-
1 circunstancias que están fuera de + Posesivo + control
= circumstances beyond + Posesivo + controlEx. Librarians are being prevented from solving their problems by circumstances beyond their control.* * *= circumstances beyond + Posesivo + controlEx: Librarians are being prevented from solving their problems by circumstances beyond their control.
Spanish-English dictionary > circunstancias que están fuera de + Posesivo + control
-
2 понятие инверсии как центрального компонента в решении задач управления
Универсальный русско-английский словарь > понятие инверсии как центрального компонента в решении задач управления
-
3 решение задач управления
Programming: solving control problemsУниверсальный русско-английский словарь > решение задач управления
-
4 центральный компонент в решении задач управления
Programming: central ingredient in solving control problemsУниверсальный русско-английский словарь > центральный компонент в решении задач управления
-
5 resolver un problema
(v.) = resolve + issue, resolve + problem, solve + problem, work out + problem, unlock + problem, settle + problem, sort out + problem, clear up + problem, work + problem + through, address + limitation, straighten out + problem, iron out + problem, work out + kinkEx. I think the plans to develop networking and an online authority file will do much to resolve the issue.Ex. RLIN (Research Libraries Information Network) is a system used by the Research Libraries Group (RLG), a group dedicated to resolving common problems in collection development, management, access and preservation.Ex. Reading literature is a game-playing activity in which we 'try out' various possible solutions to life- problems and see how they might be worked out before having to tackle them in reality.Ex. Each is currently a vogue word (often a vague word as well), and each is suddenly all-important to the unlocking of social problems.Ex. The librarian should rely on policy to settle routine problems, and reserve the big problems for thorough analysis.Ex. Initial responses from parish clerks indicated that problems did not exist, but interviews with all the households in one parish revealed that 59% said that they had to sort out a problem in the last few months.Ex. The library staff involved in the day to day running of the library may be called upon quite often to fix certain minor faults or clear up problems and misunderstandings on the part of the user.Ex. She tells a story of courage in which the crew and the mission control pull together to work the problem through.Ex. A number of approaches have been developed in the field of medicine that seek to address these limitations.Ex. Straighten out the problem, give him a few parental murmurs of comfort, a pat or two, then leave again.Ex. She is quick to get hot under the collar, but once the problem is ironed out she forgets it entirely.* * *(v.) = resolve + issue, resolve + problem, solve + problem, work out + problem, unlock + problem, settle + problem, sort out + problem, clear up + problem, work + problem + through, address + limitation, straighten out + problem, iron out + problem, work out + kinkEx: I think the plans to develop networking and an online authority file will do much to resolve the issue.
Ex: RLIN (Research Libraries Information Network) is a system used by the Research Libraries Group (RLG), a group dedicated to resolving common problems in collection development, management, access and preservation.Ex: Reading literature is a game-playing activity in which we 'try out' various possible solutions to life- problems and see how they might be worked out before having to tackle them in reality.Ex: Each is currently a vogue word (often a vague word as well), and each is suddenly all-important to the unlocking of social problems.Ex: The librarian should rely on policy to settle routine problems, and reserve the big problems for thorough analysis.Ex: Initial responses from parish clerks indicated that problems did not exist, but interviews with all the households in one parish revealed that 59% said that they had to sort out a problem in the last few months.Ex: The library staff involved in the day to day running of the library may be called upon quite often to fix certain minor faults or clear up problems and misunderstandings on the part of the user.Ex: She tells a story of courage in which the crew and the mission control pull together to work the problem through.Ex: A number of approaches have been developed in the field of medicine that seek to address these limitations.Ex: Straighten out the problem, give him a few parental murmurs of comfort, a pat or two, then leave again.Ex: She is quick to get hot under the collar, but once the problem is ironed out she forgets it entirely.Ex: The new geothermal system still has a few kinks that need to be worked out. -
6 operational research
Gen Mgtthe application of scientific methods to the solution of managerial and administrative problems, involving complex systems or processes. Operational research strives to find the optimum plan for the control and operation of a system or process. It was originally used during World War II as a means of solving logistical problems. It has since developed into a planning, scheduling, and problem solving technique applied across the industrial, commercial, and public sectors. -
