Перевод: со всех языков на все языки

со всех языков на все языки

subject+arrangement

  • 41 приготовление

    1) General subject: arrangement (обыкн. plural), arrangements, concoction (пищи, напитков из разных продуктов), preparation, preparative, provision
    2) Biology: preparing
    5) Mining: preliminaries
    7) Polygraphy: making
    8) Astronautics: cooking
    9) Sakhalin energy glossary: make-up (раствора)

    Универсальный русско-английский словарь > приготовление

  • 42 приготовления

    2) Medicine: arrangements

    Универсальный русско-английский словарь > приготовления

  • 43 проект организации строительства

    Универсальный русско-английский словарь > проект организации строительства

  • 44 расположение в определённом порядке

    1) General subject: arrangement, marshalling
    2) Engineering: marshaling
    3) Mathematics: array
    4) Quality control: (элементов выборки) array

    Универсальный русско-английский словарь > расположение в определённом порядке

  • 45 распределение дрейфующего льда

    Универсальный русско-английский словарь > распределение дрейфующего льда

  • 46 расстановка

    Универсальный русско-английский словарь > расстановка

  • 47 расстановка по размеру

    General subject: arrangement by size

    Универсальный русско-английский словарь > расстановка по размеру

  • 48 сделка

    2) Naval: accord
    3) Colloquial: buy, deal-board, do
    5) Jocular: pennyworth
    6) Mathematics: agreement
    8) Economy: dealing
    9) Accounting: fixture, operation
    10) Diplomatic term: (деловая) business transaction
    11) Scottish language: paction
    12) Jargon: whiz, whizz, steal, whiz-bang
    13) Business: economic transaction
    14) leg.N.P. act, composition (as a noun), juridical act, juristic act, settlement (as a noun), transactio (as a noun), transaction (as in civil law countries; as a noun)
    15) Archaic: treaty
    16) SAP.tech. legal transaction

    Универсальный русско-английский словарь > сделка

  • 49 систематизация

    1) General subject: arrangement, filing (документов, архива), regimentation, systemization
    2) Engineering: ranging, ranking
    4) Mining: cataloging
    5) Information technology: filing (документов)
    7) Business: systematism
    8) Automation: classification (на основе признаков объектов), systematizing, taxonomy (устройств, функций, понятий)

    Универсальный русско-английский словарь > систематизация

  • 50 соглашение об урегулировании долгов

    General subject: arrangement

    Универсальный русско-английский словарь > соглашение об урегулировании долгов

  • 51 структура (в силу договорённости)

    General subject: arrangement

    Универсальный русско-английский словарь > структура (в силу договорённости)

  • 52 тематическое расположение

    Advertising: subject arrangement

    Универсальный русско-английский словарь > тематическое расположение

  • 53 priekšmetiskais kārtojums

    ▪ Termini
    lv bibl.
    lv Iespieddarbu vai citu dokumentu loģiskais kārtojums pēc tajos aplūkotajiem priekšmetiem. sk. Fonda kartojums
    ru предметная расстоновка
    LNB93

