Перевод: с английского на все языки

со всех языков на английский

stuttgart

  • 41 Heinkel, Ernst

    [br]
    b. 24 January 1888 Grünbach, Remstal, Germany
    d. 30 January 1958 Stuttgart, Germany
    [br]
    German aeroplane designer who was responsible for the first jet aeroplane to fly.
    [br]
    The son of a coppersmith, as a young man Ernst Heinkel was much affected by seeing the Zeppelin LZ 4 crash and burn out at Echterdringen, near Stuttgart. After studying engineering, in 1910 he designed his first aeroplane, but it crashed; he was more successful the following year when he made a flight in it, with an engine on hire from the Daimler company. After a period working for a firm near Munich and for LVG at Johannisthal, near Berlin, he moved to the Albatros Company of Berlin with a monthly salary of 425 marks. In May 1913 he moved to Lake Constance to work on the design of sea-planes and in May 1914 he moved again, this time to the Brandenburg Company, where he remained as a designer until 1922, when he founded his own company, Ernst Heinkel Flugzeugwerke. Following the First World War, German companies were not allowed to build military aircraft, which was frustrating for Heinkel whose main interest was high-speed aircraft. His sleek He 70 airliner, built for Lufthansa, was designed to carry four passengers at high speeds: indeed it broke many records in 1933. Lufthansa decided it needed a larger version capable of carrying ten passengers, so Heinkel produced his most famous aeroplane, the He 111. Although it was designed as a twin-engined airliner on the surface, secretly Heinkel was producing a bomber. The airliner version first flew on Lufthansa routes in 1936, and by 1939 almost 1,000 bombers were in service with the Luftwaffe. A larger four-engined bomber, the He 177, ran into development problems and it did not see service until late in the Second World War. Heinkel's quest for speed led to the He 176 rocket-powered research aeroplane which flew on 20 June 1939, but Hitler and Goering were not impressed. The He 178, with Dr Hans von Ohain's jet engine, made its historic first flight a few weeks later on 27 August 1939; this was almost two years before the maiden flight in Britain of the Gloster E 28/39, powered by Whittle's jet engine. This project was a private venture by Heinkel and was carried out in great secrecy, so the world's first jet aircraft went almost unnoticed. Heinkel's jet fighters, the He 280 and the He 162, were never fully operational. After the war, Heinkel in 1950 set up a new company which made bicycles, motor cycles and "bubble" cars.
    [br]
    Bibliography
    1956, He 1000, trans. M.Savill, London: Hutchinson (the English edition of his autobiography).
    Further Reading
    Jane's Fighting Aircraft of World War II, London: Jane's; reprinted 1989.
    P. St J.Turner, 1970, Heinkel: An Aircraft Album, London.
    H.J.Nowarra, 1975, Heinkel und seine Flugzeuge, Munich (a comprehensive record of his aircraft).
    JDS / IMcN

    Biographical history of technology > Heinkel, Ernst

  • 42 Schickhard(t), Wilhelm

    [br]
    b. 22 April 1592 Herrenberg, Stuttgart, Germany
    d. 24 October 1635 Tübingen, Germany
    [br]
    German polymath who described, and apparently built, a calculating "clock", possibly the first mechanical adding-machine.
    [br]
    At an early age Schickhard won a scholarship to the monastery school at Tübingen and then progressed to the university, where he obtained his BA and MA in theology in 1609 and 1611, respectively. He then specialized in oriental languages and eventually became Professor of Hebrew, Oriental Languages, Mathematics, Astronomy and Geography at Tübingen. Between 1613 and 1619 he was also deacon or pastor to a number of churches in the area. In 1617 he met Johannes Kepler, who, impressed by his ability, asked him to draw up tables of figures for his Harmonica Mundi (1619). As a result of this, Schickhard designed and constructed a mechanical adding-machine that he called a calculating clock. This he described in a letter of 20 September 1623 to Kepler, but a subsequent letter of 25 February 1624 reported its destruction by fire. After his death, probably from bubonic plague, his papers and the letter to Kepler were discovered in the regional library in Stuttgart in 1930 by Franz Hamme, who described them to the 1957 Mathematical Congress. As a result, a Dr Baron von Freytag Lovinghoff, who was present at that meeting, built a reconstruction of Schickard's machine in 1960.
    [br]
    Further Reading
    F.Hamme, 1958, "Nicht Pascal sondern der Tübingen Prof. Wilhelm Schickhard erfund die Rechenmaschin", Buromarkt 20:1,023 (describes the papers and letter to Kepler).
    B.von F.Lovinghoff, 1964, "Die erste Rechenmaschin: Tübingen 1623", Humanismus und
    Technik 9:45.
    ——1973, "Wilhelm Schickhard und seine Rechenmaschin von 1625", in M.Graef (ed.), 350 Jahre Rechenmaschin.
    M.R.Williams, 1985, History of Computing Technology, London: Prentice-Hall.
    See also: Pascal, Blaise
    KF

