Перевод: с английского на все языки

со всех языков на английский

subject+to+control

  • 121 Lilienthal, Otto

    SUBJECT AREA: Aerospace
    [br]
    b. 23 May 1848 Anklam, Prussia (now Germany)
    d. 10 August 1896 Berlin, Germany
    [br]
    German glider pioneer, the first to make a controlled flight using wings.
    [br]
    Otto Lilienthal and his brother Gustav developed an interest in flying as boys, when they studied birds in flight, built models and even tried to fit wings to their arms. Gustav went on to become a successful architect while Otto, after a brilliant scholastic career, became a mechanical engineer. Otto was able to devote his spare time to the problems of flight, and Gustav helped when his work allowed. They considered manpowered and mechanically powered projects, but neither looked hopeful so they turned to gliding. Otto published his research work in a book, Bird Flight as a Basis for Aviation. By 1889 Otto Lilienthal was ready to test his first full-size gliders. No. 1 and No. 2 were not successful, but No. 3, built in 1891, showed promise. He gradually improved his designs and his launching sites as he gained experience. To take off he ran downhill carrying his hang-glider until it became airborne, then he controlled it by swinging his body weight in the appropriate direction. He even built an artificial mound near Berlin so that he could take off into the wind whichever way it was blowing.
    In all, Lilienthal built some eighteen gliders with various wing shapes, including biplanes. By 1895 he was planning movable control surfaces (operated by head movement) and a powered version using a carbonic acid gas motor. Unfortunately, Lilienthal crashed and died of his injuries before these ideas could be tested. In all, he made over two thousand flights covering distances up to 300 m (300 yds. Many of these flights were recorded on photographs and so generated an interest in flying. Lilienthal's achievements also encouraged other pioneers, such as Percy Pilcher in Britain, and Octave Chanute and the Wright brothers in the United States.
    [br]
    Bibliography
    1899, Der Vogelflug als Grundlage der Fliegekunst, Berlin, reprinted c. 1977; repub. in English, 1911, as Bird Flight as a Basis for Aviation.
    Further Reading
    Charles H.Gibbs-Smith, 1985, Aviation, London (provides a detailed account of Lilienthal's gliders).
    P.H.Lilienthal, 1978, "Die Lilienthal Gebrüder", Aerospace (Royal Aeronautical Society) (January) (for more personal information).
    "The Lilienthal and Pilcher gliders compared", Flight (1 January 1910 and 8 January 1910) (for details about and plans of a typical Lilienthal glider).
    JDS

