электрического тока, который может протекать длительно по проводнику, устройству или аппарату при определенных условиях без превышения определенного значения их температуры в установившемся режиме
[ ГОСТ Р МЭК 60050-826-2009]
Этот ток обозначают IZ
[ ГОСТ Р 50571. 1-2009 ( МЭК 60364-1: 2005)]EN
(continuous) current-carrying capacity
ampacity (US)
maximum value of electric current which can be carried continuously by a conductor, a device or an apparatus, under specified conditions without its steady-state temperature exceeding a specified value
[IEV number 826-11-13]
ampacity
The current in amperes that a conductor can carry continuously under the conditions of use without exceeding its temperature rating.
[National Electrical Cod]FR
courant (permanent) admissible, m
valeur maximale du courant électrique qui peut parcourir en permanence, un conducteur, un dispositif ou un appareil, sans que sa température de régime permanent, dans des conditions données, soit supérieure à la valeur spécifiée
[IEV number 826-11-13]Ampacity, the term is defined as the maximum amount of current a cable can carry before sustaining immediate or progressive deterioration. Also described as current rating or current-carrying capacity, is the RMS electric current which a device can continuously carry while remaining within its temperature rating. The ampacity of a cable depends on:
- its insulation temperature rating;
- conductor electrical properties for current;
- frequency, in the case of alternating currents;
- ability to dissipate heat, which depends on cable geometry and its surroundings;
- ambient temperature.
Electric wires have some resistance, and electric current flowing through them causes voltage drop and power dissipation, which heats the cable. Copper or aluminum can conduct a large amount of current before melting, but long before the conductors melt, their insulation would be damaged by the heat.
The ampacity for a power cable is thus based on physical and electrical properties of the material & construction of the conductor and of its insulation, ambient temperature, and environmental conditions adjacent to the cable. Having a large overall surface area may dissipate heat well if the environment can absorb the heat.
In a long run of cable, different conditions govern, and installation regulations normally specify that the most severe condition along the run governs the cable's rating. Cables run in wet or oily locations may carry a lower temperature rating than in a dry installation. Derating is necessary for multiple circuits in close proximity. When multiple cables are near, each contributes heat to the others and diminishes the amount of cooling air that can flow past the individual cables. The overall ampacity of the insulated conductors in a bundle of more than 3 must be derated, whether in a raceway or cable. Usually the de-rating factor is tabulated in a nation's wiring regulations.
Depending on the type of insulating material, common maximum allowable temperatures at the surface of the conductor are 60, 75 and 90 degrees Celsius, often with an ambient air temperature of 30°C. In the U.S., 105°C is allowed with ambient of 40°C, for larger power cables, especially those operating at more than 2 kV. Likewise, specific insulations are rated 150, 200 or 250°C.
The allowed current in cables generally needs to be decreased (derated) when the cable is covered with fireproofing material.
For example, the United States National Electric Code, Table 310-16, specifies that up to three 8 AWG copper wires having a common insulating material (THWN) in a raceway, cable, or direct burial has an ampacity of 50 A when the ambient air is 30°C, the conductor surface temperature allowed to be 75°C. A single insulated conductor in air has 70 A rating.
Ampacity rating is normally for continuous current, and short periods of overcurrent occur without harm in most cabling systems. The acceptable magnitude and duration of overcurrent is a more complex topic than ampacity.
When designing an electrical system, one will normally need to know the current rating for the following:- Wires
- Printed Circuit Board traces, where included
- Fuses
- Circuit breakers
- All or nearly all components used
Some devices are limited by power rating, and when this power rating occurs below their current limit, it is not necessary to know the current limit to design a system. A common example of this is lightbulb holders.
[http://en.wikipedia.org/wiki/Ampacity]
Тематики
- электротехника, основные понятия
Синонимы
EN
DE
- Dauerstrombelastbarkeit, f
- Strombelastbarkeit, f
FR
- courant admissible, m
- courant permanent admissible, m
непрерывный ток
—
[Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999]Тематики
- электротехника, основные понятия
EN
Англо-русский словарь нормативно-технической терминологии > continuous current
-
19 current-carrying capacity
(длительный) допустимый ток
Максимальное значение электрического тока, который может протекать длительно по проводнику, устройству или аппарату при определенных условиях без превышения определенного значения их температуры в установившемся режиме
[ ГОСТ Р МЭК 60050-826-2009]
Этот ток обозначают IZ
[ ГОСТ Р 50571. 1-2009 ( МЭК 60364-1: 2005)]EN
(continuous) current-carrying capacity
ampacity (US)
maximum value of electric current which can be carried continuously by a conductor, a device or an apparatus, under specified conditions without its steady-state temperature exceeding a specified value
[IEV number 826-11-13]
ampacity
The current in amperes that a conductor can carry continuously under the conditions of use without exceeding its temperature rating.
