Перевод: с английского на все языки

со всех языков на английский

spare+equipment

  • 81 surplus

    1. n излишек, избыток

    surplus account — счет прибылей; счет излишков

    2. n эк. нераспределённая прибыль; резервный капитал
    3. n ком. активное сальдо
    4. a излишний, избыточный; добавочный
    5. a полит. -эк. прибавочный
    Синонимический ряд:
    1. superfluous (adj.) de trop; excess; extra; recrementitious; remaining; spare; superabundant; supererogatory; superfluent; superfluous; supernumerary
    2. excess (noun) balance; embarrassment; excess; excessiveness; fat; glut; overabundance; overage; overflow; overkill; overmuch; overplus; overrun; overstock; oversupply; plethora; plus; remainder; residue; superabundance; superfluity; surfeit; surplusage
    Антонимический ряд:

    English-Russian base dictionary > surplus

  • 82 Eastman, George

    [br]
    b. 12 July 1854 Waterville, New York, USA
    d. 14 March 1932 Rochester, New York, USA
    [br]
    American industrialist and pioneer of popular photography.
    [br]
    The young Eastman was a clerk-bookkeeper in the Rochester Savings Bank when in 1877 he took up photography. Taking lessons in the wet-plate process, he became an enthusiastic amateur photographer. However, the cumbersome equipment and noxious chemicals used in the process proved an obstacle, as he said, "It seemed to be that one ought to be able to carry less than a pack-horse load." Then he came across an account of the new gelatine dry-plate process in the British Journal of Photography of March 1878. He experimented in coating glass plates with the new emulsions, and was soon so successful that he decided to go into commercial manufacture. He devised a machine to simplify the coating of the plates, and travelled to England in July 1879 to patent it. In April 1880 he prepared to begin manufacture in a rented building in Rochester, and contacted the leading American photographic supply house, E. \& H.T.Anthony, offering them an option as agents. A local whip manufacturer, Henry A.Strong, invested $1,000 in the enterprise and the Eastman Dry Plate Company was formed on 1 January 1881. Still working at the Savings Bank, he ran the business in his spare time, and demand grew for the quality product he was producing. The fledgling company survived a near disaster in 1882 when the quality of the emulsions dropped alarmingly. Eastman later discovered this was due to impurities in the gelatine used, and this led him to test all raw materials rigorously for quality. In 1884 the company became a corporation, the Eastman Dry Plate \& Film Company, and a new product was announced. Mindful of his desire to simplify photography, Eastman, with a camera maker, William H.Walker, designed a roll-holder in which the heavy glass plates were replaced by a roll of emulsion-coated paper. The holders were made in sizes suitable for most plate cameras. Eastman designed and patented a coating machine for the large-scale production of the paper film, bringing costs down dramatically, the roll-holders were acclaimed by photographers worldwide, and prizes and medals were awarded, but Eastman was still not satisfied. The next step was to incorporate the roll-holder in a smaller, hand-held camera. His first successful design was launched in June 1888: the Kodak camera. A small box camera, it held enough paper film for 100 circular exposures, and was bought ready-loaded. After the film had been exposed, the camera was returned to Eastman's factory, where the film was removed, processed and printed, and the camera reloaded. This developing and printing service was the most revolutionary part of his invention, since at that time photographers were expected to process their own photographs, which required access to a darkroom and appropriate chemicals. The Kodak camera put photography into the hands of the countless thousands who wanted photographs without complications. Eastman's marketing slogan neatly summed up the advantage: "You Press the Button, We Do the Rest." The Kodak camera was the last product in the design of which Eastman was personally involved. His company was growing rapidly, and he recruited the most talented scientists and technicians available. New products emerged regularly—notably the first commercially produced celluloid roll film for the Kodak cameras in July 1889; this material made possible the introduction of cinematography a few years later. Eastman's philosophy of simplifying photography and reducing its costs continued to influence products: for example, the introduction of the one dollar, or five shilling, Brownie camera in 1900, which put photography in the hands of almost everyone. Over the years the Eastman Kodak Company, as it now was, grew into a giant multinational corporation with manufacturing and marketing organizations throughout the world. Eastman continued to guide the company; he pursued an enlightened policy of employee welfare and profit sharing decades before this was common in industry. He made massive donations to many concerns, notably the Massachusetts Institute of Technology, and supported schemes for the education of black people, dental welfare, calendar reform, music and many other causes, he withdrew from the day-to-day control of the company in 1925, and at last had time for recreation. On 14 March 1932, suffering from a painful terminal cancer and after tidying up his affairs, he shot himself through the heart, leaving a note: "To my friends: My work is done. Why wait?" Although Eastman's technical innovations were made mostly at the beginning of his career, the organization which he founded and guided in its formative years was responsible for many of the major advances in photography over the years.
    [br]
    Further Reading
    C.Ackerman, 1929, George Eastman, Cambridge, Mass.
    BC

