Перевод: с английского на все языки

со всех языков на английский

second+world+war

  • 41 war

    [wɔː]
    n
    - Great Patriotic war - all-out total war
    - atomic war
    - conventional war
    - defensive war
    - limited war
    - offensive war
    - thermonuclear war
    - war of manoeuvre
    - in the war
    - declare war
    - be at war with smb
    - wage war
    - ban war
    - outlaw war
    - end a war
    - levy war on smb
    - lose war
    - escalate a war
    - win war
    - all is fair in love and war
    USAGE:
    (1.) Найменование войн, за исключением мировых, употребляются с определенным артиклем: the Crimean War Крымская война; the Persian War Персидская война. Когда существительное war употребляется с описательным определением, перед ним употребляется неопределенный артикль: a neauclear war ядерная война. (2.) Русские первая (вторая) мировая война могут соответствовать двум конструкциям: World War One (Two) или The second (the first) World War

    English-Russian combinatory dictionary > war

  • 42 world

    1. n мир, свет, земля, земной шар

    to bring into the world — произвести на свет, родить

    to come into the world — появиться на свет, родиться

    a citizen of the world — гражданин мира, космополит

    2. n планета

    are there any other inhabited worlds? — есть ли ещё обитаемые миры, кроме нашего?

    3. n мир, вселенная
    4. n часть земного шара

    the Third World countries — страны «третьего мира»

    5. n население земного шара, человечество
    6. n сфера, область
    7. n мир, царство
    8. n период истории
    9. n жизнь

    to have the world before one — иметь перед собой всю жизнь;

    to take the world as it is — приспосабливаться к жизни; воспринимать мир таким, каков он есть

    to know the world — иметь опыт, знать жизнь

    to come up in the world — сделать карьеру, преуспеть в жизни

    how is the world using you?, how goes the world with you? — как дела?, как живёте?

    the world of spirit — духовный мир, духовная жизнь

    rise in the world — сделать карьеру; преуспеть в жизни

    come up in the world — сделать карьеру; преуспеть в жизни

    10. n окружающая среда; мир, мирок; круг

    her middle-class world — её мещанский мирок, её мелкобуржуазное окружение

    11. n общество

    the great world, the world of fashionвысший свет

    all the world and his wife — «весь свет»

    the great world — светское общество, высший свет

    12. n разг. множество, масса, уйма
    13. a относящийся ко всему миру, всемирный, мировой

    looking glass world — мир, где всё наоборот, странный мир

    14. a охватывающий весь мир
    15. a известный во всём мире

    Second World — второй мир, индустриальные страны мира

    world of commerce — коммерческие круги; торговый мир

    Синонимический ряд:
    1. atmosphere (noun) ambience; atmosphere; climate; environment; medium; milieu; nature; surroundings
    2. earth (noun) biosphere; cradle of humanity; earth; globe; mother earth; orb; planet; spaceship earth; terrestrial sphere; the planet
    3. humanity (noun) humanity; mankind; society
    4. realm (noun) circle; division; domain; kingdom; province; realm; social milieu; sphere
    5. universe (noun) cosmos; creation; kosmos; macrocosm; macrocosmos; megacosm; nature; universe

    English-Russian base dictionary > world

  • 43 world

    1. сущ.
    1)
    а) общ. мир, свет; вселенная

    the whole [entire\] world — весь мир

    to travel around the world — путешествовать вокруг света, путешествовать по миру

    б) общ. население земного шара, человечество
    в) общ. планета; мир

    Are there any other inhabited worlds? — Есть ли еще обитаемые миры, кроме нашего?

    2) общ. (группа стран, регион; часть земного шара)
    See:
    3) общ. сфера, область ( деятельности)

    the world of sport, the sports world — спортивный мир

    4) общ. мир, царство

    the animal [the vegetable\] world — животный [растительный\] мир

    5) общ. период истории

    the ancient [the medieval\] world — древний [средневековый\] мир

    6)
    а) общ. жизнь ( отдельного человека)

    to know the world — иметь опыт, знать жизнь

    to come up [to rise, to make one's way\] in the world — сделать карьеру, преуспеть в жизни