    Latviešu-krievu vārdnīcu > priekšmetiskais kārtojums

  • 54 Ackermann, Rudolph

    [br]
    b. 20 April 1764 Stolberg, Saxony
    d. 30 March 1834 Finchley, London, England
    [br]
    German-born fine-art publisher and bookseller, noted for his arrangement of the steering of the front wheels of horse-drawn carriages, which is still used in automobiles today.
    [br]
    Ackermann's father was a coachbuilder and harness-maker who in 1775 moved to Schneeberg. Rudolph was educated there and later entered his father's workshop for a short time. He visited Dresden, among other towns in Germany, and was resident in Paris for a short time, but eventually settled in London. For the first ten years of his life there he was employed in making designs for many of the leading coach builders. His steering-gear consisted of an arrangement of the track arms on the stub axles and their connection by the track rod in such a way that the inner wheel moved through a greater angle than the outer one, so giving approximately true rolling of the wheels in cornering. A necessary condition for this is that, in the plan view, the point of intersection of the axes of all the wheels must be at a point which always lies on the projection of the rear axle. In addition, the front wheels are inclined to bring the line of contact of the front wheels under the line of the pivots, about which they turn when cornering. This mechanism was not entirely new, having been proposed for windmill carriages in 1714 by Du Quet, but it was brought into prominence by Ackermann and so has come to bear his name.
    In 1801 he patented a method of rendering paper, cloth and other materials waterproof and set up a factory in Chelsea for that purpose. He was one of the first private persons to light his business premises with gas. He also devoted some time to a patent for movable carriage axles between 1818 and 1820. In 1805 he was put in charge of the preparation of the funeral car for Lord Nelson.
    Most of his life and endeavours were devoted to fine-art printing and publishing. He was responsible for the introduction into England of lithography as a fine art: it had first been introduced as a mechanical process in 1801, but was mainly used for copying until Ackermann took it up in 1817, setting up a press and engaging the services of a number of prominent artists, including W.H.Pyne, W.Combe, Pugin and Thomas Rowlandson. In 1819 he published an English translation of J.A.Senefelder's A Complete Course of Lithography, illustrated with lithographic plates from his press. He was much involved in charitable works for widows, children and wounded soldiers after the war of 1814. In 1830 he suffered "an attack of paralysis" which left him unable to continue in business. He died four years later and was buried at St Clement Danes.
    [br]
    Bibliography
    His fine-art publications are numerous and well known, and include the following:
    The Microcosm of London University of Oxford University of Cambridge The Thames
    Further Reading
    Aubrey F.Burstall, "A history of mechanical engineering", Dictionary of National Biography.
    IMcN

    Biographical history of technology > Ackermann, Rudolph

  • 55 Parry, George

    SUBJECT AREA: Metallurgy
    [br]
    fl. 1800–1850 Wales
    [br]
    Welsh ironmaker and inventor of the bell and hopper for blastfurnaces.
    [br]
    Until the mid-nineteenth century, blast furnaces were open at the top to facilitate loading of the iron ore, fuel and flux (the charge). However, that arrangement allowed the hot gases produced in the furnace to escape, whereas they could have been used to heat boilers or the incoming air blast. Attempts had been made to capture the fugitive gases, but they had all failed until George Parry devised his bell and hopper equipment for dosing the throat or top of the furnace. He fixed an inverted cone or hopper inside the throat and arranged inside it a cast-iron bell that could be raised or lowered. When in the raised position, it was in contact with the underside of the hopper, thus sealing the furnace. The hot gases could then be led off through a large pipe to do useful work. The charge was dropped onto the bell, and when enough had accumulated there the bell was lowered, allowing the charge to fall into the furnace. The gas escaped only for the brief period that the bell was lowered. The advantages of this arrangement were soon realized by other ironmasters and it was quite rapidly, and then generally, adopted. The device was still in use in the 1990s, with modifications.
    [br]
    Bibliography
    1858, "On the principal causes of derangements in blast furnaces", Proceedings of the South Wales Institute of Engineers 1:26–39 (describes his improvements to the blast furnace), 28 ff. (relates to the improvements in the charging arrangements).
    Further Reading
    W.K.V.Gale, 1969, Iron and Steel, London: Longmans, p. 52.
    LRD

    Biographical history of technology > Parry, George

  • 56 Booth, Henry

    [br]
    b. 4 April 1789 Liverpool, England
    d. 28 March 1869 Liverpool, England
    [br]
    English railway administrator and inventor.
    [br]
    Booth followed his father as a Liverpool corn merchant but had great mechanical aptitude. In 1824 he joined the committee for the proposed Liverpool \& Manchester Railway (L \& MR) and after the company obtained its Act of Parliament in 1826 he was appointed Treasurer.
    In 1829 the L \& MR announced a prize competition, the Rainhill Trials, for an improved steam locomotive: Booth, realizing that the power of a locomotive depended largely upon its capacity to raise steam, had the idea that this could be maximized by passing burning gases from the fire through the boiler in many small tubes to increase the heating surface, rather than in one large one, as was then the practice. He was apparently unaware of work on this type of boiler even then being done by Marc Seguin, and the 1791 American patent by John Stevens. Booth discussed his idea with George Stephenson, and a boiler of this type was incorporated into the locomotive Rocket, which was built by Robert Stephenson and entered in the Trials by Booth and the two Stephensons in partnership. The boiler enabled Rocket to do all that was required in the trials, and far more: it became the prototype for all subsequent conventional locomotive boilers.
    After the L \& MR opened in 1830, Booth as Treasurer became in effect the general superintendent and was later General Manager. He invented screw couplings for use with sprung buffers. When the L \& MR was absorbed by the Grand Junction Railway in 1845 he became Secretary of the latter, and when, later the same year, that in turn amalgamated with the London \& Birmingham Railway (L \& BR) to form the London \& North Western Railway (L \& NWR), he became joint Secretary with Richard Creed from the L \& BR.
    Earlier, completion in 1838 of the railway from London to Liverpool had brought problems with regard to local times. Towns then kept their own time according to their longitude: Birmingham time, for instance, was 7¼ minutes later than London time. This caused difficulties in railway operation, so Booth prepared a petition to Parliament on behalf of the L \& MR that London time should be used throughout the country, and in 1847 the L \& NWR, with other principal railways and the Post Office, adopted Greenwich time. It was only in 1880, however, that the arrangement was made law by Act of Parliament.
    [br]
    Bibliography
    1835. British patent no. 6,814 (grease lubricants for axleboxes). 1836. British patent no. 6,989 (screw couplings).
    Booth also wrote several pamphlets on railways, uniformity of time, and political matters.
    Further Reading
    H.Booth, 1980, Henry Booth, Ilfracombe: Arthur H.Stockwell (a good full-length biography, the author being the great-great-nephew of his subject; with bibliography).
    R.E.Carlson, 1969, The Liverpool \& Manchester Railway Project 1821–1831, Newton Abbot: David \& Charles.
    PJGR

