Перевод: с английского на все языки

со всех языков на английский

subject+also

  • 21 Burgi, Jost

    SUBJECT AREA: Horology
    [br]
    b. 28 February 1552 Lichtensteig, Switzerland
    d. 31 January 1632 Kassel, Germany
    [br]
    Swiss clockmaker and mathematician who invented the remontoire and the cross-beat escapement, also responsible for the use of exponential notation and the calculation of tables of anti-logarithms.
    [br]
    Burgi entered the service of Duke William IV of Hesse in 1579 as Court Clockmaker, although he also assisted William with his astronomical observations. In 1584 he invented the cross-beat escapement which increased the accuracy of spring-driven clocks by two orders of magnitude. During the last years of the century he also worked on the development of geometrical and astronomical instruments for the Royal Observatory at Kassel.
    On the death of Duke Wilhelm in 1603, and with news of his skills having reached the Holy Roman Emperor Rudolph II, in 1604 he went to Prague to become Imperial Watchmaker and to assist in the creation of a centre of scientific activity, subsequently becoming Assistant to the German astronomer, Johannes Kepler. No doubt this association led to an interest in mathematics and he made significant contributions to the concept of decimal fractions and the use of exponential notation, i.e. the use of a raised number to indicate powers of another number. It is likely that he was developing the idea of logarithms at the same time (or possibly even before) Napier, for in 1620 he made his greatest contribution to mathematics, science and, eventually, engineering, namely the publication of tables of anti-logarithms.
    At Prague he continued the series of accurate clocks and instruments for astronomical measurements that he had begun to produce at Kassel. At that period clocks were very poor timekeepers since the controller, the foliot or balance, had no natural period of oscillation and was consequently dependent on the driving force. Although the force of the driving weight was constant, irregularities occurred during the transmission of the power through the train as a result of the poor shape and quality of the gearing. Burgi attempted to overcome this directly by superb craftsmanship and indirectly by using a remontoire. This device was wound at regular intervals by the main driving force and fed the power directly to the escape wheel, which impulsed the foliot. He also introduced the crossbeat escapement (a variation on the verge), which consisted of two coupled foliots that swung in opposition to each other. According to contemporary evidence his clocks produced a remarkable improvement in timekeeping, being accurate to within a minute a day. This improvement was probably a result of the use of a remontoire and the high quality of the workmanship rather than a result of the cross-beat escapement, which did not have a natural period of oscillation.
    Burgi or Prague clocks, as they were known, were produced by very few other makers and were supplanted shortly afterwards by the intro-duction of the pendulum clock. Burgi also produced superb clockwork-driven celestial globes.
    [br]
    Principal Honours and Distinctions
    Ennobled 1611.
    Bibliography
    Burgi only published one book, and that was concerned with mathematics.
    Further Reading
    L.von Mackensen, 1979, Die erste Sternwarte Europas mit ihren Instrumenten and Uhren—400 Jahre Jost Burgi in Kassel, Munich.
    K.Maurice and O.Mayr (eds), 1980, The Clockwork Universe, Washington, DC, pp. 87– 102.
    H.A.Lloyd, 1958, Some Outstanding Clocks Over 700 Years, 1250–1950, London. E.T.Bell, 1937, Men of Mathematics, London: Victor Gollancz.
    See also: Briggs, Henry
    KF / DV

    Biographical history of technology > Burgi, Jost

  • 22 Crookes, Sir William

    SUBJECT AREA: Electricity
    [br]
    b. 17 June 1832 London, England
    d. 4 April 1919 London, England
    [br]
    English chemist and physicist who carried out studies of electrical discharges and cathode rays in rarefied gases, leading to the development of the cathode ray tube; discoverer of the element thallium and the principle of the Crookes radiometer.
    [br]
    Crookes entered the Royal College of Chemistry at the age of 15, and from 1850 to 1854 held the appointment of Assistant at the college. In 1854 he became Superintendent of the Meteorological Department at the Radcliffe Observatory in Oxford. He moved to a post at the College of Science in Chester the following year. Soon after this he inherited a large fortune and set up his own private laboratory in London. There he studied the nature of electrical discharges in gases at low pressure and discovered the dark space (later named after him) that surrounds the negative electrode, or cathode. He also established that the rays produced in the process (subsequently shown by J.J.Thompson to be a stream of electrons) not only travelled in straight lines, but were also capable of producing heat and/or light upon impact with suitable anode materials. Using a variety of new methods to investigate these "cathode" rays, he applied them to the spectral analysis of compounds of selenium and, as a result, in 1861 he discovered the element thallium, finally establishing its atomic weight in 1873. Following his discovery of thallium, he became involved in two main lines of research: the properties of rarified gases, and the investigation of the elements of the "rare earths". It was also during these experiments that he discovered the principle of the Crookes radiometer, a device in which light is converted into rotational motion and which used to be found frequently in the shop windows of English opticians. Also among the fruits of this work were the Crookes tubes and the development of spectacle lenses with differential ranges of radiational absorption. In the 1870s he became interested in spiritualism and acquired a reputation for his studies of psychic phenomena, but at the turn of the century he returned to traditional scientific investigations. In 1892 he wrote about the possibility of wireless telegraphy. His work in the field of radioactivity led to the invention of the spinthariscope, an early type of detector of alpha particles. In 1900 he undertook investigations into uranium which led to the study of scintillation, an important tool in the study of radioactivity.
    While the theoretical basis of his work has not stood the test of time, his material discoveries, observations and investigations of new facts formed a basis on which others such as J.J. Thomson were to develop subatomic theory. His later involvement in the investigation of spiritualism led to much criticism, but could be justified on the basis of a belief in the duty to investigate all phenomena.
    [br]
    Principal Honours and Distinctions
    Knighted 1897. Order of Merit 1910. FRS 1863. President, Royal Society 1913–15. Honorary LLD Birmingham. Honorary DSc Oxon, Cambridge, Sheffield, Durham, Ireland and Cape of Good Hope.
    Bibliography
    1874, On Attraction and Repulsion Resulting from Radiation.
    1874, "Researches in the phenomenon of spiritualism", Society of Metaphysics; reprinted in facsimile, 1986.
    Further Reading
    E.E.Fournier D'Albe, 1923, Life of Sir William Crookes. Who Was Who II, 1916–28, London: A. \& C. Black. T.I.Williams, 1969, A Biographical Dictionary of Scientists. See also Braun, Karl Ferdinand.
    KF / MG

    Biographical history of technology > Crookes, Sir William

  • 23 Adams, William Bridges

    [br]
    b. 1797 Madeley, Staffordshire, England
    d. 23 July 1872 Broadstairs, Kent, England
    [br]
    English inventory particularly of road and rail vehicles and their equipment.
    [br]
    Ill health forced Adams to live abroad when he was a young man and when he returned to England in the early 1830s he became a partner in his father's firm of coachbuilders. Coaches during that period were steered by a centrally pivoted front axle, which meant that the front wheels had to swing beneath the body and were therefore made smaller than the rear wheels. Adams considered this design defective and invented equirotal coaches, built by his firm, in which the front and rear wheels were of equal diameter and the coach body was articulated midway along its length so that the front part pivoted. He also applied himself to improving vehicles for railways, which were developing rapidly then.
    In 1843 he opened his own engineering works, Fairfield Works in north London (he was not related to his contemporary William Adams, who was appointed Locomotive Superintendent to the North London Railway in 1854). In 1847 he and James Samuel, Engineer to the Eastern Counties Railway, built for that line a small steam inspection car, the Express, which was light enough to be lifted off the track. The following year Adams built a broad-gauge steam railcar, the Fairfield, for the Bristol \& Exeter Railway at the insistance of the line's Engineer, C.H.Gregory: self-propelled and passenger-carrying, this was the first railcar. Adams developed the concept further into a light locomotive that could haul two or three separate carriages, and light locomotives built both by his own firm and by other noted builders came into vogue for a decade or more.
    In 1847 Adams also built eight-wheeled coaches for the Eastern Counties Railway that were larger and more spacious than most others of the day: each in effect comprised two four-wheeled coaches articulated together, with wheels that were allowed limited side-play. He also realized the necessity for improvements to railway track, the weakest point of which was the joints between the rails, whose adjoining ends were normally held in common chairs. Adams invented the fishplated joint, first used by the Eastern Counties Railway in 1849 and subsequently used almost universally.
    Adams was a prolific inventor. Most important of his later inventions was the radial axle, which was first applied to the leading and trailing wheels of a 2–4–2 tank engine, the White Raven, built in 1863; Adams's radial axle was the forerunner of all later radial axles. However, the sprung tyres with which White Raven was also fitted (an elastic steel hoop was interposed between wheel centre and tyre) were not perpetuated. His inventiveness was not restricted to engineering: in matters of dress, his adoption, perhaps invention, of the turn-down collar at a time when men conventionally wore standup collars had lasting effect.
    [br]
    Bibliography
    Adams took out some thirty five British patents, including one for the fishplate in 1847. He wrote copiously, as journalist and author: his most important book was English Pleasure Carriages (1837), a detailed description of coachbuilding, together with ideas for railway vehicles and track. The 1971 reprint (Bath: Adams \& Dart) has a biographical introduction by Jack Simmons.
    Further Reading
    C.Hamilton Ellis, 1958, Twenty Locomotive Men, Shepperton: Ian Allan, Ch. 1. See also England, George.
    PJGR