    Biographical history of technology > Lilienthal, Otto

  • 122 Lucas, Anthony Francis

    [br]
    b. 9 September 1855 Spalato, Dalmatia, Austria-Hungary (now Split, Croatia)
    d. 2 September 1921 Washington, DC, USA
    [br]
    Austrian (naturalized American) mining engineer who successfully applied rotary drilling to oil extraction.
    [br]
    A former Second Lieutenant of the Austrian navy (hence his later nickname "Captain") and graduate of the Polytechnic Institute of Graz, Lucas decided to stay in Michigan when he visited his relatives in 1879. He changed his original name, Lucie, into the form his uncle had adopted and became a naturalized American citizen at the age of 30. He worked in the lumber industry for some years and then became a consulting mechanical and mining engineer in Washington, DC. He began working for a salt-mining company in Louisiana in 1893 and became interested in the geology of the Mexican Gulf region, with a view to prospecting for petroleum. In the course of this work he came to the conclusion that the hills in this elevated area, being geological structures distinct from the surrounding deposits, were natural reservoirs of petroleum. To prove his unusual theory he subsequently chose Spindle Top, near Beaumont, Texas, where in 1899 he began to bore a first oil-well. A second drill-hole, started in October 1900, was put through clay and quicksand. After many difficulties, a layer of rock containing marine shells was reached. When the "gusher" came out on 10 January 1901, it not only opened up a new era in the oil and gas business, but it also led to the future exploration of the terrestrial crust.
    Lucas's boring was a breakthrough for the rotary drilling system, which was still in its early days although its principles had been established by the English engineer Robert Beart in his patent of 1884. It proved to have advantages over the pile-driving of pipes. A pipe with a simple cutter at the lower end was driven with a constantly revolving motion, grinding down on the bottom of the well, thus gouging and chipping its way downward. To deal with the quicksand he adopted the use of large and heavy casings successively telescoped one into the other. According to Fauvelle's method, water was forced through the pipe by means of a pump, so the well was kept full of circulating liquid during drilling, flushing up the mud. When the salt-rock was reached, a diamond drill was used to test the depth and the character of the deposit.
    When the well blew out and flowed freely he developed a preventer in order to save the oil and, even more importantly at the time, to shut the well and to control the oil flow. This assembly, patented in 1903, consisted of a combined system of pipes, valves and casings diverting the stream into a horizontal direction.
    Lucas's fame spread around the world, but as he had to relinquish the larger part of his interest to the oil company supporting the exploration, his financial reward was poor. One year after his success at Spindle Top he started oil exploration in Mexico, where he stayed until 1905, when he resumed his consulting practice in Washington, DC.
    [br]
    Bibliography
    1899, "Rock-salt in Louisiana", Transactions of the American Institution of Mining Engineers 29:462–74.
    1902, "The great oil-well near Beaumont, Texas", Transactions of the American
    Institution of Mining Engineers 31:362–74.
    Further Reading
    R.S.McBeth, 1918, Pioneering the Gulf Coast, New York (a very detailed description of Lucas's important accomplishments in the development of the oil industry).
    R.T.Hill, 1903, "The Beaumont oil-field, with notes on other oil-fields of the Texas region", Transactions of the American Institution of Mining Engineers 33:363–405;
    Transactions of the American Institution of Mining Engineers 55:421–3 (contain shorter biographical notes).
    WK

    Biographical history of technology > Lucas, Anthony Francis

  • 123 MacGregor, Robert

    SUBJECT AREA: Ports and shipping
    [br]
    b. 1873 Hebburn-on-Tyne, England
    d. 4 October 1956 Whitley Bay, England
    [br]
    English naval architect who, working with others, significantly improved the safety of life at sea.
    [br]
    On leaving school in 1894, MacGregor was apprenticed to a famous local shipyard, the Palmers Shipbuilding and Iron Company of Jarrow-on-Tyne. After four years he was entered for the annual examination of the Worshipful Company of Shipwrights, coming out top and being nominated Queen's Prizeman. Shortly thereafter he moved around shipyards to gain experience, working in Glasgow, Hull, Newcastle and then Dunkirk. His mastery of French enabled him to obtain in 1906 the senior position of Chief Draughtsman at an Antwerp shipyard, where he remained until 1914. On his return to Britain, he took charge of the small yard of Dibbles in Southampton and commenced a period of great personal development and productivity. His fertile mind enabled him to register no fewer than ten patents in the years 1919 to 1923.
    In 1924 he started out on his own as a naval architect, specializing in the coal trade of the North Sea. At that time, colliers had wooden hatch covers, which despite every caution could be smashed by heavy seas, and which in time of war added little to hull integrity after a torpedo strike. The International Loadline Committee of 1932 noted that 13 per cent of ship losses were through hatch failures. In 1927, designs for selftrimming colliers were developed, as well as designs for steel hatch covers. In 1928 the first patents were under way and the business was known for some years as MacGregor and King. During this period, steel hatch covers were fitted to 105 ships.
    In 1937 MacGregor invited his brother Joseph (c. 1883–1967) to join him. Joseph had wide experience in ship repairs and had worked for many years as General Manager of the Prince of Wales Dry Docks in Swansea, a port noted for its coal exports. By 1939 they were operating from Whitley Bay with the name that was to become world famous: MacGregor and Company (Naval Architects) Ltd. The new company worked in association with the shipyards of Austin's of Sunderland and Burntisland of Fife, which were then developing the "flatiron" colliers for the up-river London coal trade. The MacGregor business gained a great boost when the massive coastal fleet of William Cory \& Son was fitted with steel hatches.
    In 1945 the brothers appointed Henri Kummerman (b. 1908, Vienna; d. 1984, Geneva) as their sales agent in Europe. Over the years, Kummerman effected greater control on the MacGregor business and, through his astute business dealings and his well-organized sales drives worldwide, welded together an international company in hatch covers, cargo handling and associated work. Before his death, Robert MacGregor was to see mastery of the design of single-pull steel hatch covers and to witness the acceptance of MacGregor hatch covers worldwide. Most important of all, he had contributed to great increases in the safety and the quality of life at sea.
    [br]
    Further Reading
    L.C.Burrill, 1931, "Seaworthiness of collier types", Transactions of the Institution of Naval Architechts.
    S.Sivewright, 1989, One Man's Mission-20,000 Ships, London: Lloyd's of London Press.
    FMW

