Перевод: с английского на все языки

со всех языков на английский

seeking+area

  • 41 Crompton, Samuel

    SUBJECT AREA: Textiles
    [br]
    b. 3 December 1753 Firwood, near Bolton, Lancashire, England
    d. 26 June 1827 Bolton, Lancashire, England
    [br]
    English inventor of the spinning mule.
    [br]
    Samuel Crompton was the son of a tenant farmer, George, who became the caretaker of the old house Hall-i-th-Wood, near Bolton, where he died in 1759. As a boy, Samuel helped his widowed mother in various tasks at home, including weaving. He liked music and made his own violin, with which he later was to earn some money to pay for tools for building his spinning mule. He was set to work at spinning and so in 1769 became familiar with the spinning jenny designed by James Hargreaves; he soon noticed the poor quality of the yarn produced and its tendency to break. Crompton became so exasperated with the jenny that in 1772 he decided to improve it. After seven years' work, in 1779 he produced his famous spinning "mule". He built the first one entirely by himself, principally from wood. He adapted rollers similar to those already patented by Arkwright for drawing out the cotton rovings, but it seems that he did not know of Arkwright's invention. The rollers were placed at the back of the mule and paid out the fibres to the spindles, which were mounted on a moving carriage that was drawn away from the rollers as the yarn was paid out. The spindles were rotated to put in twist. At the end of the draw, or shortly before, the rollers were stopped but the spindles continued to rotate. This not only twisted the yarn further, but slightly stretched it and so helped to even out any irregularities; it was this feature that gave the mule yarn extra quality. Then, after the spindles had been turned backwards to unwind the yarn from their tips, they were rotated in the spinning direction again and the yarn was wound on as the carriage was pushed up to the rollers.
    The mule was a very versatile machine, making it possible to spin almost every type of yarn. In fact, Samuel Crompton was soon producing yarn of a much finer quality than had ever been spun in Bolton, and people attempted to break into Hall-i-th-Wood to see how he produced it. Crompton did not patent his invention, perhaps because it consisted basically of the essential features of the earlier machines of Hargreaves and Arkwright, or perhaps through lack of funds. Under promise of a generous subscription, he disclosed his invention to the spinning industry, but was shabbily treated because most of the promised money was never paid. Crompton's first mule had forty-eight spindles, but it did not long remain in its original form for many people started to make improvements to it. The mule soon became more popular than Arkwright's waterframe because it could spin such fine yarn, which enabled weavers to produce the best muslin cloth, rivalling that woven in India and leading to an enormous expansion in the British cotton-textile industry. Crompton eventually saved enough capital to set up as a manufacturer himself and around 1784 he experimented with an improved carding engine, although he was not successful. In 1800, local manufacturers raised a sum of £500 for him, and eventually in 1812 he received a government grant of £5,000, but this was trifling in relation to the immense financial benefits his invention had conferred on the industry, to say nothing of his expenses. When Crompton was seeking evidence in 1811 to support his claim for financial assistance, he found that there were 4,209,570 mule spindles compared with 155,880 jenny and 310,516 waterframe spindles. He later set up as a bleacher and again as a cotton manufacturer, but only the gift of a small annuity by his friends saved him from dying in total poverty.
    [br]
    Further Reading
    H.C.Cameron, 1951, Samuel Crompton, Inventor of the Spinning Mule, London (a rather discursive biography).
    Dobson \& Barlow Ltd, 1927, Samuel Crompton, the Inventor of the Spinning Mule, Bolton.
    G.J.French, 1859, The Life and Times of Samuel Crompton, Inventor of the Spinning Machine Called the Mule, London.
    The invention of the mule is fully described in H. Gatling, 1970, The Spinning Mule, Newton Abbot; W.English, 1969, The Textile Industry, London; R.L.Hills, 1970, Power in the Industrial Revolution, Manchester.
    C.Singer (ed.), 1958, A History of Technology, Vol. IV, Oxford: Clarendon Press (provides a brief account).
    RLH