    б) общ. мир, мирок; круг (знакомых и т. п.); окружающая среда
    7) общ. общество
    8) общ. множество, масса, уйма
    2. прил.
    1) общ. всемирный, мировой; относящийся ко всему миру

    world championship — первенство [чемпионат\] мира

    See:
    world commerce, world economy, world experience, world government, World Island, world market, world marketing, world money, World Ocean, world organization, world outlook, world output, world price, world shop, world trade, world view, world water balance, World Development Indicators, World Economic Climate, World Economic Outlook, World Economic Survey, World Equity Benchmark Shares, World Military Expenditures and Arms Transfers, World Trade Agreement, World Association of Opinion and Marketing Research Professionals, World Association of Public Opinion Research, World Bank, World Confederation of Labour, World Congresses of Accounting Historians, World Court, World Customs Organization, World Federation, World Federation of Scientific Workers, World Federation of Trade Unions, World Food Programme, World Gold Council, World Health Organization, World Intellectual Property Organization, World Meteorological Organization, World Tourism Organization, World Trade Club, World Trade Organization, World Zionist Conference
    2) общ. известный во всем мире; распространенный во всем мире
    Syn:
    world-famous, world-known, world-wide
    See:

    Англо-русский экономический словарь > world

  • 44 world

    n
    мир, свет; общество

    to close oneself up from the world — отгораживаться от всего мира

    to make the world a safer place — делать мир более безопасным местом, укреплять международную безопасность

    - all over the world
    - ancient world
    - bipolar world
    - business world
    - changing world
    - civilized world
    - competitive world
    - criminal world
    - developing world
    - diplomatic world
    - disarmed world
    - division of the world
    - explosive parts of the world
    - external world
    - First World
    - Fourth World
    - free world
    - from around the world
    - historical destinies of the world
    - inhabited worlds
    - interdependence of the modern world
    - interdependent world
    - lawless world
    - less developed world
    - man's mental world
    - material world
    - modern world
    - multifaceted world
    - multipolar world
    - non-nuclear world
    - nuclear-free world
    - objective world
    - outside world
    - peaceful world
    - physical world
    - poor worlds
    - present-day world
    - redivision of the world
    - repartition of the world
    - revolutionary world
    - rich world
    - scientific world
    - Second World
    - surrounding world
    - the end of the world
    - the eyes of the world are upon us
    - the New World
    - the Old World
    - the rest of the world
    - the whole world
    - the world is in flux
    - Third World
    - throughout the world
    - unity and diversity of the world
    - Western world
    - world at large
    - world of money
    - world of plenty

    Politics english-russian dictionary > world

  • 45 world

    n. дэлхий, ертөнц, орчлон. She took a trip around the \world. Тэр дэлхийг тойрон аялсан. the outer world гадаад ертөнц. the nether/ lower world там, тамын орон. to bring into the world төрүүлэх. to rock the world дэлхийг донсолгох. the learned world шинжлэх ухааны ертөнц. be all the world to sb амь, амин сүнс нь байх. She is all the world to her father. Тэр охин эцгийнхээ ганц амь нь юм. be worlds apart тэс өөр, маш их ялгаатай. come up in the world өөдлөх, хийморьтой явах. go down in the world уруудах, доош орох. for all the world as if... / like sb/ sth яг л, юм шиг. not for (all) the world яагаад ч үгүй, алт амласан ч (be/ live) in a world of one`s own хүнтэй нийцгүй зожиг байх, амиа хоохойлох. a man of the world хал үзэж хашир суусан хүн, юм үзсэн толгой. out of this world хорвоод хосгүй, гайхамшигтай. set the world on fire маш их амжилт олох, олны хайрыг булаах. the world is one`s oyster бүх юм түүнд нээлттэй байна, ямар ч юм хийх боломж түүнд бэлэн байна. what is the world coming to? энэ дэлхий хаашаа явна вэ? all the world and his wife хүн бүр, хорвоогийн хамаг амьтан. The world and his wife were in Brighton that day! Хорвоогийн хамаг амьтан л тэр өдөр Брайтонд ирсэн байх! the (whole) world over даян дэлхийд, хорвоогийн хаана ч гэсэн. a/ the world of... маш их, туйлын их, үлэмж. That trip did him the world of good. Тэр аялал түүнд маш тустай юм боллоо. worldly adj. 1. энэ ертөнцийн, материаллаг. his \world goods түүний өмч хөрөнгө нь. 2. амьдрал үзсэн. worldly-wise adj. арвин туршлагатай, хашир хүн. world-beater n. 1. дэлхийн аварга хүн. 2. хамгийн сайн эд. world-class adj. дэлхийн хэмжээний. \world writer дэлхийн хэмжээний зохиолч. world-famous adj. дэлхийд нэрээ дуурсгасан, дэлхий даяар алдартай. \world pop star дэлхийн өнцөг булан бүрт нэр нь түгсэн поп хөгжмийн од. world power n. их гүрэн. world war n. олон улсыг хамарсан дайн, дэлхийн дайн. the First/ Second \world дэлхийн нэгдүгээр/ хоёрдугаар дайн. world-weary adj. амьдралаас уйдсан.

