Перевод: со всех языков на английский

с английского на все языки

successful+result

  • 101 Field, Cyrus West

    SUBJECT AREA: Telecommunications
    [br]
    b. 30 November 1819 Stockbridge, Massachusetts, USA
    d. 12 July 1892 New York City, New York, USA
    [br]
    American financier and entrepreneur noted for his successful promotion of the first transatlantic telegraph cable.
    [br]
    At the age of 15 Field left home to seek his fortune in New York, starting work on Broadway as an errand boy for $1 per week. Returning to Massachusetts, in 1838 he became an assistant to his brother Matthew, a paper-maker, leaving to set up his own business two years later. By the age of 21 he was also a partner in a New York firm of paper wholesalers, but this firm collapsed because of large debts. Out of the wreckage he set up Cyrus W.Field \& Co., and by 1852 he had paid off all the debts. With $250,000 in the bank he therefore retired and travelled in South America. Returning to the USA, he then became involved with the construction of a telegraph line in Newfoundland by an English engineer, F.N. Osborne. Although the company collapsed, he had been fired by the dream of a transatlantic cable and in 1854 was one of the founders of the New York, Newfoundland and London Telegraph Company. He began to promote surveys and hold discussions with British telegraph pioneers and with Isambard Brunel, who was then building the Great Eastern steamship. In 1856 he helped to set up the Atlantic Telegraph Company in Britain and, as a result of his efforts and those of the British physicist and inventor Sir William Thomson (Lord Kelvin), work began in 1857 on the laying of the first transatlantic cable from Newfoundland to Ireland. After many tribulations the cable was completed on 5 August 1857, but it failed after barely a month. Following several unsuccessful attempts to repair and replace it, the cable was finally completed on 27 July 1866. Building upon his success, Field expanded his business interests. In 1877 he bought a controlling interest in and was President of the New York Elevated Railroad Company. He also helped develop the Wabash Railroad and became owner of the New York Mail and Express newspaper; however, he subsequently suffered large financial losses.
    [br]
    Principal Honours and Distinctions
    Congressional Gold Medal.
    Further Reading
    A.C.Clarke, 1958, Voice Across the Sea, London: Frederick Muller (describes the development of the transatlantic telegraph).
    H.M.Field, 1893, Story of the Atlantic Telegraph (also describes the transatlantic telegraph development).
    L.J.Judson (ed.), 1893, Cyrus W.Field: His Life and Work (a complete biography).
    KF

    Biographical history of technology > Field, Cyrus West

  • 102 Jobs, Steven Paul

    [br]
    b. 24 February 1955 San Francisco, California, USA
    [br]
    American engineer who, with Stephen Wozniak, built the first home computer.
    [br]
    Moving with his family to Mountain View, Palo Alto, in 1960, Jobs entered Homestead High School, Cupertino, in 1968. At about the same time he joined the Explorers' Club for young engineers set up by Hewlett-Packard Company. As a result of this contact, three years later he met up with Stephen Wozniak, who was working at Hewlett-Packard and helped him with the construction of the first home computer based on the 8-bit MOS Technology 6502 microprocessor. In 1973 he went to Reid College, Portland, Oregon, to study engineering, but he dropped out in the second semester and spent time in India. On his return he obtained a job with Atari to design video games, but he soon met up again with Wozniak, who had been unable to interest Hewlett-Packard in commercial development of his home computer. Together they therefore founded Apple Computer Company to make and market it, and found a willing buyer in the Byte Shop chain store. The venture proved successful, and with the help of a financial backer, Mike Markkula, a second version, the Apple II, was developed in 1976. With Jobs as Chairman, the company experienced a phenomenal growth and by 1983 had 4,700 employees and an annual turnover of US$983 million. The company then began to run into difficulties and John Sculley, a former president of Pepsi-Cola, was brought in to manage the business while Jobs concentrated on developing new computers, including the Apple Macintosh. Eventually a power struggle developed, and with Sculley now Chairman and Chief Executive, Jobs resigned in 1985 to set up his own computer company, NeXt.
    [br]
    Principal Honours and Distinctions
    First National Technology Medal (with Wozniak) 1985.
    Further Reading
    J.S.Young, 1988, Steve Jobs: The Journey is the Reward: Scott Foresman \& Co. (includes a biography and a detailed account of Apple Company).
    M.Moritz, 1984, The Little Kingdom. The Private Story of Apple Computers.
    KF

    Biographical history of technology > Jobs, Steven Paul

  • 103 Land, Edwin Herbert

    [br]
    b. 7 May 1909 Bridgeport, Connecticut, USA
    d. 1 March 1991 Cambridge, Massachusetts, USA
    [br]
    American scientist and inventor of the Polaroid instant-picture process.
    [br]
    Edwin Land's career began when, as a Harvard undergraduate in the late 1920s, he became interested in the possibility of developing a polarizing filter in the form of a thin sheet, to replace the crystal and stacked-glass devices then in use, which were expensive, cumbersome and limited in size. He succeeded in creating a material in which minute anisotropic iodine crystals were oriented in line, producing an efficient polarizer that was patented in 1929. After presenting the result of his researches in a Physics Department colloquium at Harvard, he left to form a partnership with George Wheelwright to manufacture the new material, which was seen to have applications as diverse as anti-glare car headlights, sunglasses, and viewing filters for stereoscopic photographs and films. In 1937 he founded the Polaroid Corporation and developed the Vectograph process, in which self-polarized photographic images could be printed, giving a stereoscopic image when viewed through polarizing viewers. Land's most significant invention, the instant picture, was stimulated by his three-year-old daughter. As he took a snapshot of her, she asked why she could not see the picture at once. He began to research the possibility, and on 21 February 1947 he demonstrated a system of one-step photography at a meeting of the Optical Society of America. Using the principle of diffusion transfer of the image, it produced a photograph in one minute. The Polaroid Land camera was launched on 26 November 1948. The original sepia-coloured images were soon replaced by black and white and, in 1963, by Polacolor instant colour film. The original peel-apart "wet" process was superseded in 1972 with the introduction of the SX-70 camera with dry picture units which developed in the light. The instant colour movie system Polavision, introduced in 1978, was less successful and was one of his few commercial failures.
    Land died in March 1991, after a career in which he had been honoured by countless scien-tific and academic bodies and had received the Medal of Freedom, the highest civilian honour in America.
    [br]
    Principal Honours and Distinctions
    Medal of Freedom.
    BC