    Biographical history of technology > Schickhard(t), Wilhelm

  • 43 Zeppelin, Count Ferdinand von

    SUBJECT AREA: Aerospace
    [br]
    b. 8 July 1838 Konstanz, Germany
    d. 8 March 1917 Berlin, Germany
    [br]
    German designer of rigid airships, which became known as Zeppelins.
    [br]
    Zeppelin served in the German Army and retired with the rank of General in 1890. While in the army, he was impressed by the use of balloons in the American Civil War and during the Siege of Paris. By the time he retired, non-rigid airships were just beginning to make their mark. Zeppelin decided to build an airship with a rigid framework to support the gas bags. Plans were drawn up in 1893 with the assistance of Theodore Kober, an engineer, but the idea was rejected by the authorities. A company was founded in 1898 and construction began. The Luftschiff Zeppelin No. 1 (LZ1) made its first flight on 2 July 1900. Modifications were needed and the second flight took place in October. A reporter called Hugo Eckener covered this and later flights: his comments and suggestions so impressed Zeppelin that Eckener eventually became his partner, publicist, fund-raiser and pilot.
    The performance of the subsequent Zeppelins gradually improved, but there was limited military interest. In November 1909 a company with the abbreviated name DELAG was founded to operate passenger-carrying Zeppelins. The service was opened by LZ 7 Deutschland in mid-June 1910, and the initial network of Frankfurt, Baden- Baden and Düsseldorf was expanded. Eckener became a very efficient Director of Flight Operations, and by the outbreak of war in 1914 some 35,000 passengers had been carried without any fatalities. During the First World War many Zeppelins were built and they carried out air-raids on Britain. Despite their menacing reputation, they were very vulnerable to attack by fighters. Zeppelin, now in his seventies, turned his attention to large bombers, following the success of Sikorsky's Grand, but he died in 1917. Eckener continued to instruct crews and improve the Zeppelin designs. When the war ended Eckener arranged to supply the Americans with an airship as part of German reparations: this became the Los Angeles. In 1928 a huge new airship, the Graf Zeppelin, was completed and Eckener took command. He took the Graf Zeppelin on many successful flights, including a voyage around the world in 1929.
    [br]
    Bibliography
    Further Reading
    There are many books on the history of airships, and on Graf von Zeppelin in particular. Of note are: H.Eckener, 1938, Count Zeppelin: The Man and His Work, London.
    ——1958, My Zeppelins, London.
    P.W.Brooks, 1992, Zeppelin: Rigid Airships 1893–1940, London.
    T.Nielson, 1955, The Zeppelin Story: The Life of Hugo Eckener, English edn, London (written as a novel in direct speech).
    M.Goldsmith, 1931, Zeppelin: A Biography, New York.
    W.R.Nitshe, 1977, The Zeppelin Story, New York.
    F.Gütschow, 1985, Das Luftschiff, Stuttgart (a record of all the airships).
    JDS

    Biographical history of technology > Zeppelin, Count Ferdinand von

  • 44 SNNS

    Вычислительная техника: Stuttgart Neural Network Simulator (IPVR, NN)

    Универсальный англо-русский словарь > SNNS

  • 45 Stuttg.

    Сокращение: Stuttgart

    Универсальный англо-русский словарь > Stuttg.

  • 46 CARNELL Bradley /RSA, защитник/

    Страна: South Africa Номер: 3 День рождения: 21.01.1977 Рост: 174 см. Вес: 70 кг. Позиция: защитник Текущий клуб: VfB Stuttgart (GER) Голы за сборную: 0 (27 Мая 2002) Провел матчей за сборную: 22 (27 Мая 2002) 1-ый матч за сборную: Netherlands (нет данных)

    English-Russian FIFA World Cup 2002 dictionary > CARNELL Bradley /RSA, защитник/

  • 47 SOLDO Zvonimir /CRO, полузащитник/

    Страна: Croatia Номер: 14 День рождения: 02.11.1967 Рост: 189 см. Вес: 85 кг. Позиция: полузащитник Текущий клуб: VfB Stuttgart (GER) Голы за сборную: 3 (27 Мая 2002) Провел матчей за сборную: 59 (27 Мая 2002) 1-ый матч за сборную: Slovakia (20.04.1994)