    English-Mongolian dictionary > world

  • 46 war

    n война (1). Название войн, за исключением мировых, употребляются с определенным артиклем:

    the Crimean War — Крымская война,

    the Persian War — Персидская война.

    (2). Русские первая (вторая) мировая война могут соответствовать двум конструкциям:

    World War One (Two) или The second (the first) World War.

    English-Russian word troubles > war

  • 47 Messerschmitt, Willi E.

    SUBJECT AREA: Aerospace
    [br]
    b. 26 June 1898 Frankfurt-am-Main, Germany
    d. 17 September 1978 Munich, Germany
    [br]
    German aircraft designer noted for successful fighters such as the Bf 109, one of the world's most widely produced aircraft.
    [br]
    Messerschmitt studied engineering at the Munich Institute of Tchnology and obtained his degree in 1923. By 1926 he was Chief Designer at the Bayerische Flugzeugwerke in Augsburg. Due to the ban on military aircraft in Germany following the First World War, his early designs included gliders, light aircraft, and a series of high-wing airliners. He began to make a major impact on German aircraft design once Hitler came to power and threw off the shackles of the Treaty of Versailles, which so restricted Germany's armed forces. In 1932 he bought out the now-bankrupt Bayerische Flugzeugwerke, but initially, because of enmity between himself and the German aviation minister, was not invited to compete for an air force contract for a single-engined fighter. However, in 1934 Messerschmitt designed the Bf 108 Taifun, a small civil aircraft with a fighter-like appearance. This displayed the quality of his design and the German air ministry was forced to recognize him. As a result, he unveiled the famous Bf 109 fighter which first flew in August 1935; it was used during the Spanish Civil War in 1936–9, and was to become one of the foremost combat aircraft of the Second World War. In 1938, after several name changes, the company became Messerschmitt Aktien-Gesellschaft (and hence a change of prefix from Bf to Me). During April 1939 a Messerschmitt aircraft broke the world air-speed record at 755.14 km/h (469.32 mph): it was entered in the FAI records as a Bf 109R, but was more accurately a new design designated Me 209V-1.
    During the Second World War, the 5/70P was progressively improved, and eventually almost 35,000 were built. Other successful fighters followed, such as the twin-engined Me 110 which also served as a bomber and night fighter. The Messerschmitt Me 262 twin-engined jet fighter, the first jet aircraft in the world to enter service, flew during the early years of the war, but it was never given a high priority by the High Command and only a small number were in service when the war ended. Another revolutionary Messerschmitt AG design was the Me 163 Komet, the concept of Professor Alexander Lippisch who had joined Messerschmitt's company in 1939; this was the first rocket-propelled fighter to enter service. It was a small tailless design capable of 880 km/hr (550 mph), but its duration under power was only about 10 minutes and it was very dangerous to fly. From late 1944 onwards it was used to intercept the United States Air Force bombers during their daylight raids. At the other end of the scale, Messerschmitt produced the Me 321 Gigant, a huge transport glider which was towed behind a flight of three Me 110s. Later it was equipped with six engines, but it was an easy target for allied fighters. This was a costly white elephant, as was his high-speed twin-engined Me 210 fighter-bomber project which nearly made his company bankrupt. Nevertheless, he was certainly an innovator and was much admired by Hitler, who declared that he had "the skull of a genius", because of the Me 163 Komet rocket-powered fighter and the Me 262.
    At the end of the war Messerschmitt was detained by the Americans for two years. In 1952 Messerschmitt became an aviation adviser to the Spanish government, and his Bf109 was produced in Spain as the Hispano Buchon for a number of years and was powered by Rolls-Royce Merlin engines. A factory was also constructed in Egypt to produce aircraft to Messerschmitt's designs. His German company, banned from building aircraft, produced prefabricated houses, sewing machines and, from 1953 to 1962, a series of bubble-cars: the KR 175 (1953–55) and the KR 200 (1955–62) were single-cylinder three-wheeled bubble-cars, and the Tiger (1958–62) was a twin-cylinder, 500cc four-wheeler. In 1958 Messerschmitt resumed aircraft construction in Germany and later became the Honorary Chairman of the merged Messerschmitt-Bölkow-Blohm company (now part of the Franco-German Eurocopter company).
    [br]
    Further Reading
    van Ishoven, 1975, Messerschmitt. Aircraft Designer, London. J.Richard Smith, 1971, Messerschmitt. An Air-craft Album, London.
    Anthony Pritchard, 1975, Messerschmitt, London (describes Messerschmitt aircraft).
    JDS / CM

    Biographical history of technology > Messerschmitt, Willi E.