    Biographical history of technology > Eastman, George

  • 83 Edison, Thomas Alva

    [br]
    b. 11 February 1847 Milan, Ohio, USA
    d. 18 October 1931 Glenmont
    [br]
    American inventor and pioneer electrical developer.
    [br]
    He was the son of Samuel Edison, who was in the timber business. His schooling was delayed due to scarlet fever until 1855, when he was 8½ years old, but he was an avid reader. By the age of 14 he had a job as a newsboy on the railway from Port Huron to Detroit, a distance of sixty-three miles (101 km). He worked a fourteen-hour day with a stopover of five hours, which he spent in the Detroit Free Library. He also sold sweets on the train and, later, fruit and vegetables, and was soon making a profit of $20 a week. He then started two stores in Port Huron and used a spare freight car as a laboratory. He added a hand-printing press to produce 400 copies weekly of The Grand Trunk Herald, most of which he compiled and edited himself. He set himself to learn telegraphy from the station agent at Mount Clements, whose son he had saved from being run over by a freight car.
    At the age of 16 he became a telegraphist at Port Huron. In 1863 he became railway telegraphist at the busy Stratford Junction of the Grand Trunk Railroad, arranging a clock with a notched wheel to give the hourly signal which was to prove that he was awake and at his post! He left hurriedly after failing to hold a train which was nearly involved in a head-on collision. He usually worked the night shift, allowing himself time for experiments during the day. His first invention was an arrangement of two Morse registers so that a high-speed input could be decoded at a slower speed. Moving from place to place he held many positions as a telegraphist. In Boston he invented an automatic vote recorder for Congress and patented it, but the idea was rejected. This was the first of a total of 1180 patents that he was to take out during his lifetime. After six years he resigned from the Western Union Company to devote all his time to invention, his next idea being an improved ticker-tape machine for stockbrokers. He developed a duplex telegraphy system, but this was turned down by the Western Union Company. He then moved to New York.
    Edison found accommodation in the battery room of Law's Gold Reporting Company, sleeping in the cellar, and there his repair of a broken transmitter marked him as someone of special talents. His superior soon resigned, and he was promoted with a salary of $300 a month. Western Union paid him $40,000 for the sole rights on future improvements on the duplex telegraph, and he moved to Ward Street, Newark, New Jersey, where he employed a gathering of specialist engineers. Within a year, he married one of his employees, Mary Stilwell, when she was only 16: a daughter, Marion, was born in 1872, and two sons, Thomas and William, in 1876 and 1879, respectively.
    He continued to work on the automatic telegraph, a device to send out messages faster than they could be tapped out by hand: that is, over fifty words per minute or so. An earlier machine by Alexander Bain worked at up to 400 words per minute, but was not good over long distances. Edison agreed to work on improving this feature of Bain's machine for the Automatic Telegraph Company (ATC) for $40,000. He improved it to a working speed of 500 words per minute and ran a test between Washington and New York. Hoping to sell their equipment to the Post Office in Britain, ATC sent Edison to England in 1873 to negotiate. A 500-word message was to be sent from Liverpool to London every half-hour for six hours, followed by tests on 2,200 miles (3,540 km) of cable at Greenwich. Only confused results were obtained due to induction in the cable, which lay coiled in a water tank. Edison returned to New York, where he worked on his quadruplex telegraph system, tests of which proved a success between New York and Albany in December 1874. Unfortunately, simultaneous negotiation with Western Union and ATC resulted in a lawsuit.
    Alexander Graham Bell was granted a patent for a telephone in March 1876 while Edison was still working on the same idea. His improvements allowed the device to operate over a distance of hundreds of miles instead of only a few miles. Tests were carried out over the 106 miles (170 km) between New York and Philadelphia. Edison applied for a patent on the carbon-button transmitter in April 1877, Western Union agreeing to pay him $6,000 a year for the seventeen-year duration of the patent. In these years he was also working on the development of the electric lamp and on a duplicating machine which would make up to 3,000 copies from a stencil. In 1876–7 he moved from Newark to Menlo Park, twenty-four miles (39 km) from New York on the Pennsylvania Railway, near Elizabeth. He had bought a house there around which he built the premises that would become his "inventions factory". It was there that he began the use of his 200- page pocket notebooks, each of which lasted him about two weeks, so prolific were his ideas. When he died he left 3,400 of them filled with notes and sketches.