    Biographical history of technology > MacGregor, Robert

  • 124 Mannesmann, Reinhard

    SUBJECT AREA: Metallurgy
    [br]
    b. 13 May 1856 Remscheid, Bleidinghausen, Germany
    d. 22 February 1922 Remscheid, Bleidinghausen, Germany
    [br]
    German metallurgical engineer.
    [br]
    Reinhard Mannesmann and his four brothers developed the engineering works at Remscheid that had been founded by their father. With his brother Max, Reinhard devised c. 1885 a method of producing seamless tubes by a rolling process. Factories for manufacturing tubes by this process were established at Remscheid, at Bous in the Saar district and at Komotau in Bohemia. Further developments of the process were patented by the brothers in the years following the initial patent of 1885. The British patent rights for the Mannesmann process were purchased by the Landore Siemens Steel Company in 1888, and the Mannesmann Tube Company was established at Landore in South Wales. This company went into liquidation in 1899 after ten years of production and the Tube Works was then purchased by the Mannesmann family, and a new company, the British Mannesmann Tube Company, was formed. Reinhard and Max Mannesmann took up residence near the Landore works and the business prospered so that by 1914 Landore was employing 1,500 men and producing 35,000 tons of tubing each year. The company was taken over during the First World War by the Custodian of Enemy Property, and after the war a new tube works which had been planned in 1914 was built at Newport, Monmouthshire. The Mannesmann family were able to resume control in 1926 for some ten years, but in 1938 the company became part of the Stewarts \& Lloyds organization.
    [br]
    Further Reading
    G.Evans, 1934, Manufacture of Seamless Tubes Ferrous and Non-Ferrous, London; 1940, Proceedings of the Institution of Mechanical Engineers 143:62–3 (both provide technical details of the Mannesmann process for forming seamless tubes).
    RTS

    Biographical history of technology > Mannesmann, Reinhard

  • 125 Marrison, Warren Alvin

    [br]
    b. 21 May 1896 Inverary, Canada
    d. 27 March 1980 Palo Verdes Estates, California, USA
    [br]
    Canadian (naturalized American) electrical engineer, pioneer of the quartz clock.
    [br]
    Marrison received his high-school education at Kingston Collegiate Institute, Ontario, and in 1914 he entered Queen's University in Kingston. He graduated in Engineering Physics in 1920, his college career having been interrupted by war service in the Royal Flying Corps. During his service in the Flying Corps he worked on radio, and when he returned to Kingston he established his own transmitter. This interest in radio was later to influence his professional life.
    In 1921 he entered Harvard University, where he obtained an MA, and shortly afterwards he joined the Western Electric Company in New York to work on the recording of sound on film. In 1925 he transferred to Western Electric's Bell Laboratory, where he began what was to become his life's work: the development of frequency standards for radio transmission. In 1922 Cady had used the elastic vibration of a quartz crystal to control the frequency of a valve oscillator, but at that time there was no way of counting and displaying the number of vibrations as the frequency was too high. In 1927 Marrison succeeded in dividing the frequency electronically until it was low enough to drive a synchronous motor. Although his purpose was to determine the frequency accurately by counting the number of vibrations that occurred in a given time, he had incidentally produced the first quartz-crystal -ontrolled clock. The results were sufficiently encouraging for him to build an improved version the following year, specifically as a time and frequency standard.
    [br]
    Principal Honours and Distinctions
    British Horological Institute Gold Medal 1947. Clockmakers' Company Tompion Medal 1955.
    Bibliography
    1928, with J.W.Horton, "Precision measurement of frequency", Proceedings of the Institute of Radio Engineers 16:137–54 (provides details of the original quartz clock, although it was not described as such).
    1930, "The crystal clock", Proceedings of the National Academy of Sciences 16:496–507 (describes the second clock).
    Further Reading
    W.R.Topham, 1989, "Warren A.Marrison—pioneer of the quartz revolution", NAWCC Bulletin 31(2):126–34.
    J.D.Weaver, 1982, Electrical and Electronic Clocks and Watches, London (a technical assessment of his work on the quartz clock).
    DV