    English-Russian FIFA World Cup 2002 dictionary > SOLDO Zvonimir /CRO, полузащитник/

  • 48 Bunsen, Robert Wilhelm

    SUBJECT AREA: Chemical technology
    [br]
    b. 31 March 1811 Göttingen, Germany
    d. 16 August 1899 Heidelberg, Germany
    [br]
    German chemist, pioneer of chemical spectroscopy.
    [br]
    Bunsen's father was Librarian and Professor of Linguistics at Göttingen University and Bunsen himself studied chemistry there. Obtaining his doctorate at the age of only 19, he travelled widely, meeting some of the leading chemists of the day and visiting many engineering works. On his return he held various academic posts, finally as Professor of Chemistry at Heidelberg in 1852, a post he held until his retirement in 1889.
    During 1837–41 Bunsen studied a series of compounds shown to contain the cacodyl (CH3)2As-group or radical. The elucidation of the structure of these compounds gave support to the radical theory in organic chemistry and earned him fame, but it also cost him the sight of an eye and other ill effects resulting from these dangerous and evil-smelling substances. With the chemist Gustav Robert Kirchhoff (1824–87), Bunsen pioneered the use of spectroscopy in chemical analysis from 1859, and with its aid he discovered the elements caesium and rubidium. He developed the Bunsen cell, a zinc-carbon primary cell, with which he isolated a number of alkali and other metals by electrodeposition from solution or electrolysis of fused chlorides.
    Bunsen's main work was in chemical analysis, in the course of which he devised some important laboratory equipment, such as a filter pump. The celebrated Bunsen gas burner was probably devised by his technician Peter Desdega. During 1838–44 Bunsen applied his methods of gas analysis to the study of the gases produced by blast furnaces for the production of cast iron. He demonstrated that no less than 80 per cent of the heat was lost during smelting, and that valuable gaseous by-products, such as ammonia, were also lost. Lyon Playfair in England was working along similar lines, and in 1848 the two men issued a paper, "On the gases evolved from iron furnaces", to draw attention to these drawbacks.
    [br]
    Bibliography
    1904, Bunsen's collected papers were published in 3 vols, Leipzig.
    Further Reading
    G.Lockemann, 1949, Robert Wilhelm Bunsen: Lebensbild eines deutschen Forschers, Stuttgart.
    T.Curtin, 1961, biog. account, in E.Farber (ed.), Great Chemists, New York, pp. 575–81. Henry E.Roscoe, 1900, "Bunsen memorial lecture, 29th March 1900", Journal of the
    Chemical Society 77:511–54.
    LRD

    Biographical history of technology > Bunsen, Robert Wilhelm

  • 49 Focke, E.H.Heinrich

    SUBJECT AREA: Aerospace
    [br]
    b. October 1890 Bremen, Germany
    d. February 1979 Bremen, Germany
    [br]
    German aircraft designer who was responsible for the first practical helicopter, in 1936.
    [br]
    Between 1911 and 1914 Heinrich Focke and Georg Wulf built a monoplane and some years later, in 1924, they founded the Focke-Wulf company. They designed and built a variety of civil and military aircraft including the F 19Ente, a tail-first design of 1927. This canard layout was thought to be safer than conventional designs but, unfortunately, it crashed, killing Wulf. Around 1930 Focke became interested in rotary-wing aircraft, and in 1931 he set up a company with Gerd Achgelis to conduct research in this field. The Focke-Wulf company took out a licence to build Cierva autogiros. Focke designed an improved autogiro, the Fw 186, which flew in 1938; it was entered for a military competition, but it was beaten by a fixed-wing aircraft, the Fieseler Storch. In May 1935 Focke resigned from Focke-Wulf to concentrate on helicopter development with the Focke-Achgelis company. His first design was the Fa 61 helicopter, which utilized the fuselage and engine of a conventional aeroplane but instead of wings had two out-riggers, each carrying a rotor. The engine drove these rotors in opposite directions to counteract the adverse torque effect (with a single rotor the fuselage tends to rotate in the opposite direction to the rotor). Following its first flight on 26 June 1936, the Fa 61 went on to break several world records. However, it attracted more public attention when it was flown inside the huge Deutschlandhalle in Berlin by the famous female test pilot Hanna Reitsch in February 1938. Focke continued to develop his helicopter projects for the Focke-Achgelis company and produced the Fa 223 Drache in 1940. This used twin contra-rotating rotors, like the Fa 61, but could carry six people. Its production was hampered by allied bombing of the factory. During the Second World War Focke- Achgelis also produced a rotor kite which could be towed behind a U-boat to provide a flying "crow's nest", as well as designs for an advanced convertiplane (part aeroplane, part helicopter). After the war, Focke worked in France, the Netherlands and Brazil, then in 1954 he became Professor of Aeroplane and Helicopter Design at the University of Stuttgart.
    [br]
    Principal Honours and Distinctions
    Wissenschaftliche, Gesellschaft für Luftfahrt Lilienthal Medal, Prandtl-Ring.
    Bibliography
    1965, "German thinking on rotary-wing development", Journal of the Royal Aeronautical Society, (May).
    Further Reading
    W.Gunston and J.Batchelor, 1977, Helicopters 1900–1960, London.
    J.R.Smith, 1973, Focke-Wulf: An Aircraft Album, London (primarily a picture book). R.N.Liptrot, 1948, Rotating Wing Activities in Germany during the Period 1939–45, London.
    K.von Gersdorff and K.Knobling, 1982, Hubschrauber und Tragschrauber, Munich (a more recent publication, in German).
    JDS