  • 48 Cobham, Sir Alan John

    SUBJECT AREA: Aerospace
    [br]
    b. 6 May 1894 London, England
    d. 21 October 1973 British Virgin Islands
    [br]
    English pilot who pioneered worldwide air routes and developed an in-flight refuelling system which is in use today.
    [br]
    Alan Cobham was a man of many parts. He started as a veterinary assistant in France during the First World War, but transferred to the Royal Flying Corps in 1917. After the war he continued flying, by giving joy-rides and doing aerial photography work. In 1921 he joined the De Havilland Aircraft Company (see de Havilland, Geoffrey) as a test and charter pilot; he was also successful in a number of air races. During the 1920s Cobham made many notable flights to distant parts of the British Empire, pioneering possible routes for airline operations. During the early 1930s Sir Alan (he was knighted in 1926) devoted his attention to generating a public interest in aviation and to campaigning for more airfields. Cobham's Flying Circus toured the country giving flying displays and joy-rides, which for thousands of people was their first experience of flying.
    In 1933 Cobham planned a non-stop flight to India by refuelling his aircraft while flying: this was not a new idea but the process was still experimental. The flight was unsuccessful due to a fault in his aircraft, unrelated to the in-flight refuelling system. The following year Flight Refuelling Ltd was founded, and by 1939 two Short flying boats were operating the first inflight-refuelled service across the Atlantic. Inflight refuelling was not required during the early years of the Second World War, so Cobham turned to other projects such as thermal de-icing of wings, and a scheme which was not carried out, for delivering fighters to the Middle East by towing them behind Wellington bombers.
    After the Second World War the fortunes of Flight Refuelling Ltd were at a low ebb, especially when British South American Airways abandoned the idea of using in-flight refuelling. Then an American contract and the use of their tanker aircraft to ferry oil during the Berlin Airlift saved the day. In 1949 Cobham's chief designer, Peter Macgregor, came up with an idea for refuelling fighters using a probe and drogue system. A large tanker aircraft trailed a hose with a conical drogue at the free end. The fighter pilot manoeuvred the probe, fitted to his aircraft, so that it locked into the drogue, enabling fuel to be transferred. Since the 1950s this system has become the effective world standard.
    [br]
    Principal Honours and Distinctions
    Knighted 1926. Air Force Cross 1926.
    Bibliography
    1978, A Time to Fly, ed. C.Derrick, London; pub. in paperback 1986 (Cobham's memoirs).
    Flight to the Cape and Back, 1926, London; Australia and Back, 1926, London;
    Twenty Thousand Miles in a Flying Boat, 1930, London.
    Further Reading
    Peter G.Proctor, 1975, "The life and work of Sir Alan Cobham", Aerospace (RAeS) (March).
    JDS