    Biographical history of technology > Land, Edwin Herbert

  • 104 Lombe, John

    SUBJECT AREA: Textiles
    [br]
    b. c. 1693 probably Norwich, England
    d. 20 November 1722 Derby, England
    [br]
    English creator of the first successful powered textile mill in Britain.
    [br]
    John Lombe's father, Henry Lombe, was a worsted weaver who married twice. John was the second son of the second marriage and was still a baby when his father died in 1695. John, a native of the Eastern Counties, was apprenticed to a trade and employed by Thomas Cotchett in the erection of Cotchett's silk mill at Derby, which soon failed however. Lombe went to Italy, or was sent there by his elder half-brother, Thomas, to discover the secrets of their throwing machinery while employed in a silk mill in Piedmont. He returned to England in 1716 or 1717, bringing with him two expert Italian workmen.
    Thomas Lombe was a prosperous London merchant who financed the construction of a new water-powered silk mill at Derby which is said to have cost over £30,000. John arranged with the town Corporation for the lease of the island in the River Derwent, where Cotchett had erected his mill. During the four years of its construction, John first set up the throwing machines in other parts of the town. The machines were driven manually there, and their product helped to defray the costs of the mill. The silk-throwing machine was very complex. The water wheel powered a horizontal shaft that was under the floor and on which were placed gearwheels to drive vertical shafts upwards through the different floors. The throwing machines were circular, with the vertical shafts running through the middle. The doubled silk threads had previously been wound on bobbins which were placed on spindles with wire flyers at intervals around the outer circumference of the machine. The bobbins were free to rotate on the spindles while the spindles and flyers were driven by the periphery of a horizontal wheel fixed to the vertical shaft. Another horizontal wheel set a little above the first turned the starwheels, to which were attached reels for winding the silk off the bobbins below. Three or four sets of these spindles and reels were placed above each other on the same driving shaft. The machine was very complicated for the time and must have been expensive to build and maintain.
    John lived just long enough to see the mill in operation, for he died in 1722 after a painful illness said to have been the result of poison administered by an Italian woman in revenge for his having stolen the invention and for the injury he was causing the Italian trade. The funeral was said to have been the most superb ever known in Derby.
    [br]
    Further Reading
    Samuel Smiles, 1890, Men of Invention and Industry, London (probably the only biography of John Lombe).
    Rhys Jenkins, 1933–4, "Historical notes on some Derbyshire industries", Transactions of the Newcomen Society 14 (provides an acount of John Lombe and his part in the enterprise at Derby).
    R.L.Hills, 1970, Power in the Industrial Revolution, Manchester (briefly covers the development of early silk-throwing mills).
    W.English, 1969, The Textile Industry, London (includes a chapter on "Lombe's Silk Machine").
    P.Barlow, 1836, Treatise of Manufactures and Machinery of Great Britain, London (describes Lombe's mill and machinery, but it is not known how accurate the account may be).
    RLH

    Biographical history of technology > Lombe, John

  • 105 Macintosh, Charles

    [br]
    b. 29 December 1766 Glasgow, Scotland
    d. 25 July 1843 Dunchattan, near Glasgow, Scotland
    [br]
    Scottish inventor of rubberized waterproof clothing.
    [br]
    As the son of the well-known and inventive dyer George Macintosh, Charles had an early interest in chemistry. At the age of 19 he gave up his work as a clerk with a Glasgow merchant to manufacture sal ammoniac (ammonium chloride) and developed new processes in dyeing. In 1797 he started the first Scottish alum works, finding the alum in waste shale from coal mines. His first works was at Hurlet, Renfrewshire, and was followed later by others. He then formed a partnership with Charles Tennant, the proprietor of a chemical works at St Rollox, near Glasgow, and sold "lime bleaching liquor" made with chlorine and milk of lime from their bleach works at Darnley. A year later the use of dry lime to make bleaching powder, a process worked out by Macintosh, was patented. Macintosh remained associated with Tennant's St Rollox chemical works until 1814. During this time, in 1809, he had set up a yeast factory, but it failed because of opposition from the London brewers.
    There was a steady demand for the ammonia that gas works produced, but the tar was often looked upon as an inconvenient waste product. Macintosh bought all the ammonia and tar that the Glasgow works produced, using the ammonia in his establishment to produce cudbear, a dyestuff extracted from various lichens. Cudbear could be used with appropriate mordants to make shades from pink to blue. The tar could be distilled to produce naphtha, which was used as a flare. Macintosh also became interested in ironmaking. In 1825 he took out a patent for converting malleable iron into steel by taking it to white heat in a current of gas with a carbon content, such as coal gas. However, the process was not commercially successful because of the difficulty keeping the furnace gas-tight. In 1828 he assisted J.B. Neilson in bringing hot blast into use in blast furnaces; Neilson assigned Macintosh a share in the patent, which was of dubious benefit as it involved him in the tortuous litigation that surrounded the patent until 1843.
    In June 1823, as a result of experiments into the possible uses of naphtha obtained as a by-product of the distillation of coal tar, Macintosh patented his process for waterproofing fabric. This comprised dissolving rubber in naphtha and applying the solution to two pieces of cloth which were afterwards pressed together to form an impermeable compound fabric. After an experimental period in Glasgow, Macintosh commenced manufacture in Manchester, where he formed a partnership with H.H.Birley, B.Kirk and R.W.Barton. Birley was a cotton spinner and weaver and was looking for ways to extend the output of his cloth. He was amongst the first to light his mills with gas, so he shared a common interest with Macintosh.
    New buildings were erected for the production of waterproof cloth in 1824–5, but there were considerable teething troubles with the process, particularly in the spreading of the rubber solution onto the cloth. Peter Ewart helped to install the machinery, including a steam engine supplied by Boulton \& Watt, and the naphtha was supplied from Macintosh's works in Glasgow. It seems that the process was still giving difficulties when Thomas Hancock, the foremost rubber technologist of that time, became involved in 1830 and was made a partner in 1834. By 1836 the waterproof coat was being called a "mackintosh" [sic] and was gaining such popularity that the Manchester business was expanded with additional premises. Macintosh's business was gradually enlarged to include many other kinds of indiarubber products, such as rubber shoes and cushions.
    [br]
    Principal Honours and Distinctions
    FRS 1823.
    Further Reading
    G.Macintosh, 1847, Memoir of Charles Macintosh, London (the fullest account of Charles Macintosh's life).
    H.Schurer, 1953, "The macintosh: the paternity of an invention", Transactions of the Newcomen Society 28:77–87 (an account of the invention of the mackintosh).
    RLH / LRD