    Biographical history of technology > Marrison, Warren Alvin

  • 126 McCormick, Cyrus

    [br]
    b. 1809 Walnut Grove, Virginia, USA
    d. 1884 USA
    [br]
    American inventor of the first functionally and commercially successful reaping machine; founder of the McCormick Company, which was to become one of the founding companies of International Harvester.
    [br]
    Cyrus McCormick's father, a farmer, began to experiment unsuccessfully with a harvesting machine between 1809 and 1816. His son took up the challenge and gave his first public demonstration of his machine in 1831. It cut a 4 ft swathe, but, wanting to perfect the machine, he waited until 1834 before patenting it, by which time he felt that his invention was threatened by others of similar design. In the same year he entered an article in the Mechanics Magazine, warning competitors off his design. His main rival was Obed Hussey who contested McCormick's claim to the originality of the idea, having patented his own machine six months before McCormick.
    A competition between the two machines was held in 1843, the judges favouring McCormick's, even after additional trials were conducted after objections of unfairness from Hussey. The rivalry continued over a number of years, being avidly reported in the agricultural press. The publicity did no harm to reaper sales, and McCormick sold twenty-nine machines in 1843 and fifty the following year.
    As the westward settlement movement progressed, so the demand for McCormick's machine grew. In order to be more central to his markets, McCormick established himself in Chicago. In partnership with C.M.Gray he established a factory to produce 500 harvesters for the 1848 season. By means of advertising and offers of credit terms, as well as production-line assembly, McCormick was able to establish himself as sole owner and also control all production, under the one roof. By the end of the decade he dominated reaper production but other developments were to threaten this position; however, foreign markets were appearing at the same time, not least the opportunities of European sales stimulated by the Great Exhibition in 1851. In the trials arranged by the Royal Agricultural Society of England the McCormick machine significantly outperformed that of Hussey's, and as a result McCormick arranged for 500 to be made under licence in England.
    In 1874 McCormick bought a half interest in the patent for a wire binder from Charles Withington, a watchmaker from Janesville, Wisconsin, and by 1885 a total of 50,000 wire binders had been built in Chicago. By 1881 McCormick was producing twine binders using Appleby's twine knotter under a licence agreement, and by 1885 the company was producing only twine binders. The McCormick Company was one of the co-founders of the International Harvester Company in 1901.
    [br]
    Bibliography
    1972, The Century of the Reaper, Johnson Reprint (the original is in the New York State Library).
    Further Reading
    Graeme Quick and Wesley Buchele, 1978, The Grain Harvesters, American Society of Agricultural Engineers (deals in detail with McCormick's developments).
    G.H.Wendell, 1981, 150 Years of International Harvester, Crestlink (though more concerned with the machinery produced by International Harvester, it gives an account of its originating companies).
    T.W.Hutchinson, 1930, Cyrus Hall McCormick, Seedtime 1809–1856; ——1935, Cyrus Hall McCormick, Harvest 1856–1884 (both attempt to unravel the many claims surrounding the reaper story).
    Herbert N.Casson, 1908, The Romance of the Reaper, Doubleday Page (deals with McCormick, Deering and the formation of International Harvester).
    AP