7 Griffith, Alan Arnold
[br]b. 13 June 1893 London, Englandd. 13 October 1963 Farnborough, England[br]English research engineer responsible for many original ideas, including jet-lift aircraft.[br]Griffith was very much a "boffin", for he was a quiet, thoughtful man who shunned public appearances, yet he produced many revolutionary ideas. During the First World War he worked at the Royal Aircraft Factory, Farnborough, where he carried out research into structural analysis. Because of his use of soap films in solving torsion problems, he was nicknamed "Soap-bubble".During the 1920s Griffith carried out research into gas-turbine design at the Royal Aircraft Establishment (RAE; as the Royal Aircraft Factory had become). In 1929 he made proposals for a gas turbine driving a propeller (a turboprop), but the idea was shelved. In the 1930s he was head of the Engine Department of the RAE and developed multi-stage axial compressors, which were later used in jet engines. This work attracted the attention of E.W. (later Lord) Hives of Rolls-Royce who persuaded Griffith to join Rolls-Royce in 1939. His first major project was a "contra-flow" jet engine, which was a good idea but a practical failure. However, Griffith's axial-flow compressor experience played an important part in the success of Rolls-Royce jet engines from the Avon onwards. He also proposed the bypass principle used for the Conway.Griffith experimented with suction to control the boundary layer on wings, but his main interest in the 1950s centred on vertical-take-off and -landing aircraft. He developed the remarkable "flying bedstead", which consisted of a framework (the bedstead) in which two jet engines were mounted with their jets pointing downwards, thus lifting the machine vertically. It first flew in 1954 and provided much valuable data. The Short SC1 aircraft followed, with four small jets providing lift for vertical take-off and one conventional jet to provide forward propulsion. This flew successfully in the late 1950s and early 1960s. Griffith proposed an airliner with lifting engines, but the weight of the lifting engines when not in use would have been a serious handicap. He retired in 1960.[br]Principal Honours and DistinctionsCBE 1948. FRS 1941. Royal Aeronautical Society Silver Medal 1955; Blériot Medal 1962.BibliographyGriffith produced many technical papers in his early days; for example: 1926, Aerodynamic Theory of Turbine Design, Farnborough.Further ReadingD.Eyre, 1966, "Dr A.A.Griffith, CBE, FRS", Journal of the Royal Aeronautical Society (June) (a detailed obituary).F.W.Armstrong, 1976, "The aero engine and its progress: fifty years after Griffith", Aeronautical Journal (December).O.Stewart, 1966, Aviation: The Creative Ideas, London (provides brief descriptions of Griffith's many projects).JDS -
8 Philosophy
And what I believe to be more important here is that I find in myself an infinity of ideas of certain things which cannot be assumed to be pure nothingness, even though they may have perhaps no existence outside of my thought. These things are not figments of my imagination, even though it is within my power to think of them or not to think of them; on the contrary, they have their own true and immutable natures. Thus, for example, when I imagine a triangle, even though there may perhaps be no such figure anywhere in the world outside of my thought, nor ever have been, nevertheless the figure cannot help having a certain determinate nature... or essence, which is immutable and eternal, which I have not invented and which does not in any way depend upon my mind. (Descartes, 1951, p. 61)Let us console ourselves for not knowing the possible connections between a spider and the rings of Saturn, and continue to examine what is within our reach. (Voltaire, 1961, p. 144)As modern physics started with the Newtonian revolution, so modern philosophy starts with what one might call the Cartesian Catastrophe. The catastrophe consisted in the splitting up of the world into the realms of matter and mind, and the identification of "mind" with conscious thinking. The result of this identification was the shallow rationalism of l'esprit Cartesien, and an impoverishment of psychology which it took three centuries to remedy even in part. (Koestler, 1964, p. 148)It has been made of late a reproach against natural philosophy that it has struck out on a path of its own, and has separated itself more and more widely from the other sciences which are united by common philological and historical studies. The opposition has, in fact, been long apparent, and seems to me to have grown up mainly under the influence of the Hegelian philosophy, or, at any rate, to have been brought out into more distinct relief by that philosophy.... The sole object of Kant's "Critical Philosophy" was to test the sources and the authority of our knowledge, and