    Biographical history of technology > Focke, E.H.Heinrich

  • 50 Junghans, Siegfried

    SUBJECT AREA: Metallurgy
    [br]
    b. 1887
    d. 1954
    [br]
    German pioneer of the continuous casting of metals.
    [br]
    Junghans was of the family that owned Gebrüder Junghans, one of the largest firms in the German watch-and clockmaking industry. From 1906 to 1918 he served in the German Army, after which he took a course in metallurgy and analytical chemistry at the Technical High School in Stuttgart. Junghans was then given control of the brassworks owned by his family. He wanted to make castings simply and cheaply, but he found that he lacked the normal foundry equipment. By 1927, formulating his ideas on continuous casting, he had conceived a way of overcoming this deficiency and began experiments. By the time the firm was taken over by Wieland-Werke AG in 1931, Junghans had achieved positive results. A test plant was erected in 1932, and commercial production of continuously cast metal followed the year after. Wieland told Junghans that a brassfounder who had come up through the trade would never have hit on the idea: it took an outsider like Junghans to do it. He was made Technical Director of Wielands but left in 1935 to work privately on the development of continuous casting for all metals. He was able to license the process for non-ferrous metals during 1936–9 in Germany and other countries, but the Second World War interrupted his work; however, the German government supported him and a production plant was built. In 1948 he was able to resume work on the continuous casting of steel, which he had been considering since 1936. He pushed on in spite of financial difficulties and produced the first steel by this process at Schorndorf in March 1949. From 1950 he made agreements with four firms to work towards the pilot plant stage, and this was achieved in 1954 at Mannesmann's Huckingen works. The aim of continuous casting is to bypass the conventional processes of casting molten steel into ingots, reheating the ingots and shaping them by rolling them in a large mill. Essentially, in continuous casting, molten steel is drawn through the bottom of a ladle and down through a water-cooled copper mould. The unique feature of Junghans's process was the vertically reciprocating mould, which prevented the molten metal sticking as it passed through. A continuous length of steel is taken off and cooled until it is completely solidified into the required shape. The idea of continuous casting can be traced back to Bessemer, and although others tried to apply it later, they did not have any success. It was Junghans who, more than anybody, made the process a reality.
    [br]
    Further Reading
    K.Sperth and A.Bungeroth, 1953, "The Junghans method of continuous casting of steel", Metal Treatment and Drop Forging, Mayn.
    J.Jewkes et al., 1969, The Sources of Invention, 2nd edn, London: Macmillan, pp. 287 ff.
    LRD

