Перевод: со всех языков на английский

с английского на все языки

stage+version

  • 41 Mergenthaler, Ottmar

    SUBJECT AREA: Paper and printing
    [br]
    b. 11 May 1854 Hachtel, Germany
    d. 28 October 1899 Baltimore, Maryland, USA
    [br]
    German/American inventor of the Linotype typesetting machine.
    [br]
    Mergenthaler came from a family of teachers, but following a mechanical bent he was apprenticed to a clockmaker. Having served his time, Mergenthaler emigrated to the USA in 1872 to avoid military service. He immediately secured work in Washington, DC, in the scientific instrument shop of August Hahl, the son of his former master. He steadily acquired a reputation for skill and ingenuity, and in 1876, when Hahl transferred his business to Baltimore, Mergenthaler went too. Soon after, they were commissioned to remedy the defects in a model of a writing machine devised by James O.Clephane of Washington. It produced print by typewriting, which was then multiplied by lithography. Mergenthaler soon corrected the defects and Clephane ordered a full-size version. This was completed in 1877 but did not work satisfactorily. Nevertheless, Mergenthaler was moved to engage in the long battle to mechanize the typesetting stage of the printing process. Clephane suggested substituting stereotyping for lithography in his device, but in spite of their keen efforts Mergenthaler and Hahl were again unsuccessful and they abandoned the project. In spare moments Mergenthaler continued his search for a typesetting machine. Late in 1883 it occurred to him to stamp matrices into type bars and to cast type metal into them in the same machine. From this idea, the Linotype machine developed and was completed by July 1884. It worked well and a patent was granted on 26 August that year, and Clephane and his associates set up the National Typographic Company of West Virginia to manufacture it. The New York Tribune ordered twelve Linotypes, and on 3 July 1886 the first of these set part of that day's issue. During the previous year the company had passed into the hands of a group of newspaper owners; increasing differences with the Board led to Mergenthaler's resignation in 1888, but he nevertheless continued to improve the machine, patenting over fifty modifications. The Linotype, together with the Monotype of Tolbert Lanston, rapidly supplanted earlier typesetting methods, and by the 1920s it reigned supreme, the former being used more for newspapers, the latter for book work.
    [br]
    Principal Honours and Distinctions
    Franklin Institute John Scott Medal, Elliott Cresson Medal.
    Bibliography
    Further Reading
    J.Moran, 1964, The Composition of Reading Matter, London.
    LRD

    Biographical history of technology > Mergenthaler, Ottmar

  • 42 Ohain, Hans Joachim Pabst von

    SUBJECT AREA: Aerospace
    [br]
    b. 14 December 1911 Dessau, Germany
    [br]
    German engineer who designed the first jet engine to power an aeroplane successfully.
    [br]
    Von Ohain studied engineering at the University of Göttingen, where he carried out research on gas-turbine engines, and centrifugal compressors in particular. In 1935 he patented a design for a jet engine (in Britain, Frank Whittle patented his jet-engine design in 1930). Von Ohain was recruited by the Heinkel company in 1936 to develop an engine for a jet aircraft. Ernst Heinkel was impressed by von Ohain's ideas and gave the project a high priority. The first engine was bench tested in September 1937. A more powerful version was developed and tested in air, suspended beneath a Heinkel dive-bomber, during the spring of 1939. A new airframe was designed to house the revolutionary power plant and designated the Heinkel He 178. A short flight was made on 24 August 1939 and the first recognized flight on 27 August. This important achievement received only a lukewarm response from the German authorities. Von Ohain's turbojet engine had a centrifugal compressor and developed a thrust of 380 kg (837 lb). An improved, more powerful, engine was developed and installed in a new twin-engined fighter design, the He 280. This flew on 2 April 1941 but never progressed beyond the prototype stage. By this time two other German companies, BMW and Junkers, were constructing successful turbojets with axial compressors: luckily for the Allies, Hitler was reluctant to pour his hard-pressed resources into this new breed of jet fighters. After the war, von Ohain emigrated to the United States and worked for the Air Force there.
    [br]
    Bibliography
    1929, "The evolution and future of aeropropulsion system", The Jet Age. 40 Years of Jet Aviation, Washington, DC: National Air \& Space Museum, Smithsonian Institution.
    Further Reading
    Von Ohain's work is described in many books covering the history of aviation, and aero engines in particular, for example: R.Schlaifer and S.D.Heron, 1950, Development of Aircraft Engines and fuels, Boston. G.G.Smith, 1955, Gas Turbines and Jet Propulsion.
    Grover Heiman, 1963, Jet Pioneers.
    JDS

