-
1 technological processes
-
2 technological processes control subsystem
Универсальный англо-русский словарь > technological processes control subsystem
-
3 technological processes control subsystems
1) Бурение: подсистема управления технологическими процессами (ТП)2) Производственные помещения: подсистема управления ТПУниверсальный англо-русский словарь > technological processes control subsystems
-
4 technological processes control subsystem
Англо-русский словарь нефтегазовой промышленности > technological processes control subsystem
-
5 technological processes control subsystems
Англо-русский словарь нефтегазовой промышленности > technological processes control subsystems
-
6 calculation of parameters of technological processes of underground mining
English-Russian dictionary of geology > calculation of parameters of technological processes of underground mining
-
7 Automation of technological processes
Универсальный англо-русский словарь > Automation of technological processes
-
8 calculation of parameters of technological processes of underground mining
Универсальный англо-русский словарь > calculation of parameters of technological processes of underground mining
-
9 design system of technological processes
Научный термин: САПР-Т (система проектирования технологических процессов), система проектирования технологических процессовУниверсальный англо-русский словарь > design system of technological processes
-
10 equipment for monitoring technological processes
Общая лексика: оборудование для контроля технологических процессовУниверсальный англо-русский словарь > equipment for monitoring technological processes
-
11 individual units of technological processes
Химическое оружие: отдельные узлы технологических процессовУниверсальный англо-русский словарь > individual units of technological processes
-
12 monitoring potentially dangerous chemical technological processes
Универсальный англо-русский словарь > monitoring potentially dangerous chemical technological processes
-
13 timber technological processes
drvno tehnološki procesiEnglish-Croatian dictionary > timber technological processes
-
14 automatic technological processes control system
технологиялық үрдісті басқарудың автоматтандырылған жүйесіThe English-Kazakh dictionary of Informatics and computer technology dictionary > automatic technological processes control system
-
15 Rammler, Erich
[br]b. 9 July 1901 Tirpersdorf, near Oelsnitz, Germanyd. 6 November 1986 Freiberg, Saxony, Germany[br]German mining engineer, developer of metallurgic coke from lignite.[br]A scholar of the Mining Academy in Freiberg, who in his dissertation dealt with the fineness of coal dust, Rammler started experiments in 1925 relating to firing this material. In the USA this process, based on coal, had turned out to be very effective in large boiler furnaces. Rammler endeavoured to apply the process to lignite and pursued general research work on various thermochemical problems as well as methods of grinding and classifying. As producing power from lignite was of specific interest for the young Soviet Union, with its large demand from its new power stations and its as-yet unexploited lignite deposits, he soon came into contact with the Soviet authorities. In his laboratory in Dresden, which he had bought from the freelance metallurgist Paul Otto Rosin after his emigration and under whom he had been working since he left the Academy, he continued his studies in refining coal and soon gained an international reputation. He opened up means of producing coke from lignite for use in metallurgical processes.His later work was of utmost importance after the Second World War when several countries in Eastern Europe, especially East Germany with its large lignite deposits, established their own iron and steel industries. Accordingly, the Soviet administration supported his experiments vigorously after he joined Karl Kegel's Institute for Briquetting in Freiberg in 1945. Through his numerous books and articles, he became the internationally leading expert on refining lignite and Kegel's successor as head of the Institute and Professor at the Bergakademie. Six years later, he produced for the first time high-temperature coke from lignite low in ash and sulphur for smelting in low-shaft furnaces. Rammler was widely honoured and contributed decisively to the industrial development of his country; he demonstrated new technological processes when, under austere conditions, economical and ecological considerations were neglected.[br]BibliographyRammler, whose list of publications comprises more than 600 titles on various matters of his main scientific concern, also was the co-author (with E.Wächtler) of two articles on the development of briquetting brown coal in Germany, both published in 1985, Freiberger Forschungshefte, D 163 and D 169, Leipzig.Further ReadingE.Wächtler, W.Mühlfriedel and W.Michel, 1976, Erich Rammler, Leipzig, (substantial biography, although packed with communist propaganda).M.Rasch, 1989, "Paul Rosin—Ingenieur, Hochschullehrer und Rationalisierungsfachmann". Technikgeschichte 56:101–32 (describes the framework within which Rammler's primary research developed).WK -
16 Pliny the Elder (Gaius Plinius Secundus)
SUBJECT AREA: Metallurgy[br]b. c. 23 AD Como, Italyd. 25 August 79 AD near Pompeii, Italy[br]Roman encyclopedic writer on the natural world.[br]Pliny was well educated in Rome, and for ten years or so followed a military career with which he was able to combine literary work, writing especially on historical subjects. He completed his duties c. 57 AD and concentrated on writing until he resumed his official career in 69 AD with administrative duties. During this last phase he began work on his only extant work, the thirty-seven "books" of his Historia Naturalis (Natural History), each dealing with a broad subject such as astronomy, geography, mineralogy, etc. His last post was the command of the fleet based at Misenum, which came to an end when he sailed too near Vesuvius during the eruption that engulfed Pompeii and he was overcome by the fumes.Pliny developed an insatiable curiosity about the natural world. Unlike the Greeks, the Romans made few original contributions to scientific thought and observation, but some made careful compilations of the learning and observations of Greek scholars. The most notable and influential of these was the Historia Naturalis. To the ideas about the natural world gleaned from earlier Greek authors, he added information about natural history, mineral resources, crafts and some technological processes, such as the extraction of metals from their ores, reported to him from the corners of the Empire. He added a few observations of his own, noted during travels on his official duties. Not all the reports were reliable, and the work often presents a tangled web of fact and fable. Gibbon described it as an immense register in which the author has "deposited the discoveries, the arts, and the errors of mankind". Pliny was indefatigable in his relentless note-taking, even dictating to his secretary while dining.During the Dark Ages and early Middle Ages in Western Europe, Pliny's Historia Naturalis was the largest known collection of facts about the natural world and was drawn upon freely by a succession of later writers. Its influence survived the influx into Western Europe, from the twelfth century, of translations of the works of Greek and Arab scholars. After the invention of printing in the middle of the fifteenth century, Pliny was the first work on a scientific subject to be printed, in 1469. Many editions followed and it may still be consulted with profit for its insights into technical knowledge and practice in the ancient world.[br]BibliographyThe standard Latin text with English translation is that edited by H.Rackham et al.(1942– 63, Loeb Classical Library, London: Heinemann, 10 vols). The French version is by A.Further ReadingThe editions mentioned above include useful biographical and other details. For special aspects of Pliny, see K.C.Bailey, 1929–32, The Elder Pliny's Chapters on Chemical Subjects, London, 2 vols.LRDBiographical history of technology > Pliny the Elder (Gaius Plinius Secundus)
-
17 Artificial Intelligence