    Biographical history of technology > Crompton, Samuel

  • 42 Drummond, Thomas

    SUBJECT AREA: Chemical technology
    [br]
    b. 10 October 1797 Edinburgh, Scotland
    d. 15 April 1840 Dublin, Ireland
    [br]
    Scottish inventor of limelight.
    [br]
    Drummond entered Woolwich Arsenal as a cadet in 1813 and the Royal Engineers two years later. In 1820 he joined Colonel Colby at work on the ordnance survey, meanwhile continuing his studies in mathematics and chemistry under Brand and Faraday at the Royal Institution. His two chief inventions, limelight, or Drummond light, and the heliostatia, were aimed to facilitate the work of the survey by day and night. The light had a sensational effect on the scientific world; Sir John Herschel has left a vivid account of demonstrations of various lights far surpassed in brilliance by limelight. Limelight was brought into use in the autumn of 1825 during the survey of Ireland. In 1829 Drummond began adapting it for use in lighthouses. It was effective, but expensive to operate, and Drummond was seeking ways of making it cheaper when, after a meeting with Brougham in 1831, he gave up the work and turned to politics and administration. From 1835, he was in all but name governor of Ireland, spending himself in the service of his adopted country until overwork brought about his early death in 1840.
    LRD

    Biographical history of technology > Drummond, Thomas

  • 43 Goodyear, Charles

    [br]
    b. 29 December 1800 New Haven, Connecticut, USA
    d. 1 July 1860 New York, USA
    [br]
    American inventor of the vulcanization of rubber.
    [br]
    Goodyear entered his father's country hardware business before setting up his own concern in Philadelphia. While visiting New York, he noticed in the window of the Roxburgh India Rubber Company a rubber life-preserver. Goodyear offered to improve its inflating valve, but the manager, impressed with Goodyear's inventiveness, persuaded him to tackle a more urgent problem, that of seeking a means of preventing rubber from becoming tacky and from melting or decomposing when heated. Goodyear tried treatments with one substance after another, without success. In 1838 he started using Nathaniel M.Hayward's process of spreading sulphur on rubber. He accidentally dropped a mass of rubber and sulphur on to a hot stove and noted that the mixture did not melt: Goodyear had discovered the vulcanization of rubber. More experiments were needed to establish the correct proportions for a uniform mix, and eventually he was granted his celebrated patent no. 3633 of 15 June 1844. Goodyear's researches had been conducted against a background of crippling financial difficulties and he was forced to dispose of licences to vulcanize rubber at less than their real value, in order to pay off his most pressing debts.
    Goodyear travelled to Europe in 1851 to extend his patents. To promote his process, he designed a spectacular exhibit for London, consisting of furniture, floor covering, jewellery and other items made of rubber. A similar exhibit in Paris in 1855 won him the Grande Médaille d'honneur and the Croix de la Légion d'honneur from Napoleon III. Patents were granted to him in all countries except England. The improved properties of vulcanized rubber and its stability over a much wider range of temperatures greatly increased its applications; output rose from a meagre 31.5 tonnes a year in 1827 to over 28,000 tonnes by 1900. Even so, Goodyear profited little from his invention, and he bequeathed to his family debts amounting to over $200,000.
    [br]
    Principal Honours and Distinctions
    Grande Médaille d'honneur 1855. Croix de la Légion d'honneur 1855.
    Bibliography
    15 June 1844, US patent no. 3633 (vulcanization of rubber).
    1853, Gum Elastic and Its Varieties (includes some biographical material).
    Further Reading
    B.K.Pierce, 1866, Trials of an Inventor: Life and Discoveries of Charles Goodyear.
    H.Allen, 1989, Charles Goodyear: An Intimate Biographical Sketch, Akron, Ohio: Goodyear Tire \& Rubber Company.
    LRD