    Biographical history of technology > Cobham, Sir Alan John

  • 49 Coolidge, William David

    SUBJECT AREA: Electricity, Metallurgy
    [br]
    b. 23 October 1873 Hudson, Massachusetts, USA
    d. 3 February 1975 New York, USA
    [br]
    American physicist and metallurgist who invented a method of producing ductile tungsten wire for electric lamps.
    [br]
    Coolidge obtained his BS from the Massachusetts Institute of Technology (MIT) in 1896, and his PhD (physics) from the University of Leipzig in 1899. He was appointed Assistant Professor of Physics at MIT in 1904, and in 1905 he joined the staff of the General Electric Company's research laboratory at Schenectady. In 1905 Schenectady was trying to make tungsten-filament lamps to counter the competition of the tantalum-filament lamps then being produced by their German rival Siemens. The first tungsten lamps made by Just and Hanaman in Vienna in 1904 had been too fragile for general use. Coolidge and his life-long collaborator, Colin G. Fink, succeeded in 1910 by hot-working directly dense sintered tungsten compacts into wire. This success was the result of a flash of insight by Coolidge, who first perceived that fully recrystallized tungsten wire was always brittle and that only partially work-hardened wire retained a measure of ductility. This grasped, a process was developed which induced ductility into the wire by hot-working at temperatures below those required for full recrystallization, so that an elongated fibrous grain structure was progressively developed. Sintered tungsten ingots were swaged to bar at temperatures around 1,500°C and at the end of the process ductile tungsten filament wire was drawn through diamond dies around 550°C. This process allowed General Electric to dominate the world lamp market. Tungsten lamps consumed only one-third the energy of carbon lamps, and for the first time the cost of electric lighting was reduced to that of gas. Between 1911 and 1914, manufacturing licences for the General Electric patents had been granted for most of the developed work. The validity of the General Electric monopoly was bitterly contested, though in all the litigation that followed, Coolidge's fibering principle was upheld. Commercial arrangements between General Electric and European producers such as Siemens led to the name "Osram" being commonly applied to any lamp with a drawn tungsten filament. In 1910 Coolidge patented the use of thoria as a particular additive that greatly improved the high-temperature strength of tungsten filaments. From this development sprang the technique of "dispersion strengthening", still being widely used in the development of high-temperature alloys in the 1990s. In 1913 Coolidge introduced the first controllable hot-cathode X-ray tube, which had a tungsten target and operated in vacuo rather than in a gaseous atmosphere. With this equipment, medical radiography could for the first time be safely practised on a routine basis. During the First World War, Coolidge developed portable X-ray units for use in field hospitals, and between the First and Second World Wars he introduced between 1 and 2 million X-ray machines for cancer treatment and for industrial radiography. He became Director of the Schenectady laboratory in 1932, and from 1940 until 1944 he was Vice-President and Director of Research. After retirement he was retained as an X-ray consultant, and in this capacity he attended the Bikini atom bomb trials in 1946. Throughout the Second World War he was a member of the National Defence Research Committee.
    [br]
    Bibliography
    1965, "The development of ductile tungsten", Sorby Centennial Symposium on the History of Metallurgy, AIME Metallurgy Society Conference, Vol. 27, ed. Cyril Stanley Smith, Gordon and Breach, pp. 443–9.
    Further Reading
    D.J.Jones and A.Prince, 1985, "Tungsten and high density alloys", Journal of the Historical Metallurgy Society 19(1):72–84.
    ASD

    Biographical history of technology > Coolidge, William David

  • 50 Wallis, Sir Barnes Neville

    [br]
    b. 26 September 1887 Ripley, Derbyshire, England
    d. 30 October 1979 Leatherhead, Surrey, England
    [br]
    English aeronautical designer and inventor.
    [br]
    Wallis was apprenticed first at Thames Engineering Works, and then, in 1908, at John Samuel White's shipyard at Cowes. In 1913, the Government, spurred on by the accelerating development of the German Zeppelins (see Zeppelin, Ferdinand von), ordered an airship from Vickers; Wallis was invited to join the design team. Thus began his long association with aeronautical design and with Vickers. This airship, and the R80 that followed it, were successfully completed, but the military lost interest in them.
    In 1924 the Government initiated a programme for the construction of two airships to settle once and for all their viability for long-dis-tance air travel. The R101 was designed by a Government-sponsored team, but the R100 was designed by Wallis working for a subsidiary of Vickers. The R100 took off on 29 July 1930 for a successful round trip to Canada, but the R101 crashed on its first flight on 4 October, killing many of its distinguished passengers. The shock of this disaster brought airship development in Britain to an abrupt end and forced Wallis to direct his attention to aircraft.
    In aircraft design, Wallis is known for his use of geodesic construction, which combined lightness with strength. It was applied first to the single-engined "Wellesley" and then the twin-en-gined "Wellington" bomber, which first flew in 1936. With successive modifications, it became the workhorse of RAF Bomber Command during the Second World War until the autumn of 1943, when it was replaced by four-engined machines. In other areas, it remained in service until the end of the war and, in all, no fewer than 11,461 were built.
    Wallis is best known for his work on bomb design, first the bouncing bomb that was used to breach the Möhne and Eder dams in the Ruhr district of Germany in 1943, an exploit immortalized in the film Dambusters. Encouraged by this success, the authorities then allowed Wallis to realize an idea he had long urged, that of heavy, penetration bombs. In the closing stages of the war, Tallboy, of 12,000 lb (5,400 kg), and the 10-ton Grand Slam were used to devastating effect.
    After the Second World War, Wallis returned to aeronautical design and was given his own department at Vickers to promote his ideas, principally on variable-geometry or swing-wing aircraft. Over the next thirteen years he battled towards the prototype stage of this revolutionary concept. That never came, however; changing conditions and requirements and increasing costs led to the abandonment of the project. Bit-terly disappointed, Wallis continued his researches into high-speed aircraft until his retirement from Vickers (by then the British Aircraft Corporation), in 1971.
    [br]
    Principal Honours and Distinctions
    Knighted 1968. FRS 1945.
    Further Reading
    J.Morpurgo, 1972, Barnes Wallis: A Biography, London: Longman (a readable account, rather biased in Wallis's favour).
    C.J.Heap, 1987, The Papers of Sir Barnes Wallis (1887–1979) in the Science Museum Library, London: Science Museum; with a biographical introd. by L.R.Day.
    LRD