    Biographical history of technology > Adams, William Bridges

  • 24 Bateman, John Frederick La Trobe

    [br]
    b. 30 May 1810 Lower Wyke, near Halifax, Yorkshire, England
    d. 10 June 1889 Moor Park, Farnham, Surrey, England
    [br]
    English civil engineer whose principal works were concerned with reservoirs, water-supply schemes and pipelines.
    [br]
    Bateman's maternal grandfather was a Moravian missionary, and from the age of 7 he was educated at the Moravian schools at Fairfield and Ockbrook. At the age of 15 he was apprenticed to a "civil engineer, land surveyor and agent" in Oldham. After this apprenticeship, Bateman commenced his own practice in 1833. One of his early schemes and reports was in regard to the flooding of the river Medlock in the Manchester area. He came to the attention of William Fairbairn, the engine builder and millwright of Canal Street, Ancoats, Manchester. Fairbairn used Bateman as his site surveyor and as such he prepared much of the groundwork for the Bann reservoirs in Northern Ireland. Whilst the reports on the proposals were in the name of Fairbairn, Bateman was, in fact, appointed by the company as their engineer for the execution of the works. One scheme of Bateman's which was carried forward was the Kendal Reservoirs. The Act for these was signed in 1845 and was implemented not for the purpose of water supply but for the conservation of water to supply power to the many mills which stood on the river Kent between Kentmere and Morecambe Bay. The Kentmere Head dam is the only one of the five proposed for the scheme to survive, although not all the others were built as they would have retained only small volumes of water.
    Perhaps the greatest monument to the work of J.F.La Trobe Bateman is Manchester's water supply; he was consulted about this in 1844, and construction began four years later. He first built reservoirs in the Longdendale valley, which has a very complicated geological stratification. Bateman favoured earth embankment dams and gravity feed rather than pumping; the five reservoirs in the valley that impound the river Etherow were complex, cored earth dams. However, when completed they were greatly at risk from landslips and ground movement. Later dams were inserted by Bateman to prevent water loss should the older dams fail. The scheme was not completed until 1877, by which time Manchester's population had exceeded the capacity of the original scheme; Thirlmere in Cumbria was chosen by Manchester Corporation as the site of the first of the Lake District water-supply schemes. Bateman, as Consulting Engineer, designed the great stone-faced dam at the west end of the lake, the "gothic" straining well in the middle of the east shore of the lake, and the 100-mile (160 km) pipeline to Manchester. The Act for the Thirlmere reservoir was signed in 1879 and, whilst Bateman continued as Consulting Engineer, the work was supervised by G.H. Hill and was completed in 1894.
    Bateman was also consulted by the authorities in Glasgow, with the result that he constructed an impressive water-supply scheme derived from Loch Katrine during the years 1856–60. It was claimed that the scheme bore comparison with "the most extensive aqueducts in the world, not excluding those of ancient Rome". Bateman went on to superintend the waterworks of many cities, mainly in the north of England but also in Dublin and Belfast. In 1865 he published a pamphlet, On the Supply of Water to London from the Sources of the River Severn, based on a survey funded from his own pocket; a Royal Commission examined various schemes but favoured Bateman's.
    Bateman was also responsible for harbour and dock works, notably on the rivers Clyde and Shannon, and also for a number of important water-supply works on the Continent of Europe and beyond. Dams and the associated reservoirs were the principal work of J.F.La Trobe Bateman; he completed forty-three such schemes during his professional career. He also prepared many studies of water-supply schemes, and appeared as professional witness before the appropriate Parliamentary Committees.
    [br]
    Principal Honours and Distinctions
    FRS 1860. President, Institution of Civil Engineers 1878, 1879.
    Bibliography
    Among his publications History and Description of the Manchester Waterworks, (1884, London), and The Present State of Our Knowledge on the Supply of Water to Towns, (1855, London: British Association for the Advancement of Science) are notable.
    Further Reading
    Obituary, 1889, Proceedings of the Royal Society 46:xlii-xlviii. G.M.Binnie, 1981, Early Victorian Water Engineers, London.
    P.N.Wilson, 1973, "Kendal reservoirs", Transactions of the Cumberland and Westmorland Antiquarian and Archaeological Society 73.
    KM / LRD

    Biographical history of technology > Bateman, John Frederick La Trobe

  • 25 Lanchester, Frederick William

    [br]
    b. 28 October 1868 Lewisham, London, England
    d. 8 March 1946 Birmingham, England
    [br]
    English designer and builder of the first all-British motor car.
    [br]
    The fourth of eight children of an architect, he spent his childhood in Hove and attended a private preparatory school, from where, aged 14, he went to the Hartley Institution (the forerunner of Southampton University). He was then granted a scholarship to the Royal College of Science, South Kensington, and also studied practical engineering at Finsbury Technical College, London. He worked first for a draughtsman and pseudo-patent agent, and was then appointed Assistant Works Manager of the Forward Gas Engine Company of Birmingham, with sixty men and a salary of £1 per week. He was then aged 21. His younger brother, George, was apprenticed to the same company. In 1889 and 1890 he invented a pendulum governor and an engine starter which earned him royalties. He built a flat-bottomed river craft with a stern paddle-wheel and a vertical single-cylinder engine with a wick carburettor of his own design. From 1892 he performed a number of garden experiments on model gliders relating to problems of lift and drag, which led him to postulate vortices from the wingtips trailing behind, much of his work lying behind the theory of modern aerodynamics. The need to develop a light engine for aircraft led him to car design.
    In February 1896 his first experimental car took the road. It had a torsionally rigid chassis, a perfectly balanced and almost noiseless engine, dynamically stable steering, epicyclic gear for low speed and reverse with direct drive for high speed. It turned out to be underpowered and was therefore redesigned. Two years later an 8 hp, two-cylinder flat twin appeared which retained the principle of balancing by reverse rotation, had new Lanchester valve-gear and a new method of ignition based on a magneto generator. For the first time a worm and wheel replaced chain-drive or bevel-gear transmission. Lanchester also designed the machinery to make it. The car was capable of about 18 mph (29 km/h): future cars of his travelled at twice that speed. From 1899 to 1904 cars were produced for sale by the Lanchester Engine Company, which was formed in 1898. The company had to make every component except the tyres. Lanchester gave up the managership but remained as Chief Designer, and he remained in this post until 1914.
    In 1907–8 his two-volume treatise Aerial Flight was published; it included consideration of skin friction, boundary-layer theory and the theory of stability. In 1909 he was appointed to the Government's Committee for Aeronautics and also became a consultant to the Daimler Company. At the age of 51 he married Dorothea Cooper. He remained a consultant to Daimler and worked also for Wolseley and Beardmore until 1929 when he started Lanchester Laboratories, working on sound reproduction. He also wrote books on relativity and on the theory of dimensions.
    [br]
    Principal Honours and Distinctions
    FRS.
    Bibliography
    bht=1907–8, Aerial Flight, 2 vols.
    Further Reading
    P.W.Kingsford, 1966, F.W.Lanchester, Automobile Engineer.
    E.G.Semler (ed.), 1966, The Great Masters. Engineering Heritage, Vol. II, London: Institution of Mechanical Engineers/Heinemann.
    IMcN