In my opinion, none of [these programs] does even remote justice to the complexity of human mental processes. Unlike men, "artificially intelligent" programs tend to be single minded, undistractable, and unemotional. (Neisser, 1967, p. 9)Future progress in [artificial intelligence] will depend on the development of both practical and theoretical knowledge.... As regards theoretical knowledge, some have sought a unified theory of artificial intelligence. My view is that artificial intelligence is (or soon will be) an engineering discipline since its primary goal is to build things. (Nilsson, 1971, pp. vii-viii)Most workers in AI [artificial intelligence] research and in related fields confess to a pronounced feeling of disappointment in what has been achieved in the last 25 years. Workers entered the field around 1950, and even around 1960, with high hopes that are very far from being realized in 1972. In no part of the field have the discoveries made so far produced the major impact that was then promised.... In the meantime, claims and predictions regarding the potential results of AI research had been publicized which went even farther than the expectations of the majority of workers in the field, whose embarrassments have been added to by the lamentable failure of such inflated predictions....When able and respected scientists write in letters to the present author that AI, the major goal of computing science, represents "another step in the general process of evolution"; that possibilities in the 1980s include an all-purpose intelligence on a human-scale knowledge base; that awe-inspiring possibilities suggest themselves based on machine intelligence exceeding human intelligence by the year 2000 [one has the right to be skeptical]. (Lighthill, 1972, p. 17)4) Just as Astronomy Succeeded Astrology, the Discovery of Intellectual Processes in Machines Should Lead to a Science, EventuallyJust as astronomy succeeded astrology, following Kepler's discovery of planetary regularities, the discoveries of these many principles in empirical explorations on intellectual processes in machines should lead to a science, eventually. (Minsky & Papert, 1973, p. 11)5) Problems in Machine Intelligence Arise Because Things Obvious to Any Person Are Not Represented in the ProgramMany problems arise in experiments on machine intelligence because things obvious to any person are not represented in any program. One can pull with a string, but one cannot push with one.... Simple facts like these caused serious problems when Charniak attempted to extend Bobrow's "Student" program to more realistic applications, and they have not been faced up to until now. (Minsky & Papert, 1973, p. 77)What do we mean by [a symbolic] "description"? We do not mean to suggest that our descriptions must be made of strings of ordinary language words (although they might be). The simplest kind of description is a structure in which some features of a situation are represented by single ("primitive") symbols, and relations between those features are represented by other symbols-or by other features of the way the description is put together. (Minsky & Papert, 1973, p. 11)[AI is] the use of computer programs and programming techniques to cast light on the principles of intelligence in general and human thought in particular. (Boden, 1977, p. 5)The word you look for and hardly ever see in the early AI literature is the word knowledge. They didn't believe you have to know anything, you could always rework it all.... In fact 1967 is the turning point in my mind when there was enough feeling that the old ideas of general principles had to go.... I came up with an argument for what I called the primacy of expertise, and at the time I called the other guys the generalists. (Moses, quoted in McCorduck, 1979, pp. 228-229)9) Artificial Intelligence Is Psychology in a Particularly Pure and Abstract FormThe basic idea of cognitive science is that intelligent beings are semantic engines-in other words, automatic formal systems with interpretations under which they consistently make sense. We can now see why this includes psychology and artificial intelligence on a more or less equal footing: people and intelligent computers (if and when there are any) turn out to be merely different manifestations of the same underlying phenomenon. Moreover, with universal hardware, any semantic engine can in principle be formally imitated by a computer if only the right program can be found. And that will guarantee semantic imitation as well, since (given the appropriate formal behavior) the semantics is "taking care of itself" anyway. Thus we also see why, from this perspective, artificial intelligence can be regarded as psychology in a particularly pure and abstract form. The same fundamental structures are under investigation, but in AI, all the relevant parameters are under direct experimental control (in the programming), without any messy physiology or ethics to get in the way. (Haugeland, 1981b, p. 31)There are many different kinds of reasoning one might imagine:Formal reasoning involves the syntactic manipulation of data structures to deduce new ones following prespecified rules of inference. Mathematical logic is the archetypical formal representation. Procedural reasoning uses simulation to answer questions and solve problems. When we use a program to answer What is the sum of 3 and 4? it uses, or "runs," a procedural model of arithmetic. Reasoning by analogy seems to be a very natural mode of thought for humans but, so far, difficult to accomplish in AI programs. The idea is that when you ask the question Can robins fly? the system might reason that "robins are like sparrows, and I know that sparrows can fly, so robins probably can fly."Generalization and abstraction are also natural reasoning process for humans that are difficult to pin down well enough to implement in a program. If one knows that Robins have wings, that Sparrows have wings, and that Blue jays have wings, eventually one will believe that All birds have wings. This capability may be at the core of most human learning, but it has not yet become a useful technique in AI.... Meta- level reasoning is demonstrated by the way one answers the question What is Paul Newman's telephone number? You might reason that "if I knew Paul Newman's number, I would know that I knew it, because it is a notable fact." This involves using "knowledge about what you know," in particular, about the extent of your knowledge and about the importance of certain facts. Recent research in psychology and AI indicates that meta-level reasoning may play a central role in human cognitive processing. (Barr & Feigenbaum, 1981, pp. 146-147)Suffice it to say that programs already exist that can do things-or, at the very least, appear to be beginning to do things-which ill-informed critics have asserted a priori to be impossible. Examples include: perceiving in a holistic as opposed to an atomistic way; using language creatively; translating sensibly from one language to another by way of a language-neutral semantic representation; planning acts in a broad and sketchy fashion, the details being decided only in execution; distinguishing between different species of emotional reaction according to the psychological context of the subject. (Boden, 1981, p. 33)Can the synthesis of Man and Machine ever be stable, or will the purely organic component become such a hindrance that it has to be discarded? If this eventually happens-and I have... good reasons for thinking that it must-we have nothing to regret and certainly nothing to fear. (Clarke, 1984, p. 243)The thesis of GOFAI... is not that the processes underlying intelligence can be described symbolically... but that they are symbolic. (Haugeland, 1985, p. 113)14) Artificial Intelligence Provides a Useful Approach to Psychological and Psychiatric Theory FormationIt is all very well formulating psychological and psychiatric theories verbally but, when using natural language (even technical jargon), it is difficult to recognise when a theory is complete; oversights are all too easily made, gaps too readily left. This is a point which is generally recognised to be true and it is for precisely this reason that the behavioural sciences attempt to follow the natural sciences in using "classical" mathematics as a more rigorous descriptive language. However, it is an unfortunate fact that, with a few notable exceptions, there has been a marked lack of success in this application. It is my belief that a different approach-a different mathematics-is needed, and that AI provides just this approach. (Hand, quoted in Hand, 1985, pp. 6-7)We might distinguish among four kinds of AI.Research of this kind involves building and programming computers to perform tasks which, to paraphrase Marvin Minsky, would require intelligence if they were done by us. Researchers in nonpsychological AI make no claims whatsoever about the psychological realism of their programs or the devices they build, that is, about whether or not computers perform tasks as humans do.Research here is guided by the view that the computer is a useful tool in the study of mind. In particular, we can write computer programs or build devices that simulate alleged psychological processes in humans and then test our predictions about