    Biographical history of technology > Goodyear, Charles

  • 44 Gresley, Sir Herbert Nigel

    [br]
    b. 19 June 1876 Edinburgh, Scotland
    d. 5 April 1941 Hertford, England
    [br]
    English mechanical engineer, designer of the A4-class 4–6–2 locomotive holding the world speed record for steam traction.
    [br]
    Gresley was the son of the Rector of Netherseale, Derbyshire; he was educated at Marlborough and by the age of 13 was skilled at making sketches of locomotives. In 1893 he became a pupil of F.W. Webb at Crewe works, London \& North Western Railway, and in 1898 he moved to Horwich works, Lancashire \& Yorkshire Railway, to gain drawing-office experience under J.A.F.Aspinall, subsequently becoming Foreman of the locomotive running sheds at Blackpool. In 1900 he transferred to the carriage and wagon department, and in 1904 he had risen to become its Assistant Superintendent. In 1905 he moved to the Great Northern Railway, becoming Superintendent of its carriage and wagon department at Doncaster under H.A. Ivatt. In 1906 he designed and produced a bogie luggage van with steel underframe, teak body, elliptical roof, bowed ends and buckeye couplings: this became the prototype for East Coast main-line coaches built over the next thirty-five years. In 1911 Gresley succeeded Ivatt as Locomotive, Carriage \& Wagon Superintendent. His first locomotive was a mixed-traffic 2–6–0, his next a 2–8–0 for freight. From 1915 he worked on the design of a 4–6–2 locomotive for express passenger traffic: as with Ivatt's 4 4 2s, the trailing axle would allow the wide firebox needed for Yorkshire coal. He also devised a means by which two sets of valve gear could operate the valves on a three-cylinder locomotive and applied it for the first time on a 2–8–0 built in 1918. The system was complex, but a later simplified form was used on all subsequent Gresley three-cylinder locomotives, including his first 4–6–2 which appeared in 1922. In 1921, Gresley introduced the first British restaurant car with electric cooking facilities.
    With the grouping of 1923, the Great Northern Railway was absorbed into the London \& North Eastern Railway and Gresley was appointed Chief Mechanical Engineer. More 4–6– 2s were built, the first British class of such wheel arrangement. Modifications to their valve gear, along lines developed by G.J. Churchward, reduced their coal consumption sufficiently to enable them to run non-stop between London and Edinburgh. So that enginemen might change over en route, some of the locomotives were equipped with corridor tenders from 1928. The design was steadily improved in detail, and by comparison an experimental 4–6–4 with a watertube boiler that Gresley produced in 1929 showed no overall benefit. A successful high-powered 2–8–2 was built in 1934, following the introduction of third-class sleeping cars, to haul 500-ton passenger trains between Edinburgh and Aberdeen.
    In 1932 the need to meet increasing road competition had resulted in the end of a long-standing agreement between East Coast and West Coast railways, that train journeys between London and Edinburgh by either route should be scheduled to take 8 1/4 hours. Seeking to accelerate train services, Gresley studied high-speed, diesel-electric railcars in Germany and petrol-electric railcars in France. He considered them for the London \& North Eastern Railway, but a test run by a train hauled by one of his 4–6–2s in 1934, which reached 108 mph (174 km/h), suggested that a steam train could better the railcar proposals while its accommodation would be more comfortable. To celebrate the Silver Jubilee of King George V, a high-speed, streamlined train between London and Newcastle upon Tyne was proposed, the first such train in Britain. An improved 4–6–2, the A4 class, was designed with modifications to ensure free running and an ample reserve of power up hill. Its streamlined outline included a wedge-shaped front which reduced wind resistance and helped to lift the exhaust dear of the cab windows at speed. The first locomotive of the class, named Silver Link, ran at an average speed of 100 mph (161 km/h) for 43 miles (69 km), with a maximum speed of 112 1/2 mph (181 km/h), on a seven-coach test train on 27 September 1935: the locomotive went into service hauling the Silver Jubilee express single-handed (since others of the class had still to be completed) for the first three weeks, a round trip of 536 miles (863 km) daily, much of it at 90 mph (145 km/h), without any mechanical troubles at all. Coaches for the Silver Jubilee had teak-framed, steel-panelled bodies on all-steel, welded underframes; windows were double glazed; and there was a pressure ventilation/heating system. Comparable trains were introduced between London Kings Cross and Edinburgh in 1937 and to Leeds in 1938.
    Gresley did not hesitate to incorporate outstanding features from elsewhere into his locomotive designs and was well aware of the work of André Chapelon in France. Four A4s built in 1938 were equipped with Kylchap twin blast-pipes and double chimneys to improve performance still further. The first of these to be completed, no. 4468, Mallard, on 3 July 1938 ran a test train at over 120 mph (193 km/h) for 2 miles (3.2 km) and momentarily achieved 126 mph (203 km/h), the world speed record for steam traction. J.Duddington was the driver and T.Bray the fireman. The use of high-speed trains came to an end with the Second World War. The A4s were then demonstrated to be powerful as well as fast: one was noted hauling a 730-ton, 22-coach train at an average speed exceeding 75 mph (120 km/h) over 30 miles (48 km). The war also halted electrification of the Manchester-Sheffield line, on the 1,500 volt DC overhead system; however, anticipating eventual resumption, Gresley had a prototype main-line Bo-Bo electric locomotive built in 1941. Sadly, Gresley died from a heart attack while still in office.
    [br]
    Principal Honours and Distinctions
    Knighted 1936. President, Institution of Locomotive Engineers 1927 and 1934. President, Institution of Mechanical Engineers 1936.
    Further Reading
    F.A.S.Brown, 1961, Nigel Gresley, Locomotive Engineer, Ian Allan (full-length biography).
    John Bellwood and David Jenkinson, Gresley and Stanier. A Centenary Tribute (a good comparative account).
    PJGR