to fix a definite scope and standard for the researches of philosophy, as compared with other sciences.... [But Hegel's] "Philosophy of Identity" was bolder. It started with the hypothesis that not only spiritual phenomena, but even the actual world-nature, that is, and man-were the result of an act of thought on the part of a creative mind, similar, it was supposed, in kind to the human mind.... The philosophers accused the scientific men of narrowness; the scientific men retorted that the philosophers were crazy. And so it came about that men of science began to lay some stress on the banishment of all philosophic influences from their work; while some of them, including men of the greatest acuteness, went so far as to condemn philosophy altogether, not merely as useless, but as mischievous dreaming. Thus, it must be confessed, not only were the illegitimate pretensions of the Hegelian system to subordinate to itself all other studies rejected, but no regard was paid to the rightful claims of philosophy, that is, the criticism of the sources of cognition, and the definition of the functions of the intellect. (Helmholz, quoted in Dampier, 1966, pp. 291-292)Philosophy remains true to its classical tradition by renouncing it. (Habermas, 1972, p. 317)I have not attempted... to put forward any grand view of the nature of philosophy; nor do I have any such grand view to put forth if I would. It will be obvious that I do not agree with those who see philosophy as the history of "howlers" and progress in philosophy as the debunking of howlers. It will also be obvious that I do not agree with those who see philosophy as the enterprise of putting forward a priori truths about the world.... I see philosophy as a field which has certain central questions, for example, the relation between thought and reality.... It seems obvious that in dealing with these questions philosophers have formulated rival research programs, that they have put forward general hypotheses, and that philosophers within each major research program have modified their hypotheses by trial and error, even if they sometimes refuse to admit that that is what they are doing. To that extent philosophy is a "science." To argue about whether philosophy is a science in any more serious sense seems to me to be hardly a useful occupation.... It does not seem to me important to decide whether science is philosophy or philosophy is science as long as one has a conception of both that makes both essential to a responsible view of the world and of man's place in it. (Putnam, 1975, p. xvii)What can philosophy contribute to solving the problem of the relation [of] mind to body? Twenty years ago, many English-speaking philosophers would have answered: "Nothing beyond an analysis of the various mental concepts." If we seek knowledge of things, they thought, it is to science that we must turn. Philosophy can only cast light upon our concepts of those things.This retreat from things to concepts was not undertaken lightly. Ever since the seventeenth century, the great intellectual fact of our culture has been the incredible expansion of knowledge both in the natural and in the rational sciences (mathematics, logic).The success of science created a crisis in philosophy. What was there for philosophy to do? Hume had already perceived the problem in some degree, and so surely did Kant, but it was not until the twentieth century, with the Vienna Circle and with Wittgenstein, that the difficulty began to weigh heavily. Wittgenstein took the view that philosophy could do no more than strive to undo the intellectual knots it itself had tied, so achieving intellectual release, and even a certain illumination, but no knowledge. A little later, and more optimistically, Ryle saw a positive, if reduced role, for philosophy in mapping the "logical geography" of our concepts: how they stood to each other and how they were to be analyzed....Since that time, however, philosophers in the "analytic" tradition have swung back from Wittgensteinian and even Rylean pessimism to a more traditional conception of the proper role and tasks of philosophy. Many analytic philosophers now would accept the view that the central task of philosophy is to give an account, or at least play a part in giving an account, of the most general nature of things and of man. (Armstrong, 1990, pp. 37-38)8) Philosophy's Evolving Engagement with Artificial Intelligence and Cognitive ScienceIn the beginning, the nature of philosophy's engagement with artificial intelligence and cognitive science was clear enough. The new sciences of the mind were to provide the long-awaited vindication of the most potent dreams of naturalism and materialism. Mind would at last be located firmly within the natural order. We would see in detail how the most perplexing features of the mental realm could be supported by the operations of solely physical laws upon solely physical stuff. Mental causation (the power of, e.g., a belief to cause an action) would emerge as just another species of physical causation. Reasoning would be understood as a kind