    Biographical history of technology > Macintosh, Charles

  • 106 Marconi, Marchese Guglielmo

    [br]
    b. 25 April 1874 Bologna, Italy
    d. 20 July 1937 Rome, Italy
    [br]
    Italian radio pioneer whose inventiveness and business skills made radio communication a practical proposition.
    [br]
    Marconi was educated in physics at Leghorn and at Bologna University. An avid experimenter, he worked in his parents' attic and, almost certainly aware of the recent work of Hertz and others, soon improved the performance of coherers and spark-gap transmitters. He also discovered for himself the use of earthing and of elevated metal plates as aerials. In 1895 he succeeded in transmitting telegraphy over a distance of 2 km (1¼ miles), but the Italian Telegraph authority rejected his invention, so in 1896 he moved to England, where he filed the first of many patents. There he gained the support of the Chief Engineer of the Post Office, and by the following year he had achieved communication across the Bristol Channel.
    The British Post Office was also slow to take up his work, so in 1897 he formed the Wireless Telegraph \& Signal Company to work independently. In 1898 he sold some equipment to the British Army for use in the Boer War and established the first permanent radio link from the Isle of Wight to the mainland. In 1899 he achieved communication across the English Channel (a distance of more than 31 miles or 50 km), the construction of a wireless station at Spezia, Italy, and the equipping of two US ships to report progress in the America's Cup yacht race, a venture that led to the formation of the American Marconi Company. In 1900 he won a contract from the British Admiralty to sell equipment and to train operators. Realizing that his business would be much more successful if he could offer his customers a complete radio-communication service (known today as a "turnkey" deal), he floated a new company, the Marconi International Marine Communications Company, while the old company became the Marconi Wireless Telegraph Company.
    His greatest achievement occurred on 12 December 1901, when Morse telegraph signals from a transmitter at Poldhu in Cornwall were received at St John's, Newfoundland, a distance of some 2,100 miles (3,400 km), with the use of an aerial flown by a kite. As a result of this, Marconi's business prospered and he became internationally famous, receiving many honours for his endeavours, including the Nobel Prize for Physics in 1909. In 1904, radio was first used to provide a daily bulletin at sea, and in 1907 a transatlantic wireless telegraphy service was inaugurated. The rescue of 1,650 passengers from the shipwreck of SS Republic in 1909 was the first of many occasions when wireless was instrumental in saving lives at sea, most notable being those from the Titanic on its maiden voyage in April 1912; more lives would have been saved had there been sufficient lifeboats. Marconi was one of those who subsequently pressed for greater safety at sea. In 1910 he demonstrated the reception of long (8 km or 5 miles) waves from Ireland in Buenos Aires, but after the First World War he began to develop the use of short waves, which were more effectively reflected by the ionosphere. By 1918 the first link between England and Australia had been established, and in 1924 he was awarded a Post Office contract for short-wave communication between England and the various parts of the British Empire.
    With his achievements by then recognized by the Italian Government, in 1915 he was appointed Radio-Communications Adviser to the Italian armed forces, and in 1919 he was an Italian delegate to the Paris Peace Conference. From 1921 he lived on his yacht, the Elettra, and although he joined the Fascist Party in 1923, he later had reservations about Mussolini.
    [br]
    Principal Honours and Distinctions
    Nobel Prize for Physics (jointly with K.F. Braun) 1909. Russian Order of S t Anne. Commander of St Maurice and St Lazarus. Grand Cross of the Order of the Crown (i.e. Knight) of Italy 1902. Freedom of Rome 1903. Honorary DSc Oxford. Honorary LLD Glasgow. Chevalier of the Civil Order of Savoy 1905. Royal Society of Arts Albert Medal. Honorary knighthood (GCVO) 1914. Institute of Electrical and Electronics Engineers Medal of Honour 1920. Chairman, Royal Society of Arts 1924. Created Marquis (Marchese) 1929. Nominated to the Italian Senate 1929. President, Italian Academy 1930. Rector, University of St Andrews, Scotland, 1934.
    Bibliography
    1896, "Improvements in transmitting electrical impulses and in apparatus thereof", British patent no. 12,039.
    1 June 1898, British patent no. 12,326 (transformer or "jigger" resonant circuit).
    1901, British patent no. 7,777 (selective tuning).
    1904, British patent no. 763,772 ("four circuit" tuning arrangement).
    Further Reading
    D.Marconi, 1962, My Father, Marconi.
    W.J.Baker, 1970, A History of the Marconi Company, London: Methuen.
    KF

    Biographical history of technology > Marconi, Marchese Guglielmo

  • 107 McCormick, Cyrus

    [br]
    b. 1809 Walnut Grove, Virginia, USA
    d. 1884 USA
    [br]
    American inventor of the first functionally and commercially successful reaping machine; founder of the McCormick Company, which was to become one of the founding companies of International Harvester.
    [br]
    Cyrus McCormick's father, a farmer, began to experiment unsuccessfully with a harvesting machine between 1809 and 1816. His son took up the challenge and gave his first public demonstration of his machine in 1831. It cut a 4 ft swathe, but, wanting to perfect the machine, he waited until 1834 before patenting it, by which time he felt that his invention was threatened by others of similar design. In the same year he entered an article in the Mechanics Magazine, warning competitors off his design. His main rival was Obed Hussey who contested McCormick's claim to the originality of the idea, having patented his own machine six months before McCormick.
    A competition between the two machines was held in 1843, the judges favouring McCormick's, even after additional trials were conducted after objections of unfairness from Hussey. The rivalry continued over a number of years, being avidly reported in the agricultural press. The publicity did no harm to reaper sales, and McCormick sold twenty-nine machines in 1843 and fifty the following year.
    As the westward settlement movement progressed, so the demand for McCormick's machine grew. In order to be more central to his markets, McCormick established himself in Chicago. In partnership with C.M.Gray he established a factory to produce 500 harvesters for the 1848 season. By means of advertising and offers of credit terms, as well as production-line assembly, McCormick was able to establish himself as sole owner and also control all production, under the one roof. By the end of the decade he dominated reaper production but other developments were to threaten this position; however, foreign markets were appearing at the same time, not least the opportunities of European sales stimulated by the Great Exhibition in 1851. In the trials arranged by the Royal Agricultural Society of England the McCormick machine significantly outperformed that of Hussey's, and as a result McCormick arranged for 500 to be made under licence in England.
    In 1874 McCormick bought a half interest in the patent for a wire binder from Charles Withington, a watchmaker from Janesville, Wisconsin, and by 1885 a total of 50,000 wire binders had been built in Chicago. By 1881 McCormick was producing twine binders using Appleby's twine knotter under a licence agreement, and by 1885 the company was producing only twine binders. The McCormick Company was one of the co-founders of the International Harvester Company in 1901.
    [br]
    Bibliography
    1972, The Century of the Reaper, Johnson Reprint (the original is in the New York State Library).
    Further Reading
    Graeme Quick and Wesley Buchele, 1978, The Grain Harvesters, American Society of Agricultural Engineers (deals in detail with McCormick's developments).
    G.H.Wendell, 1981, 150 Years of International Harvester, Crestlink (though more concerned with the machinery produced by International Harvester, it gives an account of its originating companies).
    T.W.Hutchinson, 1930, Cyrus Hall McCormick, Seedtime 1809–1856; ——1935, Cyrus Hall McCormick, Harvest 1856–1884 (both attempt to unravel the many claims surrounding the reaper story).
    Herbert N.Casson, 1908, The Romance of the Reaper, Doubleday Page (deals with McCormick, Deering and the formation of International Harvester).
    AP