    Biographical history of technology > Lanchester, Frederick William

  • 26 Marey, Etienne-Jules

    [br]
    b. 5 March 1830 Beaune, France
    d. 15 May 1904 Paris, France
    [br]
    French physiologist and pioneer of chronophotography.
    [br]
    At the age of 19 Marey went to Paris to study medicine, becoming particularly interested in the problems of the circulation of the blood. In an early communication to the Académie des Sciences he described a much improved device for recording the pulse, the sphygmograph, in which the beats were recorded on a smoked plate. Most of his subsequent work was concerned with methods of recording movement: to study the movement of the horse, he used pneumatic sensors on each hoof to record traces on a smoked drum; this device became known as the Marey recording tambour. His attempts to study the wing movements of a bird in flight in the same way met with limited success since the recording system interfered with free movement. Reading in 1878 of Muybridge's work in America using sequence photography to study animal movement, Marey considered the use of photography himself. In 1882 he developed an idea first used by the astronomer Janssen: a camera in which a series of exposures could be made on a circular photographic plate. Marey's "photographic gun" was rifle shaped and could expose twelve pictures in approximately one second on a circular plate. With this device he was able to study wing movements of birds in free flight. The camera was limited in that it could record only a small number of images, and in the summer of 1882 he developed a new camera, when the French government gave him a grant to set up a physiological research station on land provided by the Parisian authorities near the Porte d'Auteuil. The new design used a fixed plate, on which a series of images were recorded through a rotating shutter. Looking rather like the results provided by a modern stroboscope flash device, the images were partially superimposed if the subject was slow moving, or separated if it was fast. His human subjects were dressed all in white and moved against a black background. An alternative was to dress the subject in black, with highly reflective strips and points along limbs and at joints, to produce a graphic record of the relationships of the parts of the body during action. A one-second-sweep timing clock was included in the scene to enable the precise interval between exposures to be assessed. The fixed-plate cameras were used with considerable success, but the number of individual records on each plate was still limited. With the appearance of Eastman's Kodak roll-film camera in France in September 1888, Marey designed a new camera to use the long rolls of paper film. He described the new apparatus to the Académie des Sciences on 8 October 1888, and three weeks later showed a band of images taken with it at the rate of 20 per second. This camera and its subsequent improvements were the first true cinematographic cameras. The arrival of Eastman's celluloid film late in 1889 made Marey's camera even more practical, and for over a decade the Physiological Research Station made hundreds of sequence studies of animals and humans in motion, at rates of up to 100 pictures per second. Marey pioneered the scientific study of movement using film cameras, introducing techniques of time-lapse, frame-by-frame and slow-motion analysis, macro-and micro-cinematography, superimposed timing clocks, studies of airflow using smoke streams, and other methods still in use in the 1990s. Appointed Professor of Natural History at the Collège de France in 1870, he headed the Institut Marey founded in 1898 to continue these studies. After Marey's death in 1904, the research continued under the direction of his associate Lucien Bull, who developed many new techniques, notably ultra-high-speed cinematography.
    [br]
    Principal Honours and Distinctions
    Foreign member of the Royal Society 1898. President, Académie des Sciences 1895.
    Bibliography
    1860–1904, Comptes rendus de l'Académie des Sciences de Paris.
    1873, La Machine animale, Paris 1874, Animal Mechanism, London.
    1893, Die Chronophotographie, Berlin. 1894, Le Mouvement, Paris.
    1895, Movement, London.
    1899, La Chronophotographie, Paris.
    Further Reading
    ——1992, Muybridge and the Chronophotographers, London. Jacques Deslandes, 1966, Histoire comparée du cinéma, Vol. I, Paris.
    BC / MG

    Biographical history of technology > Marey, Etienne-Jules

  • 27 Stephenson, Robert

    [br]
    b. 16 October 1803 Willington Quay, Northumberland, England
    d. 12 October 1859 London, England
    [br]
    English engineer who built the locomotive Rocket and constructed many important early trunk railways.
    [br]
    Robert Stephenson's father was George Stephenson, who ensured that his son was educated to obtain the theoretical knowledge he lacked himself. In 1821 Robert Stephenson assisted his father in his survey of the Stockton \& Darlington Railway and in 1822 he assisted William James in the first survey of the Liverpool \& Manchester Railway. He then went to Edinburgh University for six months, and the following year Robert Stephenson \& Co. was named after him as Managing Partner when it was formed by himself, his father and others. The firm was to build stationary engines, locomotives and railway rolling stock; in its early years it also built paper-making machinery and did general engineering.
    In 1824, however, Robert Stephenson accepted, perhaps in reaction to an excess of parental control, an invitation by a group of London speculators called the Colombian Mining Association to lead an expedition to South America to use steam power to reopen gold and silver mines. He subsequently visited North America before returning to England in 1827 to rejoin his father as an equal and again take charge of Robert Stephenson \& Co. There he set about altering the design of steam locomotives to improve both their riding and their steam-generating capacity. Lancashire Witch, completed in July 1828, was the first locomotive mounted on steel springs and had twin furnace tubes through the boiler to produce a large heating surface. Later that year Robert Stephenson \& Co. supplied the Stockton \& Darlington Railway with a wagon, mounted for the first time on springs and with outside bearings. It was to be the prototype of the standard British railway wagon. Between April and September 1829 Robert Stephenson built, not without difficulty, a multi-tubular boiler, as suggested by Henry Booth to George Stephenson, and incorporated it into the locomotive Rocket which the three men entered in the Liverpool \& Manchester Railway's Rainhill Trials in October. Rocket, was outstandingly successful and demonstrated that the long-distance steam railway was practicable.
    Robert Stephenson continued to develop the locomotive. Northumbrian, built in 1830, had for the first time, a smokebox at the front of the boiler and also the firebox built integrally with the rear of the boiler. Then in Planet, built later the same year, he adopted a layout for the working parts used earlier by steam road-coach pioneer Goldsworthy Gurney, placing the cylinders, for the first time, in a nearly horizontal position beneath the smokebox, with the connecting rods driving a cranked axle. He had evolved the definitive form for the steam locomotive.
    Also in 1830, Robert Stephenson surveyed the London \& Birmingham Railway, which was authorized by Act of Parliament in 1833. Stephenson became Engineer for construction of the 112-mile (180 km) railway, probably at that date the greatest task ever undertaken in of civil engineering. In this he was greatly assisted by G.P.Bidder, who as a child prodigy had been known as "The Calculating Boy", and the two men were to be associated in many subsequent projects. On the London \& Birmingham Railway there were long and deep cuttings to be excavated and difficult tunnels to be bored, notoriously at Kilsby. The line was opened in 1838.
    In 1837 Stephenson provided facilities for W.F. Cooke to make an experimental electrictelegraph installation at London Euston. The directors of the London \& Birmingham Railway company, however, did not accept his recommendation that they should adopt the electric telegraph and it was left to I.K. Brunel to instigate the first permanent installation, alongside the Great Western Railway. After Cooke formed the Electric Telegraph Company, Stephenson became a shareholder and was Chairman during 1857–8.
    Earlier, in the 1830s, Robert Stephenson assisted his father in advising on railways in Belgium and came to be increasingly in demand as a consultant. In 1840, however, he was almost ruined financially as a result of the collapse of the Stanhope \& Tyne Rail Road; in return for acting as Engineer-in-Chief he had unwisely accepted shares, with unlimited liability, instead of a fee.
    During the late 1840s Stephenson's greatest achievements were the design and construction of four great bridges, as part of railways for which he was responsible. The High Level Bridge over the Tyne at Newcastle and the Royal Border Bridge over the Tweed at Berwick were the links needed to complete the East Coast Route from London to Scotland. For the Chester \& Holyhead Railway to cross the Menai Strait, a bridge with spans as long-as 460 ft (140 m) was needed: Stephenson designed them as wrought-iron tubes of rectangular cross-section, through which the trains would pass, and eventually joined the spans together into a tube 1,511 ft (460 m) long from shore to shore. Extensive testing was done beforehand by shipbuilder William Fairbairn to prove the method, and as a preliminary it was first used for a 400 ft (122 m) span bridge at Conway.
    In 1847 Robert Stephenson was elected MP for Whitby, a position he held until his death, and he was one of the exhibition commissioners for the Great Exhibition of 1851. In the early 1850s he was Engineer-in-Chief for the Norwegian Trunk Railway, the first railway in Norway, and he also built the Alexandria \& Cairo Railway, the first railway in Africa. This included two tubular bridges with the railway running on top of the tubes. The railway was extended to Suez in 1858 and for several years provided a link in the route from Britain to India, until superseded by the Suez Canal, which Stephenson had opposed in Parliament. The greatest of all his tubular bridges was the Victoria Bridge across the River St Lawrence at Montreal: after inspecting the site in 1852 he was appointed Engineer-in-Chief for the bridge, which was 1 1/2 miles (2 km) long and was designed in his London offices. Sadly he, like Brunel, died young from self-imposed overwork, before the bridge was completed in 1859.
    [br]
    Principal Honours and Distinctions
    FRS 1849. President, Institution of Mechanical Engineers 1849. President, Institution of Civil Engineers 1856. Order of St Olaf (Norway). Order of Leopold (Belgium). Like his father, Robert Stephenson refused a knighthood.
    Further Reading
    L.T.C.Rolt, 1960, George and Robert Stephenson, London: Longman (a good modern biography).
    J.C.Jeaffreson, 1864, The Life of Robert Stephenson, London: Longman (the standard nine-teenth-century biography).
    M.R.Bailey, 1979, "Robert Stephenson \& Co. 1823–1829", Transactions of the Newcomen Society 50 (provides details of the early products of that company).
    J.Kieve, 1973, The Electric Telegraph, Newton Abbot: David \& Charles.
    PJGR