of automated theorem proving. And the key to both was to be the depiction of the brain as the implementation of multiple higher level programs whose task was to manipulate and transform symbols or representations: inner items with one foot in the physical (they were realized as brain states) and one in the mental (they were bearers of contents, and their physical gymnastics were cleverly designed to respect semantic relationships such as truth preservation). (A. Clark, 1996, p. 1)Socrates of Athens famously declared that "the unexamined life is not worth living," and his motto aptly explains the impulse to philosophize. Taking nothing for granted, philosophy probes and questions the fundamental presuppositions of every area of human inquiry.... [P]art of the job of the philosopher is to keep at a certain critical distance from current doctrines, whether in the sciences or the arts, and to examine instead how the various elements in our world-view clash, or fit together. Some philosophers have tried to incorporate the results of these inquiries into a grand synoptic view of the nature of reality and our human relationship to it. Others have mistrusted system-building, and seen their primary role as one of clarifications, or the removal of obstacles along the road to truth. But all have shared the Socratic vision of using the human intellect to challenge comfortable preconceptions, insisting that every aspect of human theory and practice be subjected to continuing critical scrutiny....Philosophy is, of course, part of a continuing tradition, and there is much to be gained from seeing how that tradition originated and developed. But the principal object of studying the materials in this book is not to pay homage to past genius, but to enrich one's understanding of central problems that are as pressing today as they have always been-problems about knowledge, truth and reality, the nature of the mind, the basis of right action, and the best way to live. These questions help to mark out the territory of philosophy as an academic discipline, but in a wider sense they define the human predicament itself; they will surely continue to be with us for as long as humanity endures. (Cottingham, 1996, pp. xxi-xxii)10) The Distinction between Dionysian Man and Apollonian Man, between Art and Creativity and Reason and Self- ControlIn his study of ancient Greek culture, The Birth of Tragedy, Nietzsche drew what would become a famous distinction, between the Dionysian spirit, the untamed spirit of art and creativity, and the Apollonian, that of reason and self-control. The story of Greek civilization, and all civilizations, Nietzsche implied, was the gradual victory of Apollonian man, with his desire for control over nature and himself, over Dionysian man, who survives only in myth, poetry, music, and drama. Socrates and Plato had attacked the illusions of art as unreal, and had overturned the delicate cultural balance by valuing only man's critical, rational, and controlling consciousness while denigrating his vital life instincts as irrational and base. The result of this division is "Alexandrian man," the civilized and accomplished Greek citizen of the later ancient world, who is "equipped with the greatest forces of knowledge" but in whom the wellsprings of creativity have dried up. (Herman, 1997, pp. 95-96)Historical dictionary of quotations in cognitive science > Philosophy
-
9 оптимизация
оптимизация
Процесс отыскания варианта, соответствующего критерию оптимальности
[Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]
оптимизация
1. Процесс нахождения экстремума функции, т.е. выбор наилучшего варианта из множества возможных, процесс выработки оптимальных решений; 2. Процесс приведения системы в наилучшее (оптимальное) состояние. Иначе говоря, первое определение трактует термин «О.» как факт выработки и принятия оптимального решения (в широком смысле этих слов); мы выясняем, какое состояние изучаемой системы будет наилучшим с точки зрения предъявляемых к ней требований (критерия оптимальности) и рассматриваем такое состояние как цель. В этом смысле применяется также термин «субоптимизация» в случаях, когда отыскивается оптимум по какому-либо одному критерию из нескольких в векторной задаче оптимизации (см. Оптимальность по Парето, Векторная оптимизация). Второе определение имеет в виду процесс выполнения этого решения: т.е. перевод системы от существующего к искомому оптимальному состоянию. В зависимости от вида используемых критериев оптимальности (целевых функций или функционалов) и ограничений модели (множества допустимых решений) различают скалярную О., векторную О., мно¬гокритериальную О., стохастическую О (см. Стохастическое программирование), гладкую и негладкую (см. Гладкая функция), дискретную и непрерывную (см. Дискретность, Непрерывность), выпуклую и вогнутую (см. Выпуклость, вогнутость) и др. Численные методы О., т.е. методы построения алгоритмов нахождения оп¬тимальных значений целевых функций и соответствующих точек области допустимых значений — развитой отдел современной вычислительной математики. См. Оптимальная задача.