    Biographical history of technology > McCormick, Cyrus

  • 108 Morse, Samuel Finley Breeze

    SUBJECT AREA: Telecommunications
    [br]
    b. 27 April 1791 Charlestown, Massachusetts, USA
    d. 2 April 1872 New York City, New York, USA
    [br]
    American portrait painter and inventor, b est known for his invention of the telegraph and so-called Morse code.
    [br]
    Following early education at Phillips Academy, Andover, at the age of 14 years Morse went to Yale College, where he developed interests in painting and electricity. Upon graduating in 1810 he became a clerk to a Washington publisher and a pupil of Washington Allston, a well-known American painter. The following year he travelled to Europe and entered the London studio of another American artist, Benjamin West, successfully exhibiting at the Royal Academy as well as winning a prize and medal for his sculpture. Returning to Boston and finding little success as a "historical-style" painter, he built up a thriving portrait business, moving in 1818 to Charleston, South Carolina, where three years later he established the (now defunct) South Carolina Academy of Fine Arts. In 1825 he was back in New York, but following the death of his wife and both of his parents that year, he embarked on an extended tour of European art galleries. In 1832, on the boat back to America, he met Charles T.Jackson, who told him of the discovery of the electromagnet and fired his interest in telegraphy to the extent that Morse immediately began to make suggestions for electrical communications and, apparently, devised a form of printing telegraph. Although he returned to his painting and in 1835 was appointed the first Professor of the Literature of Art and Design at the University of New York City, he began to spend more and more time experimenting in telegraphy. In 1836 he invented a relay as a means of extending the cable distance over which telegraph signals could be sent. At this time he became acquainted with Alfred Vail, and the following year, when the US government published the requirements for a national telegraph service, they set out to produce a workable system, with finance provided by Vail's father (who, usefully, owned an ironworks). A patent was filed on 6 October 1837 and a successful demonstration using the so-called Morse code was given on 6 January 1838; the work was, in fact, almost certainly largely that of Vail. As a result of the demonstration a Bill was put forward to Congress for $30,000 for an experimental line between Washington and Baltimore. This was eventually passed and the line was completed, and on 24 May 1844 the first message, "What hath God wrought", was sent between the two cities. In the meantime Morse also worked on the insulation of submarine cables by means of pitch tar and indiarubber.
    With success achieved, Morse offered his invention to the Government for $100,000, but this was declined, so the invention remained in private hands. To exploit it, Morse founded the Magnetic Telephone Company in 1845, amalgamating the following year with the telegraph company of a Henry O'Reilly to form Western Union. Having failed to obtain patents in Europe, he now found himself in litigation with others in the USA, but eventually, in 1854, the US Supreme Court decided in his favour and he soon became very wealthy. In 1857 a proposal was made for a telegraph service across the whole of the USA; this was completed in just over four months in 1861. Four years later work began on a link to Europe via Canada, Alaska, the Aleutian Islands and Russia, but it was abandoned with the completion of the transatlantic cable, a venture in which he also had some involvement. Showered with honours, Morse became a generous philanthropist in his later years. By 1883 the company he had created was worth $80 million and had a virtual monopoly in the USA.
    [br]
    Principal Honours and Distinctions
    LLD, Yale 1846. Fellow of the Academy of Arts and Sciences 1849. Celebratory Banquet, New York, 1869. Statue in New York Central Park 1871. Austrian Gold Medal of Scientific Merit. Danish Knight of the Danneborg. French Légion d'honneur. Italian Knight of St Lazaro and Mauritio. Portuguese Knight of the Tower and Sword. Turkish Order of Glory.
    Bibliography
    E.L.Morse (ed.), 1975, Letters and Journals, New York: Da Capo Press (facsimile of a 1914 edition).
    Further Reading
    J.Munro, 1891, Heroes of the Telegraph (discusses his telegraphic work and its context).
    C.Mabee, 1943, The American Leonardo: A Life of Samuel Morse; reprinted 1969 (a detailed biography).
    KF

    Biographical history of technology > Morse, Samuel Finley Breeze

  • 109 Nobel, Immanuel

    [br]
    b. 1801 Gävle, Sweden
    d. 3 September 1872 Stockholm, Sweden
    [br]
    Swedish inventor and industrialist, particularly noted for his work on mines and explosives.
    [br]
    The son of a barber-surgeon who deserted his family to serve in the Swedish army, Nobel showed little interest in academic pursuits as a child and was sent to sea at the age of 16, but jumped ship in Egypt and was eventually employed as an architect by the pasha. Returning to Sweden, he won a scholarship to the Stockholm School of Architecture, where he studied from 1821 to 1825 and was awarded a number of prizes. His interest then leaned towards mechanical matters and he transferred to the Stockholm School of Engineering. Designs for linen-finishing machines won him a prize there, and he also patented a means of transforming rotary into reciprocating movement. He then entered the real-estate business and was successful until a fire in 1833 destroyed his house and everything he owned. By this time he had married and had two sons, with a third, Alfred (of Nobel Prize fame; see Alfred Nobel), on the way. Moving to more modest quarters on the outskirts of Stockholm, Immanuel resumed his inventions, concentrating largely on India rubber, which he applied to surgical instruments and military equipment, including a rubber knapsack.
    It was talk of plans to construct a canal at Suez that first excited his interest in explosives. He saw them as a means of making mining more efficient and began to experiment in his backyard. However, this made him unpopular with his neighbours, and the city authorities ordered him to cease his investigations. By this time he was deeply in debt and in 1837 moved to Finland, leaving his family in Stockholm. He hoped to interest the Russians in land and sea mines and, after some four years, succeeded in obtaining financial backing from the Ministry of War, enabling him to set up a foundry and arms factory in St Petersburg and to bring his family over. By 1850 he was clear of debt in Sweden and had begun to acquire a high reputation as an inventor and industrialist. His invention of the horned contact mine was to be the basic pattern of the sea mine for almost the next 100 years, but he also created and manufactured a central-heating system based on hot-water pipes. His three sons, Ludwig, Robert and Alfred, had now joined him in his business, but even so the outbreak of war with Britain and France in the Crimea placed severe pressures on him. The Russians looked to him to convert their navy from sail to steam, even though he had no experience in naval propulsion, but the aftermath of the Crimean War brought financial ruin once more to Immanuel. Amongst the reforms brought in by Tsar Alexander II was a reliance on imports to equip the armed forces, so all domestic arms contracts were abruptly cancelled, including those being undertaken by Nobel. Unable to raise money from the banks, Immanuel was forced to declare himself bankrupt and leave Russia for his native Sweden. Nobel then reverted to his study of explosives, particularly of how to adapt the then highly unstable nitroglycerine, which had first been developed by Ascanio Sobrero in 1847, for blasting and mining. Nobel believed that this could be done by mixing it with gunpowder, but could not establish the right proportions. His son Alfred pursued the matter semi-independently and eventually evolved the principle of the primary charge (and through it created the blasting cap), having taken out a patent for a nitroglycerine product in his own name; the eventual result of this was called dynamite. Father and son eventually fell out over Alfred's independent line, but worse was to follow. In September 1864 Immanuel's youngest son, Oscar, then studying chemistry at Uppsala University, was killed in an explosion in Alfred's laboratory: Immanuel suffered a stroke, but this only temporarily incapacitated him, and he continued to put forward new ideas. These included making timber a more flexible material through gluing crossed veneers under pressure and bending waste timber under steam, a concept which eventually came to fruition in the form of plywood.
    In 1868 Immanuel and Alfred were jointly awarded the prestigious Letterstedt Prize for their work on explosives, but Alfred never for-gave his father for retaining the medal without offering it to him.
    [br]
    Principal Honours and Distinctions
    Imperial Gold Medal (Russia) 1853. Swedish Academy of Science Letterstedt Prize (jointly with son Alfred) 1868.
    Bibliography
    Immanuel Nobel produced a short handwritten account of his early life 1813–37, which is now in the possession of one of his descendants. He also had published three short books during the last decade of his life— Cheap Defence of the Country's Roads (on land mines), Cheap Defence of the Archipelagos (on sea mines), and Proposal for the Country's Defence (1871)—as well as his pamphlet (1870) on making wood a more physically flexible product.
    Further Reading
    No biographies of Immanuel Nobel exist, but his life is detailed in a number of books on his son Alfred.
    CM