    Biographical history of technology > Stephenson, Robert

  • 28 Arnold, John

    SUBJECT AREA: Horology
    [br]
    b. 1735/6 Bodmin (?), Cornwall, England
    d. 25 August 1799 Eltham, London, England
    [br]
    English clock, watch, and chronometer maker who invented the isochronous helical balance spring and an improved form of detached detent escapement.
    [br]
    John Arnold was apprenticed to his father, a watchmaker, and then worked as an itinerant journeyman in the Low Countries and, later, in England. He settled in London in 1762 and rapidly established his reputation at Court by presenting George III with a miniature repeating watch mounted in a ring. He later abandoned the security of the Court for a more precarious living developing his chronometers, with some financial assistance from the Board of Longitude. Symbolically, in 1771 he moved from the vicinity of the Court at St James's to John Adam Street, which was close to the premises of the Royal Society for the Encouragement of Arts, Manufactures \& Commerce.
    By the time Arnold became interested in chronometry, Harrison had already demonstrated that longitude could be determined by means of a timekeeper, and the need was for a simpler instrument that could be sold at an affordable price for universal use at sea. Le Roy had shown that it was possible to dispense with a remontoire by using a detached escapement with an isochronous balance; Arnold was obviously thinking along the same lines, although he may not have been aware of Le Roy's work. By 1772 Arnold had developed his detached escapement, a pivoted detent which was quite different from that used on the European continent, and three years later he took out a patent for a compensation balance and a helical balance spring (Arnold used the spring in torsion and not in tension as Harrison had done). His compensation balance was similar in principle to that described by Le Roy and used riveted bimetallic strips to alter the radius of gyration of the balance by moving small weights radially. Although the helical balance spring was not completely isochronous it was a great improvement on the spiral spring, and in a later patent (1782) he showed how it could be made more truly isochronous by shaping the ends. In this form it was used universally in marine chronometers.
    Although Arnold's chronometers performed well, their long-term stability was less satisfactory because of the deterioration of the oil on the pivot of the detent. In his patent of 1782 he eliminated this defect by replacing the pivot with a spring, producing the spring detent escapement. This was also done independendy at about the same time by Berthoud and Earnshaw, although Earnshaw claimed vehemently that Arnold had plagiarized his work. Ironically it was Earnshaw's design that was finally adopted, although he had merely replaced Arnold's pivoted detent with a spring, while Arnold had completely redesigned the escapement. Earnshaw also improved the compensation balance by fusing the steel to the brass to form the bimetallic element, and it was in this form that it began to be used universally for chronometers and high-grade watches.
    As a result of the efforts of Arnold and Earnshaw, the marine chronometer emerged in what was essentially its final form by the end of the eighteenth century. The standardization of the design in England enabled it to be produced economically; whereas Larcum Kendall was paid £500 to copy Harrison's fourth timekeeper, Arnold was able to sell his chronometers for less than one-fifth of that amount. This combination of price and quality led to Britain's domination of the chronometer market during the nineteenth century.
    [br]
    Bibliography
    30 December 1775, "Timekeepers", British patent no. 1,113.
    2 May 1782, "A new escapement, and also a balance to compensate the effects arising from heat and cold in pocket chronometers, and for incurving the ends of the helical spring…", British patent no. 1,382.
    Further Reading
    R.T.Gould, 1923, The Marine Chronometer: Its History and Development, London; reprinted 1960, Holland Press (provides an overview).
    V.Mercer, 1972, John Arnold \& Son Chronometer Makers 1726–1843, London.
    DV

    Biographical history of technology > Arnold, John

  • 29 Brindley, James

    SUBJECT AREA: Canals
    [br]
    b. 1716 Tunstead, Derbyshire, England
    d. 27 September 1772 Turnhurst, Staffordshire, England
    [br]
    English canal engineer.
    [br]
    Born in a remote area and with no material advantages, Brindley followed casual rural labouring occupations until 1733, when he became apprenticed to Abraham Bennett of Macclesfield, a wheelwright and millwright. Though lacking basic education in reading and writing, he demonstrated his ability, partly through his photographic memory, to solve practical problems. This established his reputation, and after Bennett's death in 1742 he set up his own business at Leek as a millwright. His skill led to an invitation to solve the problem of mine drainage at Wet Earth Colliery, Clifton, near Manchester. He tunnelled 600 ft (183 m) through rock to provide a leat for driving a water-powered pump.
    Following work done on a pump on Earl Gower's estate at Trentham, Brindley's name was suggested as the engineer for the proposed canal for which the Duke of Bridge water (Francis Egerton) had obtained an Act in 1759. The Earl and the Duke were brothers-in-law, and the agents for the two estates were, in turn, the Gilbert brothers. The canal, later known as the Bridgewater Canal, was to be constructed to carry coal from the Duke's mines at Worsley into Manchester. Brindley advised on the details of its construction and recommended that it be carried across the river Irwell at Barton by means of an aqueduct. His proposals were accepted, and under his supervision the canal was constructed on a single level and opened in 1761. Brindley had also surveyed for Earl Gower a canal from the Potteries to Liverpool to carry pottery for export, and the signal success of the Bridgewater Canal ensured that the Trent and Mersey Canal would also be built. These undertakings were the start of Brindley's career as a canal engineer, and it was largely from his concepts that the canal system of the Midlands developed, following the natural contours rather than making cuttings and constructing large embankments. His canals are thus winding navigations unlike the later straight waterways, which were much easier to traverse. He also adopted the 7 ft (2.13 m) wide lock as a ruling dimension for all engineering features. For cheapness, he formed his canal tunnels without a towpath, which led to the notorious practice of legging the boats through the tunnels.
    Brindley surveyed a large number of projects and such was his reputation that virtually every proposal was submitted to him for his opinion. Included among these projects were the Staffordshire and Worcestershire, the Rochdale, the Birmingham network, the Droitwich, the Coventry and the Oxford canals. Although he was nominally in charge of each contract, much of the work was carried out by his assistants while he rushed from one undertaking to another to ensure that his orders were being carried out. He was nearly 50 when he married Anne Henshall, whose brother was also a canal engineer. His fees and salaries had made him very wealthy. He died in 1772 from a chill sustained when carrying out a survey of the Caldon Canal.
    [br]
    Further Reading
    A.G.Banks and R.B.Schofield, 1968, Brindley at Wet Earth Colliery: An Engineering Study, Newton Abbot: David \& Charles.
    S.E.Buckley, 1948, James Brindley, London: Harrap.
    JHB

    Biographical history of technology > Brindley, James

  • 30 Case, Jerome Increase

    [br]
    b. 1819 Williamstown, Oswego County, New York, USA
    d. 1891 USA
    [br]
    American manufacturer and founder of the Case company of agricultural engineers.
    [br]
    J.I.Case was the son of a former and began his working life operating the family's Groundhog threshing machine. He moved into contract threshing, and used the money he earned to pay his way through a business academy. He became the agent for the Groundhog thresher in his area and at the age of 23 decided to move west, taking six machines with him. He sold five of these to obtain working capital, and in 1842 moved from Williamstown, New York, to Rochester, Wisconsin, where he established his manufacturing company. He produced the first combined thresher-winnower in the US in 1843. Two years later he moved to Racine, on the shores of Lake Michigan in the same state. Within four years the Case company became Racine's biggest company and largest employer, a position it was to retain into the twentieth century. As early as 1860 Case was shipping threshing machines around the Horn to California.
    Apart from having practical expertise Case was also a skilled demonstrator, and it was this combination which resulted in the sure growth of his company. In 1869 he produced his first portable steam engine and in 1876 his first traction engine. By the mid 1870s he was selling a significant proportion of the machines in use in America. By 1878 Case threshing machines had penetrated the European market, and in 1885 sales to South America began. Case also became the world's largest manufacturer of steam engines.
    J.I.Case himself, whilst still actively involved with the company, also became involved in politics. He was Mayor of Racine for three terms and State Senator for two. He was also President of the Manufacturers' National Bank of Racine and Founder of the First National Bank of Burlington. He founded the Wisconsin Academy of Science, Arts and Letters and was President of the Racine County Agricultural Society. He had time for sport and was owner of the world's all-time champion trotter-pacer.
    Continued expansion of the company after J.I. Case's death led eventually to its acquisition by Tenneco in 1967, and in 1985 the company took over International Harvester. As Case I.H. it continues to produce a full range of agricultural, earth-moving and heavy-transport equipment.
    [br]
    Further Reading
    Despite the size and importance of the company he created, very little has been written about Case. On particular anniversaries the company has produced celebratory publications, and surprisingly these still seem to be the main source of information about him.
    R.B.Gray, 1975, The Agricultural Tractor 1855–1950, American Society of Agricultural Engineers (traces the history of power on the farm, in which Case and his machines played such an important role).
    AP

