-
21 особый
1) General subject: backyard, discriminating, distinct, distinctive, especial, exclusive, extra, particular, particularized, peculiar, separate, several, special, back-yard, specific, exotic, ad hoc, with a difference2) Mathematics: critical, exceptional, singular3) Accounting: unique4) Deprecatingly: elitist5) Special term: special-purpose6) Business: different, privileged7) Automation: singular (напр. о точке поверхности)8) Makarov: abnormal, discriminant, particular (особенный, необычный) -
22 понимать
(= понять) mean, understand, comprehend•... можно понять из рис. 2. -... can be understood by reference to Fig. 2.• В подобной неопределенной ситуации экспериментатор понимает, что... - In such an uncertain situation, the experimenter realizes that...• Важно понимать природу этих аппроксимаций. - It is important that we understand the nature of these approximations.• Важно понимать, что... - It is important to realize that...• Во всех случаях важно понять, действительно ли... - It is important in all cases to recognize whether...• Давайте начнем с более точного определения того, что мы понимаем под... - Let us begin by defining more carefully what we mean by...• Данный явный парадокс исчезнет, когда мы поймем, что... - This apparent paradox disappears when we realize that...• Для дальнейшего важно понять, что... - Because of what follows it is important to realize that...• Зная это, мы понимаем, что... - With this framework before us, we realize that...• Исследователи обязаны понимать, что... - Investigators must understand that...• Как мы можем понимать этот результат?... - How can we understand this result?• Как мы можем понимать/интерпретировать этот результат? - How can we understand this result?• Как показывает рис. 1, этот процесс может быть понят в терминах... - As illustrated in Figure 1, this process can be understood in terms of...• Легко понять причину этого (эффекта). - The reason for this is readily understood.• Легко понять, что... - It is easily comprehended that...; It is easy to understand that...• Лучше всего можно понять (= разобрать) ситуацию на графическом примере. - The situation is best considered graphically.• Многие из наших более ранних результатов можно лучше понять, если... - Many of our earlier results can be better understood if...• Можно понять эти результаты, рассматривая... - One can understand these results by considering...• Мы должны ясно понимать, что означает... - We must understand clearly what is meant by...• Мы можем более ясно понять, что здесь применяется... - We may see more clearly what is involved here by...• Наблюдая все это многообразие вероятностей, необходимо хорошо понимать, что... - Amid this diversity of possibilities, it is well to realize that...• Наиболее важно понять причину... - It is most important to understand the reason for...• Проще всего понять эту идею, рассматривая... - The idea is most easily understood by examining...• Необходимо понять и принять во внимание роль процессов, участвующих в... - It is therefore important to understand and appreciate the processes involved in...• Необходимо/следует понять, что... - It is to be understood that...• Нетрудно понять... - It is not difficult to understand (how, what, that)...; There is no difficulty in understanding how...• Однако необходимо понимать, что... - However, it must be understood that...• Под решением данной задачи мы понимаем... - By solving this problem we mean...• С самого начала валено понимать, что... - It is important to realize at the outset that...• Следовательно, безусловно желательно попытаться понять... - It is, therefore, certainly desirable to try to understand...• Сначала мы обязаны сообщить, что мы понимаем под... - First we must say what we mean by...• Такая аналогия помогает нам понять... - This analogy helps us to understand...• Такие действия не приведут к нежелательным результатам, если читатель четко понимает, что... - No harm can come from this practice if one clearly understands that...• Теперь стало возможным понять значение... - It is now possible to see the significance of...• Трудно понять природу... - It is difficult to comprehend the nature of...• Трудности этого экспериментирования становятся явными, когда понимаешь, что... - The experimental difficulties become apparent when one realizes that...• Физики мгновенно поймут (= распознают), что... - Physicists will recognize at once that...• Читатель должен ясно понимать различие между... - The reader must understand clearly the difference between...• Читатель поймет, что данные свойства прямо связаны с... - The reader will realize that these properties are directly connected with...• Чтобы легче понять эти уравнения, мы можем... - In order to understand these equations more easily we may...• Чтобы лучше понять..., представьте (себе)... - То better understand..., imagine....• Чтобы лучше понять физический механизм... - In order to better appreciate the physical mechanism for...• Чтобы понять этот результат и его доказательство, начнем с рассмотрения простейшего случая при d = 1. - То get a feel for this result and how it is proved we begin with the trivial case d = 1.• Чтобы понять, почему это так, мы обязаны... - То understand why this is so, we must...• Чтобы понять это, достаточно рассмотреть... - То see this, it suffices to consider...• Это вполне справедливо, однако необходимо понять, что... - This is quite true, but it should be realized that...• Это легко можно понять, вспоминая, что... - This may readily be understood by remembering that...• Это можно лучше всего понять, используя специальный пример. - This is best understood through a specific example.• Этот метод легко понять, замечая, что... - The process is easily understood by noting that...• Эту идею легко понять, однако... - The idea is easily understood, but...• Необходимо понимать, что... - It should be realized that... -
23 особенность
singularity вчт., particular, difference, feature, specialty, specific, specification -
24 особенность
feature, singularity вчт., particular, difference, specialty, specific, specification -
25 напряжение
напряже́ние с.1. мех. stressнапряже́ние возника́ет — a stress arisesвызыва́ть напряже́ние — generate a stressконцентри́ровать напряже́ния — concentrate stressesраспределя́ть напряже́ние — distribute a stressскла́дывать напряже́ния — combine stressesснима́ть напряже́ние — relieve [relax] a stress2. эл. voltage, tensionвыключа́ть напряже́ние — deenergizeгаси́ть напряже́ние на рези́сторе — drop (some) voltage across a resistorкомпенси́ровать напряже́ние противонапряже́нием — buck [back off, back out] a voltageнаводи́ть напряже́ние — induce voltageповыша́ть напряже́ние — step up voltageпод напряже́нием — alive, live, energizedпонижа́ть напряже́ние — step down voltageпреобразо́вывать напряже́ние в код — convert voltage to numberприкла́дывать напряже́ние — apply voltage to, impress voltage onпроверя́ть нали́чие напряже́ния на зажи́мах — check that voltage exists at terminalsснима́ть ( выключать) [m2]напряже́ние — deenergizeснима́ть напряже́ние (для использования, измерения и т. п.; не путать с выключа́ть напряже́ние) — tap off voltageстабилизи́ровать напряже́ние элк. — брит. stabilize a voltage; амер. regulate a voltageамплиту́дное напряже́ние — peak voltageнапряже́ние ано́да — ( радиолампы) брит. anode voltage; амер. plate voltage; (электроннолучевой трубки, кинескопа) anode voltageбезопа́сное напряже́ние — safe stressбланки́рующее напряже́ние — blanking voltageнапряже́ние бортово́й се́ти — ав. airborne [airplane-system] voltage; мор. ships system voltage; авто car-system voltageвну́треннее напряже́ние — internal [locked-up] stressнапряже́ние возбужде́ния — excitation voltageнапряже́ние вольтодоба́вки тлв. — boost voltageнапряже́ние впа́дины ( в туннельных диодах) — valley voltageнапряже́ние в рабо́чей то́чке — quiescent [Q-point] voltageнапряже́ние в то́чке максима́льной крутизны́ ( в туннельных диодах) — inflection-point voltageнапряже́ние в то́чке ма́ксимума то́ка ( в туннельных диодах) — peak(-point) voltageвходно́е напряже́ние — input voltageвы́прямленное напряже́ние — rectified voltageвысо́кое напряже́ние — high voltageвыходно́е напряже́ние — output voltageвя́зкостное напряже́ние — viscous stressнапряже́ние гаше́ния — blanking voltageгенера́торное напряже́ние — generator voltageнапряже́ние гетероди́на — local-oscillator signal, local-oscillator frequencyгетероди́нное напряже́ние ( не путать с напряже́нием гетероди́на) — injection [conversion] frequency (signal)гла́вное напряже́ние — principal stressнапряже́ние двойникова́ния — twinning stressдействи́тельное напряже́ние — true [actual] stressде́йствующее напряже́ние — r.m.s. voltage (effective voltage — уст.)