    Late in 1877 he applied for a patent for a phonograph which was granted on 19 February 1878, and by the end of the year he had formed a company to manufacture this totally new product. At the time, Edison saw the device primarily as a business aid rather than for entertainment, rather as a dictating machine. In August 1878 he was granted a British patent. In July 1878 he tried to measure the heat from the solar corona at a solar eclipse viewed from Rawlins, Wyoming, but his "tasimeter" was too sensitive.
    Probably his greatest achievement was "The Subdivision of the Electric Light" or the "glow bulb". He tried many materials for the filament before settling on carbon. He gave a demonstration of electric light by lighting up Menlo Park and inviting the public. Edison was, of course, faced with the problem of inventing and producing all the ancillaries which go to make up the electrical system of generation and distribution-meters, fuses, insulation, switches, cabling—even generators had to be designed and built; everything was new. He started a number of manufacturing companies to produce the various components needed.
    In 1881 he built the world's largest generator, which weighed 27 tons, to light 1,200 lamps at the Paris Exhibition. It was later moved to England to be used in the world's first central power station with steam engine drive at Holborn Viaduct, London. In September 1882 he started up his Pearl Street Generating Station in New York, which led to a worldwide increase in the application of electric power, particularly for lighting. At the same time as these developments, he built a 1,300yd (1,190m) electric railway at Menlo Park.
    On 9 August 1884 his wife died of typhoid. Using his telegraphic skills, he proposed to 19-year-old Mina Miller in Morse code while in the company of others on a train. He married her in February 1885 before buying a new house and estate at West Orange, New Jersey, building a new laboratory not far away in the Orange Valley.
    Edison used direct current which was limited to around 250 volts. Alternating current was largely developed by George Westinghouse and Nicola Tesla, using transformers to step up the current to a higher voltage for long-distance transmission. The use of AC gradually overtook the Edison DC system.
    In autumn 1888 he patented a form of cinephotography, the kinetoscope, obtaining film-stock from George Eastman. In 1893 he set up the first film studio, which was pivoted so as to catch the sun, with a hinged roof which could be raised. In 1894 kinetoscope parlours with "peep shows" were starting up in cities all over America. Competition came from the Latham Brothers with a screen-projection machine, which Edison answered with his "Vitascope", shown in New York in 1896. This showed pictures with accompanying sound, but there was some difficulty with synchronization. Edison also experimented with captions at this early date.
    In 1880 he filed a patent for a magnetic ore separator, the first of nearly sixty. He bought up deposits of low-grade iron ore which had been developed in the north of New Jersey. The process was a commercial success until the discovery of iron-rich ore in Minnesota rendered it uneconomic and uncompetitive. In 1898 cement rock was discovered in New Village, west of West Orange. Edison bought the land and started cement manufacture, using kilns twice the normal length and using half as much fuel to heat them as the normal type of kiln. In 1893 he met Henry Ford, who was building his second car, at an Edison convention. This started him on the development of a battery for an electric car on which he made over 9,000 experiments. In 1903 he sold his patent for wireless telegraphy "for a song" to Guglielmo Marconi.
    In 1910 Edison designed a prefabricated concrete house. In December 1914 fire destroyed three-quarters of the West Orange plant, but it was at once rebuilt, and with the threat of war Edison started to set up his own plants for making all the chemicals that he had previously been buying from Europe, such as carbolic acid, phenol, benzol, aniline dyes, etc. He was appointed President of the Navy Consulting Board, for whom, he said, he made some forty-five inventions, "but they were pigeonholed, every one of them". Thus did Edison find that the Navy did not take kindly to civilian interference.
    In 1927 he started the Edison Botanic Research Company, founded with similar investment from Ford and Firestone with the object of finding a substitute for overseas-produced rubber. In the first year he tested no fewer than 3,327 possible plants, in the second year, over 1,400, eventually developing a variety of Golden Rod which grew to 14 ft (4.3 m) in height. However, all this effort and money was wasted, due to the discovery of synthetic rubber.
    In October 1929 he was present at Henry Ford's opening of his Dearborn Museum to celebrate the fiftieth anniversary of the incandescent lamp, including a replica of the Menlo Park laboratory. He was awarded the Congressional Gold Medal and was elected to the American Academy of Sciences. He died in 1931 at his home, Glenmont; throughout the USA, lights were dimmed temporarily on the day of his funeral.
    [br]
    Principal Honours and Distinctions
    Member of the American Academy of Sciences. Congressional Gold Medal.
    Further Reading
    M.Josephson, 1951, Edison, Eyre \& Spottiswode.
    R.W.Clark, 1977, Edison, the Man who Made the Future, Macdonald \& Jane.
    IMcN