    Biographical history of technology > Gresley, Sir Herbert Nigel

  • 45 Huntsman, Benjamin

    SUBJECT AREA: Metallurgy
    [br]
    b. 1704 Barton-on-Humber, Lincolnshire, England
    d. 21 June 1776 Sheffield, England
    [br]
    English inventor of crucible steelmaking.
    [br]
    Of Dutch descent, Hunstman was apprenticed to a clockmaker at Epworth, Lincolnshire. In 1725 he set up in Doncaster as a maker of clocks, locks and roasting jacks. He made improvements in his tools but found himself hampered by the poor quality of the steel available, then made by the cementation process, which yielded a steel with a non-uniform carbon content. Around 1740, Huntsman moved to Handsworth, now part of Sheffield, and began experimenting by heating varying compositions of fuel and flux with crude steel in a crucible, to obtain a steel of uniform composition. During the years 1745 to 1750 he attained his object, but not without many unsuccessful "heats", as excavations of the site of his works now reveal. Although his steel was far better than that previously available, however, the conservative cutlers of Sheffield rejected it, claiming it was too hard to work; therefore Huntsman exported his product to France, where the cutlers promptly worked it into high-quality knives and razors that were exported to England. The Sheffield cutlers' attempts to prevent Huntsman from exporting his steel proved unsuccessful. Huntsman did not patent his process, preferring to retain his advantage by shrouding his work in secrecy, carrying out his melting at night to escape observation, but a rival cutler, Samuel Walker, gained admittance to Huntsman's works disguised as a tramp seeking food. As a result, Walker was able to make crucible steel at a handsome profit. Huntsman fought back and earned success through the sheer quality of his steel, and had to move to.a larger site at Attercliffe in 1770. Crucible steelmaking remained important through the nineteenth century although, as it was a small-scale process, its application was restricted to engineers' cutting tools and the cutting edges of certain tools.
    [br]
    Further Reading
    E.W.Hulme, 1945, "The pedigree and career of Benjamin Huntsman, inventor in Europe of crucible steel", Transactions of the Newcomen Society 24:37–48.
    W.K.V.Gale, 1969, Iron and Steel, London: Longman.
    LRD