динами́ческое напряже́ние — dynamic stressдиффузио́нное напряже́ние — diffusion voltageнапряже́ние доли́ны ( в туннельных диодах) — valley voltageедини́чное напряже́ние1. unit stress2. unit voltageнапряже́ние зажига́ния (в газоразрядных приборах, напр. тиратроне) — firing potential, firing voltageзака́лочное напряже́ние — cooling [quenching] stressзамедля́ющее напряже́ние — decelerating [retarding] voltageнапряже́ние запира́ния — (в радиолампах, полупроводниковых приборах) cut-off voltage; ( в схемах) disabling voltageзаря́дное напряже́ние — charging voltageнапряже́ние зе́ркала испаре́ния тепл. — rate or evaporation per sq.m. of water surfaceзнакопереме́нное напряже́ние — alternate stressнапряже́ние и́мпульса обра́тного хо́да — flyback [retrace] pulse voltageнапряже́ние искре́ния — ( без перехода в дуговой разряд) sparking voltage; ( с переходом в дуговой разряд) arcing voltageиспыта́тельное напряже́ние — test voltageкаса́тельное напряже́ние — tangential stressкольцево́е напряже́ние ( в тонких оболочках) мор. — hoop stressнапряже́ние коро́ткого замыка́ния — short-circuit voltageнапряже́ние коро́ткого замыка́ния трансформа́тора — impedance voltage of a transformerлине́йное напряже́ние1. мех. linear stress2. эл. line voltageмагни́тное напряже́ние — magnetic difference of potential m.d.p.напряже́ние на ано́де, като́де, ба́зе, колле́кторе и т. п. — plate, cathode, base, collector, etc. voltageнапряже́ние нагру́зки — load voltageнапряже́ние на зажи́мах исто́чника эдс — terminal voltageнапряже́ние нака́ла — ( прямого) filament voltage; ( косвенного) beater voltage (допустимо filament voltage в обоих случаях)напряже́ние нака́чки (в лазерах, параметрических усилителях) — pump(ing) voltageнапряже́ние насыще́ния ( в транзисторах) — saturation voltageномина́льное напряже́ние — rated [nominal] voltageнапряже́ние обра́тного зажига́ния — fire-back voltageобра́тное напряже́ние полупр. — reverse [inverse] voltageобъё́мное напряже́ние — volumetric stressодноо́сное напряже́ние — uniaxial stressокружно́е напряже́ние — hoop [tangential] stressоперати́вное напряже́ние ( на станциях или подстанциях для управления переключением) — control voltageопо́рное напряже́ние — reference voltage, voltage referenceосево́е напряже́ние — axial stressосесимметри́чное напряже́ние — axisymmetrical stressосновно́е напряже́ние — basic stressоста́точное напряже́ние1. мех. residual stress2. эл. residual voltageотклоня́ющее напряже́ние ( в ЭЛТ) — deflection voltageнапряже́ние относи́тельно земли́ — voltage to earthнапряже́ние отпира́ния ла́мпы элк. — cut-on voltageнапряже́ние отпира́ния по пе́рвой, второ́й или тре́тьей се́тке элк. — control, screen or suppressor grid baseнапряже́ние отпира́ния по се́тке элк. — grid baseнапряже́ние отража́теля ( в клистроне) — repeller voltageнапряже́ние от самокомпенса́ции — extension stressнапряже́ние отсе́чки — cut-off voltage; ( в полевом транзисторе) pinch-off voltageнапряже́ние от торможе́ния — braking stressнапряже́ние парово́го объё́ма — rate of evaporation per cu.m. of steam spaceперви́чное напряже́ние — primary voltageнапряже́ние перебро́са — turnover voltageпереключа́ющее напряже́ние — switching voltageнапряже́ние перекры́тия изоля́ции — flashover voltageнапряже́ние переме́нного то́ка — alternating [a.c.] voltageнапряже́ние перехо́дного проце́сса — transient voltageнапряже́ние пи́ка ( в туннельных диодах) — peak point voltageпи́ковое напряже́ние — peak voltageпилообра́зное напряже́ние — sawtooth voltageнапряже́ние пита́ния — supply voltageпла́вающее напряже́ние ( в биполярных транзисторах) — floating voltageнапряже́ние пове́рхности нагре́ва тепл. — rate of evaporationнапряже́ние пове́рхности нагре́ва по испарё́нной вла́ге тепл. — overall rate of evaporationпове́рхностное напряже́ние — surface stressнапряже́ние погаса́ния ( в газоразрядных приборах) — extinction potential, extinction voltageнапряже́ние под нагру́зкой — load stressнапряже́ние подсве́тки — intensifier voltageподфокуси́рующее напряже́ние элк. — focusing voltageпо́лное напряже́ние1. мех. combined [compound, composite] stress2. эл. total voltageпоро́говое напряже́ние — threshold voltageнапряже́ние постоя́нного то́ка — direct [d.c.] voltageпостоя́нное напряже́ние ( неизменной величины) — constant [fixed] voltageпредвари́тельное напряже́ние (напр. арматуры, бетона) — prestresingпреде́льное напряже́ние — ultimate [limit, breaking] stressнапряже́ние при изги́бе — bending stressнапряже́ние при круче́нии — torsional [twisting] stressнапряже́ние при переги́бе ( в корпусе судна) — hogging stressнапряже́ние при проги́бе ( в корпусе судна) — sagging stressнапряже́ние при разры́ве — rupture stressнапряже́ние при растяже́нии — tensile stressнапряже́ние при сдви́ге — shear(ing) stressнапряже́ние при сжа́тии — compressive stressнапряже́ние при скру́чивании — torsional stressнапряже́ние при сре́зе — shearing stressнапряже́ние при уда́ре — impact stressпробивно́е напряже́ние ( изоляции) — breakdown [disruptive, puncture] voltageнапряже́ние пробо́я (в полупроводниковых приборах, разрядниках) — break-down voltageнапряже́ние пробо́я, динами́ческое — dynamic break-down voltageнапряже́ние пробо́я, стати́ческое — static break-down voltageнапряже́ние проко́ла ( в микросплавных транзисторах) — punch-through [reach-through] voltageнапряже́ние промы́шленной частоты́ — commercial-frequency [power-frequency] voltageпросто́е напряже́ние — simple stressпрямо́е напряже́ние полупр. — forward voltageпсофометри́ческое напряже́ние — psophometric voltageнапряже́ние развё́ртки — sweep voltageразруша́ющее напряже́ние — breaking stressразрывно́е напряже́ние — rupture stressнапряже́ние разря́да, коне́чное (в аккумуляторах, элементах) — final voltageнапряже́ние рассогласова́ния ( в системах регулирования) — error voltageрасчё́тное напряже́ние — design stressреакти́вное напряже́ние — reactive voltageнапряже́ние сби́вки нуля́ ( в сельсинах) — anti-stickoff voltageнапряже́ние се́ти — брит. mains voltage; амер. supply-line voltageнапряже́ние се́тки ( в радиолампах) — grid potential, grid voltageрабо́тать при положи́тельном напряже́нии се́тки — operate [run] a tube with the grid positiveнапряже́ние сигна́ла — signal voltageнапряже́ние [m2]сигна́ла выделя́ется на сопротивле́нии нагру́зки RH — the signal voltage is developed across the load resistor RLсинфа́зное напряже́ние ( в дифференциальных усилителях) — common-mode voltageнапряже́ние синхрониза́ции — sync voltageска́лывающее напряже́ние — cleavage stressсло́жное напряже́ние — combined stressнапряже́ние смеще́ния — bias voltageполуча́ть напряже́ние смеще́ния за счёт протека́ния като́дного то́ка че́рез рези́стор — derive [develop] bias voltage by the passage of cathode current through a resistorнапряже́ние смыка́ния ( в транзисторах) — punch-through [reach-through] voltageнапряже́ние сраба́тывания ре́ле — operate voltage (не путать с рабо́чим напряже́нием)средневы́прямленное напряже́ние (напр. синусоидального тока) — half-period average voltageнапряже́ние стабилиза́ции ( в рабочем диапазоне тока) — stabilizing voltageнапряже́ние сцепле́ния — bond stressнапряже́ние та́ктовой частоты́ — clock voltageтангенциа́льное напряже́ние — tangential stressтемперату́рное напряже́ние — temperature stressтеплово́е напряже́ние — beat [thermal, temperature] stressтерми́ческое напряже́ние — thermal [temperature, beat] stressнапряже́ние то́почного простра́нства — beat liberated (by fuel) per cu.m. per hourтормозя́щее напряже́ние — breaking [retarding] voltageнапряже́ние трениро́вки1. ( в радиолампах) pre-burn [ageing] voltage2. т. над. burn-in voltageнапряже́ние тро́гания ( в электрической машине) — breakaway voltageуде́льное напряже́ние — specific stressуправля́ющее напряже́ние — control voltageупру́гое напряже́ние — elastic stressуса́дочное напряже́ние — shrinkage stressускоря́ющее напряже́ние — accelerating voltageуста́лостное напряже́ние — fatigue stressнапряже́ние устране́ния ло́жного нуля́ ( в сельсинах) — anti-stickoff voltageфа́зовое напряже́ние — phase voltageфокуси́рующее напряже́ние — focusing voltageнапряже́ние формова́ния напряже́ние — forming voltageнапряже́ние холосто́го хо́да — ( между двумя зажимами электрической цепи) open-circuit voltage; ( электрооборудования) no-load voltageхрони́рующее напряже́ние — timing voltageцепно́е напряже́ние — membrane stressцикли́ческое напряже́ние — cyclic(al) stressша́говое напряже́ние1. ( в грозоразрядниках) pace voltage2. ( безопасное для обслуживающего персонала) step voltageнапряже́ние шу́мов — noise voltageнапряже́ние электро́нного лу́ча — beam voltageэлектростати́ческое напряже́ние — electrostatic pressureэлектрострикцио́нное напряже́ние — piezoelectric stressэффекти́вное напряже́ние — r.m.s. [effective] voltage -
26 давать представление о
•The difference in... gives an estimate of the resonance energy.