    Biographical history of technology > Junghans, Siegfried

  • 51 Marcus, Siegfried

    [br]
    b. 18 September 1831 Malchin, Mecklenburg
    d. 30 June 1898 Vienna, Austria
    [br]
    German inventor, builder of the world's first self-propelled vehicle driven by an internal combustion engine.
    [br]
    Marcus was apprenticed as a mechanic and was employed in the newly founded enterprise of Siemens \& Halske in Berlin. He then went to Vienna and, from 1853, was employed in the workshop of the Imperial Court Mechanic, Kraft, and in the same year he was a mechanic in the Royal and Imperial Institute of Physics of the University of Vienna. In 1860 he became independent of the Imperial Court, but he installed an electrical bell system for the Empress Elizabeth and instructed the Crown Prince Rudolf in natural science.
    Marcus was granted thirty-eight patents in Austria, as well as many foreign patents. The magnetic electric ignition engine, for which he was granted a patent in 1864, brought him the biggest financial reward; it was introduced as the "Viennese Ignition" engine by the Austrian Navy and the pioneers of the Prussian and Russian armies. The engine was exhibited at the World Fair in Paris in 1867 together with the "Thermoscale" which was also constructed by Marcus; this was a magnetic/electric rotative engine for electric lighting and field telegraphy.
    Marcus's reputation is due mainly to his attempts to build a new internal combustion engine. By 1870 he had assembled a simple, direct-working internal combustion engine on a primitive chassis. This was, in fact, the first petrol-engined vehicle with electric ignition, and tradition records that when Marcus drove the vehicle in the streets of Vienna it made so much noise that the police asked him to remove it; this he did and did not persist with his experiments. Thus ended the trials of the world's first petrol-engined vehicle; it was running in 1875, ten years before Daimler and Benz were carrying out their early trials in Stuttgart.
    [br]
    Further Reading
    Austrian Dictionary of National Biography.
    IMcN

    Biographical history of technology > Marcus, Siegfried

  • 52 Mendelsohn, Erich

    [br]
    b. 21 March 1887 Allenstein, East Prussia
    d. 15 September 1953 San Francisco, California, USA
    [br]
    German architect, a pioneering innovator in the modern International style of building that developed in Germany during the early 1920s.
    [br]
    In some examples of his work Mendelsohn envisaged bold, sculptural forms, dramatically expressed in light and shade, which he created with extensive use of glass, steel and concrete. Characteristic of his type of early Expressionism was his design for the Einstein Tower (1919), a physical laboratory and observatory that was purpose built for Professor Einstein's research work at Neubabelsburg near Berlin in 1921. As its shape suggests, this structure was intended to be made from poured concrete but, due to technical problems, it was erected in stucco-faced steel and brickwork. Equally dramatic and original were Mendelsohn's department stores, for example the pace-setting Schocken Stores at Stuttgart (1926) and Chemnitz (1928), the Petersdorff Store at Breslau (1927) (now Wrocaw in Poland), and a very different building, the Columbus Haus in Berlin (1929–31). One of his most original designs was also in this city, that for the complex on the great boulevard, the Kurfürstendamm, which included the Universum Cinema (1928). Mendelsohn moved to England in 1933, a refugee from Nazism, and there entered into partnership with another émigré, Serge Chermayeff from Russia. Together they were responsible for a building on the seafront at Bexhill-on-Sea, the De La Warr arts and entertainments pavilion (1935–6). This long, low, glass, steel and concrete structure was ahead of its time in England and comprised a theatre and restaurant; in the centre of the façade, facing the sea, is its chief architectural feature, a semicircular glazed staircase. Soon Mendelsohn moved on to Palestine, where he was responsible for the Government Hospital at Haifa (1937) and the Hadassah University Medical Centre in Jerusalem (1936); in both cases he skilfully adapted his mode to different climatic needs. He finally settled in the USA in 1941, where his most notable buildings are the Maimonides Hospital in San Francisco and the synagogues and Jewish community centres which he built in a number of American cities.
    [br]
    Further Reading
    Arnold Whittick, 1964, Erich Mendelsohn, Leonard Hill Books (the standard work).
    DY