    Biographical history of technology > Huntsman, Benjamin

  • 46 McCoy, Elijah

    [br]
    b. 1843 Colchester, Ontario, Canada
    d. 1929 Detroit, Michigan (?), USA
    [br]
    African-American inventor of steam-engine lubricators.
    [br]
    McCoy was born into a community of escaped African-American slaves. As a youth he went to Scotland and served an apprenticeship in Edinburgh in mechanical engineering. He returned to North America and ended up in Ypsilanti, Michigan, seeking employment at the headquarters of the Michigan Central Railroad Company. In spite of his training, the only job McCoy could obtain was that of locomotive fireman. Still, that enabled him to study at close quarters the problem of lubricating adequately the moving parts of a steam locomotive. Inefficient lubrication led to overheating, delays and even damage. In 1872 McCoy patented the first of his lubricating devices, applicable particularly to stationary engines. He assigned his patent rights to W. and S.C.Hamlin of Ypsilanti, from which he derived enough financial resources to develop his invention. A year later he patented an improved hydrostatic lubricator, which could be used for both stationary and locomotive engines, and went on to make further improvements. McCoy's lubricators were widely taken up by other railroads and his employers promoted him from the footplate to the task of giving instruction in the use of his lubricating equipment. Many others had been attempting to achieve the same result and many rival products were on the market, but none was superior to McCoy's, which came to be known as "the Real McCoy", a term that has since acquired a wider application than to engine lubricators. McCoy moved to Detroit, Michigan, as a patent consultant in the railroad business. Altogether, he took out over fifty patents for various inventions, so that he became one of the most prolific of nineteenth-century black inventors, whose activities had been so greatly stimulated by the freedoms they acquired after the American Civil War. His more valuable patents were assigned to investors, who formed the Elijah McCoy Manufacturing Company. McCoy himself, however, was not a major shareholder, so he seems not to have derived the benefit that was due to him.
    [br]
    Further Reading
    P.P.James, 1989, The Real McCoy: African-American Invention and Innovation 1619– 1930, Washington: Smithsonian Institution, pp. 73–5.
    LRD

    Biographical history of technology > McCoy, Elijah

  • 47 Merica, Paul Dyer

    SUBJECT AREA: Metallurgy
    [br]
    b. 17 March 1889 Warsaw, Indiana, USA
    d. 20 October 1957 Tarrytown, New York, USA
    [br]
    American physical metallurgist who elucidated the mechanism of the age-hardening of alloys.
    [br]
    Merica graduated from the University of Wisconsin in 1908. Before proceeding to the University of Berlin, he spent some time teaching in Wisconsin and in China. He obtained his doctorate in Berlin in 1914, and in that year he joined the US National Bureau of Standards (NBS) in Washington. During his five years there, he investigated the causes of the phenomenon of age-hardening of the important new alloy of aluminium, Duralumin.
    This phenomenon had been discovered not long before by Dr Alfred Wilm, a German research metallurgist. During the early years of the twentieth century, Wilm had been seeking a suitable light alloy for making cartridge cases for the Prussian government. In the autumn of 1909 he heated and quenched an aluminium alloy containing 3.5 per cent copper and 0.5 per cent magnesium and found its properties unremarkable. He happened to test it again some days later and was impressed to find its hardness and strength were much improved: Wilm had accidentally discovered age-hardening. He patented the alloy, but he made his rights over to Durener Metallwerke, who marketed it as Duralumin. This light and strong alloy was taken up by aircraft makers during the First World War, first for Zeppelins and then for other aircraft.
    Although age-hardened alloys found important uses, the explanation of the phenomenon eluded metallurgists until in 1919 Merica and his colleagues at the NBS gave the first rational explanation of age-hardening in light alloys. When these alloys were heated to temperatures near their melting points, the alloying constituents were taken into solution by the matrix. Quenching retained the alloying metals in supersaturated solid solution. At room temperature very small crystals of various intermetallic compounds were precipitated and, by inserting themselves in the aluminium lattice, had the effect of increasing the hardness and strength of the alloy. Merica's theory stimulated an intensive study of hardening and the mechanism that brought it about, with important consequences for the development of new alloys with special properties.
    In 1919 Merica joined the International Nickel Company as Director of Research, a post he held for thirty years and followed by a three-year period as President. He remained in association with the company until his death.
    [br]
    Bibliography
    1919, "Heat treatment and constitution of Duralumin", Sci. Papers, US Bureau of Standards, no. 37; 1932, "The age-hardening of metals", Transactions of the American Institution of Min. Metal 99:13–54 (his two most important papers).
    Further Reading
    Z.Jeffries, 1959, "Paul Dyer Merica", Biographical Memoirs of the National Academy of Science 33:226–39 (contains a list of Merica's publications and biographical details).
    LRD