    Biographical history of technology > McCormick, Cyrus

  • 127 Muller, Paul Hermann

    [br]
    b. 12 January 1899 Olten, Solothurn, Switzerland
    d. 13 October 1965 Basle, Switzerland
    [br]
    Swiss chemist, inventor of the insecticide DDT.
    [br]
    Muller was educated in Basle and his interest in chemistry was stimulated when he started work as a laboratory assistant in the chemical factory of Dreyfus \& Co. After further laboratory work, he entered the University of Basle in 1919, achieving his doctorate in 1925. The same year, he entered the dye works of J.R.Geigy AG as a research chemist. He spent the rest of his career there, rising to the position of Deputy Head of Pest Control Research. From 1935 he began the search for an insecticide that was fast acting and persistent, but harmless to plants and warmblooded animals. In 1940 he patented the use of a compound known since 1873, dichlorodiphenyltrichloroethane, or DDT. It could be easily and cheaply manufactured and was highly effective. Muller obtained a Swiss patent for DDT in 1940 and it went into commercial production two years later. One useful application of DDT at the end of the Second World War was in killing lice to prevent typhus epidemics. It was widely used and an important factor in farmers' postwar success in raising food production, but after twenty years or so, some species of insects were found to have developed resistance to its action, thus limiting its effectiveness. Worse, it was found to be harmful to other animals, which gave rise to anxieties about its persistence in the food chain. By the 1970s its use was banned or strictly limited in developed countries. Nevertheless, in its earlier career it had conferred undoubted benefits and was highly valued, as reflected by the award of a Nobel Prize in Medicine or Physiology in 1948.
    [br]
    Principal Honours and Distinctions
    Nobel Prize in Medicine or Physiology 1948.
    Bibliography
    Further Reading
    Obituary, 1965, Nature 208:1,043–4.
    LRD

    Biographical history of technology > Muller, Paul Hermann

  • 128 Nasmyth, James Hall

    [br]
    b. 19 August 1808 Edinburgh, Scotland
    d. 7 May 1890 London, England
    [br]
    Scottish mechanical engineer and inventor of the steam-hammer.
    [br]
    James Nasmyth was the youngest son of Alexander Nasmyth (1758–1840), the portrait and landscape painter. According to his autobiography he was named James Hall after his father's friend, the geologist Sir James Hall (1761–1832), but he seems never to have used his second name in official documents. He received an elementary education at Edinburgh High School, but left at the age of 12. He attended evening classes at the Edinburgh School of Arts for the instruction of Mechanics between 1821 and 1825, and gained experience as a mechanic at an early age in his father's workshop. He shared these early experiences with his brother George, who was only a year or so older, and in the 1820s the brothers built several model steam engines and a steam-carriage capable of carrying eight passengers on the public roads. In 1829 Nasmyth obtained a position in London as personal assistant to Henry Maudslay, and after Maudslay's death in February 1831 he remained with Maudslay's partner, Joshua Field, for a short time. He then returned to Edinburgh, where he and his brother George started in a small way as general engineers. In 1834 they moved to a small workshop in Manchester, and in 1836, with the aid of financial backing from some Manchester businessmen, they established on a site at Patricroft, a few miles from the city, the works which became known as the Bridgewater Foundry. They were soon joined by a third partner, Holbrook Gaskell (1813–1909), who looked after the administration of the business, the firm then being known as Nasmyths Gaskell \& Co. They specialized in making machine tools, and Nasmyth invented many improvements so that they soon became one of the leading manufacturers in this field. They also made steam locomotives for the rapidly developing railways. James Nasmyth's best-known invention was the steam-hammer, which dates from 1839 but was not patented until 1842. The self-acting control gear was probably the work of Robert Wilson and ensured the commercial success of the invention. George Nasmyth resigned from the partnership in 1843 and in 1850 Gaskell also resigned, after which the firm continued as James Nasmyth \& Co. James Nasmyth himself retired at the end of 1856 and went to live at Penshurst, Kent, in a house which he named "Hammerfield" where he devoted his time mainly to his hobby of astronomy. Robert Wilson returned to become Managing Partner of the firm, which later became Nasmyth, Wilson \& Co. and retained that style until its closure in 1940. Nasmyth's claim to be the sole inventor of the steam-hammer has been disputed, but his patent of 1842 was not challenged and the fourteen-year monopoly ensured the prosperity of the business so that he was able to retire at the age of 48. At his death in 1890 he left an estate valued at £243,805.
    [br]
    Bibliography
    1874, with J.Carpenter, The Moon Considered as a Planet, a World, and a Satellite, London.
    1883, Autobiography, ed. Samuel Smiles, London.
    Further Reading
    R.Wailes, 1963, "James Nasmyth—Artist's Son", Engineering Heritage, vol. I, London, 106–11 (a short account).
    J.A.Cantrell, 1984, James Nasmyth and the Bridgewater Foundry: A Study of Entrepreneurship in the Early Engineering Industry, Manchester (a full-length critical study).
    ——1984–5, "James Nasmyth and the steam hammer", Transactions of the Newcomen Society 56:133–8.
    RTS