how the alleged processes work. We can weave these programs and devices together with other programs and devices that simulate different alleged mental processes and thereby test the degree to which the AI system as a whole simulates human mentality. According to weak psychological AI, working with computer models is a way of refining and testing hypotheses about processes that are allegedly realized in human minds.... According to this view, our minds are computers and therefore can be duplicated by other computers. Sherry Turkle writes that the "real ambition is of mythic proportions, making a general purpose intelligence, a mind." (Turkle, 1984, p. 240) The authors of a major text announce that "the ultimate goal of AI research is to build a person or, more humbly, an animal." (Charniak & McDermott, 1985, p. 7)Research in this field, like strong psychological AI, takes seriously the functionalist view that mentality can be realized in many different types of physical devices. Suprapsychological AI, however, accuses strong psychological AI of being chauvinisticof being only interested in human intelligence! Suprapsychological AI claims to be interested in all the conceivable ways intelligence can be realized. (Flanagan, 1991, pp. 241-242)16) Determination of Relevance of Rules in Particular ContextsEven if the [rules] were stored in a context-free form the computer still couldn't use them. To do that the computer requires rules enabling it to draw on just those [ rules] which are relevant in each particular context. Determination of relevance will have to be based on further facts and rules, but the question will again arise as to which facts and rules are relevant for making each particular determination. One could always invoke further facts and rules to answer this question, but of course these must be only the relevant ones. And so it goes. It seems that AI workers will never be able to get started here unless they can settle the problem of relevance beforehand by cataloguing types of context and listing just those facts which are relevant in each. (Dreyfus & Dreyfus, 1986, p. 80)Perhaps the single most important idea to artificial intelligence is that there is no fundamental difference between form and content, that meaning can be captured in a set of symbols such as a semantic net. (G. Johnson, 1986, p. 250)Artificial intelligence is based on the assumption that the mind can be described as some kind of formal system manipulating symbols that stand for things in the world. Thus it doesn't matter what the brain is made of, or what it uses for tokens in the great game of thinking. Using an equivalent set of tokens and rules, we can do thinking with a digital computer, just as we can play chess using cups, salt and pepper shakers, knives, forks, and spoons. Using the right software, one system (the mind) can be mapped into the other (the computer). (G. Johnson, 1986, p. 250)19) A Statement of the Primary and Secondary Purposes of Artificial IntelligenceThe primary goal of Artificial Intelligence is to make machines smarter.The secondary goals of Artificial Intelligence are to understand what intelligence is (the Nobel laureate purpose) and to make machines more useful (the entrepreneurial purpose). (Winston, 1987, p. 1)The theoretical ideas of older branches of engineering are captured in the language of mathematics. We contend that mathematical logic provides the basis for theory in AI. Although many computer scientists already count logic as fundamental to computer science in general, we put forward an even stronger form of the logic-is-important argument....AI deals mainly with the problem of representing and using declarative (as opposed to procedural) knowledge. Declarative knowledge is the kind that is expressed as sentences, and AI needs a language in which to state these sentences. Because the languages in which this knowledge usually is originally captured (natural languages such as English) are not suitable for computer representations, some other language with the appropriate properties must be used. It turns out, we think, that the appropriate properties include at least those that have been uppermost in the minds of logicians in their development of logical languages such as the predicate calculus. Thus, we think that any language for expressing knowledge in AI systems must be at least as expressive as the first-order predicate calculus. (Genesereth & Nilsson, 1987, p. viii)21) Perceptual Structures Can Be Represented as Lists of Elementary PropositionsIn artificial intelligence studies, perceptual structures are represented as assemblages of description lists, the elementary components of which are propositions asserting that certain relations hold among elements. (Chase & Simon, 1988, p. 490)Artificial intelligence (AI) is sometimes defined as the study of how to build and/or program computers to enable them to do the sorts of things that minds can do. Some of these things are commonly regarded as requiring intelligence: offering a medical diagnosis and/or prescription, giving legal or scientific advice, proving theorems in logic or mathematics. Others are not, because they can be done by all normal adults irrespective of educational background (and sometimes by non-human animals too), and typically involve no conscious control: seeing things in sunlight and shadows, finding a path through cluttered terrain, fitting pegs into holes, speaking one's own native tongue, and using one's common sense. Because it covers AI research dealing with both these classes of mental capacity, this definition is preferable to one describing AI as making computers do "things that would require intelligence if done by people." However, it presupposes that computers could do what minds can do, that they might really diagnose, advise, infer, and understand. One could avoid this problematic assumption (and also side-step questions about whether computers do things in the same way as we do) by defining AI instead as "the development of computers whose observable performance has features which in humans we would attribute to mental processes." This bland characterization would be acceptable to some AI workers, especially amongst those focusing on the production of technological tools for commercial purposes. But many others would favour a more controversial definition, seeing AI as the science of intelligence in general-or, more accurately, as the intellectual core of cognitive science. As such, its goal is to provide a systematic theory that can explain (and perhaps enable us to replicate) both the general categories of intentionality and the diverse psychological capacities grounded in them. (Boden, 1990b, pp. 1-2)Because the ability to store data somewhat corresponds to what we call memory in human beings, and because the ability to follow logical procedures somewhat corresponds to what we call reasoning in human beings, many members of the cult have concluded that what computers do somewhat corresponds to what we call thinking. It is no great difficulty to persuade the general public of that conclusion since computers process data very fast in small spaces well below the level of visibility; they do not look like other machines when they are at work. They seem to be running along as smoothly and silently as the brain does when it remembers and reasons and thinks. On the other hand, those who design and build computers know exactly how the machines are working down in the hidden depths of their semiconductors. Computers can be taken apart, scrutinized, and put back together. Their activities can be tracked, analyzed, measured, and thus clearly understood-which is far from possible with the brain. This gives rise to the tempting assumption on the part of the builders and designers that computers can tell us something about brains, indeed, that the computer can serve as a model of the mind, which then comes to be seen as some manner of information processing machine, and possibly not as good at the job as the machine. (Roszak, 1994, pp. xiv-xv)The inner workings of the human mind are far more intricate than the most complicated systems of modern technology. Researchers in the field of artificial intelligence have been attempting to develop programs that will enable computers to display intelligent behavior. Although this field has been an active one for more than thirty-five years and has had many notable successes, AI researchers still do not know how to create a program that matches human intelligence. No existing program can recall facts, solve problems, reason, learn, and process language with human facility. This lack of success has occurred not because computers are inferior to human brains but rather because we do not yet know in sufficient detail how intelligence is organized in the brain. (Anderson, 1995, p. 2)Historical dictionary of quotations in cognitive science > Artificial Intelligence