    Biographical history of technology > Merica, Paul Dyer

  • 48 Mitscherlich, Alexander

    SUBJECT AREA: Paper and printing
    [br]
    b. 28 May 1836 Berlin, Germany
    d. 31 May 1918 Oberstdorf, Germany
    [br]
    German inventor of sulphite wood pulp for papermaking.
    [br]
    Mitscherlich had an impeccable scientific background; his father was the celebrated chemist Eilhardt Mitscherlich, discoverer of the law of isomorphism, and his godfather was Alexander von Humboldt. At first his progress at school failed to live up to this auspicious beginning and his father would only sanction higher studies if he first qualified as a teacher so as to assure a means of livelihood. Alexander rose to the occasion and went on to gain his doctorate at the age of 25 in the field of mineralogical chemistry. He worked for a few years as Assistant to the distinguished chemists Wöhler in Göttingen and Wurtz in Paris. On his father's death in 1863, he succeeded him as teacher of chemistry in the University of Berlin. In 1868 he accepted a post in the newly established Forest Academy in Hannoversch-Munden, teaching chemistry, physics and geology. The post offered little financial advantage, but it left him more time for research. It was there that he invented the process for producing sulphite wood pulp.
    The paper industry was seeking new raw materials. Since the 1840s pulp had been produced mechanically from wood, but it was unsuitable for making fine papers. From the mid-1860s several chemists began tackling the problem of separating the cellulose fibres from the other constituents of wood by chemical means. The American Benjamin C.Tilghman was granted patents in several countries for the treatment of wood with acid or bisulphite. Carl Daniel Ekman in Sweden and Karl Kellner in Austria also made sulphite pulp, but the credit for devising the process that came into general use belongs to Mitscherlich. His brother Oskar came to him at the Academy with plans for producing pulp by the action of soda, but the results were inferior, so Mitscherlich substituted calcium bisulphite and in the laboratory obtained good results. To extend this to a large-scale process, he was forced to set up his own mill, where he devised the characteristic towers for making the calcium bisulphite, in which water trickling down through packed lime met a rising current of sulphur dioxide. He was granted a patent in Luxembourg in 1874 and a German one four years later. The sulphite process did not make him rich, for there was considerable opposition to it; government objected to the smell of sulphur dioxide, forestry authorities were anxious about the inroads that might be made into the forests and his patents were contested. In 1883, with the support of an inheritance from his mother, Mitscherlich resigned his post at the Academy to devote more time to promoting his invention. In 1897 he at last succeeded in settling the patent disputes and achieving recognition as the inventor of sulphite pulp. Without this raw material, the paper industry could never have satisfied the insatiable appetite of the newspaper presses.
    [br]
    Further Reading
    H.Voorn "Alexander Mitscherlich, inventor of sulphite wood pulp", Paper Maker 23(1): 41–4.
    LRD

    Biographical history of technology > Mitscherlich, Alexander

  • 49 Train, George Francis

    [br]
    b. 24 March 1829 Boston, Massachusetts, USA d. 1904
    [br]
    American entrepreneur who introduced tramways to the streets of London.
    [br]
    He was the son of a merchant, Oliver Train, who had settled in New Orleans, Louisiana. His mother and sister died in a yellow fever epidemic and he was sent to live on his grandmother's farm at Waltham, Massachusetts, where he went to the district school. He left in 1843 and was apprenticed in a grocery store in nearby Cambridge, where, one day, a relative named Enoch Train called to see him. George Train left and went to join his relative's shipping office across the river in Boston; Enoch Train, among other enterprises, ran a packet line to Liverpool and, in 1850, sent George to England to manage his Liverpool office. Three years later, George Train went to Melbourne, Australia, and established his own shipping firm; he is said to have earned £95,000 in his first year there. In 1855 he left Australia to travel in Europe and the Levant where he made many contacts. In the late 1850s and early 1860s he was in England seeking capital for American railroads and promoting the construction of street railways or trams in Liverpool, London and Staffordshire. In 1862 he was back in Boston, where he was put in jail for disturbing a public meeting; in 1870, he achieved momentary fame for travelling around the world in eighty days.
    [br]
    Further Reading
    D.Malone (ed.), 1932–3, Dictionary of American Biography, Vol. 5, New York: Charles Scribner.
    IMcN