    Biographical history of technology > Edison, Thomas Alva

  • 84 Lawrence, Richard Smith

    SUBJECT AREA: Weapons and armour
    [br]
    b. 22 November 1817 Chester, Vermont, USA
    d. 10 March 1892 Hartford, Connecticut, USA
    [br]
    American gunsmith and inventor.
    [br]
    Richard S.Lawrence received only an elementary education and as a young man worked on local farms and later in a woodworking shop. His work there included making carpenters' and joiners' tools and he spent some of his spare time in a local gunsmith's shop. After a brief period of service in the Army, he obtained employment in 1838 with N.Kendall \& Co. of Windsor, Vermont, making guns at the Windsor prison. Within six months he was put in charge of the work, continuing in this position until 1842 when the gun-making ceased; he remained at the prison for a time in charge of the carriage shop. In 1843 he opened a gun shop in Windsor in partnership with Kendall, and the next year S.E. Robbins, a businessman, helped them obtain a contract from the Federal Government for 10,000 rifles. A new company, Robbins, Kendall \& Lawrence, was formed and a factory was built at Windsor. Three years later Kendall's share of the business was purchased by his partners and the firm became Robbins \& Lawrence. Lawrence supervised the design and production and, to improve methods of manufacture, developed new machine tools with the aid of F.W. Howe. In 1850 Lawrence introduced the lubrication of bullets, which practice ensured the success of the breech-loading rifle. Also in 1850, the company undertook to manufacture railway cars, but this involved them in a considerable financial loss. The company took to the Great Exhibition of 1851 in London, England, a set of rifles built on the interchangeable system. The interest this created resulted in a visit of some members of the British Royal Small Arms Commission to America and subsequently an order for 150 machine tools, jigs and fixtures from Robbins \& Lawrence, to be installed at the small-arms factory at Enfield. In 1852 the company contracted to manufacture Sharps rifles and carbines at a new factory to be built at Hartford, Connecticut. Lawrence moved to Hartford in 1853 to superintend the building and equipment of the plant. Shortly afterwards, however, a promised order for a large number of rifles failed to materialize and, following its earlier financial difficulties, Robbins \& Lawrence was forced into bankruptcy. The Hartford plant was acquired by the Sharps Rifle Company in 1856 and Lawrence remained there as Superintendent until 1872. From then he was for many years Superintendent of Streets in the city of Hartford and he also served on the Water Board, the Board of Aldermen and as Chairman of the Fire Board.
    [br]
    Further Reading
    J.W.Roe, 1916, English and American Tool Builders, New Haven; repub. 1926, New York; and 1987, Bradley, Ill. (provides biographical information and includes in an Appendix (pp. 281–94) autobiographical notes written by Richard S.Lawrence in 1890).
    Merritt Roe Smith, 1974, "The American Precision Museum", Technology and Culture 15 (3): 413–37 (for information on Robbins \& Lawrence and products).
    RTS