    Biographical history of technology > Booth, Henry

  • 57 encyklopedii

    • subject-oriented arrangement

    Słownik polsko-angielski dla inżynierów > encyklopedii

  • 58 układ tematyczny

    • subject-oriented arrangement

    Słownik polsko-angielski dla inżynierów > układ tematyczny

  • 59 Arsonval, Jacques Arsène d'

    SUBJECT AREA: Medical technology
    [br]
    b. 8 June 1851 Boric, France
    d. 31 December 1940 Boric, France
    [br]
    French physician and physicist noted for his invention of the reflecting galvanometer and for contributions to electrotherapy.
    [br]
    After studies at colleges in Limoges and later in Paris, Arsonval became a doctor of medicine in 1877. In 1882 the Collège de France established a laboratory of biophysics with Arsonval as Director, and he was Professor from 1894.
    His most outstanding scientific contributions were in the field of biological applications of electricity. His interest in muscle currents led to a series of inventions to assist in research, including the moving-coil galvanometer. In 1881 he made a significant improvement to the galvanometer by reversing the magnetic elements. It had been usual to suspend a compass needle in the centre of a large, stationary coil, but Arsonval's invention was to suspend a small, light coil between the poles of a powerful fixed magnet. This simple arrangement was independent of the earth's magnetic field and insensitive to vibration. A great increase in sensitivity was achieved by attaching a mirror to the coil in order to reflect a spot of light. For bacterial-research purposes he designed the first constant-temperature incubator controlled by electricity. His experiments on the effects of high-frequency, low-voltage alternating currents on animals led to the first high-frequency heat-therapy unit being established in 1892, and later to methods of physiotherapy becoming a professional discipline.
    [br]
    Principal Honours and Distinctions
    Académie des Sciences, Prix Montyon 1882. Chevalier de la Légion d'honneur 1884. Grand Cross 1931.
    Bibliography
    1882, Comptes rendus de l'Académie des Sciences 94:1347–50 (describes the galvanometer).
    1903, Traité de physique biologique, 2 vols, Paris (an account of his technological work).
    Further Reading
    C.C.Gillispie (ed.), 1970, Dictionary of Scientific Biography, Vol. 1, New York, pp. 302–5.
    D.O.Woodbury, 1949, A Measure for Greatness, New York.
    GW

    Biographical history of technology > Arsonval, Jacques Arsène d'