    Biographical history of technology > Nobel, Immanuel

  • 110 Sarnoff, David

    [br]
    b. 27 February 1891 Uzlian, Minsk (now in Belarus)
    d. 12 December 1971 New York City, New York, USA
    [br]
    Russian/American engineer who made a major contribution to the commercial development of radio and television.
    [br]
    As a Jewish boy in Russia, Sarnoff spent several years preparing to be a Talmudic Scholar, but in 1900 the family emigrated to the USA and settled in Albany, New York. While at public school and at the Pratt Institute in Brooklyn, New York, he helped the family finances by running errands, selling newspapers and singing the liturgy in the synagogue. After a short period as a messenger boy with the Commercial Cable Company, in 1906 he became an office boy with the Marconi Wireless Telegraph Company of America (see G. Marconi). Having bought a telegraph instrument with his first earnings, he taught himself Morse code and was made a junior telegraph operator in 1907. The following year he became a wireless operator at Nantucket Island, then in 1909 he became Manager of the Marconi station at Sea Gate, New York. After two years at sea he returned to a shore job as wireless operator at the world's most powerful station at Wanamaker's store in Manhattan. There, on 14 April 1912, he picked up the distress signals from the sinking iner Titanic, remaining at his post for three days.
    Rewarded by rapid promotion (Chief Radio Inspector 1913, Contract Manager 1914, Assistant Traffic Manager 1915, Commercial Manager 1917) he proposed the introduction of commercial radio broadcasting, but this received little response. Consequently, in 1919 he took the job of Commercial Manager of the newly formed Radio Corporation of America (RCA), becoming General Manager in 1921, Vice- President in 1922, Executive Vice-President in 1929 and President in 1930. In 1921 he was responsible for the broadcasting of the Dempsey-Carpentier title-fight, as a result of which RCA sold $80 million worth of radio receivers in the following three years. In 1926 he formed the National Broadcasting Company (NBC). Rightly anticipating the development of television, in 1928 he inaugurated an experimental NBC television station and in 1939 demonstrated television at the New York World Fair. Because of his involvement with the provision of radio equipment for the armed services, he was made a lieutenant-colonel in the US Signal Corps Reserves in 1924, a full colonel in 1931 and, while serving as a communications consultant to General Eisenhower during the Second World War, Brigadier General in 1944.
    With the end of the war, RCA became a major manufacturer of television receivers and then invested greatly in the ultimately successful development of shadowmask tubes and receivers for colour television. Chairman and Chief Executive from 1934, Sarnoff held the former post until his retirement in 1970.
    [br]
    Principal Honours and Distinctions
    French Croix de Chevalier d'honneur 1935, Croix d'Officier 1940, Croix de Commandant 1947. Luxembourg Order of the Oaken Crown 1960. Japanese Order of the Rising Sun 1960. US Legion of Merit 1946. UN Citation 1949. French Union of Inventors Gold Medal 1954.
    KF

    Biographical history of technology > Sarnoff, David

  • 111 Sopwith, Sir Thomas (Tommy) Octave Murdoch

    SUBJECT AREA: Aerospace
    [br]
    b. 18 January 1888 London, England
    d. 27 January 1989 Stockbridge, Hampshire, England
    [br]
    English aeronautical engineer and industrialist.
    [br]
    Son of a successful mining engineer, Sopwith did not shine at school and, having been turned down by the Royal Navy as a result, attended an engineering college. His first interest was motor cars and, while still in his teens, he set up a business in London with a friend in order to sell them; he also took part in races and rallies.
    Sopwith's interest in aviation came initially through ballooning, and in 1906 he purchased his own balloon. Four years later, inspired by the recent flights across the Channel to France and after a joy-ride at Brooklands, he bought an Avis monoplane, followed by a larger biplane, and taught himself to fly. He was awarded the Royal Aero Society's Aviator Certificate No. 31 on 21 November 1910, and he quickly distinguished himself in flying competitions on both sides of the Atlantic and started his own flying school. In his races he was ably supported by his friend Fred Sigrist, a former motor engineer. Among the people Sopwith taught to fly were an Australian, Harry Hawker, and Major Hugh Trenchard, who later became the "father" of the RAF.
    In 1912, depressed by the poor quality of the aircraft on trial for the British Army, Sopwith, in conjunction with Hawker and Sigrist, bought a skating rink in Kingston-upon-Thames and, assisted by Fred Sigrist, started to design and build his first aircraft, the Sopwith Hybrid. He sold this to the Royal Navy in 1913, and the following year his aviation manufacturing company became the Sopwith Aviation Company Ltd. That year a seaplane version of his Sopwith Tabloid won the Schneider Trophy in the second running of this speed competition. During 1914–18, Sopwith concentrated on producing fighters (or "scouts" as they were then called), with the Pup, the Camel, the 1½ Strutter, the Snipe and the Sopwith Triplane proving among the best in the war. He also pioneered several ideas to make flying easier for the pilot, and in 1915 he patented his adjustable tailplane and his 1 ½ Strutter was the first aircraft to be fitted with air brakes. During the four years of the First World War, Sopwith Aviation designed thirty-two different aircraft types and produced over 16,000 aircraft.
    The end of the First World War brought recession to the aircraft industry and in 1920 Sopwith, like many others, put his company into receivership; none the less, he immediately launched a new, smaller company with Hawker, Sigrist and V.W.Eyre, which they called the H.G. Hawker Engineering Company Ltd to avoid any confusion with the former company. He began by producing cars and motor cycles under licence, but was determined to resume aircraft production. He suffered an early blow with the death of Hawker in an air crash in 1921, but soon began supplying aircraft to the Royal Air Force again. In this he was much helped by taking on a new designer, Sydney Camm, in 1923, and during the next decade they produced a number of military aircraft types, of which the Hart light bomber and the Fury fighter, the first to exceed 200 mph (322 km/h), were the best known. In the mid-1930s Sopwith began to build a large aviation empire, acquiring first the Gloster Aircraft Company and then, in quick succession, Armstrong-Whitworth, Armstrong-Siddeley Motors Ltd and its aero-engine counterpart, and A.V.Roe, which produced Avro aircraft. Under the umbrella of the Hawker Siddeley Aircraft Company (set up in 1935) these companies produced a series of outstanding aircraft, ranging from the Hawker Hurricane, through the Avro Lancaster to the Gloster Meteor, Britain's first in-service jet aircraft, and the Hawker Typhoon, Tempest and Hunter. When Sopwith retired as Chairman of the Hawker Siddeley Group in 1963 at the age of 75, a prototype jump-jet (the P-1127) was being tested, later to become the Harrier, a for cry from the fragile biplanes of 1910.
    Sopwith also had a passion for yachting and came close to wresting the America's Cup from the USA in 1934 when sailing his yacht Endeavour, which incorporated a number of features years ahead of their time; his greatest regret was that he failed in his attempts to win this famous yachting trophy for Britain. After his retirement as Chairman of the Hawker Siddeley Group, he remained on the Board until 1978. The British aviation industry had been nationalized in April 1977, and Hawker Siddeley's aircraft interests merged with the British Aircraft Corporation to become British Aerospace (BAe). Nevertheless, by then the Group had built up a wide range of companies in the field of mechanical and electrical engineering, and its board conferred on Sopwith the title Founder and Life President.
    [br]
    Principal Honours and Distinctions
    Knighted 1953. CBE 1918.
    Bibliography
    1961, "My first ten years in aviation", Journal of the Royal Aeronautical Society (April) (a very informative and amusing paper).
    Further Reading
    A.Bramson, 1990, Pure Luck: The Authorized Biography of Sir Thomas Sopwith, 1888– 1989, Wellingborough: Patrick Stephens.
    B.Robertson, 1970, Sopwith. The Man and His Aircraft, London (a detailed publication giving plans of all the Sopwith aircraft).
    CM / JDS