    Biographical history of technology > Lawrence, Richard Smith

  • 85 Woods, Granville

    [br]
    b. 1856 Columbus, Ohio, USA
    d. 1919 New York (?), USA
    [br]
    African-American inventor of electrical equipment.
    [br]
    He was first apprenticed in Columbus as a machinist and blacksmith. In 1872 he moved to Missouri, where he was engaged as a fireman and then engine-driver on the Iron Mountain Railroad. In his spare time he devoted much time to the study of electrical engineering. In 1878 he went to sea for two years as engineer on a British vessel. He returned to Ohio, taking up his previous occupation as engine-driver, and in 1884 he achieved his first patent, for a locomotive firebox. However, the drive towards things electrical was too strong and he set up the Woods Electric Company in Cincinnati, Ohio, to develop and market electrical inventions. Woods gained some fame as an inventor and became known as the "black Edison ". His first device, a telephone transmitter, was patented in December 1884 but faced stiff competition from similar inventions by Alexander Graham Bell and others. The following year he patented a device for transmitting messages in Morse code or by voice that was valuable enough to be bought up by the Bell Telephone Company. A stream of inventions followed, particularly for railway telegraph and electrical systems. This brought him into conflict with Edison, who was working in the same field. The US Patent Office ruled in Woods's favour; as a result of the ensuing publicity, one newspaper hailed Woods as the "greatest electrician in the world". In 1890 Woods moved to New York, where the opportunities for an electrical engineer seemed more favourable. He turned his attention to inventions that would improve the tram-car. One device enabled electric current to be transferred to the car with less friction than previously, incorporating a grooved wheel known as a "troller", whence came the popular term "trolley car".
    [br]
    Further Reading
    P.P.James, 1989, The Real McCoy: African-American Invention and Innovation 1619– 1930, Washington, DC: Smithsonian Institution, pp. 94–5.
    LRD

    Biographical history of technology > Woods, Granville

  • 86 E & SP

    English-Russian dictionary of planing, cross-planing and slotting machines > E & SP

  • 87 OSPE

    OSPE, organizational spare parts and equipment

    English-Russian dictionary of planing, cross-planing and slotting machines > OSPE

  • 88 W/E&SP

    W/E&SP, with equipment and spare parts
    с техникой [оборудованием] и запасными частями

    English-Russian dictionary of planing, cross-planing and slotting machines > W/E&SP

  • 89 W/OE&SP

    W/OE&SP, without equipment and spare parts
    без техники [оборудования] и запасных частей

    English-Russian dictionary of planing, cross-planing and slotting machines > W/OE&SP

  • 90 dispatch

    "To plan, allocate, and send out technicians, spare parts, and special equipment to solve a service problem."