•The last three chapters have given us an insight into the workings of the fluvial denudation process.
•The foregoing discussion gives an idea of the error that would...
•Figure 6 gives an indication of the variation of specific weight with engine size.
•The respiratory quotient provides a rough idea of the chemical nature of a material being oxidized.
* * *Давать представление о -- to give an insight into; to provide an insight into; to give an indication of; to give an idea ofMoreover, it gives the designer virtually no insight into the factors which control the behavior of a component.Русско-английский научно-технический словарь переводчика > давать представление о
-
27 формулировать
ФормулироватьTo satisfy this requirement, a new test agenda was formulated.The branches of the tree [decision tree] further articulate the concerns of the client, progressing from a general difference to the specific offerings of the vendors.Русско-английский научно-технический словарь переводчика > формулировать
-
28 сопротивление
resistance
(величина эл. сопротивления)
сопротивление, которое оказывает электрическая цепь (проводник) движущимся в ней электрическим зарядам, выражается в омах. — а property of conductors which, depending on their dimensions, material, and temperature, determines the current produced by a given difference of potential. the practical unit of resistance is ohm.
- (механическое, как мера прочности) — strength
- (элемент, создающий электрическое сопротивление) — resistor
устройство, включенное в эл. цепь для создания сопротивления протекающему току, сопротивления бывают постоянными и переменными. — а device connected into an electrical circuit to resist the flow of electric current in a circuit. there are two types - fixed and variable.
-, активное (эл.) — resistance
-, аэродинамическое — drag (d)
-, балансировочное — trim drag
-, буксировочное — tawing drag
-, включенное в цепь — resistor connected in circuit
-, волновое — wave drag
-, выносное (эл.) — remote resistor
-, гидравлическое — hydraulic resistance
-, добавочное (омическое) — additional resistance
-, дополнительное лобовое — additional drag
-, емкостное (эл.) — capacitive reactance
opposition offered by capacitors.
- жидкости — resistance of fluid
жидкость поглощает основную часть энергии амортстойки, преодолевая сопротивление жидкости, проходящей no каналам. — fluid absorbs most of impact energy of the shock strut, in overcoming resistance of fluid flowing through passages.
- изоляции — insulation resistance
-, индуктивное (аэродин.) — induced drag
составляющая полного лобового сопротивления крыла, изменяющаяся в зависимости от подъемной силы. — the part of the drag associated with the lift.
-, индуктивное (эл.) — inductive reactance
электрическое сопротивление, обусловленное индукционностью цепи синусоидального тока. — opposition to flow of alterhating or pulsating current by the inductance of a circuit.
-, кажущееся лобовое — apparent drag
- коррозии — resistance to corrosion
-, лобовое — drag (d)
проекция полной аэродинамической силы на направление полета (потока) или составляющая этой силы, направленная против движения самолета. — а retarding force acting upon а body in motion through а fluid (air) parallel to the direction of motion of the body.
-, магнитное — reluctance
отношение магнитодвижущей силы к магнитному потоку. — resistance of а magnetic path to flow of magnetic lines of force.
- материалов — strength of materials
-, нелинейное — nonlinear resistance
-, общее (напр., потенциометpa) — total resistance. ratio of output resistance to total resistance.
-, омическое — ohmic resistance
сопротивление постоянному — resistance to direct current.
-, относительное (отношение активного сопротивления к омическому) — resistance ratio, relative resistаnce
-, относительное, выходное — output resistance ratio
-, переменное — variable resistor
резистор с изменяемым cопротивлением. напр., реостат, потенциометр. — resistor, the resistance of which may be changed. (rheostat and potentiometer)
-, переходное (эл.) — contact resistance
- переходного контакта — contact resistance
- поверхностного трения — surface-friction drag
the part of the drag due to the tangential forces on the surface.
-, подборное (регулируемое) — adjustable resistor
-, полное (эл.) — impedance
полное сопротивление (омическое и реактивное), создаваемое цепью при прохождении переменного тока. измеряется в омах. — the total opposition (i.e. resistance and reactance) a circult offers to a.c. flow. measured in ohms.
-, полное лобовое — total drag
-, постоянное (резистор) — fixed resistor
нерегулируемый резистор, создающий заданную величину сопротивления в электрической цепи. — а resistor designed to introduce only а predetermined amount of resistance into ал electrical circuit and not adjustable.
- при нулевой подъемной силе, лобовое — zero-lift drag
правило площадей применяется при расчетах конструкции для получения минимального сопротивления при нулевой подъемной силе. — area rule is а method of design for obtaining minimum zero-lift drag.
-, профильное — profile drag
the sum of the surface-friction and form drags.
-, развязывающее — decoupling resistor
-, реактивное (эл.) — reactance
opposition to ас flow.
-, регулируемое — adjustable resistor
the resistor which can be adjusted occasionally by the user (by means of a screw).
- с отводом (эл.) — tapped resistor
-, суммарное лобовое — total drag
- трения — surface-friction drag
-, угольное (регулятора напряжений) — carbon pile resistor
- (лобового стекла) удару при столкновении с птицей (прочность) — bird strike resistance (of windscreen)
-, удельное (эл.) — specific resistance
resistance of а conductor expressed in ohms per unit length per unit area.
- формы (аэродинамического профиля, тела) — form drag. pressure drag less induced
-, электрическое — electric resistance
an ohmmeter is an instrument for measuring electric resistance.
включать с. (в эл. цепь) — connect the resistor (in circuit)
оказывать с. (эл.) — offer opposition
capacitive reactance is opposition offered by capacitors.Русско-английский сборник авиационно-технических терминов > сопротивление
-
29 тяга
thrust
(пропульсивное усилие, создаваемое реактивным двигателем или возд. винтом) — pushing or pulling force developed by aircraft engine or propeller
- (проводки управления) — rod, link
- (соединительный элемент) — link
-, асимметричная — asymmetric thrust
для путевого управления (при пробеге) используются тормоза и асимметричная тяга двигателей. — the brakes and asymmetric thrust are used, if required, for directional control.
- без впрыска воды — dry thrust
- без потерь (чистая) — net thrust
тяга гтд без учета потерь на сопротивление, создаваемое набегающим потоком, — the gross thrust of а jet engine minus the drag due to the momentum of the incoming air.
-, бесфорсажная — non-afterburning thrust, dry thrust
-, бесфорсажная, максимальная — dry (thrust) rating
-, взлетная (дв.) — takeoff /liftoff/ thrust
тяга, развиваемая двигателем на взлетном режиме его работы. — а thrust developed by an engine at takeoff power (setting).