    Biographical history of technology > Sopwith, Sir Thomas (Tommy) Octave Murdoch

  • 112 Stephenson, Robert

    [br]
    b. 16 October 1803 Willington Quay, Northumberland, England
    d. 12 October 1859 London, England
    [br]
    English engineer who built the locomotive Rocket and constructed many important early trunk railways.
    [br]
    Robert Stephenson's father was George Stephenson, who ensured that his son was educated to obtain the theoretical knowledge he lacked himself. In 1821 Robert Stephenson assisted his father in his survey of the Stockton \& Darlington Railway and in 1822 he assisted William James in the first survey of the Liverpool \& Manchester Railway. He then went to Edinburgh University for six months, and the following year Robert Stephenson \& Co. was named after him as Managing Partner when it was formed by himself, his father and others. The firm was to build stationary engines, locomotives and railway rolling stock; in its early years it also built paper-making machinery and did general engineering.
    In 1824, however, Robert Stephenson accepted, perhaps in reaction to an excess of parental control, an invitation by a group of London speculators called the Colombian Mining Association to lead an expedition to South America to use steam power to reopen gold and silver mines. He subsequently visited North America before returning to England in 1827 to rejoin his father as an equal and again take charge of Robert Stephenson \& Co. There he set about altering the design of steam locomotives to improve both their riding and their steam-generating capacity. Lancashire Witch, completed in July 1828, was the first locomotive mounted on steel springs and had twin furnace tubes through the boiler to produce a large heating surface. Later that year Robert Stephenson \& Co. supplied the Stockton \& Darlington Railway with a wagon, mounted for the first time on springs and with outside bearings. It was to be the prototype of the standard British railway wagon. Between April and September 1829 Robert Stephenson built, not without difficulty, a multi-tubular boiler, as suggested by Henry Booth to George Stephenson, and incorporated it into the locomotive Rocket which the three men entered in the Liverpool \& Manchester Railway's Rainhill Trials in October. Rocket, was outstandingly successful and demonstrated that the long-distance steam railway was practicable.
    Robert Stephenson continued to develop the locomotive. Northumbrian, built in 1830, had for the first time, a smokebox at the front of the boiler and also the firebox built integrally with the rear of the boiler. Then in Planet, built later the same year, he adopted a layout for the working parts used earlier by steam road-coach pioneer Goldsworthy Gurney, placing the cylinders, for the first time, in a nearly horizontal position beneath the smokebox, with the connecting rods driving a cranked axle. He had evolved the definitive form for the steam locomotive.
    Also in 1830, Robert Stephenson surveyed the London \& Birmingham Railway, which was authorized by Act of Parliament in 1833. Stephenson became Engineer for construction of the 112-mile (180 km) railway, probably at that date the greatest task ever undertaken in of civil engineering. In this he was greatly assisted by G.P.Bidder, who as a child prodigy had been known as "The Calculating Boy", and the two men were to be associated in many subsequent projects. On the London \& Birmingham Railway there were long and deep cuttings to be excavated and difficult tunnels to be bored, notoriously at Kilsby. The line was opened in 1838.
    In 1837 Stephenson provided facilities for W.F. Cooke to make an experimental electrictelegraph installation at London Euston. The directors of the London \& Birmingham Railway company, however, did not accept his recommendation that they should adopt the electric telegraph and it was left to I.K. Brunel to instigate the first permanent installation, alongside the Great Western Railway. After Cooke formed the Electric Telegraph Company, Stephenson became a shareholder and was Chairman during 1857–8.
    Earlier, in the 1830s, Robert Stephenson assisted his father in advising on railways in Belgium and came to be increasingly in demand as a consultant. In 1840, however, he was almost ruined financially as a result of the collapse of the Stanhope \& Tyne Rail Road; in return for acting as Engineer-in-Chief he had unwisely accepted shares, with unlimited liability, instead of a fee.
    During the late 1840s Stephenson's greatest achievements were the design and construction of four great bridges, as part of railways for which he was responsible. The High Level Bridge over the Tyne at Newcastle and the Royal Border Bridge over the Tweed at Berwick were the links needed to complete the East Coast Route from London to Scotland. For the Chester \& Holyhead Railway to cross the Menai Strait, a bridge with spans as long-as 460 ft (140 m) was needed: Stephenson designed them as wrought-iron tubes of rectangular cross-section, through which the trains would pass, and eventually joined the spans together into a tube 1,511 ft (460 m) long from shore to shore. Extensive testing was done beforehand by shipbuilder William Fairbairn to prove the method, and as a preliminary it was first used for a 400 ft (122 m) span bridge at Conway.
    In 1847 Robert Stephenson was elected MP for Whitby, a position he held until his death, and he was one of the exhibition commissioners for the Great Exhibition of 1851. In the early 1850s he was Engineer-in-Chief for the Norwegian Trunk Railway, the first railway in Norway, and he also built the Alexandria \& Cairo Railway, the first railway in Africa. This included two tubular bridges with the railway running on top of the tubes. The railway was extended to Suez in 1858 and for several years provided a link in the route from Britain to India, until superseded by the Suez Canal, which Stephenson had opposed in Parliament. The greatest of all his tubular bridges was the Victoria Bridge across the River St Lawrence at Montreal: after inspecting the site in 1852 he was appointed Engineer-in-Chief for the bridge, which was 1 1/2 miles (2 km) long and was designed in his London offices. Sadly he, like Brunel, died young from self-imposed overwork, before the bridge was completed in 1859.
    [br]
    Principal Honours and Distinctions
    FRS 1849. President, Institution of Mechanical Engineers 1849. President, Institution of Civil Engineers 1856. Order of St Olaf (Norway). Order of Leopold (Belgium). Like his father, Robert Stephenson refused a knighthood.
    Further Reading
    L.T.C.Rolt, 1960, George and Robert Stephenson, London: Longman (a good modern biography).
    J.C.Jeaffreson, 1864, The Life of Robert Stephenson, London: Longman (the standard nine-teenth-century biography).
    M.R.Bailey, 1979, "Robert Stephenson \& Co. 1823–1829", Transactions of the Newcomen Society 50 (provides details of the early products of that company).
    J.Kieve, 1973, The Electric Telegraph, Newton Abbot: David \& Charles.
    PJGR

    Biographical history of technology > Stephenson, Robert

  • 113 hatu

    clod of earth; cultivated land; arable land ( oone hatu).
    compact mass of other substances: hatu matá, piece of obsidian.
    figuratively: manava hatu, said of persons who, in adversity, stay composed and in control of their behaviour and feelings.
    to advise, to command. He hatu i te vanaga rivariva ki te kio o poki ki ruga ki te opata, they gave the refugees the good advice not to climb the precipice; he hatu i te vanaga rakerake, to give bad advice.
    to collude, to unite for a purpose, to concur. Mo hatu o te tia o te nua, to agree on the price of a nua cape.
    result, favourable outcome of an enterprise. He ká i te umu mo te hatu o te aga, to light the earth oven for the successful outcome of an enterprise [translator's note: i.e. to prepare a banquet to celebrate the success of an enterprise].