    Biographical history of technology > Ohain, Hans Joachim Pabst von

  • 43 Sperry, Elmer Ambrose

    [br]
    b. 21 October 1860 Cincinnatus, Cortland County, New York, USA
    d. 16 June 1930 Brooklyn, New York, USA
    [br]
    American entrepreneur who invented the gyrocompass.
    [br]
    Sperry was born into a farming community in Cortland County. He received a rudimentary education at the local school, but an interest in mechanical devices was aroused by the agricultural machinery he saw around him. His attendance at the Normal School in Cortland provided a useful theoretical background to his practical knowledge. He emerged in 1880 with an urge to pursue invention in electrical engineering, then a new and growing branch of technology. Within two years he was able to patent and demonstrate his arc lighting system, complete with its own generator, incorporating new methods of regulating its output. The Sperry Electric Light, Motor and Car Brake Company was set up to make and market the system, but it was difficult to keep pace with electric-lighting developments such as the incandescent lamp and alternating current, and the company ceased in 1887 and was replaced by the Sperry Electric Company, which itself was taken over by the General Electric Company.
    In the 1890s Sperry made useful inventions in electric mining machinery and then in electric street-or tramcars, with his patent electric brake and control system. The patents for the brake were important enough to be bought by General Electric. From 1894 to 1900 he was manufacturing electric motor cars of his own design, and in 1900 he set up a laboratory in Washington, where he pursued various electrochemical processes.
    In 1896 he began to work on the practical application of the principle of the gyroscope, where Sperry achieved his most notable inventions, the first of which was the gyrostabilizer for ships. The relatively narrow-hulled steamship rolled badly in heavy seas and in 1904 Ernst Otto Schuck, a German naval engineer, and Louis Brennan in England began experiments to correct this; their work stimulated Sperry to develop his own device. In 1908 he patented the active gyrostabilizer, which acted to correct a ship's roll as soon as it started. Three years later the US Navy agreed to try it on a destroyer, the USS Worden. The successful trials of the following year led to widespread adoption. Meanwhile, in 1910, Sperry set up the Sperry Gyroscope Company to extend the application to commercial shipping.
    At the same time, Sperry was working to apply the gyroscope principle to the ship's compass. The magnetic compass had worked well in wooden ships, but iron hulls and electrical machinery confused it. The great powers' race to build up their navies instigated an urgent search for a solution. In Germany, Anschütz-Kämpfe (1872–1931) in 1903 tested a form of gyrocompass and was encouraged by the authorities to demonstrate the device on the German flagship, the Deutschland. Its success led Sperry to develop his own version: fortunately for him, the US Navy preferred a home-grown product to a German one and gave Sperry all the backing he needed. A successful trial on a destroyer led to widespread acceptance in the US Navy, and Sperry was soon receiving orders from the British Admiralty and the Russian Navy.
    In the rapidly developing field of aeronautics, automatic stabilization was becoming an urgent need. In 1912 Sperry began work on a gyrostabilizer for aircraft. Two years later he was able to stage a spectacular demonstration of such a device at an air show near Paris.
    Sperry continued research, development and promotion in military and aviation technology almost to the last. In 1926 he sold the Sperry Gyroscope Company to enable him to devote more time to invention.
    [br]
    Principal Honours and Distinctions
    John Fritz Medal 1927. President, American Society of Mechanical Engineers 1928.
    Bibliography
    Sperry filed over 400 patents, of which two can be singled out: 1908. US patent no. 434,048 (ship gyroscope); 1909. US patent no. 519,533 (ship gyrocompass set).
    Further Reading
    T.P.Hughes, 1971, Elmer Sperry, Inventor and Engineer, Baltimore: Johns Hopkins University Press (a full and well-documented biography, with lists of his patents and published writings).
    LRD