-, взлетная...кг — take-off thrust rated at...rq
- винтового типа, раздвижная (напр., рулевой агрегат элерона) — screwjack link
- винтового типа, электромеханическая, раздвижная (механизм рау) — electically-driven screwjack link
- воздушного винта — propeller thrust
-, гарантированная (дв.) — guaranteed thrust
- двигателя — engine thrust
- двигателя в условиях пониженной температуры — engine thrust on cold day /at low ambient temperature/
- замка выпущенного положения (шасси) — down-lock actuating rod
-, избыточная (дв.) — excess thrust
разность между располагаемой и потребной тягами для данного режима полета. — а difference between the thrust available and required for the given flight condition.
-, клапанная (пд) — valve push rod
-, компенсирующая — compensating rod
- крестовины (хвостового винта) — spider link
- малого газа, обратная — reverse idle thrust
- малого газа, прямая — forward idle thrust
set the reverse levers to fwd idle position.
- на большом газе — full throttle thrust /power/
- на взлетном режиме — takeoff /liftoff/ thrust
- на всех режимах — thrust at any operating condition
- на максимальном продолжительном режиме (дв.) — maximum continuous thrust
остальные двигатели работают на мпр. — the remaining engines at the available maximum continuous power or thrust.
- на стороне исправного шасси (при посадке на одну основную опору) — reverse thrust on the good (landing) gear side
- на установившемя режиме (дв.) — steady thrust
-, нежелательная реверсивная — unwanted reverse thrust
одиночный отказ или неисправность системы реверса тяги не должен создавать нежелательной реверсивной тяги на всех режимах, — no single failure or malfunction of the reversing system shall result in an unwanted reverse thrust under any operating conditions.
-, номинальная (дв.) — rated thrust, normal standard rating thrust
- (или мощность), номинальная (дв.) — rating rating is а designated limit of operating characteristics based on definite conditions.
-, обратная, на малом газе — reverse idle thrust
- несущего винта (создающая подъемную силу или учитываемая при копровых испытаниях) — rotor lift а rotor lift may be assumed to act through the center of gravity.
- несущего винта при управлении общим и циклическим шагом — rotor thrust
- несущего винта (создающая вертикальное, поступательнoe движение вертолета, или его движение вправо, влево или назад) — (vertical, forward, right, left or aft) rotor thrust
-, обратная — reverse /backward/ thrust
тяга в направлении обратном направлению движения самолета. — thrust applied to а moving aircraft in а direction to орpose the aircraft motion.
-, общая обратная (реверсивная) — otal reverse thrust
общ. обратная тяга может составлять (50 %) от прямой тяги при одинаковой степени повышения давления двигателя. — the total reverse thrust is аррох. (50) percent of the forward thrust at the same epr.
-, отрицательная (возд. винта при шаге около оо) — (propeller) drag
-, отрицательная (реверсивная) — reverse thrust
- подвески двигателя — engine mount/ support, suspension/ arm
- полная прямая — full forward thrust
-, полная реверсивная — full reverse thrust
использование полной реверсивной тяги допускается в течение...сек. — the reverser need only be operated at full reverse thrust for...
-, пониженная (ниже расчетного номинала) — derated thrust
-, потребная (дв.) — thrust required
тяга, необходимая для выдерживания данного режима полета. — а thrust needed to maintain the set light condition.
-, приведенная тяга двигателя, приведенная к стандартным атмосферным условиям (или мса) — thrust based upon standard atmosphere conditions, thrust in isa conditions
-, пружинная — spring-loaded link/rod
-, пружинная, загрузочная — feel spring link
-, прямая (создающая поступательное движение) — forward thrust
-, прямая (на режиме малого газа) — forward (idle) thrust
-, прямая, на малом газе — forward idle thrust reverser levers at fwd idle.
-, развязывающая, пружинная — spring-loaded override link
для обеспечения возможности управления исправными секциями руля (элерона) при заклинивании одной из секций.
-, располагаемая (дв.) — thrust available
наибольшая тяга, развиваемая двигателем на данных высоте и скорости полета при работе на номинальном режиме (иногда на взлетном ипи форсированном). — the maximum thrust developed by the engine at the given altitude and speed with the engine operating at maximum continuous (or takeoff, augmented) power.
-, распорная (шасси) (рис. 27) — lock strut
-, расчетная — design /rated/ thrust
- (или мощность), расчетная (дв.) — rating
-, реактивная — jet thrust
тяга, создаваемая турбореактивным двигателем. — the thrust of а jet engine.
- реверса, эффективная — effective reverse thrust
эффективная реверсивная тяга должна обеспечивать сокращение дистанции торможения не менее чем на 10%. — reverse thrust is regarded as effective if its use results in а reduction in groundborne stopping distance of at least 10%.
-, реверсивная (воздушного винта) — propeller reverse thrust
-, реверсивная (двигателя) — engine reverse thrust
-, реверсивная, создаваемая реверсированием потока воздуха за (передним) вентилятором — reverse thrust (obtained) from front fan cold steam airflow
-, регулируемая (дв.) — variable thrust
-, режимная — operating thrust
-, режимная (полетная) — flight thrust
-, регулируемая (проводка управления) — djustable control rod
- с вспрыскам воды — wet thrust
- с вспрыскам воды при взлете — wet takeoff thrust turn off water injection pumps after 2 minutes of wet takeaff thrust.
- сервопривода (звено сервосистемы) — servo link
-, силовая — drive rod
- синхронизации закрылков — flap interconnection rod
-, соединительная — link
-, статическая (дв.) — static thrust
тяга, развиваемая двигателем на земле (на месте). — а thrust developed by eпgine on the ground (at rest).
- статическая, взлетная (на уровне моря, в условиях стандартной атмосферы) — static takeoff thrust (at sea level, standard conditions)
- створки реверсивного устройства, силовая — thrust reverser bucket drive /linkage, actuator/ rod
- створки шасси — landing gear door drive /linkage, actuator/ rod
- страгивания (ла) — break-away thrust
-, суммарная (двигателей) — total/ powerplant/ thrust
- толкателя клапана (дв.) — valve tappet push rod
-, тормозная (компенсирующая) — brake compensating rod
-, удельная (дв.) — specific thrust
тяга, развиваемая двигателем и отнесенная к секундному весовому расходу воздуха в нем.
- управления — control rod
- управления общим шагом (несущего винта) — (rotor) collective pitch control rod
- управления, раздвижная, — screwjack link
- управления створкой шасси — landing gear door linkage/ drive, actuator/ rod
- управления циклическим шагом (несущего винта) — (rotor) cyclic pitch control rod
- управления шагом (хвостового или несущего винта) — (rotor) pitch control rod
-, фактическая (полученная) — actual /observed/ thrust
-, форсажная — reheat/ afterburning/ thrust
-, форсированная (усиленная) — augmented thrust
-, чистая — net thrust
тяга без потерь на преодоление сопротивления, создаваемого набегающим потоком. — the gross thrust of a jet спgine minus the drag due to the momentum of the incoming air.
-, эффективная — effective thrust
запас т. — thrust reserve
избыток т. — margin of engine thrust
избыток т. над сопротивлением — thrust/drag margin
килограмм на килограмм т. в час (кг/кг тяги/час) — kg/kg thrust/hr
падение т. — thrust dacay
форсирование т. — thrust augmentation
центр т. — thrust axis
восстанавливать т. — regain thrust
работать на прямой (обратной) т. (дв.) — operate at forward (reverse) thrust
развивать (создавать) т. — develop thrust
реверсировать т. — reverse thrust
форсировать т. — augment thrustРусско-английский сборник авиационно-технических терминов > тяга
-
30 модульный центр обработки данных (ЦОД)
модульный центр обработки данных (ЦОД)
-
[Интент]Параллельные тексты EN-RU
[ http://dcnt.ru/?p=9299#more-9299]
Data Centers are a hot topic these days. No matter where you look, this once obscure aspect of infrastructure is getting a lot of attention. For years, there have been cost pressures on IT operations and this, when the need for modern capacity is greater than ever, has thrust data centers into the spotlight. Server and rack density continues to rise, placing DC professionals and businesses in tighter and tougher situations while they struggle to manage their IT environments. And now hyper-scale cloud infrastructure is taking traditional technologies to limits never explored before and focusing the imagination of the IT industry on new possibilities.