[National Electrical Cod]FR
courant (permanent) admissible, m
valeur maximale du courant électrique qui peut parcourir en permanence, un conducteur, un dispositif ou un appareil, sans que sa température de régime permanent, dans des conditions données, soit supérieure à la valeur spécifiée
[IEV number 826-11-13]Ampacity, the term is defined as the maximum amount of current a cable can carry before sustaining immediate or progressive deterioration. Also described as current rating or current-carrying capacity, is the RMS electric current which a device can continuously carry while remaining within its temperature rating. The ampacity of a cable depends on:
- its insulation temperature rating;
- conductor electrical properties for current;
- frequency, in the case of alternating currents;
- ability to dissipate heat, which depends on cable geometry and its surroundings;
- ambient temperature.
Electric wires have some resistance, and electric current flowing through them causes voltage drop and power dissipation, which heats the cable. Copper or aluminum can conduct a large amount of current before melting, but long before the conductors melt, their insulation would be damaged by the heat.
The ampacity for a power cable is thus based on physical and electrical properties of the material & construction of the conductor and of its insulation, ambient temperature, and environmental conditions adjacent to the cable. Having a large overall surface area may dissipate heat well if the environment can absorb the heat.
In a long run of cable, different conditions govern, and installation regulations normally specify that the most severe condition along the run governs the cable's rating. Cables run in wet or oily locations may carry a lower temperature rating than in a dry installation. Derating is necessary for multiple circuits in close proximity. When multiple cables are near, each contributes heat to the others and diminishes the amount of cooling air that can flow past the individual cables. The overall ampacity of the insulated conductors in a bundle of more than 3 must be derated, whether in a raceway or cable. Usually the de-rating factor is tabulated in a nation's wiring regulations.
Depending on the type of insulating material, common maximum allowable temperatures at the surface of the conductor are 60, 75 and 90 degrees Celsius, often with an ambient air temperature of 30°C. In the U.S., 105°C is allowed with ambient of 40°C, for larger power cables, especially those operating at more than 2 kV. Likewise, specific insulations are rated 150, 200 or 250°C.
The allowed current in cables generally needs to be decreased (derated) when the cable is covered with fireproofing material.
For example, the United States National Electric Code, Table 310-16, specifies that up to three 8 AWG copper wires having a common insulating material (THWN) in a raceway, cable, or direct burial has an ampacity of 50 A when the ambient air is 30°C, the conductor surface temperature allowed to be 75°C. A single insulated conductor in air has 70 A rating.
Ampacity rating is normally for continuous current, and short periods of overcurrent occur without harm in most cabling systems. The acceptable magnitude and duration of overcurrent is a more complex topic than ampacity.
When designing an electrical system, one will normally need to know the current rating for the following:- Wires
- Printed Circuit Board traces, where included
- Fuses
- Circuit breakers
- All or nearly all components used
Some devices are limited by power rating, and when this power rating occurs below their current limit, it is not necessary to know the current limit to design a system. A common example of this is lightbulb holders.
[http://en.wikipedia.org/wiki/Ampacity]
Тематики
- электротехника, основные понятия
Синонимы
EN
DE
- Dauerstrombelastbarkeit, f
- Strombelastbarkeit, f
FR
- courant admissible, m
- courant permanent admissible, m
предельно допустимый ток
—
[Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]Тематики
- электротехника, основные понятия
EN
прочность печатной платы к токовой нагрузке
Свойство печатной платы сохранять электрические и механические характеристики после воздействия максимально допустимой токовой нагрузки на печатный проводник или металлизированное отверстие печатной платы.
[ ГОСТ Р 53386-2009]Тематики
EN
Англо-русский словарь нормативно-технической терминологии > current-carrying capacity
-
20 RTD
- фиктивное реальное время (о режиме работы)
- термометр сопротивления
- температурный датчик сопротивления
- релейный элемент выдержки времени
- распределение времени пребывания
- номинальное значение
- двусторонняя задержка
двусторонняя задержка
Задержка из-за подтверждения приема (при прохождении сигнала в оба конца) (МСЭ-Т Х.148).
[ http://www.iks-media.ru/glossary/index.html?glossid=2400324]Тематики
- электросвязь, основные понятия
EN
номинальное значение
Количественное значение, указанное, как правило, изготовителем для определенного рабочего состояния детали, устройства или аппарата.