    English-Arabic terms dictionary > dispatch

  • 91 stores

    1. припасы

     

    припасы
    Припасы для потребления:
    1) товары, предназначенные для потребления пассажирами и экипажем на борту средств водного транспорта, воздушных судов или в поездах, независимо от того, продаются они или нет;
    2) товары, необходимые для эксплуатации и технического обслуживания средств водного транспорта, воздушных судов или поездов, включая топливо и смазочные материалы, но исключая запасные части и оборудование.
    [Упрощение процедур торговли: англо-русский глоссарий терминов (пересмотренное второе издание) НЬЮ-ЙОРК, ЖЕНЕВА, МОСКВА 2011 год]

    EN

    stores
    (1) Stores for consumption (goods intended for consumption by the passengers and the crew on board vessels, aircraft or trains, whether or not sold; and goods necessary for the operation and maintenance of vessels, aircraft or trains, including fuel and lubricants but excluding spare parts and equipment); and
    (2) Stores to be taken away (goods for sale to the passengers and the crew of vessels and aircraft with a view to being landed) (special annex j, chapter 4, to the revised kyoto convention)
    [Trade Facilitation Terms: An English - Russian Glossary (revised second edition) NEW YORK, GENEVA, MOSCOW 2792]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > stores

См. также в других словарях:

  • spare equipment — atsarginis įrenginys statusas T sritis radioelektronika atitikmenys: angl. back up equipment; spare equipment vok. Reserveanlage, f rus. запасная установка, f; резервная установка, f pranc. équipement de réserve, m …   Radioelektronikos terminų žodynas

  • Spare the Air program — Spare the Air is a program established by the Bay Area Air Quality Management District in 1991 to combat air pollution during the summer in the San Francisco Bay Area, the season when clear skies, hot temperatures, lighter winds, and a strong… …   Wikipedia

  • Spare parts — Spare parts, also referred to as Service Parts is a term used to indicate extra parts available and in proximity to the mechanical item, such as a automobile, boat, engine, for which they might be used. Spare parts are also called “spares.” Spare …   Wikipedia

  • spare part — spare parts N COUNT: usu pl Spare parts are parts that you can buy separately to replace old or broken parts in a piece of equipment. They are usually parts that are designed to be easily removed or fitted. In the future the machines will need… …   English dictionary

  • spare part — UK US noun [C, usually plural] ► a part that can be used to replace another similar part in a car or other machine or piece of equipment: »The company produces spare parts for 90,000 engines …   Financial and business terms

  • Spare tire — imagestack A spare tire is an additional tire (or tyre see spelling differences) carried in a motor vehicle as a replacement for one that goes flat, a blowout, or other emergency. Spare tire is generally a misnomer, as almost all vehicles… …   Wikipedia

  • Equipment of the Finnish Army — This is a list of weapons used by the Finnish Army, for past equipment, see here. Armour Finnish Leopard 2A4 at the Independence Day Parade. Main Battle Tanks Leopard 2A4 91 to 10 …   Wikipedia

  • Equipment of the United States Coast Guard — The United States Coast Guard uses cutters and small boats on the water, and fixed and rotary wing (helicopters) aircraft in the air. They also use a variety of firearms, including handguns, rifles and machine guns.CuttersOriginally, the Coast… …   Wikipedia

  • back-up equipment — atsarginis įrenginys statusas T sritis radioelektronika atitikmenys: angl. back up equipment; spare equipment vok. Reserveanlage, f rus. запасная установка, f; резервная установка, f pranc. équipement de réserve, m …   Radioelektronikos terminų žodynas

  • Hiking equipment — is gear or equipment that one takes along on an outdoors hiking trip. While hiking is considered different than backpacking (overnight camping), the equipment is of necessity of a shorter term more practical nature for such a walk. However even… …   Wikipedia

  • Austin Osman Spare — Infobox Writer name = Austin Osman Spare caption = Austin Osman Spare birthdate = birth date|1886|12|31|df=y birthplace = Snow Hill, near Smithfield Market London deathdate = death date and age|1956|5|15|1886|12|30|df=y deathplace = London… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»