    Biographical history of technology > Mendelsohn, Erich

  • 53 Parseval, August von

    SUBJECT AREA: Aerospace
    [br]
    b. 1861
    d. 22 February 1942 Berlin, Germany
    [br]
    German designer of tethered observation balloons and non-rigid airships.
    [br]
    Major von Parseval and his colleague Captain von Sigsfeld were serving in the German army during the 1890s when improved military observation from the air was being pursued. Tethered observation balloons, raised and lowered by a winch, had been used since 1794, but in strong winds a spherical balloon became very unstable. Manned kites were being developed by "Colonel" S.F. Cody, in Britain, and others, but kites were a problem if the wind dropped. A very successful compromise was achieved in 1897 by von Parseval and von Sigsfeld, who developed a kite-balloon, the Drachen ("Dragon"), which was elongated like an airship and fitted with large inflated fins. It was attached to its tethering cable in such a way that it flew with a positive incidence (nose up) to the wind, thus producing some lift—like a kite. The combination of these factors made the kite-balloon very stable. Other countries followed suit and a version designed by the Frenchman Albert Caquot was widely used during the First World War for observing the results of artillery fire. Caquot balloons were also used around London as a barrage to obstruct enemy aircraft, and "barrage balloons" were widely used during the Second World War. After working at a government balloon factory in Berlin where non-rigid airships were built, von Parseval designed his own non-rigid airship. The Parseval I which flew in 1906 was small, but larger and faster non-rigids followed. These were built by Luftfahrzeug-Gesellschaft m.b.H. of Berlin founded in 1908 to build and operate Parseval airships. The British Admiralty ordered three Parseval airships, two to be built by Vickers of Barrow (who had built the rigid airship R 1 Mayfly in 1911), and one to be built in Berlin. This one was flown from Berlin to Farnborough in 1913 and joined the Vickers-built Parseval in the Naval Air Service. During the First World War, Parseval airships had the unique distinction of serving on both sides. Three small Parseval airships were built between 1929 and 1932 for use in advertising.
    [br]
    Further Reading
    A.Hildebrandt, 1908, Airships Past and Present, London (describes the kite-balloon). Fred Gütschow, 1985, Das Luftschiff, Stuttgart (includes a record of all the airships). Basil Clarke, 1961, The History of Airships, London (provides limited coverage of von Parseval's work).
    Basil Collier, 1974, The Airship: A History, London (provides limited coverage of von Parseval's work).

    Biographical history of technology > Parseval, August von

  • 54 Wankel, Felix

    [br]
    b. 13 August 1902 Lahr, Black Forest, Germany
    d. 9 October 1988 Lindau, Bavaria, Germany
    [br]
    German internal combustion engineer, inventor of the Wankel rotary engine.
    [br]
    Wankel was first employed at the German Aeronautical Research Establishment, where he worked on rotary valves and valve sealing techniques in the early 1930s and during the Second World War. In 1951 he joined NSU Motorenwerk AG, a motor manufacturer based at Neckarsulm, near Stuttgart, and began work on his rotary engine; the idea for this had first occurred to Wankel as early as 1929. He had completed his first design by 1954, and in 1957 his first prototype was tested. The Wankel engine has a three-pointed rotor, like a prism of an equilateral triangle but with the sides bowed outwards. This rotor is geared to a driveshaft and rotates within a closely fitting and slightly oval-shaped chamber so that, on each revolution, the power stroke is applied to each of the three faces of the rotor as they pass a single spark plug. Two or more rotors may be mounted coaxially, their power strokes being timed sequentially. The engine has only two moving parts, the rotor and the output shaft, making it about a quarter less in weight compared with a conventional piston engine; however, its fuel consumption is high and its exhaust emissions are relatively highly pollutant. The average Wankel engine speed is 5,500 rpm. The first production car to use a Wankel engine was the NSU Ro80, though this was preceded by the experimental NSU Spyder prototype, an open two-seater. The Japanese company Mazda is the only other automobile manufacturer to have fitted a Wankel engine to a production car, although licences were taken by Alfa Romeo, Peugeot- Citroën, Daimler-Benz, Rolls-Royce, Toyota, Volkswagen-Audi (the company that bought NSU in the mid-1970s) and many others; Daimler-Benz even produced a Mercedes C-111 prototype with a three-rotor Wankel engine. The American aircraft manufacturer Curtiss-Wright carried out research for a Wankel aero-engine which never went into production, but the Austrian company Rotax produced a motorcycle version of the Wankel engine which was fitted by the British motorcycle manufacturer Norton to a number of its models.
    While Wankel became director of his own research establishment at Lindau, on Lake Constance in southern Germany, Mazda continued to improve the rotary engine and by the time of Wankel's death the Mazda RX-7 coupé had become a successful, if not high-selling, Wankel -engined sports car.
    [br]
    Further Reading
    N.Faith, 1975, Wankel: The Curious Story Behind the Revolutionary Rotary Engine, New York: Stein \& Day.
    IMcN