МЭК 60050(151-04-03).
[ ГОСТ Р 50030. 1-2000 ( МЭК 60947-1-99)]
номинальное значение
Значение величины, установленное обычно изготовителем для определенных рабочих условий компонента, прибора или оборудования.
[ ГОСТ Р 52319-2005 (МЭК 60050-151 [10], позиция 151-04-03)]
номинальное значение
Значение параметра электротехнического изделия (устройства), указанное изготовителем, при котором оно должно работать, являющееся исходным для отсчета отклонений.
Примечание
К числу параметров относятся, например, ток, напряжение, мощность.
[ ГОСТ 18311-80]
номинальное значение
-
[IEV number 442-01-01]EN
nominal value
value of a quantity used to designate and identify a component, device, equipment, or system
NOTE – The nominal value is generally a rounded value.
[IEV number 151-16-09]
rated value
a quantity value assigned, generally by a manufacturer, for a specified operating condition of a component, device or equipment
Source: 151-04-03
[IEV number 442-01-01]FR
valeur nominale, f
valeur de dénomination, f
valeur d'une grandeur, utilisée pour dénommer et identifier un composant, un dispositif, un matériel ou un système
NOTE – La valeur nominale est généralement une valeur arrondie.
[IEV number 151-16-09]
valeur assignée
valeur d'une grandeur fixée, généralement par le constructeur, pour un fonctionnement spécifié d'un composant, d'un dispositif ou d'un matériel
Source: 151-04-03
[IEV number 442-01-01]Синонимы
EN
DE
FR
распределение времени пребывания
(напр. тепловыделяющего элемента в активной зоне ядерного реактора, частиц угля в зоне горения топки котла и др.)
[А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]Тематики
EN
релейный элемент выдержки времени
—
[Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]Тематики
- электротехника, основные понятия
EN
температурный датчик сопротивления
—
[А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]Тематики
EN
термометр сопротивления
Термометр, принцип действия которого основан на использовании зависимости электрического сопротивления материала чувствительного элемента термометра от температуры.
[РД 01.120.00-КТН-228-06]Термометр сопротивления ТС это термометр, как правило, в металлическом или керамическом корпусе, чувствительный элемент которого представляет собой резистор, выполненный из металлической проволоки или пленки и имеющий известную зависимость электрического сопротивления от температуры. Самый популярный тип термометра – платиновый термометр сопротивления, это объясняется высоким температурным коэффициентом платины, ее устойчивостью к окислению и хорошей технологичностью. В качестве рабочих средств измерений применяются также медные и никелевые термометры. Новый межгосударственный стандарт на технические требования к рабочим термометрам сопротивления: ГОСТ 6651-2009, разработанный на основе российского стандарта ГОСТ Р 8. 625-2006 ( Термометры сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний). Ознакомиться со стандартом можно в разделе Российские стандарты. В стандарте приведены диапазоны, классы допуска ТС, таблицы НСХ и стандартные зависимости сопротивление-температура. Эти данные приведены также на нашем сайте в разделе справочник. Главное преимущество термометров сопротивления – широкий диапазон температур, высокая стабильность, близость характеристики к линейной зависимости, высокая взаимозаменяемость. Пленочные платиновые термометры сопротивления отличаются повышенной вибропрочностью, но меньшим диапазоном температур. Изготавливаются также герметичные чувствительные элементы термометров сопротивления различных размеров, что позволяет их использовать в местах, где важно устанавливать миниатюрный датчик температуры. Недостаток термометров и чувствительных элементов сопротивления – необходимость использования для точных измерений трех- или четырех- проводной схемы включения, т.к. при подключении датчика с помощью двух проводов, их сопротивление включается измеренное сопротивление термометра. Важнейшей технологической проблемой для ТС проволочного типа является герметизация корпуса ЧЭ специальной глазурью, состав глазури должен быть подобран так, чтобы при колебаниях температуры в пределах рабочего диапазона не происходило разрушение герметизирующего слоя.
Промышленные платиновые термометры сопротивления в большинстве случаев используются со стандартной зависимостью сопротивление-температура (НСХ), что обуславливает допуск не лучше 0,1 °С (класс АА при 0 °С). Однако высокая стабильность некоторых термометров позволяет делать их индивидуальную градуировку и определять характерную именно для них зависимость сопротивление-температура. Такая градуировка может повысить точность до нескольких сотых градуса. Следует отметить, что использование функции МТШ-90 (что возможно сейчас для многих цифровых термометров) может точнее описать индивидуальную зависимость ТС, использование квадратичного уравнения Каллендара Ван Дьюзена ограничивает точность аппроксимации до 0,01-0,03 °С в зависимости от диапазона температур.