В настоящее время центры обработки данных являются широко обсуждаемой темой. Куда ни посмотришь, этот некогда малоизвестный аспект инфраструктуры привлекает все больше внимания. Годами ИТ-отделы испытывали нехватку средств и это выдвинуло ЦОДы в центр внимания, в то время, когда необходимость в современных ЦОДах стала как никогда высокой. Плотность серверов и стоек продолжают расти, все больше усложняя ситуацию для специалистов в области охлаждения и организаций в их попытках управлять своими ИТ-средами. И теперь гипермасштабируемая облачная инфраструктура подвергает традиционные технологии невиданным ранее нагрузкам, и заставляет ИТ-индустрию искать новые возможности.
At Microsoft, we have focused a lot of thought and research around how to best operate and maintain our global infrastructure and we want to share those learnings. While obviously there are some aspects that we keep to ourselves, we have shared how we operate facilities daily, our technologies and methodologies, and, most importantly, how we monitor and manage our facilities. Whether it’s speaking at industry events, inviting customers to our “Microsoft data center conferences” held in our data centers, or through other media like blogging and white papers, we believe sharing best practices is paramount and will drive the industry forward. So in that vein, we have some interesting news to share.
В компании MicroSoft уделяют большое внимание изучению наилучших методов эксплуатации и технического обслуживания своей глобальной инфраструктуры и делятся результатами своих исследований. И хотя мы, конечно, не раскрываем некоторые аспекты своих исследований, мы делимся повседневным опытом эксплуатации дата-центров, своими технологиями и методологиями и, что важнее всего, методами контроля и управления своими объектами. Будь то доклады на отраслевых событиях, приглашение клиентов на наши конференции, которые посвящены центрам обработки данных MicroSoft, и проводятся в этих самых дата-центрах, или использование других средств, например, блоги и спецификации, мы уверены, что обмен передовым опытом имеет первостепенное значение и будет продвигать отрасль вперед.
Today we are sharing our Generation 4 Modular Data Center plan. This is our vision and will be the foundation of our cloud data center infrastructure in the next five years. We believe it is one of the most revolutionary changes to happen to data centers in the last 30 years. Joining me, in writing this blog are Daniel Costello, my director of Data Center Research and Engineering and Christian Belady, principal power and cooling architect. I feel their voices will add significant value to driving understanding around the many benefits included in this new design paradigm.
Сейчас мы хотим поделиться своим планом модульного дата-центра четвертого поколения. Это наше видение и оно будет основанием для инфраструктуры наших облачных дата-центров в ближайшие пять лет. Мы считаем, что это одно из самых революционных изменений в дата-центрах за последние 30 лет. Вместе со мной в написании этого блога участвовали Дэниел Костелло, директор по исследованиям и инжинирингу дата-центров, и Кристиан Белади, главный архитектор систем энергоснабжения и охлаждения. Мне кажется, что их авторитет придаст больше веса большому количеству преимуществ, включенных в эту новую парадигму проектирования.
Our “Gen 4” modular data centers will take the flexibility of containerized servers—like those in our Chicago data center—and apply it across the entire facility. So what do we mean by modular? Think of it like “building blocks”, where the data center will be composed of modular units of prefabricated mechanical, electrical, security components, etc., in addition to containerized servers.
Was there a key driver for the Generation 4 Data Center?Наши модульные дата-центры “Gen 4” будут гибкими с контейнерами серверов – как серверы в нашем чикагском дата-центре. И гибкость будет применяться ко всему ЦОД. Итак, что мы подразумеваем под модульностью? Мы думаем о ней как о “строительных блоках”, где дата-центр будет состоять из модульных блоков изготовленных в заводских условиях электрических систем и систем охлаждения, а также систем безопасности и т.п., в дополнение к контейнеризованным серверам.
Был ли ключевой стимул для разработки дата-центра четвертого поколения?
If we were to summarize the promise of our Gen 4 design into a single sentence it would be something like this: “A highly modular, scalable, efficient, just-in-time data center capacity program that can be delivered anywhere in the world very quickly and cheaply, while allowing for continued growth as required.” Sounds too good to be true, doesn’t it? Well, keep in mind that these concepts have been in initial development and prototyping for over a year and are based on cumulative knowledge of previous facility generations and the advances we have made since we began our investments in earnest on this new design.Если бы нам нужно было обобщить достоинства нашего проекта Gen 4 в одном предложении, это выглядело бы следующим образом: “Центр обработки данных с высоким уровнем модульности, расширяемости, и энергетической эффективности, а также возможностью постоянного расширения, в случае необходимости, который можно очень быстро и дешево развертывать в любом месте мира”. Звучит слишком хорошо для того чтобы быть правдой, не так ли? Ну, не забывайте, что эти концепции находились в процессе начальной разработки и создания опытного образца в течение более одного года и основываются на опыте, накопленном в ходе развития предыдущих поколений ЦОД, а также успехах, сделанных нами со времени, когда мы начали вкладывать серьезные средства в этот новый проект.
One of the biggest challenges we’ve had at Microsoft is something Mike likes to call the ‘Goldilock’s Problem’. In a nutshell, the problem can be stated as:
The worst thing we can do in delivering facilities for the business is not have enough capacity online, thus limiting the growth of our products and services.Одну из самых больших проблем, с которыми приходилось сталкиваться Майкрософт, Майк любит называть ‘Проблемой Лютика’. Вкратце, эту проблему можно выразить следующим образом:
Самое худшее, что может быть при строительстве ЦОД для бизнеса, это не располагать достаточными производственными мощностями, и тем самым ограничивать рост наших продуктов и сервисов.The second worst thing we can do in delivering facilities for the business is to have too much capacity online.
А вторым самым худшим моментом в этой сфере может слишком большое количество производственных мощностей.
This has led to a focus on smart, intelligent growth for the business — refining our overall demand picture. It can’t be too hot. It can’t be too cold. It has to be ‘Just Right!’ The capital dollars of investment are too large to make without long term planning. As we struggled to master these interesting challenges, we had to ensure that our technological plan also included solutions for the business and operational challenges we faced as well.
So let’s take a high level look at our Generation 4 designЭто заставило нас сосредоточиваться на интеллектуальном росте для бизнеса — refining our overall demand picture. Это не должно быть слишком горячим. И это не должно быть слишком холодным. Это должно быть ‘как раз, таким как надо!’ Нельзя делать такие большие капиталовложения без долгосрочного планирования. Пока мы старались решить эти интересные проблемы, мы должны были гарантировать, что наш технологический план будет также включать решения для коммерческих и эксплуатационных проблем, с которыми нам также приходилось сталкиваться.
Давайте рассмотрим наш проект дата-центра четвертого поколенияAre you ready for some great visuals? Check out this video at Soapbox. Click here for the Microsoft 4th Gen Video.
It’s a concept video that came out of my Data Center Research and Engineering team, under Daniel Costello, that will give you a view into what we think is the future.
From a configuration, construct-ability and time to market perspective, our primary goals and objectives are to modularize the whole data center. Not just the server side (like the Chicago facility), but the mechanical and electrical space as well. This means using the same kind of parts in pre-manufactured modules, the ability to use containers, skids, or rack-based deployments and the ability to tailor the Redundancy and Reliability requirements to the application at a very specific level.
Посмотрите это видео, перейдите по ссылке для просмотра видео о Microsoft 4th Gen:
Это концептуальное видео, созданное командой отдела Data Center Research and Engineering, возглавляемого Дэниелом Костелло, которое даст вам наше представление о будущем.
С точки зрения конфигурации, строительной технологичности и времени вывода на рынок, нашими главными целями и задачами агрегатирование всего дата-центра. Не только серверную часть, как дата-центр в Чикаго, но также системы охлаждения и электрические системы. Это означает применение деталей одного типа в сборных модулях, возможность использования контейнеров, салазок, или стоечных систем, а также возможность подстраивать требования избыточности и надежности для данного приложения на очень специфичном уровне.Our goals from a cost perspective were simple in concept but tough to deliver. First and foremost, we had to reduce the capital cost per critical Mega Watt by the class of use. Some applications can run with N-level redundancy in the infrastructure, others require a little more infrastructure for support. These different classes of infrastructure requirements meant that optimizing for all cost classes was paramount. At Microsoft, we are not a one trick pony and have many Online products and services (240+) that require different levels of operational support. We understand that and ensured that we addressed it in our design which will allow us to reduce capital costs by 20%-40% or greater depending upon class.