  • 60 Brunel, Isambard Kingdom

    [br]
    b. 9 April 1806 Portsea, Hampshire, England
    d. 15 September 1859 18 Duke Street, St James's, London, England
    [br]
    English civil and mechanical engineer.
    [br]
    The son of Marc Isambard Brunel and Sophia Kingdom, he was educated at a private boarding-school in Hove. At the age of 14 he went to the College of Caen and then to the Lycée Henri-Quatre in Paris, after which he was apprenticed to Louis Breguet. In 1822 he returned from France and started working in his father's office, while spending much of his time at the works of Maudslay, Sons \& Field.
    From 1825 to 1828 he worked under his father on the construction of the latter's Thames Tunnel, occupying the position of Engineer-in-Charge, exhibiting great courage and presence of mind in the emergencies which occurred not infrequently. These culminated in January 1828 in the flooding of the tunnel and work was suspended for seven years. For the next five years the young engineer made abortive attempts to find a suitable outlet for his talents, but to little avail. Eventually, in 1831, his design for a suspension bridge over the River Avon at Clifton Gorge was accepted and he was appointed Engineer. (The bridge was eventually finished five years after Brunel's death, as a memorial to him, the delay being due to inadequate financing.) He next planned and supervised improvements to the Bristol docks. In March 1833 he was appointed Engineer of the Bristol Railway, later called the Great Western Railway. He immediately started to survey the route between London and Bristol that was completed by late August that year. On 5 July 1836 he married Mary Horsley and settled into 18 Duke Street, Westminster, London, where he also had his office. Work on the Bristol Railway started in 1836. The foundation stone of the Clifton Suspension Bridge was laid the same year. Whereas George Stephenson had based his standard railway gauge as 4 ft 8½ in (1.44 m), that or a similar gauge being usual for colliery wagonways in the Newcastle area, Brunel adopted the broader gauge of 7 ft (2.13 m). The first stretch of the line, from Paddington to Maidenhead, was opened to traffic on 4 June 1838, and the whole line from London to Bristol was opened in June 1841. The continuation of the line through to Exeter was completed and opened on 1 May 1844. The normal time for the 194-mile (312 km) run from Paddington to Exeter was 5 hours, at an average speed of 38.8 mph (62.4 km/h) including stops. The Great Western line included the Box Tunnel, the longest tunnel to that date at nearly two miles (3.2 km).
    Brunel was the engineer of most of the railways in the West Country, in South Wales and much of Southern Ireland. As railway networks developed, the frequent break of gauge became more of a problem and on 9 July 1845 a Royal Commission was appointed to look into it. In spite of comparative tests, run between Paddington-Didcot and Darlington-York, which showed in favour of Brunel's arrangement, the enquiry ruled in favour of the narrow gauge, 274 miles (441 km) of the former having been built against 1,901 miles (3,059 km) of the latter to that date. The Gauge Act of 1846 forbade the building of any further railways in Britain to any gauge other than 4 ft 8 1/2 in (1.44 m).
    The existence of long and severe gradients on the South Devon Railway led to Brunel's adoption of the atmospheric railway developed by Samuel Clegg and later by the Samuda brothers. In this a pipe of 9 in. (23 cm) or more in diameter was laid between the rails, along the top of which ran a continuous hinged flap of leather backed with iron. At intervals of about 3 miles (4.8 km) were pumping stations to exhaust the pipe. Much trouble was experienced with the flap valve and its lubrication—freezing of the leather in winter, the lubricant being sucked into the pipe or eaten by rats at other times—and the experiment was abandoned at considerable cost.
    Brunel is to be remembered for his two great West Country tubular bridges, the Chepstow and the Tamar Bridge at Saltash, with the latter opened in May 1859, having two main spans of 465 ft (142 m) and a central pier extending 80 ft (24 m) below high water mark and allowing 100 ft (30 m) of headroom above the same. His timber viaducts throughout Devon and Cornwall became a feature of the landscape. The line was extended ultimately to Penzance.
    As early as 1835 Brunel had the idea of extending the line westwards across the Atlantic from Bristol to New York by means of a steamship. In 1836 building commenced and the hull left Bristol in July 1837 for fitting out at Wapping. On 31 March 1838 the ship left again for Bristol but the boiler lagging caught fire and Brunel was injured in the subsequent confusion. On 8 April the ship set sail for New York (under steam), its rival, the 703-ton Sirius, having left four days earlier. The 1,340-ton Great Western arrived only a few hours after the Sirius. The hull was of wood, and was copper-sheathed. In 1838 Brunel planned a larger ship, some 3,000 tons, the Great Britain, which was to have an iron hull.
    The Great Britain was screwdriven and was launched on 19 July 1843,289 ft (88 m) long by 51 ft (15.5 m) at its widest. The ship's first voyage, from Liverpool to New York, began on 26 August 1845. In 1846 it ran aground in Dundrum Bay, County Down, and was later sold for use on the Australian run, on which it sailed no fewer than thirty-two times in twenty-three years, also serving as a troop-ship in the Crimean War. During this war, Brunel designed a 1,000-bed hospital which was shipped out to Renkioi ready for assembly and complete with shower-baths and vapour-baths with printed instructions on how to use them, beds and bedding and water closets with a supply of toilet paper! Brunel's last, largest and most extravagantly conceived ship was the Great Leviathan, eventually named The Great Eastern, which had a double-skinned iron hull, together with both paddles and screw propeller. Brunel designed the ship to carry sufficient coal for the round trip to Australia without refuelling, thus saving the need for and the cost of bunkering, as there were then few bunkering ports throughout the world. The ship's construction was started by John Scott Russell in his yard at Millwall on the Thames, but the building was completed by Brunel due to Russell's bankruptcy in 1856. The hull of the huge vessel was laid down so as to be launched sideways into the river and then to be floated on the tide. Brunel's plan for hydraulic launching gear had been turned down by the directors on the grounds of cost, an economy that proved false in the event. The sideways launch with over 4,000 tons of hydraulic power together with steam winches and floating tugs on the river took over two months, from 3 November 1857 until 13 January 1858. The ship was 680 ft (207 m) long, 83 ft (25 m) beam and 58 ft (18 m) deep; the screw was 24 ft (7.3 m) in diameter and paddles 60 ft (18.3 m) in diameter. Its displacement was 32,000 tons (32,500 tonnes).
    The strain of overwork and the huge responsibilities that lay on Brunel began to tell. He was diagnosed as suffering from Bright's disease, or nephritis, and spent the winter travelling in the Mediterranean and Egypt, returning to England in May 1859. On 5 September he suffered a stroke which left him partially paralysed, and he died ten days later at his Duke Street home.
    [br]
    Further Reading
    L.T.C.Rolt, 1957, Isambard Kingdom Brunel, London: Longmans Green. J.Dugan, 1953, The Great Iron Ship, Hamish Hamilton.
    IMcN