    Rapanui-English dictionary > hatu

  • 114 hasil

    product; result
    hasil bumi: natural resources
    hasil jualan: sales returns
    hasil negeri: state revenue
    hasil pertanian: agricultural products
    berhasil: successful; fruitful
    menghasilkan: produce

    Malay-English cyber dictionary > hasil

  • 115 κατεργάζομαι

    κατεργάζομαι mid. dep., Att. fut. 2 sg. κατεργᾷ Dt 28:39; 1 aor. κατειργασάμην; perf. κατείργασμαι. Pass.: fut. 2 pl. κατεργασθήσεσθε Ezk 36:9; aor. κατειργάσθην (on κατηργασάμην and κατηργάσθην s. B-D-F §67, 3; W-S. §12, 1; Mlt-H. 189) (Soph., Hdt.+).
    to bring about a result by doing someth., achieve, accomplish, do τὶ someth. (Hdt. 5, 24 πρήγματα μεγάλα; X., Mem. 3, 5, 11; Jos., Vi. 289) Ro 7:15, 17f, 20; 1 Cor 5:3; 1 Cl 32:3f. τὴν ἀσχημοσύνην κατεργαζόμενοι committing shameless acts Ro 1:27. τὸ κακόν do what is wrong 2:9; 13:10 v.l. τὸ βούλημα τῶν ἐθνῶν do what the gentiles (i.e. polytheists) like to do 1 Pt 4:3. δικαιοσύνην θεοῦ does what is right in the sight of God or (s. ἐργάζεσθαι 2c) achieves the uprightness that counts before God Js 1:20 v.l. ἅπαντα κατεργασάμενοι after you have done or accomplished everything (in this case the reference would be to the individual pieces of armor mentioned in what follows, which the reader is to employ as is prescribed; but s. 4 below) Eph 6:13. ὧν οὐ κατειργάσατο Χριστὸς διʼ ἐμοῦ of anything except what Christ has accomplished through me Ro 15:18. Pass. τὰ σημεῖα τοῦ ἀποστόλου κατειργάσθη ἐν ὑμῖν the signs by which an apostle demonstrates his authority have been done among you 2 Cor 12:12.
    to cause a state or condition, bring about, produce, create (Hdt. 7, 102 ἀρετὴ ἀπὸ σοφίης κατεργασμένη; Philo, Plant. 50; TestJos 10:1) τὶ someth. νόμος ὀργήν Ro 4:15. θλῖψις ὑπομονήν 5:3 (TestJos 10:1 πόσα κατεργάζεται ἡ ὑπομονή); cp. Js 1:3. λύπη μετάνοιαν 2 Cor 7:10a v.l. (for ἐργάζεται). λύπη θάνατον vs. 10b; cp. vs. 11 (where a dat. of advantage is added). φθόνος ἀδελφοκτονίαν 1 Cl 4:7. μνησικακία θάνατον Hv 2, 3, 1. ἡ ἁμαρτία κ. ἐν ἐμοὶ πᾶσαν ἐπιθυμίαν sin called forth every desire within me Ro 7:8. τινί τι bring about someth. for someone (Eur., Her. 1046 πόλει σωτηρίαν) μοι θάνατον 7:13. αἰώνιον βάρος δόξης ἡμῖν 2 Cor 4:17. εὐχαριστίαν τῷ θεῷ bring about thankfulness to God 9:11; θάνατον ἑαυτῷ κ. bring death upon oneself Hm 4, 1, 2; cp. Hs 8, 8, 5 ἐργάζεσθαι.— Work out τὶ someth. (Pla., Gorg. 473d ὁ κατειργασμένος τὴν τυραννίδα ἀδίκως) τὴν ἑαυτῶν σωτηρίαν κατεργάζεσθε Phil 2:12 (JMichael, Phil 2:12: Exp. 9th ser., 2, 1924, 439–50).
    to cause to be well prepared, prepare someone κ. τινα εἴς τι prepare someone for someth. (cp. Hdt. 7, 6, 1; X., Mem. 2, 3, 11) ἡμᾶς εἰς αὐτὸ τοῦτο for this very purpose 2 Cor 5:5.
    to be successful in the face of obstacles, overpower, subdue, conquer (Hdt. 6, 2 νῆσον; Thu. 6, 11, 1 al. τινά; 1 Esdr 4:4; Philo, Sacr. Abel. 62; Jos., Ant. 2, 44) ἅπαντα κατεργασάμενοι στῆναι after proving victorious over everything, to stand your ground Eph 6:13 (but s. 1 above).—M-M. TW.