-
18 process
1. n1) процесс; процедура2) юр. вызов в суд•to disrupt the Middle East peace process — срывать процесс мирного урегулирования на Ближнем Востоке
to further a process — ускорять процесс; способствовать процессу
to keep smb out of the peace process — не допускать чьего-л. участия в процессе мирного урегулирования
to put a new impetus behind the peace process — придавать новый импульс процессу мирного урегулирования
to restore the peace process — восстанавливать / возрождать процесс мирного урегулирования
to revive the peace process — возобновлять / возрождать процесс мирного урегулирования
to salvage / to save the peace process — спасать процесс мирного урегулирования
to throw one's weight behind the peace process — использовать свое влияние для поддержания процесса мирного урегулирования
- all-European processto serve a process on smb — вызывать кого-л. в суд повесткой
- automated process
- basic laws of historical process
- breakthrough in the peace process
- budget-balancing process
- budget-making process
- collapse of the peace process
- commitment to the peace process
- completion of the construction process
- complex process
- complicated process
- constitutional process
- construction process
- continuous process
- contradictory process
- damaging to the peace process
- decision-making process
- decolonization process
- deepening of integration processes
- democratization process
- demographic process
- development process
- disarmament process
- disconnection process
- due process
- economic process
- educational process
- engineering process
- evolutionary process
- foot-dragging in the peace process
- historical process
- in the process
- industrialization process
- inflationary process
- information transfer process
- integration process
- interconnected processes
- internal process
- intricate process
- irreversible process
- judicial process
- labor process
- labor-intensive process
- law-governed process
- liberation process
- long drawn-out process
- long process
- long-term process
- managerial process
- manufacturing process
- modernization process
- multiform process
- natural process
- natural-historical process
- negative process
- negotiating process
- on-going process
- on-off peace process
- overall process
- painful process
- paper-laden process
- peaceful process
- peace-making process
- political process
- positive process
- preconvention bargaining process
- process of democratization
- process of détente
- process of economic growth
- process of national liberation
- process of polarization
- process of production
- production process
- programming process
- progressive process
- rapid process
- reform process
- rehabilitation process
- renewal of the peace process
- revolutionary process
- short-circuited process
- slowing down of the reform process
- social process
- socio-economic process
- spasmodic process
- stagnant process
- stalled peace process
- teaching and educational process
- technological process
- the country had a part to play in the peace process
- the peace process goes forward
- the peace process hangs by a thread
- the peace process has been stalled
- the peace process has broken down
- the peace process is in limbo
- the peace process is in tatters
- the ups and downs of the peace process
- transitional process
- under the peace process
- unification process
- work process
- worldwide process 2. vперерабатывать, обрабатывать -
19 process
1) процесс2) (технологический) процесс; (технологическая) обработка3) технологический приём; способ4) технология5) режим; ход (процесса)6) обрабатывать, подвергать обработке7) подвергать анализу, анализировать•to design process — разрабатывать технологию-
acetone-acetylene process
-
acetylene process
-
Acheson process
-
acid Bessemer process
-
acid process
-
acid reclaiming process
-
acyclic process
-
Adapti investment casting process
-
additive process
-
adiabatic process
-
Aero case process
-
aerobic process
-
age-dependent process
-
air blast process
-
air-sand process
-
Alcan process
-
Al-Dip process
-
alfin process
-
alkali reclaiming process
-
alkaline process
-
Allis-Chalmers agglomeration reduction process
-
ALT process
-
aluminothermic process
-
anaerobic process
-
anamorphotic process
-
annealing-in-line process
-
anode process
-
anodic electrode process
-
AOD process
-
aqua-cast process
-
ARBED-ladle-treatment process
-
arc-air process
-
arc-remelting process
-
argon-oxygen-decarburization process
-
ASEA-SKF process
-
autoregressive process
-
averaging process
-
Azincourt process
-
azo coupling process
-
background process
-
bag process
-
BAP process
-
Barrow process
-
Basett process
-
basic Bessemer process
-
basic oxygen process
-
basic process
-
basic-arc process
-
batch process
-
biofiltration process
-
bipolar process
-
bipolar-FET process
-
bipolar-MOS process
-
BISRA degassing process
-
black-heart process
-
Blackodising process
-
blast-furnace process
-
Blaw-Knox process
-
bleaching process
-
Bochumer-Verein process
-
boiling process
-
bonding process
-
bottom-argon-process process
-
broadband random process
-
bromoil transfer process
-
bromoil process
-
bubble-column process
-
bubble-hearth process
-
buffer-slag process
-
Calmes process
-
Canadizing process
-
carbon mold process
-
carbon process
-
carbon-arc process
-
carbon-in-leach process
-
carbon-in-pulp process
-
carbothermic process
-
carbro process
-
carrier-gas degassing process
-
cascade process
-
cast shell process
-
catalytic DENO process
-
cathodic process
-
CC-CR process
-
CC-DR process
-
CC-HCR process
-
cementation process
-
cementation-in-pulp process
-
cementing process
-
centrifugal spinning process
-
cermet process
-
CESM process
-
CEVAM process
-
charge transfer process
-
chemical vapor deposition process
-
chemical-bonding process
-
Chenot process
-
china process
-
cine exposure process
-
cine process
-
CLC process
-
clean burn process
-
cloudburst process
-
CLU process
-
CMOS process
-
CNC process
-
CO2 silicate process
-
coal reduction process
-
coal to gas process
-
coal-gas-sumitomo process
-
coal-oxygen-injection process
-
COIN process
-
cold box process
-
cold doping process
-
cold process
-
cold scrap process
-
cold type process
-
collodion process
-
color process
-
concurrent processes
-
consteel process
-
consumable electrode vacuum arc melting process
-
contact process
-
continuous annealing process
-
continuous casting-cleaning rolling process
-
continuous casting-direct rolling process
-
continuous casting-hot charging and rolling process
-
continuous electroslag melting process
-
continuous metal cast process
-
continuous-on-line control process
-
continuous-time process
-
controlled pressure pouring process
-
controlled process
-
converter process
-
cooking process
-
coppering process
-
copying process
-
coupled cathodic-anodic process
-
cracking process
-
Creusot Loire Uddenholm process
-
critical process
-
cumulative process
-
cuprammonium process
-
curing process
-
CVD process
-
cyclic process
-
Cyclosteel process
-
Czochralski process
-
daguerre photographic process
-
dense-media process
-
Desco process
-
deterministic process
-
developing process
-
DH degassing process
-
diabatic process
-
diazo process
-
diffused planar process
-
diffusion process
-
diffusion transfer process
-
dip-forming process
-
direct iron process
-
direct process
-
direct reduction process
-
direct-sintering process
-
discrete-time process
-
discrete process
-
DLM process
-
Domnarvet process
-
Dored process
-
double-crucible process
-
double-epi process
-
doubling process
-
D-process
-
DR process
-
drop-molding process
-
dry adiabatic process
-
dry process
-
dry-blanch-dry process
-
duplex process
-
easy drawing process
-
EBM process
-
EBR process
-
EF-AOD process
-
electric furnace-argon oxygen decarburization process
-
electroarc process
-
electrocatalytic process
-
electrocolor process
-
electrodialysis reversal process
-
electroflux-remelting process
-
electromembrane process
-
electron-beam-melting process
-
electron-beam-refining process
-
electrophotoadhesive process
-
electrophotographic process
-
electroslag refining process
-
electroslag remelting process
-
electroslag remelt process
-
electrostatographic process
-
electrostream process
-
Elo-Vac process
-
elquench process
-
endothermic process
-
energy efficient process
-
entropy process
-
enzymatic process
-
EPIC process
-
epidemic process
-
epitaxial growth process
-
epitaxy growth process
-
ergodic process
-
ESR process
-
Estel process
-
etching process
-
exoergic process
-
exothermic process
-
extrusion-molded neck process
-
ferroprussiate process
-
Ferrox process