[ http://slovar-lopatnikov.ru/]Параллельные тексты EN-RU из ABB Review. Перевод компании Интент
The quest for the optimumВопрос оптимизацииThroughout the history of industry, there has been one factor that has spurred on progress more than any other. That factor is productivity. From the invention of the first pump to advanced computer-based optimization methods, the key to the success of new ideas was that they permitted more to be achieved with less. This meant that consumers could, over time and measured in real terms, afford to buy more with less money. Luxuries restricted to a tiny minority not much more than a generation ago are now available to almost everybody in developed countries, with many developing countries rapidly catching up.На протяжении всей истории промышленности существует один фактор, подстегивающий ее развитие сильнее всего. Он называется «производительность». Начиная с изобретения первого насоса и заканчивая передовыми методами компьютерной оптимизации, успех новых идей зависел от того, позволяют ли они добиться большего результата меньшими усилиями. На языке потребителей это значит, что они всегда хотят купить больше, а заплатить меньше. Меньше чем поколение назад, многие предметы считались роскошью и были доступны лишь немногим. Сейчас в развитых странах, число которых быстро увеличивается, подобное может позволить себе почти каждый.With industry and consumers expecting the trend towards higher productivity to continue, engineering companies are faced with the challenge of identifying and realizing further optimization potential. The solution often lies in taking a step back and looking at the bigger picture. Rather than optimizing every step individually, many modern optimization techniques look at a process as a whole, and sometimes even beyond it. They can, for example, take into account factors such as the volatility of fuel quality and price, the performance of maintenance and service practices or even improved data tracking and handling. All this would not be possible without the advanced processing capability of modern computer and control systems, able to handle numerous variables over large domains, and so solve optimization problems that would otherwise remain intractable.На фоне общей заинтересованности в дальнейшем росте производительности, машиностроительные и проектировочные компании сталкиваются с необходимостью определения и реализации возможностей по оптимизации своей деятельности. Для того чтобы найти решение, часто нужно сделать шаг назад, поскольку большое видится на расстоянии. И поэтому вместо того, чтобы оптимизировать каждый этап производства по отдельности, многие современные решения охватывают процесс целиком, а иногда и выходят за его пределы. Например, они могут учитывать такие факторы, как изменение качества и цены топлива, результативность ремонта и обслуживания, и даже возможности по сбору и обработке данных. Все это невозможно без использования мощных современных компьютеров и систем управления, способных оперировать множеством переменных, связанных с крупномасштабными объектами, и решать проблемы оптимизации, которые другим способом решить нереально.Whether through a stunning example of how to improve the rolling of metal, or in a more general overview of progress in optimization algorithms, this edition of ABB Review brings you closer to the challenges and successes of real world computer-based optimization tasks. But it is not in optimization and solving alone that information technology is making a difference: Who would have thought 10 years ago, that a technician would today be able to diagnose equipment and advise on maintenance without even visiting the factory? ABB’s Remote Service makes this possible. In another article, ABB Review shows how the company is reducing paperwork while at the same time leveraging quality control through the computer-based tracking of production. And if you believed that so-called “Internet communities” were just about fun, you will be surprised to read how a spin-off of this idea is already leveraging production efficiency in real terms. Devices are able to form “social networks” and so facilitate maintenance.