    Biographical history of technology > Case, Jerome Increase

  • 31 Donkin, Bryan I

    [br]
    b. 22 March 1768 Sandoe, Northumberland, England
    d. 27 February 1855 London, England
    [br]
    English mechanical engineer and inventor.
    [br]
    It was intended that Bryan Donkin should follow his father's profession of surveyor and land agent, so he spent a year or so in that occupation before he was apprenticed to John Hall, millwright of Dartford, Kent. Donkin remained with the firm after completing his apprenticeship, and when the Fourdrinier brothers in 1802 introduced from France an invention for making paper in continuous lengths they turned to John Hall for help in developing the machine: Donkin was chosen to undertake the work. In 1803 the Fourdriniers established their own works in Bermondsey, with Bryan Donkin in charge. By 1808 Donkin had acquired the works, but he continued to manufacture paper-making machines, paying a royalty to the patentees. He also undertook other engineering work including water-wheels for driving paper and other mills. He was also involved in the development of printing machinery and the preservation of food in airtight containers. Some of these improvements were patented, and he also obtained patents relating to gearing, steel pens, paper-making and railway wheels. Other inventions of Bryan Donkin that were not patented concerned revolution counters and improvements in accurate screw threads for use in graduating mathematical scales. Donkin was elected a member of the Society of Arts in 1803 and was later Chairman of the Society's Committee of Mechanics and a Vice-President of the society. He was also a member of the Royal Astronomical Society. In 1818 a group of eight young men founded the Institution of Civil Engineers; two of them were apprentices of Bryan Donkin and he encouraged their enterprise. After a change in the rules permitted the election of members over the age of 35, he himself became a member in 1821. He served on the Council and became a Vice- President, but he resigned from the Institution in 1848.
    [br]
    Principal Honours and Distinctions
    FRS 1838. Vice-President, Institution of Civil Engineers 1826–32, 1835–45. Member, Smeatonian Society of Civil Engineers 1835; President 1843. Society of Arts Gold Medal 1810, 1819.
    Further Reading
    S.B.Donkin, 1949–51, "Bryan Donkin, FRS, MICE 1768–1855", Transactions of the Newcomen Society 27:85–95.
    RTS

    Biographical history of technology > Donkin, Bryan I

  • 32 Evans, Oliver

    [br]
    b. 13 September 1755 Newport, Delaware, USA
    d. 15 April 1819 New York, USA
    [br]
    American millwright and inventor of the first automatic corn mill.
    [br]
    He was the fifth child of Charles and Ann Stalcrop Evans, and by the age of 15 he had four sisters and seven brothers. Nothing is known of his schooling, but at the age of 17 he was apprenticed to a Newport wheelwright and wagon-maker. At 19 he was enrolled in a Delaware Militia Company in the Revolutionary War but did not see active service. About this time he invented a machine for bending and cutting off the wires in textile carding combs. In July 1782, with his younger brother, Joseph, he moved to Tuckahoe on the eastern shore of the Delaware River, where he had the basic idea of the automatic flour mill. In July 1782, with his elder brothers John and Theophilus, he bought part of his father's Newport farm, on Red Clay Creek, and planned to build a mill there. In 1793 he married Sarah Tomlinson, daughter of a Delaware farmer, and joined his brothers at Red Clay Creek. He worked there for some seven years on his automatic mill, from about 1783 to 1790.
    His system for the automatic flour mill consisted of bucket elevators to raise the grain, a horizontal screw conveyor, other conveying devices and a "hopper boy" to cool and dry the meal before gathering it into a hopper feeding the bolting cylinder. Together these components formed the automatic process, from incoming wheat to outgoing flour packed in barrels. At that time the idea of such automation had not been applied to any manufacturing process in America. The mill opened, on a non-automatic cycle, in 1785. In January 1786 Evans applied to the Delaware legislature for a twenty-five-year patent, which was granted on 30 January 1787 although there was much opposition from the Quaker millers of Wilmington and elsewhere. He also applied for patents in Pennsylvania, Maryland and New Hampshire. In May 1789 he went to see the mill of the four Ellicot brothers, near Baltimore, where he was impressed by the design of a horizontal screw conveyor by Jonathan Ellicot and exchanged the rights to his own elevator for those of this machine. After six years' work on his automatic mill, it was completed in 1790. In the autumn of that year a miller in Brandywine ordered a set of Evans's machinery, which set the trend toward its general adoption. A model of it was shown in the Market Street shop window of Robert Leslie, a watch-and clockmaker in Philadelphia, who also took it to England but was unsuccessful in selling the idea there.
    In 1790 the Federal Plant Laws were passed; Evans's patent was the third to come within the new legislation. A detailed description with a plate was published in a Philadelphia newspaper in January 1791, the first of a proposed series, but the paper closed and the series came to nothing. His brother Joseph went on a series of sales trips, with the result that some machinery of Evans's design was adopted. By 1792 over one hundred mills had been equipped with Evans's machinery, the millers paying a royalty of $40 for each pair of millstones in use. The series of articles that had been cut short formed the basis of Evans's The Young Millwright and Miller's Guide, published first in 1795 after Evans had moved to Philadelphia to set up a store selling milling supplies; it was 440 pages long and ran to fifteen editions between 1795 and 1860.
    Evans was fairly successful as a merchant. He patented a method of making millstones as well as a means of packing flour in barrels, the latter having a disc pressed down by a toggle-joint arrangement. In 1801 he started to build a steam carriage. He rejected the idea of a steam wheel and of a low-pressure or atmospheric engine. By 1803 his first engine was running at his store, driving a screw-mill working on plaster of Paris for making millstones. The engine had a 6 in. (15 cm) diameter cylinder with a stroke of 18 in. (45 cm) and also drove twelve saws mounted in a frame and cutting marble slabs at a rate of 100 ft (30 m) in twelve hours. He was granted a patent in the spring of 1804. He became involved in a number of lawsuits following the extension of his patent, particularly as he increased the licence fee, sometimes as much as sixfold. The case of Evans v. Samuel Robinson, which Evans won, became famous and was one of these. Patent Right Oppression Exposed, or Knavery Detected, a 200-page book with poems and prose included, was published soon after this case and was probably written by Oliver Evans. The steam engine patent was also extended for a further seven years, but in this case the licence fee was to remain at a fixed level. Evans anticipated Edison in his proposal for an "Experimental Company" or "Mechanical Bureau" with a capital of thirty shares of $100 each. It came to nothing, however, as there were no takers. His first wife, Sarah, died in 1816 and he remarried, to Hetty Ward, the daughter of a New York innkeeper. He was buried in the Bowery, on Lower Manhattan; the church was sold in 1854 and again in 1890, and when no relative claimed his body he was reburied in an unmarked grave in Trinity Cemetery, 57th Street, Broadway.
    [br]
    Further Reading
    E.S.Ferguson, 1980, Oliver Evans: Inventive Genius of the American Industrial Revolution, Hagley Museum.
    G.Bathe and D.Bathe, 1935, Oliver Evans: Chronicle of Early American Engineering, Philadelphia, Pa.
    IMcN