    Biographical history of technology > Nasmyth, James Hall

См. также в других словарях:

  • subject to control — index impose (subject) Burton s Legal Thesaurus. William C. Burton. 2006 …   Law dictionary

  • Control order — A control order is an order made by the Home Secretary of the United Kingdom to restrict an individual s liberty for the purpose of protecting members of the public from a risk of terrorism . Its definition and power were provided by Parliament… …   Wikipedia

  • Control system security — is the prevention of intentional or unintentional interference with the proper operation of industrial automation and control systems. These control systems manage essential services including electricity, petroleum production, water,… …   Wikipedia

  • subject — [sub′jikt, sub′jekt΄; ] for v. [ səb jekt′] adj. [ME suget < OFr < L subjectus, pp. of subjicere, to place under, put under, subject < sub , under + jacere, to throw: see JET1] 1. under the authority or control of, or owing allegiance to …   English World dictionary

  • control — con·trol vt con·trolled, con·trol·ling 1: to exercise restraining or directing influence over esp. by law 2: to have power or authority over precedent control s the outcome in this case 3: to have controlling interest in control n …   Law dictionary

  • Control — Con*trol , n. [F. contr[^o]le a counter register, contr. fr. contr r[^o]le; contre (L. contra) + r[^o]le roll, catalogue. See {Counter} and {Roll}, and cf. {Counterroll}.] 1. A duplicate book, register, or account, kept to correct or check… …   The Collaborative International Dictionary of English

  • control group — Control Con*trol , n. [F. contr[^o]le a counter register, contr. fr. contr r[^o]le; contre (L. contra) + r[^o]le roll, catalogue. See {Counter} and {Roll}, and cf. {Counterroll}.] 1. A duplicate book, register, or account, kept to correct or… …   The Collaborative International Dictionary of English

  • subject — sub·ject / səb ˌjekt/ n: the person upon whose life a life insurance policy is written and upon whose death the policy is payable: insured compare beneficiary b, policyholder Merriam Webster’s Dictionary of Law. Merriam Webster …   Law dictionary

  • Control (Janet Jackson album) — Control …   Wikipedia

  • Control reconfiguration — is an active approach in control theory to achieve fault tolerant control for dynamic systems [1]. It is used when severe faults, such as actuator or sensor outages, cause a break up of the control loop, which must be restructured to prevent… …   Wikipedia

  • subject — ► NOUN 1) a person or thing that is being discussed, studied, or dealt with. 2) a branch of knowledge studied or taught. 3) Grammar the word or words in a sentence that name who or what performs the action of the verb. 4) a member of a state… …   English terms dictionary

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»