-
filming process
-
filtration-chlorination process
-
Finkl-Mohr process
-
FIOR process
-
first process
-
fixed-bed MTG process
-
flash steel direct reduction process
-
float process
-
float-and-sink process
-
float-zone process
-
flow process
-
fluid iron ore reduction process
-
fluid-bed MTG process
-
fluidized roasting process
-
fluid-sand process
-
FMC coke process
-
foaming process
-
foehn process
-
food-machinery and chemical coke process
-
foreground process
-
Foren process
-
FOS process
-
freeze concentration process
-
fuel-oxygen-scrap process
-
full-mold process
-
fusion-casting process
-
Futacuchi process
-
Gaussian process
-
Gero mold degassing process
-
Gero vacuum casting process
-
GGS process
-
girbitol process
-
gradual reduction process
-
growing process
-
growth process
-
gypsum-sulfuric acid process
-
Hall electrolytic process
-
Harris process
-
hazardous process
-
H-coal process
-
heat-transfer process
-
heavy-media process
-
hibernating process
-
HI-GAS process
-
high-frequency induction process
-
HIP process
-
H-iron process
-
Hoope process
-
hot isostatic pressing process
-
hot process
-
hot-metal process
-
hot-metal-and-scrap process
-
hot-type process
-
hydrogasification process
-
hydrotype process
-
HyL process
-
IC-DR process
-
image process
-
imbibition process
-
immiscible displacement process
-
implantation process
-
impurity doping process
-
in-bulk process
-
inchrome process
-
in-draw process
-
inductoslag-melting process
-
ingot casting direct rolling process
-
injection molding process
-
in-line process
-
Inred process
-
interpolation process
-
investment process
-
ion-implantation process
-
irreversible process
-
isentropic process
-
ISM process
-
isobaric process
-
isochoric process
-
isoenthalpic process
-
isoentropic process
-
isometric process
-
isoplanar process
-
isothermal process
-
iterative process
-
jet-expanding process
-
Kaldo process
-
katadyn process
-
Kawasaki-bottom-oxygen-process process
-
Kawasaki-Gas-Lime-Injection process
-
K-BOP process
-
KEK process
-
KG-LI process
-
kiln-reduction process
-
KIVCET cyclone smelting process
-
KIVCET process
-
knit-deknit process
-
koetherizing process
-
KR process
-
kraft process
-
lance bubbling equilibrium process
-
LBE process
-
LD-AB process
-
LD-AC process
-
LD-AOD process
-
LD-argon bottom process
-
LD-argon oxygen decarburization process
-
LD-CB process
-
LD-circle lance process
-
LD-CL process
-
LD-combination blow process
-
LD-HC top and botton blowing process
-
LDK process
-
LD-Kawasaki-Gas process
-
LD-KG process
-
LD-OB process
-
LD-OTB process
-
LD-oxygen bottom process
-
LD-oxygen-top-bottom process
-
lift-off process
-
liquefaction process
-
liquid gas plug process
-
liquid-phase process
-
loop transfer process
-
lost core process
-
low-waste technological process
-
LSI process
-
LVR process
-
LVS process
-
Mannesmann powder process
-
mapping process
-
Markovian process
-
Markov process
-
masking process
-
matte fuming process
-
melting process
-
mercast process
-
Midland-Ross process
-
Midrex process
-
migration process
-
miscible displacement process
-
miscible plug process
-
mixed autoregressive-moving average process
-
moist adiabatic process
-
Molynutz process
-
monochrome process
-
monolithic process
-
MOS process
-
MOSFET process
-
motion-picture process
-
moving average process
-
narrowband random process
-
Neely process
-
negative-positive process
-
Nitemper process
-
no pickle process
-
nonflow process
-
non-Gaussian process
-
Nord-Fuvo process
-
Nu-iron process
-
OBM process
-
OG process
-
OLP converter process
-
one-way process
-
open-hearth process
-
orbitread process
-
ore process
-
Orthoflow cracking process
-
Orthoforming process
-
orthogonal increment process
-
oxidation process
-
oxide-isolated process
-
oxygen-blow process
-
oxygen-gas process
-
oxygen-lancing process
-
oxygen-steelmaking process
-
packaging process
-
pad-batch dyeing process
-
pad-dry dyeing process
-
pad-jig dyeing process
-
pad-roll dyeing process
-
pad-steam dyeing process
-
pad-steam vat-print process
-
PAMCO-hot-alloy process
-
parent process
-
PCR process
-
Perrin process
-
PHA process
-
phonon process
-
photoelectric process
-
photomechanical process
-
photovoltaic process
-
pig iron-scrap process
-
pig-and-ore process
-
pigment padding dying process
-
pigment padding process
-
pigment process
-
pinatype process
-
planar process
-
plasma etching process
-
plasma etch process
-
plasma process
-
plasma-arc process
-
Plasmamelt process
-
Plasmared process
-
plaster mold process
-
plastic wirecut process
-
polytropic process
-
powder silicon ribbon process
-
power-press process
-
prepolymer process
-
prepress processes
-
pressure-driven membrane process
-
primuline process
-
propane-acid process
-
pulsating mixing process
-
Purex process
-
pushbench process
-
Q-BOP process
-
QDT process
-
quality basic oxygen process process
-
quasi-independent processes
-
quick and direct tapping process
-
ram process
-
random process
-
rapid solidification plasma deposition process
-
rayon continuous process
-
receiving process
-
reclamator reclaiming process
-
recurrent process
-
redox process
-
reducing process
-
reduction-smelting process
-
relaxation process
-
repetitive process
-
reproduction process
-
reversal process
-
reversible process
-
RH process
-
RH-OB process
-
ribbon process
-
R-N direct-reduction process
-
roasting-sintering process
-
roast-leaching process
-
robot-controlled process
-
rongalit-potash process
-
rotor process
-
rustless process
-
sample process
-
schoop process
-
scrap-and-pig process
-
scrap-conditioning process
-
scrap-ore process
-
screen printed process
-
self-developing process
-
self-healing process
-
semibatch process
-
semiconductor process
-
sending process
-
Sendzimir coating process
-
sequential process
-
silicon-gate MOS process
-
silicon-gate process
-
silk-screen process
-
single-pumpdown process
-
SIP process
-
skein spinning process
-
Skinner multiple-hearth process
-
slag minimum process
-
slip-casting process
-
slow down process
-
SLPM process
-
SL-RN metallization process
-
SL-RN reduction process
-
solid source diffusion process
-
solution regrowth process
-
solvent extraction-electrowinning process
-
solvent plug process
-
SOS process
-
spin-draw-texturizing process
-
spinylock process
-
sponge iron process
-
spontaneous process
-
Stanal process
-
stationary random process
-
STB process
-
steady-flow process
-
steam-blow process
-
steelmaking process
-
Stelmor process
-
step and repeat process
-
stochastic process
-
stuffer box process
-
submerged arc process
-
subtractive process
-
suck-and-blow process
-
Sulf BT process
-
Sulfinuz process
-
Sumitomo-slag all recycling process
-
Sumitomo-top-bottom process
-
Sursulf process
-
system process
-
TBM process
-
T-die process
-
Technamation process
-
thermal DeNOx process
-
Therm-i-Vac process
-
Thermo-Flow process
-
thermoplastic process
-
Thomas process
-
Thorex process
-
three-color process
-
Thyssen-blast-metallurgy process
-
Tifran process
-
tightly coupled processes
-
time-varying process
-
trichromatic process
-
triplex process
-
Tropenas converter process
-
Tufftride process
-
Tufftride TF1 process
-
uncertain process
-
user process
-
vacuum arc remelting process
-
vacuum casting process
-
vacuum deoxidation process
-
vacuum induction refining process
-
vacuum stream-droplet process
-
vacuum-arc degassing process
-
vacuum-carbodeoxidation process
-
vacuum-carbonate process
-
vacuum-induction melting process
-
vacuum-melting process
-
vacuum-metallothermic process
-
vacuum-oxygen-decarburization process
-
VAD process
-
VAR process
-
VAW process
-
VHSIC process
-
vigom process
-
VIR process
-
viscose process
-
visual process
-
VLSI process
-
VOD process
-
waiting process
-
water gas process
-
waterfall process
-
wet process
-
white-heart process
-
Zinal process
-
zinc distilling process -
20 near cash