    Biographical history of technology > Brunel, Isambard Kingdom

См. также в других словарях:

  • subject — n., adj., adv., & v. n. 1 a a matter, theme, etc. to be discussed, described, represented, dealt with, etc. b (foll. by for) a person, circumstance, etc., giving rise to specified feeling, action, etc. (a subject for congratulation). 2 a… …   Useful english dictionary

  • arrangement —    An order or composition. Or, a setup or composition of components in a still life painting or drawing. Arrangement is at the heart of the principles of design, and its consideration determines a work s coherence (unity and variety), focal… …   Glossary of Art Terms

  • subject — Synonyms and related words: IC analysis, above, academic specialty, action, actor, affair, agent, anagnorisis, angle, answerable to, application, appositive, apt, architect, architectonics, architecture, area, argument, atmosphere, attribute,… …   Moby Thesaurus

  • arrangement of words — An author s intellectual production; the subject of copyright. 18 Am J2d Copyr § 4 …   Ballentine's law dictionary

  • Companies' Creditors Arrangement Act — Citation RSC 1985, c. C 36[1] Enacted by Parliament of Canada …   Wikipedia

  • Individual Voluntary Arrangement — In the UK, Individual Voluntary Arrangements (IVAs) are a formal alternative for individuals wishing to avoid bankruptcy. The IVA was established by the Insolvency Act 1986 and constitutes a formal repayment proposal presented to a debtor s… …   Wikipedia

  • Double Irish Arrangement — The Double Irish Arrangement is a tax avoidance strategy that U.S. based multinational corporations use to lower their income tax liability. The idea is to use payments between related entities in a corporate structure to shift income from a… …   Wikipedia

  • Picture Arrangement Test — The Picture Arrangement Test is a psychological test performed by giving the subject pictures of a person with various facial expressions. The administor of the test then has the subject tell a story based on the images. It was created by Silvan… …   Wikipedia

  • Short subject — is a format description originally coined in the North American film industry in the early period of cinema. The description is now used almost interchangeably with short film. Either term is often abbreviated to short (as a noun, e.g. a short… …   Wikipedia

  • Ground Rent Arrangement — A situation in which someone owns a structure but not the land the structure is located on. Because she does not own the land, she has to pay rent on it. It is common for hotels and office buildings to be subject to ground rent arrangements;… …   Investment dictionary

  • Michelangelo Buonarroti — • Italian sculptor, painter, and architect (1475 1564) Catholic Encyclopedia. Kevin Knight. 2006. Michelangelo Buonarroti     Michelangelo Buonarroti      …   Catholic encyclopedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»