    Biographical history of technology > Evans, Oliver

  • 33 Fauvelle, Pierre-Pascal

    [br]
    b. 4 June 1797 Rethel, Ardennes, France
    d. 19 December 1867 Perpignan, France
    [br]
    French inventor of hydraulic boring.
    [br]
    While attending the drilling of artesian wells in southern France in 1833, Fauvelle noticed that the debris from the borehole was carried out by the ascending water. This observation caused him to conceive the idea that the boring process need not necessarily be interrupted in order to clear the hole with an auger. It took him eleven years to develop his idea and to find financial backing to carry out his project in practice. In 1844, within a period of fifty-four days, he secretly bored an artesian well 219 m (718 ft) deep in Perpignan. One year later he secured his invention with a patent in France, and with another the following year in Spain.
    Fauvelle's process involved water being forced by a pressure pump through hollow rods to the bottom of the drill, whence it ascended through the annular space between the rod and the wall of the borehole, thus flushing the mud up to the surface. This method was similar to that of Robert Beart who had secured a patent in Britain but had not put it into practice. Although Fauvelle was not primarily concerned with the rotating action of the drill, his hydraulic boring method and its subsequent developments by his stepson, Alphonse de Basterot, formed an important step towards modern rotary drilling, which began with the work of Anthony F. Lucas near Beaumont, Texas, at the turn of the twentieth century. In the 1870s Albert Fauck, who also contributed important developments to the structure of boring rigs, had combined Fauvelle's hydraulic system with core-boring in the United States.
    [br]
    Bibliography
    1846, "Sur un nouveau système de forage", Comptes rendus de l'Académie des sciences, pp. 438–40; also printed in 1847 in Le Technologiste 8, pp. 87–8.
    Further Reading
    A.Birembeaut, 1968, "Pierre-Pascal Fauvelle", Dictionnaire de biographie française, vol. 13, pp. 808–10; also in L'Indépendant, Perpignan, 5–10 February (biography).
    A.de Basterot, 1868, Puits artésiens, sondages de mines, sondages d'études, système
    Fauvelle et de Basterot, Brussels (a detailed description of Fauvelle's methods and de Basterot's developments).
    WK

    Biographical history of technology > Fauvelle, Pierre-Pascal

  • 34 Galilei, Galileo

    [br]
    b. 15 February 1564 Pisa, Italy
    d. 8 January 1642 Arcetri, near Florence, Italy
    [br]
    Italian mathematician, astronomer and physicist who established the principle of the pendulum and was first to exploit the telescope.
    [br]
    Galileo began studying medicine at the University of Pisa but soon turned to his real interests, mathematics, mechanics and astronomy. He became Professor of Mathematics at Pisa at the age of 25 and three years later moved to Padua. In 1610 he transferred to Florence. While still a student he discovered the isochronous property of the pendulum, probably by timing with his pulse the swings of a hanging lamp during a religious ceremony in Pisa Cathedral. He later designed a pendulum-controlled clock, but it was not constructed until after his death, and then not successfully; the first successful pendulum clock was made by the Dutch scientist Christiaan Huygens in 1656. Around 1590 Galileo established the laws of motion of falling bodies, by timing rolling balls down inclined planes and not, as was once widely believed, by dropping different weights from the Leaning Tower of Pisa. These and other observations received definitive treatment in his Discorsi e dimostrazioni matematiche intorno a due nuove scienzi attenenti alla, meccanica (Dialogues Concerning Two New Sciences…) which was completed in 1634 and first printed in 1638. This work also included Galileo's proof that the path of a projectile was a parabola and, most importantly, the development of the concept of inertia.
    In astronomy Galileo adopted the Copernican heliocentric theory of the universe while still in his twenties, but he lacked the evidence to promote it publicly. That evidence came with the invention of the telescope by the Dutch brothers Lippershey. Galileo heard of its invention in 1609 and had his own instrument constructed, with a convex object lens and concave eyepiece, a form which came to be known as the Galilean telescope. Galileo was the first to exploit the telescope successfully with a series of striking astronomical discoveries. He was also the first to publish the results of observations with the telescope, in his Sidereus nuncius (Starry Messenger) of 1610. All the discoveries told against the traditional view of the universe inherited from the ancient Greeks, and one in particular, that of the four satellites in orbit around Jupiter, supported the Copernican theory in that it showed that there could be another centre of motion in the universe besides the Earth: if Jupiter, why not the Sun? Galileo now felt confident enough to advocate the theory, but the advance of new ideas was opposed, not for the first or last time, by established opinion, personified in Galileo's time by the ecclesiastical authorities in Rome. Eventually he was forced to renounce the Copernican theory, at least in public, and turn to less contentious subjects such as the "two new sciences" of his last and most important work.
    [br]
    Bibliography
    1610, Sidereus nuncius (Starry Messenger); translation by A.Van Helden, 1989, Sidereus Nuncius, or the Sidereal Messenger; Chicago: University of Chicago Press.
    1623, Il Saggiatore (The Assayer).
    1632, Dialogo sopre i due massimi sistemi del mondo, tolemaico e copernicano (Dialogue Concerning the Two Chief World Systems, Ptolemaic and Copernican); translation, 1967, Berkeley: University of California Press.
    1638, Discorsi e dimostrazioni matematiche intorno a due nuove scienzi attenenti alla
    meccanica (Dialogues Concerning Two New Sciences…); translation, 1991, Buffalo, New York: Prometheus Books (reprint).
    Further Reading
    G.de Santillana, 1955, The Crime of Galileo, Chicago: University of Chicago Press; also 1958, London: Heinemann.
    H.Stillman Drake, 1980, Galileo, Oxford: Oxford Paperbacks. M.Sharratt, 1994, Galileo: Decisive Innovator, Oxford: Blackwell.
    J.Reston, 1994, Galileo: A Life, New York: HarperCollins; also 1994, London: Cassell.
    A.Fantoli, 1994, Galileo: For Copemicanism and for the Church, trans. G.V.Coyne, South Bend, Indiana: University of Notre Dame Press.
    LRD

    Biographical history of technology > Galilei, Galileo

  • 35 Grant, George Barnard

    [br]
    b. 21 December 1849 Farmingdale, Gardiner, Maine, USA
    d. 16 August 1917 Pasadena, California, USA
    [br]
    American mechanical engineer and inventor of Grant's Difference Engine.
    [br]
    George B.Grant was descended from families who came from Britain in the seventeenth century and was educated at the Bridgton (Maine) Academy, the Chandler Scientific School of Dartmouth College and the Lawrence Scientific School of Harvard College, where he graduated with the degree of BS in 1873. As an undergraduate he became interested in calculating machines, and his paper "On a new difference engine" was published in the American Journal of Science in August 1871. He also took out his first patents relating to calculating machines in 1872 and 1873. A machine of his design known as "Grant's Difference Engine" was exhibited at the Centennial Exposition in Philadelphia in 1876. Similar machines were also manufactured for sale; being sturdy and reliable, they did much to break down the prejudice against the use of calculating machines in business. Grant's work on calculating machines led to a requirement for accurate gears, so he established a machine shop for gear cutting at Charlestown, Massachusetts. He later moved the business to Boston and incorporated it under the name of Grant's Gear Works Inc., and continued to control it until his death. He also established two other gear-cutting shops, the Philadelphia Gear Works Inc., which he disposed of in 1911, and the Cleveland Gear Works Inc., which he also disposed of after a few years. Grant's commercial success was in connection with gear cutting and in this field he obtained several patents and contributed articles to the American Machinist. However, he continued to take an interest in calculating machines and in his later years carried out experimental work on their development.
    [br]
    Bibliography
    1871, "On a new difference engine", American Journal of Science (August). 1885, Chart and Tables for Bevel Gears.
    1891, Odontics, or the Theory and Practice of the Teeth of Gears, Lexington, Mass.
    Further Reading
    R.S.Woodbury, 1958, History of the Gear-cutting Machine, Cambridge, Mass, (describes his gear-cutting machine).
    RTS

    Biographical history of technology > Grant, George Barnard

  • 36 Hertz, Heinrich Rudolph

    [br]
    b. 22 February 1857 Hamburg, Germany
    d. 1 January 1894 Bonn, Germany
    [br]
    German physicist who was reputedly the first person to transmit and receive radio waves.
    [br]
    At the age of 17 Hertz entered the Gelehrtenschule of the Johaneums in Hamburg, but he left the following year to obtain practical experience for a year with a firm of engineers in Frankfurt am Main. He then spent six months at the Dresden Technical High School, followed by year of military service in Berlin. At this point he decided to switch from engineering to physics, and after a year in Munich he studied physics under Helmholtz at the University of Berlin, gaining his PhD with high honours in 1880. From 1883 to 1885 he was a privat-dozent at Kiel, during which time he studied the electromagnetic theory of James Clerk Maxwell. In 1885 he succeeded to the Chair in Physics at Karlsruhe Technical High School. There, in 1887, he constructed a rudimentary transmitter consisting of two 30 cm (12 in.) rods with metal balls separated by a 7.5 mm (0.3 in.) gap at the inner ends and metallic plates at the outer ends, the whole assembly being mounted at the focus of a large parabolic metal mirror and the two rods being connected to an induction coil. At the other side of his laboratory he placed a 70 cm (27½ in.) diameter wire loop with a similar air gap at the focus of a second metal mirror. When the induction coil was made to create a spark across the transmitter air gap, he found that a spark also occurred at the "receiver". By a series of experiments he was not only able to show that the invisible waves travelled in straight lines and were reflected by the parabolic mirrors, but also that the vibrations could be refracted like visible light and had a similar wavelength. By this first transmission and reception of radio waves he thus confirmed the theoretical predictions made by Maxwell some twenty years earlier. It was probably in his experiments with this apparatus in 1887 that Hertz also observed that the voltage at which a spark was able to jump a gap was significantly reduced by the presence of ultraviolet light. This so-called photoelectric effect was subsequently placed on a theoretical basis by Albert Einstein in 1905. In 1889 he became Professor of Physics at the University of Bonn, where he continued to investigate the nature of electric discharges in gases at low pressure until his death after a long and painful illness. In recognition of his measurement of radio and other waves, the international unit of frequency of an oscillatory wave, the cycle per second, is now universally known as the Hertz.
    [br]
    Principal Honours and Distinctions
    Royal Society Rumford Medal 1890.
    Bibliography
    Much of Hertz's work, including his 1890 paper "On the fundamental equations of electrodynamics for bodies at rest", is recorded in three collections of his papers which are available in English translations by D.E.Jones et al., namely Electric Waves (1893), Miscellaneous Papers (1896) and Principles of Mechanics (1899).
    Further Reading
    J.G.O'Hara and W.Pricha, 1987, Hertz and the Maxwellians, London: Peter Peregrinus. J.Hertz, 1977, Heinrich Hertz, Memoirs, Letters and Diaries, San Francisco: San Francisco Press.
    KF