!гос. фин. The resource budget contains a separate control total for “near cash” expenditure, that is expenditure such as pay and current grants which impacts directly on the measure of the golden rule.This paper provides background information on the framework for the planning and control of public expenditure in the UK which has been operated since the 1998 Comprehensive Spending Review (CSR). It sets out the different classifications of spending for budgeting purposes and why these distinctions have been adopted. It discusses how the public expenditure framework is designed to ensure both sound public finances and an outcome-focused approach to public expenditure.The UK's public spending framework is based on several key principles:"consistency with a long-term, prudent and transparent regime for managing the public finances as a whole;" "the judgement of success by policy outcomes rather than resource inputs;" "strong incentives for departments and their partners in service delivery to plan over several years and plan together where appropriate so as to deliver better public services with greater cost effectiveness; and"the proper costing and management of capital assets to provide the right incentives for public investment.The Government sets policy to meet two firm fiscal rules:"the Golden Rule states that over the economic cycle, the Government will borrow only to invest and not to fund current spending; and"the Sustainable Investment Rule states that net public debt as a proportion of GDP will be held over the economic cycle at a stable and prudent level. Other things being equal, net debt will be maintained below 40 per cent of GDP over the economic cycle.Achievement of the fiscal rules is assessed by reference to the national accounts, which are produced by the Office for National Statistics, acting as an independent agency. The Government sets its spending envelope to comply with these fiscal rules.Departmental Expenditure Limits ( DEL) and Annually Managed Expenditure (AME)"Departmental Expenditure Limit ( DEL) spending, which is planned and controlled on a three year basis in Spending Reviews; and"Annually Managed Expenditure ( AME), which is expenditure which cannot reasonably be subject to firm, multi-year limits in the same way as DEL. AME includes social security benefits, local authority self-financed expenditure, debt interest, and payments to EU institutions.More information about DEL and AME is set out below.In Spending Reviews, firm DEL plans are set for departments for three years. To ensure consistency with the Government's fiscal rules departments are set separate resource (current) and capital budgets. The resource budget contains a separate control total for “near cash” expenditure, that is expenditure such as pay and current grants which impacts directly on the measure of the golden rule.To encourage departments to plan over the medium term departments may carry forward unspent DEL provision from one year into the next and, subject to the normal tests for tautness and realism of plans, may be drawn down in future years. This end-year flexibility also removes any incentive for departments to use up their provision as the year end approaches with less regard to value for money. For the full benefits of this flexibility and of three year plans to feed through into improved public service delivery, end-year flexibility and three year budgets should be cascaded from departments to executive agencies and other budget holders.Three year budgets and end-year flexibility give those managing public services the stability to plan their operations on a sensible time scale. Further, the system means that departments cannot seek to bid up funds each year (before 1997, three year plans were set and reviewed in annual Public Expenditure Surveys). So the credibility of medium-term plans has been enhanced at both central and departmental level.Departments have certainty over the budgetary allocation over the medium term and these multi-year DEL plans are strictly enforced. Departments are expected to prioritise competing pressures and fund these within their overall annual limits, as set in Spending Reviews. So the DEL system provides a strong incentive to control costs and maximise value for money.There is a small centrally held DEL Reserve. Support from the Reserve is available only for genuinely unforeseeable contingencies which departments cannot be expected to manage within their DEL.AME typically consists of programmes which are large, volatile and demand-led, and which therefore cannot reasonably be subject to firm multi-year limits. The biggest single element is social security spending. Other items include tax credits, Local Authority Self Financed Expenditure, Scottish Executive spending financed by non-domestic rates, and spending financed from the proceeds of the National Lottery.AME is reviewed twice a year as part of the Budget and Pre-Budget Report process reflecting the close integration of the tax and benefit system, which was enhanced by the introduction of tax credits.AME is not subject to the same three year expenditure limits as DEL, but is still part of the overall envelope for public expenditure. Affordability is taken into account when policy decisions affecting AME are made. The Government has committed itself not to take policy measures which are likely to have the effect of increasing social security or other elements of AME without taking steps to ensure that the effects of those decisions can be accommodated prudently within the Government's fiscal rules.Given an overall envelope for public spending, forecasts of AME affect the level of resources available for DEL spending. Cautious estimates and the AME margin are built in to these AME forecasts and reduce the risk of overspending on AME.Together, DEL plus AME sum to Total Managed Expenditure (TME). TME is a measure drawn from national accounts. It represents the current and capital spending of the public sector. The public sector is made up of central government, local government and public corporations.Resource and Capital Budgets are set in terms of accruals information. Accruals information measures resources as they are consumed rather than when the cash is paid. So for example the Resource Budget includes a charge for depreciation, a measure of the consumption or wearing out of capital assets."Non cash charges in budgets do not impact directly on the fiscal framework. That may be because the national accounts use a different way of measuring the same thing, for example in the case of the depreciation of departmental assets. Or it may be that the national accounts measure something different: for example, resource budgets include a cost of capital charge reflecting the opportunity cost of holding capital; the national accounts include debt interest."Within the Resource Budget DEL, departments have separate controls on:"Near cash spending, the sub set of Resource Budgets which impacts directly on the Golden Rule; and"The amount of their Resource Budget DEL that departments may spend on running themselves (e.g. paying most civil servants’ salaries) is limited by Administration Budgets, which are set in Spending Reviews. Administration Budgets are used to ensure that as much money as practicable is available for front line services and programmes. These budgets also help to drive efficiency improvements in departments’ own activities. Administration Budgets exclude the costs of frontline services delivered directly by departments.The Budget preceding a Spending Review sets an overall envelope for public spending that is consistent with the fiscal rules for the period covered by the Spending Review. In the Spending Review, the Budget AME forecast for year one of the Spending Review period is updated, and AME forecasts are made for the later years of the Spending Review period.The 1998 Comprehensive Spending Review ( CSR), which was published in July 1998, was a comprehensive review of departmental aims and objectives alongside a zero-based analysis of each spending programme to determine the best way of delivering the Government's objectives. The 1998 CSR allocated substantial additional resources to the Government's key priorities, particularly education and health, for the three year period from 1999-2000 to 2001-02.Delivering better public services does not just depend on how much money the Government spends, but also on how well it spends it. Therefore the 1998 CSR introduced Public Service Agreements (PSAs). Each major government department was given its own PSA setting out clear targets for achievements in terms of public service improvements.The 1998 CSR also introduced the DEL/ AME framework for the control of public spending, and made other framework changes. Building on the investment and reforms delivered by the 1998 CSR, successive spending reviews in 2000, 2002 and 2004 have:"provided significant increase in resources for the Government’s priorities, in particular health and education, and cross-cutting themes such as raising productivity; extending opportunity; and building strong and secure communities;" "enabled the Government significantly to increase investment in public assets and address the legacy of under investment from past decades. Departmental Investment Strategies were introduced in SR2000. As a result there has been a steady increase in public sector net investment from less than ¾ of a per cent of GDP in 1997-98 to 2¼ per cent of GDP in 2005-06, providing better infrastructure across public services;" "introduced further refinements to the performance management framework. PSA targets have