    Biographical history of technology > Train, George Francis

  • 50 Webb, Francis William

    [br]
    b. 21 May 1836 Tixall, Staffordshire, England
    d. 4 June 1906 Bournemouth, England
    [br]
    English locomotive engineer who pioneered compound locomotives in Britain and the use of steel for boilers.
    [br]
    Webb was a pupil at Crewe Works, London \& North Western Railway (LNWR), under F. Trevithick (son of Richard Trevithick), and was subsequently placed in charge of the works under Trevithick's successor, J.Ramsbottom. After a brief spell away from the LNWR, Webb returned in 1871 and was made Chief Mechanical Engineer, a post he held until his retirement in 1904.
    Webb's initial designs included the highly successful "Precedent" or "Jumbo" class 2– 4–0, from which the example Hardwicke (now preserved by the National Railway Museum, York) achieved an average speed of 67.2 mph (108.1 km/h) between Crewe and Carlisle in 1895. His 0–6–0 "coal engines" were straightforward and cheap and were built in large numbers. In 1879 Webb, having noted the introduction of compound locomotives in France by J.T.A. Mallet, rebuilt an existing 2–2–2 locomotive as a two-cylinder compound. Then in 1882, seeking fuel economy and the suppression of coupling rods, he produced a compound locomotive to his own design, the 2–2, 2–0 Experiment, in which two outside high-pressure cylinders drove the rear driving-wheels, and a single inside large-diameter low-pressure cylinder drove the front driving-wheels. This was followed by a large number of compound locomotives: three successive classes of 2–2, 2–0s; some 2–2, 2–2s; some 4–4–0s; and some 0–8–0s for goods traffic. Although these were capable of good performance, their overall value was controversial: Webb, who was notoriously autocratic, may never have been fully informed of their defects, and after his retirement most were quickly scrapped. Webb made many other innovations during his career, one of the most important being the construction of boilers from steel rather than wrought iron.
    [br]
    Further Reading
    C.Hamilton Ellis, 1958, Twenty Locomotive Men, Shepperton: Ian Allan, Ch. 14 (describes Webb's career).
    E.L.Ahrons, 1927, The British Steam Railway Locomotive 2825–1925, London: The Locomotive Publishing Co., Chs 18 and 20 (includes a critique of Webb's compound locomotives).
    PJGR

    Biographical history of technology > Webb, Francis William

  • 51 Wirth, Niklaus

    [br]
    fl. late 1960s Zurich, Switzerland
    [br]
    Swiss computer engineer noted for his development of the high-level computer language PASCAL.
    [br]
    For many years Wirth was Professor of Computing Science at Zurich Federal Polytechnic School. In 1969, seeking a high-level computer language suitable for teaching programming as a systematic activity, he invented PASCAL, which is now widely used with personal computers (PCs). Unlike BASIC, which is checked and run a line at a time, PASCAL programs are compiled (i.e. they are fully checked for consistency) before they are actually run.
    [br]
    Principal Honours and Distinctions
    Institute of Electrical and Electronics Engineers Emanuel R.Piore Award 1983.
    Bibliography
    1971, "The programming language PASCAL", Acta Informatica 1:35.
    Further Reading
    R.L.Wexelblat (ed.), 1981, History of Programming Languages, London: Academic Press.
    KF