Нашими целями в области затрат были концептуально простыми, но трудно реализуемыми. В первую очередь мы должны были снизить капитальные затраты в пересчете на один мегаватт, в зависимости от класса резервирования. Некоторые приложения могут вполне работать на базе инфраструктуры с резервированием на уровне N, то есть без резервирования, а для работы других приложений требуется больше инфраструктуры. Эти разные классы требований инфраструктуры подразумевали, что оптимизация всех классов затрат имеет преобладающее значение. В Майкрософт мы не ограничиваемся одним решением и располагаем большим количеством интерактивных продуктов и сервисов (240+), которым требуются разные уровни эксплуатационной поддержки. Мы понимаем это, и учитываем это в своем проекте, который позволит нам сокращать капитальные затраты на 20%-40% или более в зависимости от класса.For example, non-critical or geo redundant applications have low hardware reliability requirements on a location basis. As a result, Gen 4 can be configured to provide stripped down, low-cost infrastructure with little or no redundancy and/or temperature control. Let’s say an Online service team decides that due to the dramatically lower cost, they will simply use uncontrolled outside air with temperatures ranging 10-35 C and 20-80% RH. The reality is we are already spec-ing this for all of our servers today and working with server vendors to broaden that range even further as Gen 4 becomes a reality. For this class of infrastructure, we eliminate generators, chillers, UPSs, and possibly lower costs relative to traditional infrastructure.
Например, некритичные или гео-избыточные системы имеют низкие требования к аппаратной надежности на основе местоположения. В результате этого, Gen 4 можно конфигурировать для упрощенной, недорогой инфраструктуры с низким уровнем (или вообще без резервирования) резервирования и / или температурного контроля. Скажем, команда интерактивного сервиса решает, что, в связи с намного меньшими затратами, они будут просто использовать некондиционированный наружный воздух с температурой 10-35°C и влажностью 20-80% RH. В реальности мы уже сегодня предъявляем эти требования к своим серверам и работаем с поставщиками серверов над еще большим расширением диапазона температур, так как наш модуль и подход Gen 4 становится реальностью. Для подобного класса инфраструктуры мы удаляем генераторы, чиллеры, ИБП, и, возможно, будем предлагать более низкие затраты, по сравнению с традиционной инфраструктурой.
Applications that demand higher level of redundancy or temperature control will use configurations of Gen 4 to meet those needs, however, they will also cost more (but still less than traditional data centers). We see this cost difference driving engineering behavioral change in that we predict more applications will drive towards Geo redundancy to lower costs.
Системы, которым требуется более высокий уровень резервирования или температурного контроля, будут использовать конфигурации Gen 4, отвечающие этим требованиям, однако, они будут также стоить больше. Но все равно они будут стоить меньше, чем традиционные дата-центры. Мы предвидим, что эти различия в затратах будут вызывать изменения в методах инжиниринга, и по нашим прогнозам, это будет выражаться в переходе все большего числа систем на гео-избыточность и меньшие затраты.
Another cool thing about Gen 4 is that it allows us to deploy capacity when our demand dictates it. Once finalized, we will no longer need to make large upfront investments. Imagine driving capital costs more closely in-line with actual demand, thus greatly reducing time-to-market and adding the capacity Online inherent in the design. Also reduced is the amount of construction labor required to put these “building blocks” together. Since the entire platform requires pre-manufacture of its core components, on-site construction costs are lowered. This allows us to maximize our return on invested capital.
Еще одно достоинство Gen 4 состоит в том, что он позволяет нам разворачивать дополнительные мощности, когда нам это необходимо. Как только мы закончим проект, нам больше не нужно будет делать большие начальные капиталовложения. Представьте себе возможность более точного согласования капитальных затрат с реальными требованиями, и тем самым значительного снижения времени вывода на рынок и интерактивного добавления мощностей, предусматриваемого проектом. Также снижен объем строительных работ, требуемых для сборки этих “строительных блоков”. Поскольку вся платформа требует предварительного изготовления ее базовых компонентов, затраты на сборку также снижены. Это позволит нам увеличить до максимума окупаемость своих капиталовложений.
Мы все подвергаем сомнениюIn our design process, we questioned everything. You may notice there is no roof and some might be uncomfortable with this. We explored the need of one and throughout our research we got some surprising (positive) results that showed one wasn’t needed.
В своем процессе проектирования мы все подвергаем сомнению. Вы, наверное, обратили внимание на отсутствие крыши, и некоторым специалистам это могло не понравиться. Мы изучили необходимость в крыше и в ходе своих исследований получили удивительные результаты, которые показали, что крыша не нужна.
Серийное производство дата центров
In short, we are striving to bring Henry Ford’s Model T factory to the data center. http://en.wikipedia.org/wiki/Henry_Ford#Model_T. Gen 4 will move data centers from a custom design and build model to a commoditized manufacturing approach. We intend to have our components built in factories and then assemble them in one location (the data center site) very quickly. Think about how a computer, car or plane is built today. Components are manufactured by different companies all over the world to a predefined spec and then integrated in one location based on demands and feature requirements. And just like Henry Ford’s assembly line drove the cost of building and the time-to-market down dramatically for the automobile industry, we expect Gen 4 to do the same for data centers. Everything will be pre-manufactured and assembled on the pad.Мы хотим применить модель автомобильной фабрики Генри Форда к дата-центру. Проект Gen 4 будет способствовать переходу от модели специализированного проектирования и строительства к товарно-производственному, серийному подходу. Мы намерены изготавливать свои компоненты на заводах, а затем очень быстро собирать их в одном месте, в месте строительства дата-центра. Подумайте о том, как сегодня изготавливается компьютер, автомобиль или самолет. Компоненты изготавливаются по заранее определенным спецификациям разными компаниями во всем мире, затем собираются в одном месте на основе спроса и требуемых характеристик. И точно так же как сборочный конвейер Генри Форда привел к значительному уменьшению затрат на производство и времени вывода на рынок в автомобильной промышленности, мы надеемся, что Gen 4 сделает то же самое для дата-центров. Все будет предварительно изготавливаться и собираться на месте.
Невероятно энергоэффективный ЦОД
And did we mention that this platform will be, overall, incredibly energy efficient? From a total energy perspective not only will we have remarkable PUE values, but the total cost of energy going into the facility will be greatly reduced as well. How much energy goes into making concrete? Will we need as much of it? How much energy goes into the fuel of the construction vehicles? This will also be greatly reduced! A key driver is our goal to achieve an average PUE at or below 1.125 by 2012 across our data centers. More than that, we are on a mission to reduce the overall amount of copper and water used in these facilities. We believe these will be the next areas of industry attention when and if the energy problem is solved. So we are asking today…“how can we build a data center with less building”?А мы упоминали, что эта платформа будет, в общем, невероятно энергоэффективной? С точки зрения общей энергии, мы получим не только поразительные значения PUE, но общая стоимость энергии, затраченной на объект будет также значительно снижена. Сколько энергии идет на производство бетона? Нам нужно будет столько энергии? Сколько энергии идет на питание инженерных строительных машин? Это тоже будет значительно снижено! Главным стимулом является достижение среднего PUE не больше 1.125 для всех наших дата-центров к 2012 году. Более того, у нас есть задача сокращения общего количества меди и воды в дата-центрах. Мы думаем, что эти задачи станут следующей заботой отрасли после того как будет решена энергетическая проблема. Итак, сегодня мы спрашиваем себя…“как можно построить дата-центр с меньшим объемом строительных работ”?
Строительство дата центров без чиллеровWe have talked openly and publicly about building chiller-less data centers and running our facilities using aggressive outside economization. Our sincerest hope is that Gen 4 will completely eliminate the use of water. Today’s data centers use massive amounts of water and we see water as the next scarce resource and have decided to take a proactive stance on making water conservation part of our plan.