    Biographical history of technology > Hertz, Heinrich Rudolph

  • 37 Huygens, Christiaan

    SUBJECT AREA: Horology
    [br]
    b. 14 April 1629 The Hague, the Netherlands
    d. 8 June 1695 The Hague, the Netherlands
    [br]
    Dutch scientist who was responsible for two of the greatest advances in horology: the successful application of both the pendulum to the clock and the balance spring to the watch.
    [br]
    Huygens was born into a cultured and privileged class. His father, Constantijn, was a poet and statesman who had wide interests. Constantijn exerted a strong influence on his son, who was educated at home until he reached the age of 16. Christiaan studied law and mathematics at Ley den University from 1645 to 1647, and continued his studies at the Collegium Arausiacum in Breda until 1649. He then lived at The Hague, where he had the means to devote his time entirely to study. In 1666 he became a Member of the Académie des Sciences in Paris and settled there until his return to The Hague in 1681. He also had a close relationship with the Royal Society and visited London on three occasions, meeting Newton on his last visit in 1689. Huygens had a wide range of interests and made significant contributions in mathematics, astronomy, optics and mechanics. He also made technical advances in optical instruments and horology.
    Despite the efforts of Burgi there had been no significant improvement in the performance of ordinary clocks and watches from their inception to Huygens's time, as they were controlled by foliots or balances which had no natural period of oscillation. The pendulum appeared to offer a means of improvement as it had a natural period of oscillation that was almost independent of amplitude. Galileo Galilei had already pioneered the use of a freely suspended pendulum for timing events, but it was by no means obvious how it could be kept swinging and used to control a clock. Towards the end of his life Galileo described such a. mechanism to his son Vincenzio, who constructed a model after his father's death, although it was not completed when he himself died in 1642. This model appears to have been copied in Italy, but it had little influence on horology, partly because of the circumstances in which it was produced and possibly also because it differed radically from clocks of that period. The crucial event occurred on Christmas Day 1656 when Huygens, quite independently, succeeded in adapting an existing spring-driven table clock so that it was not only controlled by a pendulum but also kept it swinging. In the following year he was granted a privilege or patent for this clock, and several were made by the clockmaker Salomon Coster of The Hague. The use of the pendulum produced a dramatic improvement in timekeeping, reducing the daily error from minutes to seconds, but Huygens was aware that the pendulum was not truly isochronous. This error was magnified by the use of the existing verge escapement, which made the pendulum swing through a large arc. He overcame this defect very elegantly by fitting cheeks at the pendulum suspension point, progressively reducing the effective length of the pendulum as the amplitude increased. Initially the cheeks were shaped empirically, but he was later able to show that they should have a cycloidal shape. The cheeks were not adopted universally because they introduced other defects, and the problem was eventually solved more prosaically by way of new escapements which reduced the swing of the pendulum. Huygens's clocks had another innovatory feature: maintaining power, which kept the clock going while it was being wound.
    Pendulums could not be used for portable timepieces, which continued to use balances despite their deficiencies. Robert Hooke was probably the first to apply a spring to the balance, but his efforts were not successful. From his work on the pendulum Huygens was well aware of the conditions necessary for isochronism in a vibrating system, and in January 1675, with a flash of inspiration, he realized that this could be achieved by controlling the oscillations of the balance with a spiral spring, an arrangement that is still used in mechanical watches. The first model was made for Huygens in Paris by the clockmaker Isaac Thuret, who attempted to appropriate the invention and patent it himself. Huygens had for many years been trying unsuccessfully to adapt the pendulum clock for use at sea (in order to determine longitude), and he hoped that a balance-spring timekeeper might be better suited for this purpose. However, he was disillusioned as its timekeeping proved to be much more susceptible to changes in temperature than that of the pendulum clock.
    [br]
    Principal Honours and Distinctions
    FRS 1663. Member of the Académie Royale des Sciences 1666.
    Bibliography
    For his complete works, see Oeuvres complètes de Christian Huygens, 1888–1950, 22 vols, The Hague.
    1658, Horologium, The Hague; repub., 1970, trans. E.L.Edwardes, Antiquarian
    Horology 7:35–55 (describes the pendulum clock).
    1673, Horologium Oscillatorium, Paris; repub., 1986, The Pendulum Clock or Demonstrations Concerning the Motion ofPendula as Applied to Clocks, trans.
    R.J.Blackwell, Ames.
    Further Reading
    H.J.M.Bos, 1972, Dictionary of Scientific Biography, ed. C.C.Gillispie, Vol. 6, New York, pp. 597–613 (for a fuller account of his life and scientific work, but note the incorrect date of his death).
    R.Plomp, 1979, Spring-Driven Dutch Pendulum Clocks, 1657–1710, Schiedam (describes Huygens's application of the pendulum to the clock).
    S.A.Bedini, 1991, The Pulse of Time, Florence (describes Galileo's contribution of the pendulum to the clock).
    J.H.Leopold, 1982, "L"Invention par Christiaan Huygens du ressort spiral réglant pour les montres', Huygens et la France, Paris, pp. 154–7 (describes the application of the balance spring to the watch).
    A.R.Hall, 1978, "Horology and criticism", Studia Copernica 16:261–81 (discusses Hooke's contribution).
    DV

    Biographical history of technology > Huygens, Christiaan

  • 38 Jessop, William

    [br]
    b. 23 January 1745 Plymouth, England
    d. 18 November 1814
    [br]
    English engineer engaged in river, canal and dock construction.
    [br]
    William Jessop inherited from his father a natural ability in engineering, and because of his father's association with John Smeaton in the construction of Eddystone Lighthouse he was accepted by Smeaton as a pupil in 1759 at the age of 14. Smeaton was so impressed with his ability that Jessop was retained as an assistant after completion of his pupilage in 1767. As such he carried out field-work, making surveys on his own, but in 1772 he was recommended to the Aire and Calder Committee as an independent engineer and his first personally prepared report was made on the Haddlesey Cut, Selby Canal. It was in this report that he gave his first evidence before a Parliamentary Committee. He later became Resident Engineer on the Selby Canal, and soon after he was elected to the Smeatonian Society of Engineers, of which he later became Secretary for twenty years. Meanwhile he accompanied Smeaton to Ireland to advise on the Grand Canal, ultimately becoming Consulting Engineer until 1802, and was responsible for Ringsend Docks, which connected the canal to the Liffey and were opened in 1796. From 1783 to 1787 he advised on improvements to the River Trent, and his ability was so recognized that it made his reputation. From then on he was consulted on the Cromford Canal (1789–93), the Leicester Navigation (1791–4) and the Grantham Canal (1793–7); at the same time he was Chief Engineer of the Grand Junction Canal from 1793 to 1797 and then Consulting Engineer until 1805. He also engineered the Barnsley and Rochdale Canals. In fact, there were few canals during this period on which he was not consulted. It has now been established that Jessop carried the responsibility for the Pont-Cysyllte Aqueduct in Wales and also prepared the estimates for the Caledonian Canal in 1804. In 1792 he became a partner in the Butterley ironworks and thus became interested in railways. He proposed the Surrey Iron Railway in 1799 and prepared for the estimates; the line was built and opened in 1805. He was also the Engineer for the 10 mile (16 km) long Kilmarnock \& Troon Railway, the Act for which was obtained in 1808 and was the first Act for a public railway in Scotland. Jessop's advice was sought on drainage works between 1785 and 1802 in the lowlands of the Isle of Axholme, Holderness, the Norfolk Marshlands, and the Axe and Brue area of the Somerset Levels. He was also consulted on harbour and dock improvements. These included Hull (1793), Portsmouth (1796), Folkestone (1806) and Sunderland (1807), but his greatest dock works were the West India Docks in London and the Floating Harbour at Bristol. He was Consulting Engineer to the City of London Corporation from 1796to 1799, drawing up plans for docks on the Isle of Dogs in 1796; in February 1800 he was appointed Engineer, and three years later, in September 1803, he was appointed Engineer to the Bristol Floating Harbour. Jessop was regarded as the leading civil engineer in the country from 1785 until 1806. He died following a stroke in 1814.
    [br]
    Further Reading
    C.Hadfield and A.W.Skempton, 1979, William Jessop. Engineer, Newton Abbot: David \& Charles.
    JHB