been reduced in number over successive spending reviews from around 300 to 110 to give greater focus to the Government’s highest priorities. The targets have become increasingly outcome-focused to deliver further improvements in key areas of public service delivery across Government. They have also been refined in line with the conclusions of the Devolving Decision Making Review to provide a framework which encourages greater devolution and local flexibility. Technical Notes were introduced in SR2000 explaining how performance against each PSA target will be measured; and"not only allocated near cash spending to departments, but also – since SR2002 - set Resource DEL plans for non cash spending.To identify what further investments and reforms are needed to equip the UK for the global challenges of the decade ahead, on 19 July 2005 the Chief Secretary to the Treasury announced that the Government intends to launch a second Comprehensive Spending Review (CSR) reporting in 2007.A decade on from the first CSR, the 2007 CSR will represent a long-term and fundamental review of government expenditure. It will cover departmental allocations for 2008-09, 2009-10 and 2010 11. Allocations for 2007-08 will be held to the agreed figures already announced by the 2004 Spending Review. To provide a rigorous analytical framework for these departmental allocations, the Government will be taking forward a programme of preparatory work over 2006 involving:"an assessment of what the sustained increases in spending and reforms to public service delivery have achieved since the first CSR. The assessment will inform the setting of new objectives for the decade ahead;" "an examination of the key long-term trends and challenges that will shape the next decade – including demographic and socio-economic change, globalisation, climate and environmental change, global insecurity and technological change – together with an assessment of how public services will need to respond;" "to release the resources needed to address these challenges, and to continue to secure maximum value for money from public spending over the CSR period, a set of zero-based reviews of departments’ baseline expenditure to assess its effectiveness in delivering the Government’s long-term objectives; together with"further development of the efficiency programme, building on the cross cutting areas identified in the Gershon Review, to embed and extend ongoing efficiency savings into departmental expenditure planning.The 2007 CSR also offers the opportunity to continue to refine the PSA framework so that it drives effective delivery and the attainment of ambitious national standards.Public Service Agreements (PSAs) were introduced in the 1998 CSR. They set out agreed targets detailing the outputs and outcomes departments are expected to deliver with the resources allocated to them. The new spending regime places a strong emphasis on outcome targets, for example in providing for better health and higher educational standards or service standards. The introduction in SR2004 of PSA ‘standards’ will ensure that high standards in priority areas are maintained.The Government monitors progress against PSA targets, and departments report in detail twice a year in their annual Departmental Reports (published in spring) and in their autumn performance reports. These reports provide Parliament and the public with regular updates on departments’ performance against their targets.Technical Notes explain how performance against each PSA target will be measured.To make the most of both new investment and existing assets, there needs to be a coherent long term strategy against which investment decisions are taken. Departmental Investment Strategies (DIS) set out each department's plans to deliver the scale and quality of capital stock needed to underpin its objectives. The DIS includes information about the department's existing capital stock and future plans for that stock, as well as plans for new investment. It also sets out the systems that the department has in place to ensure that it delivers its capital programmes effectively.This document was updated on 19 December 2005.Near-cash resource expenditure that has a related cash implication, even though the timing of the cash payment may be slightly different. For example, expenditure on gas or electricity supply is incurred as the fuel is used, though the cash payment might be made in arrears on aquarterly basis. Other examples of near-cash expenditure are: pay, rental.Net cash requirement the upper limit agreed by Parliament on the cash which a department may draw from theConsolidated Fund to finance the expenditure within the ambit of its Request forResources. It is equal to the agreed amount of net resources and net capital less non-cashitems and working capital.Non-cash cost costs where there is no cash transaction but which are included in a body’s accounts (or taken into account in charging for a service) to establish the true cost of all the resourcesused.Non-departmental a body which has a role in the processes of government, but is not a government public body, NDPBdepartment or part of one. NDPBs accordingly operate at arm’s length from governmentMinisters.Notional cost of a cost which is taken into account in setting fees and charges to improve comparability with insuranceprivate sector service providers.The charge takes account of the fact that public bodies donot generally pay an insurance premium to a commercial insurer.the independent body responsible for collecting and publishing official statistics about theUK’s society and economy. (At the time of going to print legislation was progressing tochange this body to the Statistics Board).Office of Government an office of the Treasury, with a status similar to that of an agency, which aims to maximise Commerce, OGCthe government’s purchasing power for routine items and combine professional expertiseto bear on capital projects.Office of the the government department responsible for discharging the Paymaster General’s statutoryPaymaster General,responsibilities to hold accounts and make payments for government departments and OPGother public bodies.Orange bookthe informal title for Management of Risks: Principles and Concepts, which is published by theTreasury for the guidance of public sector bodies.Office for NationalStatistics, ONS60Managing Public Money————————————————————————————————————————"GLOSSARYOverdraftan account with a negative balance.Parliament’s formal agreement to authorise an activity or expenditure.Prerogative powerspowers exercisable under the Royal Prerogative, ie powers which are unique to the Crown,as contrasted with common-law powers which may be available to the Crown on the samebasis as to natural persons.Primary legislationActs which have been passed by the Westminster Parliament and, where they haveappropriate powers, the Scottish Parliament and the Northern Ireland Assembly. Begin asBills until they have received Royal Assent.arrangements under which a public sector organisation contracts with a private sectorentity to construct a facility and provide associated services of a specified quality over asustained period. See annex 7.5.Proprietythe principle that patterns of resource consumption should respect Parliament’s intentions,conventions and control procedures, including any laid down by the PAC. See box 2.4.Public Accountssee Committee of Public Accounts.CommitteePublic corporationa trading body controlled by central government, local authority or other publiccorporation that has substantial day to day operating independence. See section 7.8.Public Dividend finance provided by government to public sector bodies as an equity stake; an alternative to Capital, PDCloan finance.Public Service sets out what the public can expect the government to deliver with its resources. EveryAgreement, PSAlarge government department has PSA(s) which specify deliverables as targets or aimsrelated to objectives.a structured arrangement between a public sector and a private sector organisation tosecure an outcome delivering good value for money for the public sector. It is classified tothe public or private sector according to which has more control.Rate of returnthe financial remuneration delivered by a particular project or enterprise, expressed as apercentage of the net assets employed.Regularitythe principle that resource consumption should accord with the relevant legislation, therelevant delegated authority and this document. See box 2.4.Request for the functional level into which departmental Estimates may be split. RfRs contain a number Resources, RfRof functions being carried out by the department in pursuit of one or more of thatdepartment’s objectives.Resource accountan accruals account