Мы открыто и публично говорили о строительстве дата-центров без чиллеров и активном использовании в наших центрах обработки данных технологий свободного охлаждения или фрикулинга. Мы искренне надеемся, что Gen 4 позволит полностью отказаться от использования воды. Современные дата-центры расходуют большие объемы воды и так как мы считаем воду следующим редким ресурсом, мы решили принять упреждающие меры и включить экономию воды в свой план.
By sharing this with the industry, we believe everyone can benefit from our methodology. While this concept and approach may be intimidating (or downright frightening) to some in the industry, disclosure ultimately is better for all of us.
Делясь этим опытом с отраслью, мы считаем, что каждый сможет извлечь выгоду из нашей методологией. Хотя эта концепция и подход могут показаться пугающими (или откровенно страшными) для некоторых отраслевых специалистов, раскрывая свои планы мы, в конечном счете, делаем лучше для всех нас.
Gen 4 design (even more than just containers), could reduce the ‘religious’ debates in our industry. With the central spine infrastructure in place, containers or pre-manufactured server halls can be either AC or DC, air-side economized or water-side economized, or not economized at all (though the sanity of that might be questioned). Gen 4 will allow us to decommission, repair and upgrade quickly because everything is modular. No longer will we be governed by the initial decisions made when constructing the facility. We will have almost unlimited use and re-use of the facility and site. We will also be able to use power in an ultra-fluid fashion moving load from critical to non-critical as use and capacity requirements dictate.
Проект Gen 4 позволит уменьшить ‘религиозные’ споры в нашей отрасли. Располагая базовой инфраструктурой, контейнеры или сборные серверные могут оборудоваться системами переменного или постоянного тока, воздушными или водяными экономайзерами, или вообще не использовать экономайзеры. Хотя можно подвергать сомнению разумность такого решения. Gen 4 позволит нам быстро выполнять работы по выводу из эксплуатации, ремонту и модернизации, поскольку все будет модульным. Мы больше не будем руководствоваться начальными решениями, принятыми во время строительства дата-центра. Мы сможем использовать этот дата-центр и инфраструктуру в течение почти неограниченного периода времени. Мы также сможем применять сверхгибкие методы использования электрической энергии, переводя оборудование в режимы критической или некритической нагрузки в соответствии с требуемой мощностью.
Gen 4 – это стандартная платформаFinally, we believe this is a big game changer. Gen 4 will provide a standard platform that our industry can innovate around. For example, all modules in our Gen 4 will have common interfaces clearly defined by our specs and any vendor that meets these specifications will be able to plug into our infrastructure. Whether you are a computer vendor, UPS vendor, generator vendor, etc., you will be able to plug and play into our infrastructure. This means we can also source anyone, anywhere on the globe to minimize costs and maximize performance. We want to help motivate the industry to further innovate—with innovations from which everyone can reap the benefits.
Наконец, мы уверены, что это будет фактором, который значительно изменит ситуацию. Gen 4 будет представлять собой стандартную платформу, которую отрасль сможет обновлять. Например, все модули в нашем Gen 4 будут иметь общепринятые интерфейсы, четко определяемые нашими спецификациями, и оборудование любого поставщика, которое отвечает этим спецификациям можно будет включать в нашу инфраструктуру. Независимо от того производите вы компьютеры, ИБП, генераторы и т.п., вы сможете включать свое оборудование нашу инфраструктуру. Это означает, что мы также сможем обеспечивать всех, в любом месте земного шара, тем самым сводя до минимума затраты и максимальной увеличивая производительность. Мы хотим создать в отрасли мотивацию для дальнейших инноваций – инноваций, от которых каждый сможет получать выгоду.
Главные характеристики дата-центров четвертого поколения Gen4To summarize, the key characteristics of our Generation 4 data centers are:
Scalable
Plug-and-play spine infrastructure
Factory pre-assembled: Pre-Assembled Containers (PACs) & Pre-Manufactured Buildings (PMBs)
Rapid deployment
De-mountable
Reduce TTM
Reduced construction
Sustainable measuresНиже приведены главные характеристики дата-центров четвертого поколения Gen 4:
Расширяемость;
Готовая к использованию базовая инфраструктура;
Изготовление в заводских условиях: сборные контейнеры (PAC) и сборные здания (PMB);
Быстрота развертывания;
Возможность демонтажа;
Снижение времени вывода на рынок (TTM);
Сокращение сроков строительства;
Экологичность;Map applications to DC Class
We hope you join us on this incredible journey of change and innovation!
Long hours of research and engineering time are invested into this process. There are still some long days and nights ahead, but the vision is clear. Rest assured however, that we as refine Generation 4, the team will soon be looking to Generation 5 (even if it is a bit farther out). There is always room to get better.
Использование систем электропитания постоянного тока.
Мы надеемся, что вы присоединитесь к нам в этом невероятном путешествии по миру изменений и инноваций!
На этот проект уже потрачены долгие часы исследований и проектирования. И еще предстоит потратить много дней и ночей, но мы имеем четкое представление о конечной цели. Однако будьте уверены, что как только мы доведем до конца проект модульного дата-центра четвертого поколения, мы вскоре начнем думать о проекте дата-центра пятого поколения. Всегда есть возможность для улучшений.So if you happen to come across Goldilocks in the forest, and you are curious as to why she is smiling you will know that she feels very good about getting very close to ‘JUST RIGHT’.
Generations of Evolution – some background on our data center designsТак что, если вы встретите в лесу девочку по имени Лютик, и вам станет любопытно, почему она улыбается, вы будете знать, что она очень довольна тем, что очень близко подошла к ‘ОПИМАЛЬНОМУ РЕШЕНИЮ’.
Поколения эволюции – история развития наших дата-центровWe thought you might be interested in understanding what happened in the first three generations of our data center designs. When Ray Ozzie wrote his Software plus Services memo it posed a very interesting challenge to us. The winds of change were at ‘tornado’ proportions. That “plus Services” tag had some significant (and unstated) challenges inherent to it. The first was that Microsoft was going to evolve even further into an operations company. While we had been running large scale Internet services since 1995, this development lead us to an entirely new level. Additionally, these “services” would span across both Internet and Enterprise businesses. To those of you who have to operate “stuff”, you know that these are two very different worlds in operational models and challenges. It also meant that, to achieve the same level of reliability and performance required our infrastructure was going to have to scale globally and in a significant way.
Мы подумали, что может быть вам будет интересно узнать историю первых трех поколений наших центров обработки данных. Когда Рэй Оззи написал свою памятную записку Software plus Services, он поставил перед нами очень интересную задачу. Ветра перемен двигались с ураганной скоростью. Это окончание “plus Services” скрывало в себе какие-то значительные и неопределенные задачи. Первая заключалась в том, что Майкрософт собиралась в еще большей степени стать операционной компанией. Несмотря на то, что мы управляли большими интернет-сервисами, начиная с 1995 г., эта разработка подняла нас на абсолютно новый уровень. Кроме того, эти “сервисы” охватывали интернет-компании и корпорации. Тем, кому приходится всем этим управлять, известно, что есть два очень разных мира в области операционных моделей и задач. Это также означало, что для достижения такого же уровня надежности и производительности требовалось, чтобы наша инфраструктура располагала значительными возможностями расширения в глобальных масштабах.
It was that intense atmosphere of change that we first started re-evaluating data center technology and processes in general and our ideas began to reach farther than what was accepted by the industry at large. This was the era of Generation 1. As we look at where most of the world’s data centers are today (and where our facilities were), it represented all the known learning and design requirements that had been in place since IBM built the first purpose-built computer room. These facilities focused more around uptime, reliability and redundancy. Big infrastructure was held accountable to solve all potential environmental shortfalls. This is where the majority of infrastructure in the industry still is today.
Именно в этой атмосфере серьезных изменений мы впервые начали переоценку ЦОД-технологий и технологий вообще, и наши идеи начали выходить за пределы общепринятых в отрасли представлений. Это была эпоха ЦОД первого поколения. Когда мы узнали, где сегодня располагается большинство мировых дата-центров и где находятся наши предприятия, это представляло весь опыт и навыки проектирования, накопленные со времени, когда IBM построила первую серверную. В этих ЦОД больше внимания уделялось бесперебойной работе, надежности и резервированию. Большая инфраструктура была призвана решать все потенциальные экологические проблемы. Сегодня большая часть инфраструктуры все еще находится на этом этапе своего развития.