Эталонные платиновые термометры (ПТС, ТСПН) первого разряда и термометры-рабочие эталоны по точности превосходят промышленные термометры сопротивления (расширенная неопределенность ПТС 1 разряда при 0 °С равна 0,002 °С), но они требуют очень осторожного обращения, не выносят тряски и резких тепловых. Кроме того, их стоимость в десятки раз выше стоимости рабочих термометров сопротивления. Стандарт на образцовые ПТС первого и второго разряда: ГОСТ Р 51233-98 «Термометры сопротивления платиновые эталонные 1 и 2 разрядов. Общие технические требования» (см. раздел Российские стандарты). Подробная информация о свойствах эталонных платиновых термометров сопротивления и методах работы с ними приводится в разделе "Платиновый термометр сопротивления - основной интерполяционный прибор МТШ-90"
Для точного изменения криогенных температур с успехом применяются железо-родиевые термометры сопротивления. Их действие основано, на эффекте аномальной температурной зависимости сплава 0,5 ат.% железа к родию при низких температурах с положительным коэффициентом сопротивления. Опыт работы с термометрами показал, что их стабильность может достигать 0,15 мК/год при 20 К. Зависимость сопротивление - температура в диапазоне 0,5-27 К хорошо аппроксимируется полиномами не высоких степеней (8 -11 степень). Однако, сложности возникают при попытке аппроксимировать диапазоны, включающие 28 К, т.к. в этой точке «низкотемпературное» сопротивление, обусловленное примесями, уступает место «высокотемпературному» сопротивлению, обусловленному рассеянием на фононах....
[ http://temperatures.ru/pages/termometry_soprotivleniya]Недопустимые, нерекомендуемые
Тематики
EN
фиктивное реальное время (о режиме работы)
—
[Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]Тематики
EN
Англо-русский словарь нормативно-технической терминологии > RTD
См. также в других словарях:
Temperature examination — Taking a patient s temperature is an initial part of a full clinical examination.Core body temperature is normally carefully controlled within a narrow range so that essential enzymatic reactions can occur. Prolonged temperature elevation… … Wikipedia
Temperature coefficient — The temperature coefficient is the relative change of a physical property when the temperature is changed by 1 K. In the following formula, let R be the physical property to be measured and T be the temperature at which the property is… … Wikipedia
Temperature — This article is about the thermodynamic property. For other uses, see Temperature (disambiguation). A map of global long term monthly average surface air temperatures i … Wikipedia
Temperature-responsive polymer — A temperature responsive polymer is a polymer which undergoes a physical change when external thermal stimuli are presented. The ability to undergo such changes under easily controlled conditions makes this class of polymers fall into the… … Wikipedia
temperature — /tem peuhr euh cheuhr, choor , preuh , peuhr cheuhr, choor /, n. 1. a measure of the warmth or coldness of an object or substance with reference to some standard value. The temperature of two systems is the same when the systems are in thermal… … Universalium
temperature coefficient — noun : a numerical value indicating the relation between a change in temperature and a simultaneous change in some other property (as solubility); specifically : the factor α in the equation Rt.Ro(1+αt) in which Rt equals the resistance of a… … Useful english dictionary
value key — The relative level of a color s value, whether referencing an individual color, or a color scheme seen either in an artwork s entirety or in a passage within one. The lighter the value, the higher and more cheerful the value key; the darker… … Glossary of Art Terms
temperature key — The relative level of a color s temperature, whether referencing an individual color, or a color scheme seen either in an artwork s entirety or in a passage within one. The warmer the color, the higher the temperature key; the cooler the… … Glossary of Art Terms
Temperature conversion — Kelvin = Celsius (Centigrade) Fahrenheit Rankine Delisle Newton Réaumur Rømer Comparison Comparison of temperature scales ¹ Normal human body temperature is 36.8 °C ±0.7 °C, or 98.2 °F ±1.3 °F. The commonly given value 98.6 °F is simply the exact … Wikipedia
temperature — tem•per•a•ture [[t]ˈtɛm pər ə tʃər, ˌtʃʊər, prə , pər tʃər, ˌtʃʊər[/t]] n. 1) phs thr a measure of the warmth or coldness of an object or substance with reference to some standard value 2) pat phl a) the degree of heat in a living body, normally… … From formal English to slang
temperature scale — a scale used for expressing the degree of heat, based on absolute zero as a reference point (absolute scale), or with a certain value arbitrarily assigned to such temperatures as the ice point and boiling point of water under certain stipulated… … Medical dictionary