    Biographical history of technology > Wirth, Niklaus

  • 52 Zeiss, Carl

    [br]
    b. 11 September 1816 Weimar, Thuringia, Germany
    d. 3 December 1888 Jena, Saxony, Germany
    [br]
    German lens manufacturer who introduced scientific method to the production of compound microscopes and made possible the production of the first anastigmatic photographic objectives.
    [br]
    After completing his early education in Weimar, Zeiss became an apprentice to the engineer Dr Frederick Koerner. As part of his training, Zeiss was required to travel widely and he visited Vienna, Berlin, Stuttgart and Darmstadt to study his trade. In 1846 he set up a business of his own, an optical workshop in Jena, where he began manufacturing magnifying glasses and microscopes. Much of his work was naturally for the university there and he had the co-operation of some of the University staff in the development of precision instruments. By 1858 he was seeking to make more expensive compound microscopes, but he found the current techniques primitive and laborious. He decided that it was necessary to introduce scientific method to the design of the optics, and in 1866 he sought the advice of a professor of physics at the University of Jena, Ernst Abbe (1840–1905). It took Zeiss until 1869 to persuade Abbe to join his company, and two difficult years were spent working on the calculations before success was achieved. Within a few more years the Zeiss microscope had earned a worldwide reputation for quality. Abbe became a full partner in the Zeiss business in 1875. In 1880 Abbe began an association with Friedrich Otte Schott that was to lead to the establishment of the famous Jena glass works in 1884. With the support of the German government, Jena was to become the centre of world production of new optical glasses for photographic objectives.
    In 1886 the distinguished mathematician and optician Paul Rudolph joined Zeiss at Jena. After Zeiss's death, Rudolph went on to use the characteristics of the new glass to calculate the first anastigmatic lenses. Immediately successful and widely imitated, the anastigmats were also the first of a long series of Zeiss photographic objectives that were to be at the forefront of lens design for years to come. Abbe took over the management of the company and developed it into an internationally famous organization.
    [br]
    Further Reading
    L.W.Sipley, 1965, Photography's Great Inventors, Philadelphia (a brief biography). J.M.Eder, 1945, History of Photography, trans. E.Epstean, New York.
    K.J.Hume, 1980, A History of Engineering Metrology, London, 122–32 (includes a short account of Carl Zeiss and his company).
    JW / RTS

    Biographical history of technology > Zeiss, Carl

См. также в других словарях:

  • Kitzmiller v. Dover Area School District — United States District Court for the Middle District of Pennsylvania Argued September 26, 2005 November 4, 2005, Decided December 20, 2005 Full case name: Tammy Kitzmiller, et al. v. Dover Area School District, et al …   Wikipedia

  • Baton Rouge Area Foundation — Infobox Non profit| Non profit name = Baton Rouge Area Foundation Non profit Non profit type = founded date = 1964|left founder = The Foundation was founded in June 1964 by eleven civic leaders who wanted to use the Foundation as a tool for… …   Wikipedia

  • European Economic Area Family Permit — A European Economic Area Family Permit (short: EEA family permit) is an immigration document that permits the holder to enter the United Kingdom as the dependant of a citizen of the European Economic Area (EEA). The documents are not… …   Wikipedia

  • Common Travel Area — The Common Travel Area in green The Common Travel Area is a passport free zone that comprises the islands of Ireland, Great Britain, the Isle of Man and the Channel Islands. The area s internal borders are subject to minimal or non existent… …   Wikipedia

  • Dover Area School District — Address 2 School Lane Dover, Pennsylvania, York, 17315 …   Wikipedia

  • Oklahoma City metropolitan area — Greater Oklahoma City Common name: Oklahoma City Metro Area Largest city Oklahoma City …   Wikipedia

  • Fayetteville–Springdale–Rogers Metropolitan Area — [[Image:|200px|center|Map of Northwest Arkansas]] Common name: Northwest Arkansas Largest city Fayetteville, Arkansas Other cities Bentonville, Arkansas Springdale, Arkansas Rogers, Arkansas Bella Vi …   Wikipedia

  • Southern Maya area — ; accordingly, in consideration of the multilingual character of the SMA, in many ways Southern Maya Area is a misnomer. [Love and Kaplan (in press) point out that scholarship has been deficient in studying the SMA as a cultural area unto itself …   Wikipedia

  • Free Trade Area of the Americas — The Free Trade Area of the Americas (FTAA) (Spanish: Área de Libre Comercio de las Américas (ALCA), French: Zone de libre échange des Amériques (ZLÉA), Portuguese: Área de Livre Comércio das Américas (ALCA), Dutch: Vrijhandelszone van de Amerika… …   Wikipedia

  • Selinsgrove Area High School — is a public school located in Selinsgrove, Snyder County, Pennsylvania. It is a part of the Selinsgrove Area School District. The school s enrollment is approximately 980 students in grades nine through twelve. The school serves an immediate… …   Wikipedia

  • Sarasota County Area Transit — (SCAT) Founded 1979 Headquarters …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»