We soon realized that traditional data centers were quickly becoming outdated. They were not keeping up with the demands of what was happening technologically and environmentally. That’s when we kicked off our Generation 2 design. Gen 2 facilities started taking into account sustainability, energy efficiency, and really looking at the total cost of energy and operations.
Очень быстро мы поняли, что стандартные дата-центры очень быстро становятся устаревшими. Они не поспевали за темпами изменений технологических и экологических требований. Именно тогда мы стали разрабатывать ЦОД второго поколения. В этих дата-центрах Gen 2 стали принимать во внимание такие факторы как устойчивое развитие, энергетическая эффективность, а также общие энергетические и эксплуатационные.
No longer did we view data centers just for the upfront capital costs, but we took a hard look at the facility over the course of its life. Our Quincy, Washington and San Antonio, Texas facilities are examples of our Gen 2 data centers where we explored and implemented new ways to lessen the impact on the environment. These facilities are considered two leading industry examples, based on their energy efficiency and ability to run and operate at new levels of scale and performance by leveraging clean hydro power (Quincy) and recycled waste water (San Antonio) to cool the facility during peak cooling months.
Мы больше не рассматривали дата-центры только с точки зрения начальных капитальных затрат, а внимательно следили за работой ЦОД на протяжении его срока службы. Наши объекты в Куинси, Вашингтоне, и Сан-Антонио, Техас, являются образцами наших ЦОД второго поколения, в которых мы изучали и применяли на практике новые способы снижения воздействия на окружающую среду. Эти объекты считаются двумя ведущими отраслевыми примерами, исходя из их энергетической эффективности и способности работать на новых уровнях производительности, основанных на использовании чистой энергии воды (Куинси) и рециклирования отработанной воды (Сан-Антонио) для охлаждения объекта в самых жарких месяцах.
As we were delivering our Gen 2 facilities into steel and concrete, our Generation 3 facilities were rapidly driving the evolution of the program. The key concepts for our Gen 3 design are increased modularity and greater concentration around energy efficiency and scale. The Gen 3 facility will be best represented by the Chicago, Illinois facility currently under construction. This facility will seem very foreign compared to the traditional data center concepts most of the industry is comfortable with. In fact, if you ever sit around in our container hanger in Chicago it will look incredibly different from a traditional raised-floor data center. We anticipate this modularization will drive huge efficiencies in terms of cost and operations for our business. We will also introduce significant changes in the environmental systems used to run our facilities. These concepts and processes (where applicable) will help us gain even greater efficiencies in our existing footprint, allowing us to further maximize infrastructure investments.
Так как наши ЦОД второго поколения строились из стали и бетона, наши центры обработки данных третьего поколения начали их быстро вытеснять. Главными концептуальными особенностями ЦОД третьего поколения Gen 3 являются повышенная модульность и большее внимание к энергетической эффективности и масштабированию. Дата-центры третьего поколения лучше всего представлены объектом, который в настоящее время строится в Чикаго, Иллинойс. Этот ЦОД будет выглядеть очень необычно, по сравнению с общепринятыми в отрасли представлениями о дата-центре. Действительно, если вам когда-либо удастся побывать в нашем контейнерном ангаре в Чикаго, он покажется вам совершенно непохожим на обычный дата-центр с фальшполом. Мы предполагаем, что этот модульный подход будет способствовать значительному повышению эффективности нашего бизнеса в отношении затрат и операций. Мы также внесем существенные изменения в климатические системы, используемые в наших ЦОД. Эти концепции и технологии, если применимо, позволят нам добиться еще большей эффективности наших существующих дата-центров, и тем самым еще больше увеличивать капиталовложения в инфраструктуру.
This is definitely a journey, not a destination industry. In fact, our Generation 4 design has been under heavy engineering for viability and cost for over a year. While the demand of our commercial growth required us to make investments as we grew, we treated each step in the learning as a process for further innovation in data centers. The design for our future Gen 4 facilities enabled us to make visionary advances that addressed the challenges of building, running, and operating facilities all in one concerted effort.
Это определенно путешествие, а не конечный пункт назначения. На самом деле, наш проект ЦОД четвертого поколения подвергался серьезным испытаниям на жизнеспособность и затраты на протяжении целого года. Хотя необходимость в коммерческом росте требовала от нас постоянных капиталовложений, мы рассматривали каждый этап своего развития как шаг к будущим инновациям в области дата-центров. Проект наших будущих ЦОД четвертого поколения Gen 4 позволил нам делать фантастические предположения, которые касались задач строительства, управления и эксплуатации объектов как единого упорядоченного процесса.
Тематики
Синонимы
EN
Русско-английский словарь нормативно-технической терминологии > модульный центр обработки данных (ЦОД)
- 1
- 2
См. также в других словарях:
specific — spe*cif ic (sp[ e]*s[i^]f [i^]k), a. [F. sp[ e]cifique, or NL. spesificus; L. species a particular sort or kind + facere to make. Cf. {specify}.] 1. Of or pertaining to a species; characterizing or constituting a species; possessing the peculiar… … The Collaborative International Dictionary of English
Specific character — specific spe*cif ic (sp[ e]*s[i^]f [i^]k), a. [F. sp[ e]cifique, or NL. spesificus; L. species a particular sort or kind + facere to make. Cf. {specify}.] 1. Of or pertaining to a species; characterizing or constituting a species; possessing the… … The Collaborative International Dictionary of English
Specific disease — specific spe*cif ic (sp[ e]*s[i^]f [i^]k), a. [F. sp[ e]cifique, or NL. spesificus; L. species a particular sort or kind + facere to make. Cf. {specify}.] 1. Of or pertaining to a species; characterizing or constituting a species; possessing the… … The Collaborative International Dictionary of English
Specific duty — specific spe*cif ic (sp[ e]*s[i^]f [i^]k), a. [F. sp[ e]cifique, or NL. spesificus; L. species a particular sort or kind + facere to make. Cf. {specify}.] 1. Of or pertaining to a species; characterizing or constituting a species; possessing the… … The Collaborative International Dictionary of English
Specific gravity — specific spe*cif ic (sp[ e]*s[i^]f [i^]k), a. [F. sp[ e]cifique, or NL. spesificus; L. species a particular sort or kind + facere to make. Cf. {specify}.] 1. Of or pertaining to a species; characterizing or constituting a species; possessing the… … The Collaborative International Dictionary of English
Specific heat — specific spe*cif ic (sp[ e]*s[i^]f [i^]k), a. [F. sp[ e]cifique, or NL. spesificus; L. species a particular sort or kind + facere to make. Cf. {specify}.] 1. Of or pertaining to a species; characterizing or constituting a species; possessing the… … The Collaborative International Dictionary of English
Specific inductive capacity — specific spe*cif ic (sp[ e]*s[i^]f [i^]k), a. [F. sp[ e]cifique, or NL. spesificus; L. species a particular sort or kind + facere to make. Cf. {specify}.] 1. Of or pertaining to a species; characterizing or constituting a species; possessing the… … The Collaborative International Dictionary of English
Specific legacy — specific spe*cif ic (sp[ e]*s[i^]f [i^]k), a. [F. sp[ e]cifique, or NL. spesificus; L. species a particular sort or kind + facere to make. Cf. {specify}.] 1. Of or pertaining to a species; characterizing or constituting a species; possessing the… … The Collaborative International Dictionary of English
Specific name — specific spe*cif ic (sp[ e]*s[i^]f [i^]k), a. [F. sp[ e]cifique, or NL. spesificus; L. species a particular sort or kind + facere to make. Cf. {specify}.] 1. Of or pertaining to a species; characterizing or constituting a species; possessing the… … The Collaborative International Dictionary of English
Specific performance — specific spe*cif ic (sp[ e]*s[i^]f [i^]k), a. [F. sp[ e]cifique, or NL. spesificus; L. species a particular sort or kind + facere to make. Cf. {specify}.] 1. Of or pertaining to a species; characterizing or constituting a species; possessing the… … The Collaborative International Dictionary of English
specific — adj. & n. adj. 1 clearly defined; definite (has no specific name; told me so in specific terms). 2 relating to a particular subject; peculiar (a style specific to that). 3 a of or concerning a species (the specific name for a plant). b possessing … Useful english dictionary