produced in line with the Financial Reporting Manual (FReM).Resource accountingthe system under which budgets, Estimates and accounts are constructed in a similar wayto commercial audited accounts, so that both plans and records of expenditure allow in fullfor the goods and services which are to be, or have been, consumed – ie not just the cashexpended.Resource budgetthe means by which the government plans and controls the expenditure of resources tomeet its objectives.Restitutiona legal concept which allows money and property to be returned to its rightful owner. Ittypically operates where another person can be said to have been unjustly enriched byreceiving such monies.Return on capital the ratio of profit to capital employed of an accounting entity during an identified period.employed, ROCEVarious measures of profit and of capital employed may be used in calculating the ratio.Public Privatepartnership, PPPPrivate Finance Initiative, PFIParliamentaryauthority61Managing Public Money"————————————————————————————————————————GLOSSARYRoyal charterthe document setting out the powers and constitution of a corporation established underprerogative power of the monarch acting on Privy Council advice.Second readingthe second formal time that a House of Parliament may debate a bill, although in practicethe first substantive debate on its content. If successful, it is deemed to denoteParliamentary approval of the principle of the proposed legislation.Secondary legislationlaws, including orders and regulations, which are made using powers in primary legislation.Normally used to set out technical and administrative provision in greater detail thanprimary legislation, they are subject to a less intense level of scrutiny in Parliament.European legislation is,however,often implemented in secondary legislation using powers inthe European Communities Act 1972.Service-level agreement between parties, setting out in detail the level of service to be performed.agreementWhere agreements are between central government bodies, they are not legally a contractbut have a similar function.Shareholder Executive a body created to improve the government’s performance as a shareholder in businesses.Spending reviewsets out the key improvements in public services that the public can expect over a givenperiod. It includes a thorough review of departmental aims and objectives to find the bestway of delivering the government’s objectives, and sets out the spending plans for the givenperiod.State aidstate support for a domestic body or company which could distort EU competition and sois not usually allowed. See annex 4.9.Statement of Excessa formal statement detailing departments’ overspends prepared by the Comptroller andAuditor General as a result of undertaking annual audits.Statement on Internal an annual statement that Accounting Officers are required to make as part of the accounts Control, SICon a range of risk and control issues.Subheadindividual elements of departmental expenditure identifiable in Estimates as single cells, forexample cell A1 being administration costs within a particular line of departmental spending.Supplyresources voted by Parliament in response to Estimates, for expenditure by governmentdepartments.Supply Estimatesa statement of the resources the government needs in the coming financial year, and forwhat purpose(s), by which Parliamentary authority is sought for the planned level ofexpenditure and income.Target rate of returnthe rate of return required of a project or enterprise over a given period, usually at least a year.Third sectorprivate sector bodies which do not act commercially,including charities,social and voluntaryorganisations and other not-for-profit collectives. See annex 7.7.Total Managed a Treasury budgeting term which covers all current and capital spending carried out by the Expenditure,TMEpublic sector (ie not just by central departments).Trading fundan organisation (either within a government department or forming one) which is largely orwholly financed from commercial revenue generated by its activities. Its Estimate shows itsnet impact, allowing its income from receipts to be devoted entirely to its business.Treasury Minutea formal administrative document drawn up by the Treasury, which may serve a wide varietyof purposes including seeking Parliamentary approval for the use of receipts asappropriations in aid, a remission of some or all of the principal of voted loans, andresponding on behalf of the government to reports by the Public Accounts Committee(PAC).62Managing Public Money————————————————————————————————————————GLOSSARY63Managing Public MoneyValue for moneythe process under which organisation’s procurement, projects and processes aresystematically evaluated and assessed to provide confidence about suitability, effectiveness,prudence,quality,value and avoidance of error and other waste,judged for the public sectoras a whole.Virementthe process through which funds are moved between subheads such that additionalexpenditure on one is met by savings on one or more others.Votethe process by which Parliament approves funds in response to supply Estimates.Voted expenditureprovision for expenditure that has been authorised by Parliament. Parliament ‘votes’authority for public expenditure through the Supply Estimates process. Most expenditureby central government departments is authorised in this way.Wider market activity activities undertaken by central government organisations outside their statutory duties,using spare capacity and aimed at generating a commercial profit. See annex 7.6.Windfallmonies received by a department which were not anticipated in the spending review.————————————————————————————————————————
- 1
- 2
См. также в других словарях:
technological fix — or technological optimum noun (often used pejoratively) the reliance on technological processes and developments to solve human problems • • • Main Entry: ↑technology … Useful english dictionary
technological optimum — technological fix or technological optimum noun (often used pejoratively) the reliance on technological processes and developments to solve human problems • • • Main Entry: ↑technology … Useful english dictionary
technological process — 1) a way of applying science to achieve a practical end. 2) the active state of technology occurring at many levels of complexity. Technological activity employs all types and levels of technological knowledge, and consumes technological… … Mechanics glossary
Technological Genre — Technology Genré is an Australian expression based on the notion that all technologies present a basic repeatable pattern of essential elements known as the elements of technacy, and that similar configurations of elements that create similar… … Wikipedia
Technological and industrial history of the United States — The technological and industrial history of the United States describes the United States emergence as one of the largest nations in the world as well as the most technologically powerful nation in the world. The availability of land and labor,… … Wikipedia
Technological and industrial history of Canada — The technological and industrial history of Canada encompasses the country s development in the areas of transportation, communication, energy, materials, public works, public services (health care), domestic/consumer and defense technologies.… … Wikipedia
Technological change — Original model of three phases of the process of Technological Change Technological change (TC) is a term that is used to describe the overall process of invention, innovation and diffusion of technology or processes[1][2]. Th … Wikipedia
technological — also technologic adjective Date: 1800 1. of, relating to, or characterized by technology < technological advances > 2. resulting from improvements in technical processes that increase productivity of machines and eliminates manual operations or… … New Collegiate Dictionary
Technological Institute of Textile & Sciences — The Technological Institute of Textile Sciences (TITS), founded in 1943, is a postsecondary school in India which offers engineering programs and post graduate programs.Infobox University name = TITS Bhiwani established = 1943 director = Dr.… … Wikipedia
technological forecasting — techniques for forecasting developments that aids in creating financial strategies, expectation for processes and trends in the development of production and marketing … English contemporary dictionary
Framework Programmes for Research and Technological Development — The Framework Programmes for Research and Technological Development, also called Framework Programmes or abbreviated FP1 through FP8, are funding programmes created by the European Union in order to support and encourage research in the European… … Wikipedia