    Biographical history of technology > Sperry, Elmer Ambrose

  • 44 основной

    балка основной опоры шасси
    main landing gear beam
    билет по основному тарифу
    normal fare ticket
    внешнее колесо основной опоры
    outer main wheel
    граница основной зоны
    primary area boundary
    девиация на основных курсах
    cardinal headings deviation
    изогнутое сопло основного контура
    convoluted primary nozzle
    касание основными колесами
    mainwheels touchdown
    Комиссия по основным системам
    Commission for basic Systems
    контроль состояния посевов по пути выполнения основного задания
    associated crop control operation
    основная ВПП
    1. primary runway
    2. main runway основная действующая ВПП
    regular runway
    основная конструкция
    basic design
    основная несущая поверхность
    mainplane
    основная опора
    main strut
    (шасси) основная опора шасси
    main landing gear
    основная поверхность
    main plane
    основная полетная информация
    flight significant information
    основная стойка регистрации
    central check
    основная ступень
    main stage
    (насоса) основная схема маркировки
    basic marking pattern
    основная шина
    1. busbar
    2. main distribution bus основное место базирования
    home base
    основной аэродром
    principal aerodrome
    основной вариант
    basic version
    основной вариант воздушного судна
    basic aircraft
    основной вычислитель
    host computer
    основной грузовой тариф
    general cargo rate
    основной диапазон
    base band
    основной запас топлива
    main fuel
    основной источник статического давления
    primary static pressure source
    основной курс
    cardinal heading
    основной лонжерон
    main spar
    основной параметр
    basic parameter
    основной перевозчик
    first-level carrier
    основной режим воздушного пространства
    dominant air mode
    основной салон
    main compartment
    основной тариф
    fare basis
    основной топливный коллектор
    main fuel manifold
    основной элемент конструкции
    primary element of structure
    основные агрегаты
    major components
    основные данные
    main data
    основные особенности
    main features
    основные радиосредства
    basic radio facilities
    основные технические данные воздушного судна
    aircraft basic specifications
    основные технические параметры
    basic technical data
    основные условия перевозки
    general conditions of carriage
    основные фонды авиакомпании
    airline capital assets
    основные характеристики
    basic characteristics
    противопожарное патрулирование по пути выполнения основного задания
    associated fire control operation
    Рабочая группа по разработке основных эксплуатационных требований
    Basic Operational Requirements Group
    реверс основной тяги
    core jet reversal
    шина питания основных потребителей
    essential-services bus
    школа основной летной подготовки
    basic flying school

    Русско-английский авиационный словарь > основной

См. также в других словарях:

  • stage — {{Roman}}I.{{/Roman}} noun 1 period/state in progress/development ADJECTIVE ▪ distinct ▪ The process has three distinct stages. ▪ beginning, early, initial, opening, preliminary …   Collocations dictionary

  • version — n. 1) to give one s version (of a story) 2) to corroborate smb. s version (of an event) 3) an abridged, condensed; authorized, official; censored; expurgated; unabridged, uncut; unauthorized, unofficial; uncensored; unexpurgated; written version… …   Combinatory dictionary

  • Stage-to-film adaptation — Stage to film is a term used when describing a motion picture that has been adapted from a stage play. There have been stage to film adaptations since the beginning of motion pictures. Many of them have been nominated for, or have won, awards.… …   Wikipedia

  • Stage Stunts — est un court métrage de la série Oswald le lapin chanceux, produit par le studio Robert Winkler Productions et sorti le 13 mai 1929. Sommaire 1 Synopsis 2 Fiche technique 3 Commentaires …   Wikipédia en Français

  • Stage Beauty — Données clés Titre original Stage Beauty Réalisation Richard Eyre Scénario Jeffrey Hatcher Acteurs principaux Billy Crudup Claire Danes Sociétés de production …   Wikipédia en Français

  • Stage Door Cartoon — (1944) est un cartoon réalisé par Friz Freleng mettant en scène Elmer Fudd et Bugs Bunny. Résumé Elmer, armé d une canne à pêche auquel il a accroché une carotte, tente de capturer Bugs ; mais ce dernier accroche l hameçon au pantalon d… …   Wikipédia en Français

  • Stage–gate model — A stage–gate model, also referred to as a phase–gate process, is a project management technique in which an initiative or project (e.g., new product development, process improvement, business change) is divided into stages (or phases) separated… …   Wikipedia

  • version — noun 1 sth based on sth else ADJECTIVE ▪ current, latest, modern, new, recent, updated, up to date ▪ beta (computing) …   Collocations dictionary

  • Stage Entertainment — The musical production company Stage Entertainment is based in Amsterdam, Netherlands. It has a very successful subsidiary in Germany based in Hamburg which almost has a monopoly in Germany. History Stage Entertainment emerged from the Live… …   Wikipedia

  • Stage Beauty — Infobox Film name = Stage Beauty caption = Original poster director = Richard Eyre producer = Robert De Niro Hardy Justice Jane Rosenthal writer = Jeffrey Hatcher starring = Billy Crudup Claire Danes Rupert Everett Zoe Tapper Tom Wilkinson… …   Wikipedia

  • Stage-Gate-Modell — Das Stage Gate Modell ist ein Prozessmodell für die Innovations und Produktentwicklung. Inhaltsverzeichnis 1 Geschichte 2 Aufbau 3 Charakteristika 4 Einzelnachweise …   Deutsch Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»