    Biographical history of technology > Jessop, William

  • 39 Riquet, Pierre Paul

    SUBJECT AREA: Canals, Civil engineering
    [br]
    b. 29 June 1604 Béziers, Hérault, France
    d. 1 October 1680 buried at Toulouse, France
    [br]
    French canal engineer and constructor of the Canal du Midi.
    [br]
    Pierre Paul Riquet was the son of a wealthy lawyer whose ancestors came from Italy. In his education at the Jesuit College in Béziers he showed obvious natural ability in science and mathematics, but he received no formal engineering training. With his own and his wife's fortunes he was able to purchase a château at Verfeil, near Toulouse. In 1630 he was appointed a collector of the salt tax in Languedoc and in a short time became Lessee General (Fermier Général) of this tax for the whole province. This entailed constant travel through the district, with the result that he became very familiar with this part of the country. He also became involved in military contracting. He acquired a vast fortune out of both activities. At this time he pondered the possibility of building a canal from Toulouse to the Mediterranean beyond Béziers and, after further investigation as to possible water supplies, he wrote to Colbert in Paris on 16 November 1662 advocating the construction of the canal. Although the idea proved acceptable it was not until 27 May 1665 that Riquet was authorized to direct operations, and on 14 October 1666 he was given authority to construct the first part of the canal, from Toulouse to Trebes. Work started on 1 January 1667. By 1669 he had between 7,000 and 8,000 men employed on the work. Unhappily, Riquet died just over six months before the canal was completed, the official opening beingon 15 May 1681.
    Although Riquet's fame rightly rests on the Canal du Midi, probably the greatest work of its time in Europe, he was also consulted about and was responsible for other projects. He built an aqueduct on more than 100 arches to lead water into the grounds of the château of his friend the marquis de Castres. The plans for this work, which involved considerable practical difficulties, were finalized in 1670, and water flowed into the château grounds in 1676. Also in 1676, Riquet was commissioned to lead the waters of the river Ourcq into Paris; he drew up plans, but he was too busy to undertake the construction and on his death the work was shelved until Napoleon's time. He was responsible for the creation of the port of Sète on the Mediterranean at the end of the Canal du Midi. He was also consulted on the supply of water to the Palace of Versailles and on a proposed route which later became the Canal de Bourgogne. Riquet was a very remarkable man: when he started the construction of the canal he was well over 60 years old, an age at which most people are retiring, and lived almost to its completion.
    [br]
    Further Reading
    L.T.C.Rolt, 1973, From Sea to Sea, London: Allen Lane; rev. ed. 1994, Bridgwater: Internet Ltd.
    Jean-Denis Bergasse, 1982–7, Le Canal de Midi, 4 vols, Hérault:—Vol. I: Pierre Paul Riquet et le Canal du Midi dans les arts et la littérature; Vol II: Trois Siècles de
    batellerie et de voyage; Vol. III: Des Siècles d'aventures humaine; Vol. IV: Grands Moments et grands sites.
    JHB

    Biographical history of technology > Riquet, Pierre Paul

  • 40 Voelcker, John Christopher

    [br]
    b. 24 September 1822 Frankfurt am Main, Germany
    d. 5 December 1884 England
    [br]
    German analytical chemist resident in England whose reports on feedstuffs and fertilizers had a considerable influence on the quality of these products.
    [br]
    The son of a merchant in the city of his birth, John Christopher had delicate health and required private tuition to overcome the loss of his early years of schooling. At the age of 22 he went to study chemistry at Göttingen University and then worked for a short time for Liebig at Giessen. In 1847 he obtained a post as Analyst and Consulting Chemist at the Agricultural Chemistry Association of Scotland's Edinburgh office, and two years later he became Professor of Chemistry at the Royal Agricultural College in Cirencester, retaining this post until 1862. In 1855 he was appointed Chemist to the Bath and West Agricultural Society, and in that capacity organized lectures and field trials, and in 1857 he also became Consulting Chemist to the Royal Agricultural Society of England. Initially he studied the properties of farmyard manure and also the capacity of the soil to absorb ammonia, potash and sodium. As Consulting Chemist to farmers he analysed feedstuffs and manures; his assessments of artificial manures did much to force improvements in standards. During the 1860s he worked on milk and dairy products. He published the results of his work each year in the Journal of the Royal Agricultural Society of England. In 1877 he became involved in the field trials initiated and funded by the Duke of Bedford on his Woburn farm, and he continued his association with this venture until his death.
    [br]
    Principal Honours and Distinctions
    FRS. Founder and Vice-President, Institute of Chemistry of Great Britain and Northern Ireland 1877. Member Chemical Society 1849; he was a member of Council as well as its Vice-President at the time of his death. Member of the Board of Studies, Royal Agricultural College, Cirencester; Honorary Professor from 1882.
    Bibliography
    His papers are to be found in the Journal of the Royal Agricultural Society of England, for which he began to write reports in 1855, and also in the Journal of the Bath and West Society.
    Further Reading
    J.H.Gilbert, 1844, obituary, Journal of the Royal Agricultural Society of England, pp. 308–21 (a detailed account).
    Sir E.John Russell, A History of Agricultural Science in Great Britain.
    AP

    Biographical history of technology > Voelcker, John Christopher

См. также в других словарях:

  • Subject — may refer to: *An area of interest, also called a topic meaning , thing you are talking or discussing about . It can also be termed as the area of discussion . See Lists of topics and Lists of basic topics. **An area of knowledge; **The focus of… …   Wikipedia

  • Subject indexing — is the act of describing a document by index terms to indicate what the document is about or to summarize its content. Indices are constructed, separately, on three distinct levels: terms in a document such as a book; objects in a collection such …   Wikipedia

  • subject — n 1 *citizen, national Antonyms: sovereign 2 Subject, matter, subject matter, argument, topic, text, theme, motive, motif, leitmotiv can mean the basic idea or the principal object of thought or attention in a discourse or artistic composition.… …   New Dictionary of Synonyms

  • Subject-matter jurisdiction — is the authority of a court to hear cases of a particular type or cases relating to a specific subject matter. For instance, bankruptcy court has the authority to only hear bankruptcy cases.Subject matter jurisdiction must be distinguished from… …   Wikipedia

  • Subject-object based metaphysics — is terminology used by the author Robert M. Pirsig with respect to the historically dominant form of metaphysics in Western philosophy. Pirsig claims that the use of subjects and objects as separate, distinct entities stems from the founding of… …   Wikipedia

  • Subject-to — is a way of purchasing property when there is an existing lien (i.e., Mortgage, Deed of Trust). It is defined as: Acquiring ownership to a property from a seller without paying off the existing liens secured against the property. It is a way of… …   Wikipedia

  • Subject heading — comprises a thesaurus (in the information technology sense) of subject headings for use in bibliographic records. Subject Headings are an integral part of bibliographic control, which is the function by which libraries collect, organize and… …   Wikipedia

  • subject — subject, the subject A term used in preference to alternatives such as ‘actor’ and ‘individual’ by writers in the structuralist tradition. Its use indicates a rejection of what such writers regard as the humanist assumptions carried by the… …   Dictionary of sociology

  • subject matter — also subject matter N UNCOUNT The subject matter of something such as a book, lecture, film, or painting is the thing that is being written about, discussed, or shown. Then, attitudes changed and artists were given greater freedom in their choice …   English dictionary

  • subject to — index conditional, contingent, dependent, incident, liable, provided Burton s Legal Thesaurus. William C. Burton. 2006 …   Law dictionary

  • also — also, too, likewise, besides, moreover, furthermore denote in addition and are used when joining (not necessarily in the same sentence) one proposition or consideration to another. Also adds to a statement something that may be affirmed equally… …   New Dictionary of Synonyms

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»