Рассказывая об ошеломляющем примере того, как был усовершенствован процесс прокатки металла, или давая общий обзор развития алгоритмов оптимизации, этот выпуск АББ Ревю знакомит вас с практическими задачами и достигнутыми успехами оптимизации на основе компьютерных технологий. Но информационные технологии способны не только оптимизировать процесс производства. Кто бы мог представить 10 лет назад, что сервисный специалист может диагностировать производственное оборудование и давать рекомендации по его обслуживанию, не выходя из офиса? Это стало возможно с пакетом Remote Service от АББ. В другой статье этого номера АББ Ревю рассказывается о том, как компания смогла уменьшить бумажный документооборот и одновременно повысить качество управления с помощью компьютерного контроля производства. Если вы считаете, что так называемые «интернет-сообщества» служат только для развлечения,то очень удивитесь, узнав, что на основе этой идеи можно реально повысить производительность. Формирование «социальной сети» из автоматов значительно облегчает их обслуживание.This edition of ABB Review also features several stories of service and consulting successes, demonstrating how ABB’s expertise has helped customers achieve higher levels of productivity. In a more fundamental look at the question of what reliability is really about, a thought-provoking analysis sets out to find the definition of that term that makes the greatest difference to overall production.В этом номере АББ Ревю есть несколько статей, рассказывающих об успешных решениях по организации дистанционного сервиса и консультирования. Из них видно, как опыт АББ помогает нашим заказчикам повысить производительность своих предприятий. Углубленные размышления о самой природе термина «надежность» приводят к парадоксальным выводам, способным в корне изменить представления об оптимизации производства.Robots have often been called “the extended arm of man.” They are continuously advancing productivity by meeting ever-tightening demands on precision and efficiency. This edition of ABB Review dedicates two articles to robots.Робот – это могучее «продолжение» человеческой руки. Применение роботов способствует постоянному повышению производительности, поскольку они отвечают самым строгим требованиям точности и эффективности. Две статьи в этом номере АББ Ревю посвящены роботам.Further technological breakthroughs discussed in this issue look at how ABB is keeping water clean or enabling gas to be shipped more efficiently.Говоря о других технологических достижениях, обсуждаемых на страницах журнала, следует упомянуть о том, как компания АББ обеспечивает чистоту воды, а также более эффективную перевозку сжиженного газа морским транспортом.The publication of this edition of ABB Review is timed to coincide with ABB Automation and Power World 2009, one of the company’s greatest customer events. Readers visiting this event will doubtlessly recognize many technologies and products that have been covered in this and recent editions of the journal. Among the new products ABB is launching at the event is a caliper permitting the flatness of paper to be measured optically. We are proud to carry a report on this product on the very day of its launch.Публикация этого номера АББ Ревю совпала по времени с крупнейшей конференцией для наших заказчиков «ABB Automation and Power World 2009». Читатели, посетившие ее, смогли воочию увидеть многие технологии и изделия, описанные в этом и предыдущих выпусках журнала. Среди новинок, представленных АББ на этой конференции, был датчик, позволяющий измерять толщину бумаги оптическим способом. Мы рады сообщить, что сегодня он готов к выпуску.Тематики
EN
DE
FR
Русско-английский словарь нормативно-технической терминологии > оптимизация
10 k|oło1
Ⅰ n 1. (pojazdu) wheel- koło samochodowe/roweru/pociągu a car/bicycle/train wheel- koło przednie/tylne/zapasowe a front/rear/spare wheel- koło wozu a cartwheel- naprawić/wymienić koło w samochodzie to repair/change a car wheel- pieszy wbiegł na szosę prosto pod koła samochodu a pedestrian ran onto the road just in front of a car2. Techn. wheel- puścić w ruch koło maszyny to set a machine wheel in motion3. Mat. circle- obliczyć pole koła to calculate the area of a circle- budowla na planie koła a building with a circular floor plan4. (okrąg) circle- zataczać a. zakreślać koła to make a. describe circles- zatoczyć koło to come full circle5. (kształt) circle- w uszach miała ogromne srebrne koła she was wearing big silver hoop earrings- materiał w koła fabric with a circle pattern a. design6. (zrzeszenie) association, circle- koło łowieckie a hunters’ association- koło gospodyń wiejskich the farmer’s wives’ association- koło teatralne a theatre club a. group7. (grono) circle- koło przyjaciół one’s circle of friends- koło rodzinne one’s family circle- należał do koła jej znajomych he was one of her friends8. (w zabawach) circle, ring- bawić się w koło to dance (around) in a circle a. ring- stanąć w kole to form a circle a. ring9. Taniec circle dance 10. Hist. (narzędzie tortur) wheel, rack- łamać kogoś kołem a. na kole to break sb on the wheel a. rack11. Hist. zwołać radnych na koło to summon a council Ⅱ koła plt (kręgi) circles, world- koła artystyczne/naukowe/kulturalne artistic/scientific/cultural circles- koła literackie literary circles- koła emigracyjne emigré circles- koła polityczne/dyplomatyczne/finansowe the political/diplomatic/financial world- koła rządowe governmental circles a. spheres- obracać się w kołach politycznych to move in political circlesⅢ kołem adv. 1. (dookoła) in