    Biographical history of technology > Wankel, Felix

  • 55 Wöhler, August

    SUBJECT AREA: Metallurgy
    [br]
    b. 22 June 1819 Soltau, Germany
    d. 21 June 1914 Hannover, Germany
    [br]
    German railway engineer who first established the fatigue fracture of metals.
    [br]
    Wöhler, the son of a schoolteacher, was born at Soltau on the Luneburg Heath and received his early education at his father's school, where his mathematical abilities soon became apparent. He completed his studies at the Technical High School, Hannover.
    In 1840 he obtained a position at the Borsig Engineering Works in Berlin and acquired there much valuable experience in railway technology. He trained as an engine driver in Belgium and in 1843 was appointed as an engineer to the first Hannoverian Railway, then being constructed between Hannover and Lehrte. In 1847 he became Chief Superintendent of rolling stock on the Lower Silesian-Brandenhurg Railway, where his technical abilities influenced the Prussian Minister of Commerce to appoint him to a commission set up to investigate the reasons for the unusually high incidence of axle failures then being encountered on the railways. This was in 1852, and by 1854, when the Brandenburg line had been nationalized, Wöhler had already embarked on the long, systematic programme of mechanical testing which eventually provided him with a clear insight into the process of what is now referred to as "fatigue failure". He concentrated initially on the behaviour of machined iron and steel specimens subjected to fluctuating direct, bending and torsional stresses that were imposed by testing machines of his own design.
    Although Wöhler was not the first investigator in this area, he was the first to recognize the state of "fatigue" induced in metals by the repeated application of cycles of stress at levels well below those that would cause immediate failure. His method of plotting the fatigue stress amplitude "S" against the number of stress cycles necessary to cause failure "N" yielded the well-known S-N curve which described very precisely the susceptibility to fatigue failure of the material concerned. Engineers were thus provided with an invaluable testing technique that is still widely used in the 1990s.
    Between 1851 and 1898 Wöhler published forty-two papers in German technical journals, although the importance of his work was not initially fully appreciated in other countries. A display of some of his fracture fatigue specimens at the Paris Exposition in 1867, however, stimulated a short review of his work in Engineering in London. Four years later, in 1871, Engineering published a series of nine articles which described Wöhler's findings in considerable detail and brought them to the attention of engineers. Wöhler became a member of the newly created management board of the Imperial German Railways in 1874, an appointment that he retained until 1889. He is also remembered for his derivation in 1855 of a formula for calculating the deflections under load of lattice girders, plate girders, and other continuous beams resting on more than two supports. This "Three Moments" theorem appeared two years before Clapeyron independently advanced the same expression. Wöhler's other major contribution to bridge design was to use rollers at one end to allow for thermal expansion and contraction.
    [br]
    Bibliography
    1855, "Theorie rechteckiger eiserner Brückenbalken", Zeitschrift für Bauwesen 5:122–66. 1870, "Über die Festigkeitversuche mit Eisen und Stahl", Zeitschrift für Bauwesen 20:73– 106.
    Wöhler's experiments on the fatigue of metals were reported in Engineering (1867) 2:160; (1871) 11:199–200, 222, 243–4, 261, 299–300, 326–7, 349–50, 397, 439–41.
    Further Reading
    R.Blaum, 1918, "August Wöhler", Beiträge zur Geschichte der Technik und Industrie 8:35–55.
    ——1925, "August Wöhler", Deutsches biographisches Jahrbuch, Vol. I, Stuttgart, pp. 103–7.
    K.Pearson, 1890, "On Wöhler's experiments on alternating stress", Messeng. Math.
    20:21–37.
    J.Gilchrist, 1900, "On Wöhler's Laws", Engineer 90:203–4.
    ASD

    Biographical history of technology > Wöhler, August

  • 56 Zeiss, Carl

    [br]
    b. 11 September 1816 Weimar, Thuringia, Germany
    d. 3 December 1888 Jena, Saxony, Germany
    [br]
    German lens manufacturer who introduced scientific method to the production of compound microscopes and made possible the production of the first anastigmatic photographic objectives.
    [br]
    After completing his early education in Weimar, Zeiss became an apprentice to the engineer Dr Frederick Koerner. As part of his training, Zeiss was required to travel widely and he visited Vienna, Berlin, Stuttgart and Darmstadt to study his trade. In 1846 he set up a business of his own, an optical workshop in Jena, where he began manufacturing magnifying glasses and microscopes. Much of his work was naturally for the university there and he had the co-operation of some of the University staff in the development of precision instruments. By 1858 he was seeking to make more expensive compound microscopes, but he found the current techniques primitive and laborious. He decided that it was necessary to introduce scientific method to the design of the optics, and in 1866 he sought the advice of a professor of physics at the University of Jena, Ernst Abbe (1840–1905). It took Zeiss until 1869 to persuade Abbe to join his company, and two difficult years were spent working on the calculations before success was achieved. Within a few more years the Zeiss microscope had earned a worldwide reputation for quality. Abbe became a full partner in the Zeiss business in 1875. In 1880 Abbe began an association with Friedrich Otte Schott that was to lead to the establishment of the famous Jena glass works in 1884. With the support of the German government, Jena was to become the centre of world production of new optical glasses for photographic objectives.
    In 1886 the distinguished mathematician and optician Paul Rudolph joined Zeiss at Jena. After Zeiss's death, Rudolph went on to use the characteristics of the new glass to calculate the first anastigmatic lenses. Immediately successful and widely imitated, the anastigmats were also the first of a long series of Zeiss photographic objectives that were to be at the forefront of lens design for years to come. Abbe took over the management of the company and developed it into an internationally famous organization.
    [br]
    Further Reading
    L.W.Sipley, 1965, Photography's Great Inventors, Philadelphia (a brief biography). J.M.Eder, 1945, History of Photography, trans. E.Epstean, New York.
    K.J.Hume, 1980, A History of Engineering Metrology, London, 122–32 (includes a short account of Carl Zeiss and his company).
    JW / RTS