    Ελληνικά-Αγγλικά παλαιοχριστιανική Λογοτεχνία > κατεργάζομαι

  • 116 Psychology

       We come therefore now to that knowledge whereunto the ancient oracle directeth us, which is the knowledge of ourselves; which deserveth the more accurate handling, by how much it toucheth us more nearly. This knowledge, as it is the end and term of natural philosophy in the intention of man, so notwithstanding it is but a portion of natural philosophy in the continent of nature.... [W]e proceed to human philosophy or Humanity, which hath two parts: the one considereth man segregate, or distributively; the other congregate, or in society. So as Human philosophy is either Simple and Particular, or Conjugate and Civil. Humanity Particular consisteth of the same parts whereof man consisteth; that is, of knowledges which respect the Body, and of knowledges that respect the Mind... how the one discloseth the other and how the one worketh upon the other... [:] the one is honored with the inquiry of Aristotle, and the other of Hippocrates. (Bacon, 1878, pp. 236-237)
       The claims of Psychology to rank as a distinct science are... not smaller but greater than those of any other science. If its phenomena are contemplated objectively, merely as nervo-muscular adjustments by which the higher organisms from moment to moment adapt their actions to environing co-existences and sequences, its degree of specialty, even then, entitles it to a separate place. The moment the element of feeling, or consciousness, is used to interpret nervo-muscular adjustments as thus exhibited in the living beings around, objective Psychology acquires an additional, and quite exceptional, distinction. (Spencer, 1896, p. 141)
       Kant once declared that psychology was incapable of ever raising itself to the rank of an exact natural science. The reasons that he gives... have often been repeated in later times. In the first place, Kant says, psychology cannot become an exact science because mathematics is inapplicable to the phenomena of the internal sense; the pure internal perception, in which mental phenomena must be constructed,-time,-has but one dimension. In the second place, however, it cannot even become an experimental science, because in it the manifold of internal observation cannot be arbitrarily varied,-still less, another thinking subject be submitted to one's experiments, comformably to the end in view; moreover, the very fact of observation means alteration of the observed object. (Wundt, 1904, p. 6)
       It is [Gustav] Fechner's service to have found and followed the true way; to have shown us how a "mathematical psychology" may, within certain limits, be realized in practice.... He was the first to show how Herbart's idea of an "exact psychology" might be turned to practical account. (Wundt, 1904, pp. 6-7)
       "Mind," "intellect," "reason," "understanding," etc. are concepts... that existed before the advent of any scientific psychology. The fact that the naive consciousness always and everywhere points to internal experience as a special source of knowledge, may, therefore, be accepted for the moment as sufficient testimony to the rights of psychology as science.... "Mind," will accordingly be the subject, to which we attribute all the separate facts of internal observation as predicates. The subject itself is determined p. 17) wholly and exclusively by its predicates. (Wundt, 1904,
       The study of animal psychology may be approached from two different points of view. We may set out from the notion of a kind of comparative physiology of mind, a universal history of the development of mental life in the organic world. Or we may make human psychology the principal object of investigation. Then, the expressions of mental life in animals will be taken into account only so far as they throw light upon the evolution of consciousness in man.... Human psychology... may confine itself altogether to man, and generally has done so to far too great an extent. There are plenty of psychological text-books from which you would hardly gather that there was any other conscious life than the human. (Wundt, 1907, pp. 340-341)
       The Behaviorist began his own formulation of the problem of psychology by sweeping aside all medieval conceptions. He dropped from his scientific vocabulary all subjective terms such as sensation, perception, image, desire, purpose, and even thinking and emotion as they were subjectively defined. (Watson, 1930, pp. 5-6)
       According to the medieval classification of the sciences, psychology is merely a chapter of special physics, although the most important chapter; for man is a microcosm; he is the central figure of the universe. (deWulf, 1956, p. 125)
       At the beginning of this century the prevailing thesis in psychology was Associationism.... Behavior proceeded by the stream of associations: each association produced its successors, and acquired new attachments with the sensations arriving from the environment.
       In the first decade of the century a reaction developed to this doctrine through the work of the Wurzburg school. Rejecting the notion of a completely self-determining stream of associations, it introduced the task ( Aufgabe) as a necessary factor in describing the process of thinking. The task gave direction to thought. A noteworthy innovation of the Wurzburg school was the use of systematic introspection to shed light on the thinking process and the contents of consciousness. The result was a blend of mechanics and phenomenalism, which gave rise in turn to two divergent antitheses, Behaviorism and the Gestalt movement. The behavioristic reaction insisted that introspection was a highly unstable, subjective procedure.... Behaviorism reformulated the task of psychology as one of explaining the response of organisms as a function of the stimuli impinging upon them and measuring both objectively. However, Behaviorism accepted, and indeed reinforced, the mechanistic assumption that the connections between stimulus and response were formed and maintained as simple, determinate functions of the environment.
       The Gestalt reaction took an opposite turn. It rejected the mechanistic nature of the associationist doctrine but maintained the value of phenomenal observation. In many ways it continued the Wurzburg school's insistence that thinking was more than association-thinking has direction given to it by the task or by the set of the subject. Gestalt psychology elaborated this doctrine in genuinely new ways in terms of holistic principles of organization.
       Today psychology lives in a state of relatively stable tension between the poles of Behaviorism and Gestalt psychology.... (Newell & Simon, 1963, pp. 279-280)
       As I examine the fate of our oppositions, looking at those already in existence as guide to how they fare and shape the course of science, it seems to me that clarity is never achieved. Matters simply become muddier and muddier as we go down through time. Thus, far from providing the rungs of a ladder by which psychology gradually climbs to clarity, this form of conceptual structure leads rather to an ever increasing pile of issues, which we weary of or become diverted from, but never really settle. (Newell, 1973b, pp. 288-289)
       The subject matter of psychology is as old as reflection. Its broad practical aims are as dated as human societies. Human beings, in any period, have not been indifferent to the validity of their knowledge, unconcerned with the causes of their behavior or that of their prey and predators. Our distant ancestors, no less than we, wrestled with the problems of social organization, child rearing, competition, authority, individual differences, personal safety. Solving these problems required insights-no matter how untutored-into the psychological dimensions of life. Thus, if we are to follow the convention of treating psychology as a young discipline, we must have in mind something other than its subject matter. We must mean that it is young in the sense that physics was young at the time of Archimedes or in the sense that geometry was "founded" by Euclid and "fathered" by Thales. Sailing vessels were launched long before Archimedes discovered the laws of bouyancy [ sic], and pillars of identical circumference were constructed before anyone knew that C IID. We do not consider the ship builders and stone cutters of antiquity physicists and geometers. Nor were the ancient cave dwellers psychologists merely because they rewarded the good conduct of their children. The archives of folk wisdom contain a remarkable collection of achievements, but craft-no matter how perfected-is not science, nor is a litany of successful accidents a discipline. If psychology is young, it is young as a scientific discipline but it is far from clear that psychology has attained this status. (Robinson, 1986, p. 12)

    Historical dictionary of quotations in cognitive science > Psychology

См. также в других словарях:

  • result — /ri zult /, v.i. 1. to spring, arise, or proceed as a consequence of actions, circumstances, premises, etc.; be the outcome. 2. to terminate or end in a specified manner or thing. n. 3. something that happens as a consequence; outcome. 4. Math. a …   Universalium

  • successful — suc|cess|ful W1S2 [səkˈsesfəl] adj 1.) having the effect or result you intended ▪ The operation was successful. ▪ a highly successful (=very successful) meeting successful in (doing) sth ▪ Were you successful in persuading him to change his mind? …   Dictionary of contemporary English

  • result — re|sult1 W1S1 [rıˈzʌlt] n ▬▬▬▬▬▬▬ 1¦(happening because of something)¦ 2¦(sports/elections)¦ 3¦(scientific tests)¦ 4¦(examinations)¦ 5¦(success)¦ 6¦(business)¦ 7 get a result ▬▬▬▬▬▬▬ 1.) ¦(HAPPENING BECAUSE OF SOMETHING)¦ …   Dictionary of contemporary English

  • result — 1 /rI zVlt/ noun 1 HAPPENING BECAUSE OF STH (C, U) something that happens or exists because of something that happened before (+ of): One result of the cold weather has been a sharp increase in our heating bill. | Ken s illness is the result of… …   Longman dictionary of contemporary English

  • successful — suc|cess|ful [ sək sesfəl ] adjective *** achieving the result that you want: The successful candidates will be given extensive training. very/highly/extremely successful: a highly successful peacekeeping operation successful in (doing) something …   Usage of the words and phrases in modern English

  • successful — adjective 1 having the effect or result you intended: Well, it wasn t a very successful meeting. | successful in doing sth: Were you successful in persuading him to change his mind? 2 a successful business, film etc makes a lot of money: The show …   Longman dictionary of contemporary English

  • successful */*/*/ — UK [səkˈsesf(ə)l] / US [səkˈsesfəl] adjective achieving the result that you want The successful candidates will be given extensive training. very/highly/extremely successful: a highly successful peacekeeping operation successful in (doing)… …   English dictionary

  • successful*/*/*/ — [səkˈsesf(ə)l] adj 1) achieving the result that you want Ant: unsuccessful The team has had a highly successful season.[/ex] We have been very successful in attracting top quality candidates.[/ex] 2) a successful person does well in their career… …   Dictionary for writing and speaking English

  • result — • a successful outcome to something, usually either a sporting event or something at least slightly dodgy. Often prefixed with a right . i.e. I see the gooners ad a right result yesterday ! …   Londonisms dictionary

  • result! — Exclam. An exclamation expressing a successful outcome …   English slang and colloquialisms

  • end result — end results N COUNT: usu the N The end result of an activity or a process is the final result that it produces. The end result is very good and very successful... The end result of this will be unity …   English dictionary

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»