a circle- siedliśmy kołem przy ognisku we were sitting in a circle around the fire- obstąpili go kołem they surrounded him2. (łukiem) around a. past- obeszliśmy dom wielkim kołem we circled the houseⅣ w koło adv. 1. (okrążając) (a)round (in circles), round and round- jeździli w koło, nie mogąc znaleźć miejsca na postój they drove round and round, trying to find a parking place2. (na wszystkie strony) around- rozglądać się w koło to look around3. (ciągle) over and over- śpiewać w koło tę samą piosenkę to sing the same song over and over- koło garncarskie potter’s wheel- koło godzinne Astron. hour circle- koło łopatkowe Techn. paddle wheel- koło małe Mat. small circle- koło młyńskie millwheel- koło ogonowe Lotn. tailwheel- koło polowe Roln. land wheel- koło południkowe Geog. meridional circle- koło ratunkowe lifebelt, life ring GB, life preserver US- koło wielkie Mat. great circle- koło wierzchołkowe Astron. vertical circle- koło wodne Techn. water wheel- koło zębate Techn. gear■ koło fortuny (los) the wheel of fortune- sprzyjało mu koło fortuny luck was with him- kwadratura koła Mat. squaring the circle, quadrature of the circle- rozwiązać problem ubóstwa to kwadratura koła solving the problem of poverty is like squaring the circle- koło historii the (turning) tides a. wheel of history- potrzebne mi te kłopoty jak piąte koło u wozu I need these problems like I need a hole in my head pot.- czuć się jak piąte koło u wozu to feel unnecessaryThe New English-Polish, Polish-English Kościuszko foundation dictionary > k|oło1
См. также в других словарях:
control theory — Field of applied mathematics relevant to the control of certain physical processes and systems. It became a field in its own right in the late 1950s and early 60s. After World War II, problems arising in engineering and economics were recognized… … Universalium
Control theory — For control theory in psychology and sociology, see control theory (sociology) and Perceptual Control Theory. The concept of the feedback loop to control the dynamic behavior of the system: this is negative feedback, because the sensed value is… … Wikipedia
Control Data Corporation — (CDC) was a supercomputer firm. For most of the 1960s, it built the fastest computers in the world by far, only losing that crown in the 1970s after Seymour Cray left the company to found Cray Research, Inc. (CRI). CDC was one of the nine major… … Wikipedia
Problem solving — forms part of thinking. Considered the most complex of all intellectual functions, problem solving has been defined as higher order cognitive process that requires the modulation and control of more routine or fundamental skills (Goldstein Levin … Wikipedia
Pseudospectral optimal control — Pseudospectral (PS) optimal control is a computational method for solving optimal control problems. PS optimal controllers have beenextensively used to solve a wide range of problems such as those arising in UAV trajectory generation, missile… … Wikipedia
Optimal control — theory, an extension of the calculus of variations, is a mathematical optimization method for deriving control policies. The method is largely due to the work of Lev Pontryagin and his collaborators in the Soviet Union[1] and Richard Bellman in… … Wikipedia
DIDO (optimal control) — DIDO is a user friendly MATLAB program for solving hybrid optimal control problems. The general purpose program is named after Dido, the legendary founder and first queen of Carthage who is famous in mathematics for her remarkable solution to a… … Wikipedia
Advanced process control — In control theory Advanced process control (APC) is a broad term composed of different kinds of process control tools, often used for solving multivariable control problems or discrete control problem. Overview Advanced process control is… … Wikipedia
Unsolved problems in statistics — There are many longstanding unsolved problems in mathematics for which a solution has still not yet been found. The unsolved problems in statistics are generally of a different flavor; according to John Tukey, difficulties in identifying problems … Wikipedia
Linear-quadratic-Gaussian control — In control theory, the linear quadratic Gaussian (LQG) control problem is one of the most fundamental optimal control problems. It concerns uncertain linear systems disturbed by additive white Gaussian noise, having incomplete state information… … Wikipedia
Eight Disciplines Problem Solving — is a method used to approach and to resolve problems typically employed by quality engineers or other professionals. Also know as 8D, 8 D Problem Solving, G8D or Global 8D. 8 Steps of Problem Solving in EngineeringD1: Assemble a cross functional… … Wikipedia
Перевод: со всех языков на английский
с английского на все языки- С английского на:
- Все языки
- Со всех языков на:
- Все языки
- Английский
- Немецкий
- Русский
- Французский