    Biographical history of technology > Zeiss, Carl

См. также в других словарях:

  • Stuttgart — Escudo …   Wikipedia Español

  • Stuttgart 21 — is a German rail project to build a new underground through station for Stuttgart, crossing the southern end of the current Stuttgart central station at right angles to existing platforms. The terminating platforms of today s station would be… …   Wikipedia

  • STUTTGART — STUTTGART, city in Wuerttemberg, Germany. A small Jewish community with a synagogue was in existence by 1330–40. In November 1348 during the black death persecutions, most of the Jews were burned to death, but some survivors were recorded in… …   Encyclopedia of Judaism

  • Stuttgart — (hierzu der Stadtplan mit Registerblatt), Haupt und Residenzstadt des Königreichs Württemberg und des württemberg. Neckarkreises, bildet als Stadtdirektionsbezirk S. (mit der Vorstadt Berg, dem Stadtteil Kannstatt [s. d.], dem Vorort Gablenberg,… …   Meyers Großes Konversations-Lexikon

  • Stuttgart — es la ciudad alemana capital de Baden Württemberg,la puerta de entrada a la Selva negra. Rodeada de colinas, bosques y viñedos que llegan hasta el centro. Su puerto se sitúa al noreste de la ciudad, a orillas del río Neckar. Stuttgart proviene de …   Enciclopedia Universal

  • Stuttgart — Stuttgart, AR U.S. city in Arkansas Population (2000): 9745 Housing Units (2000): 4384 Land area (2000): 6.155939 sq. miles (15.943807 sq. km) Water area (2000): 0.000000 sq. miles (0.000000 sq. km) Total area (2000): 6.155939 sq. miles… …   StarDict's U.S. Gazetteer Places

  • Stuttgart, AR — U.S. city in Arkansas Population (2000): 9745 Housing Units (2000): 4384 Land area (2000): 6.155939 sq. miles (15.943807 sq. km) Water area (2000): 0.000000 sq. miles (0.000000 sq. km) Total area (2000): 6.155939 sq. miles (15.943807 sq. km) FIPS …   StarDict's U.S. Gazetteer Places

  • Stuttgart — Stuttgart, 1) Oberamt im württembergischen Neckarkreise, um die Stadt S., 5 QM., 68,000 Ew.; in ihm der Bären u. Plattensee. Vgl. C. Büchele, Beschreibung des Amtes S. durch das Topographisch Statistische Bureau; 2) Hauptstadt des Königreichs… …   Pierer's Universal-Lexikon

  • Stuttgart — In einem lieblichen, von wald und weinreichen Hügeln umgebenen Thale breitet sich längs des Nesenbaches diese Haupt und erste Residenzstadt des Königreichs Würtemberg, der reizende Wohnort von 33,000 Menschen, aus. Herrliche öffentliche Plätze,… …   Damen Conversations Lexikon

  • Stuttgart — Stuttgart, Hauptstadt des Königreichs Württemberg und Residenz des Königs, Sitz der Centralbehörden, St. vom Neckar entfernt, in einem von Weinbergen umgebenen Thalkessel gelegen, durch seine Umgebungen eine der reizendsten Städte Deutschlands,… …   Herders Conversations-Lexikon

  • Stuttgart — v. d Allemagne, cap. du Bade Wurtemberg, sur le Neckar; 565 490 hab. Import. port fluvial. Grand centre industr. et comm. Nombr. monuments restaurés: Vieux (XVIe s.) Château et Nouveau Château (XVIIIe s.). Musées …   Encyclopédie Universelle

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»