    Biographical history of technology > Wallis, Sir Barnes Neville

  • 51 Boeing, William Edward

    SUBJECT AREA: Aerospace
    [br]
    b. 1 October 1881 Detroit, Michigan, USA
    d. 28 September 1956 USA
    [br]
    American aircraft designer, creator of one of the most successful aircraft manufacturing companies in the world.
    [br]
    In 1915 William E.Boeing and his friend Commander Conrad Westervelt decided that they could improve on the aeroplanes then being produced in the United States. Boeing was a prominent Seattle businessman with interests in land and timber, while Westervelt was an officer in the US Navy. They bought a Martin Model T float-plane in order to gain some experience and then produced their own design, the B \& W, which first flew in June 1916. Westervelt was transferred to the East, leaving Boeing to continue the production of the B \& W floatplanes, for which purpose he set up the Pacific Aero Products Company. On 26 April 1917 this became the Boeing Airplane Company, which prospered following the US involvement in the First World War.
    In March 1919 Boeing and Edward Hubbard inaugurated the world's first international airmail service between Seattle and Vancouver, British Columbia, Canada. The Boeing Company then had to face the slump in aircraft manufacturing after the war: they survived, and by 1922 they had started producing a successful series of fighters while continuing to develop their flying-boat and floatplane designs. Boeing set up the Boeing Air Transport Corporation to tender for lucrative airmail contracts and then produced aircraft which could out-perform those of his rivals. The company went from strength to strength and by the end of the 1920s a huge conglomerate had been built up: the United Aircraft and Transport Corporation. They produced an advanced high-speed monoplane mailplane, the model 200 Monomail in 1930, which saw the birth of a new era of Boeing designs.
    The Wall Street crash of 1929 and legislation in 1934, which banned any company from both building aeroplanes and running an airline, were setbacks which the Boeing Airplane Company overcame, moving ahead to become world leaders. William E.Boeing decided that it was time he retired, but he returned to work during the Second World War.
    [br]
    Principal Honours and Distinctions
    Guggenheim Medal 1934.
    Further Reading
    C.Chant, 1982, Boeing: The World's Greatest Planemakers, Hadley Wood, England (describes William E.Boeing's part in the founding and building up of the Boeing Company).
    P.M.Bowers, 1990, Boeing Aircraft since 1916, 3rd edn, London (covers Boeing's aircraft).
    Boeing Company, 1977, Pedigree of Champions: Boeing since 1916, Seattle.
    JDS

    Biographical history of technology > Boeing, William Edward

  • 52 Caproni, Giovanni Battista (Gianni), Conte di Taliedo

    SUBJECT AREA: Aerospace
    [br]
    b. 3 June 1886 Massone, Italy
    d. 29 October 1957 Rome, Italy
    [br]
    Italian aircraft designer and manufacturer, well known for his early large-aircraft designs.
    [br]
    Gianni Caproni studied civil and electrical engineering in Munich and Liège before moving on to Paris, where he developed an interest in aeronautics. He built his first aircraft in 1910, a biplane with a tricycle undercarriage (which has been claimed as the world's first tricycle undercarriage). Caproni and his brother, Dr Fred Caproni, set up a factory at Malpensa in northern Italy and produced a series of monoplanes and biplanes. In 1913 Caproni astounded the aviation world with his Ca 30 three-engined biplane bomber. There followed many variations, of which the most significant were the Ca 32 of 1915, the first large bomber to enter service in significant numbers, and the Ca 42 triplane of 1917 with a wing span of almost 30 metres.
    After the First World War, Caproni designed an even larger aircraft with three pairs of triplane wings (i.e. nine wings each of 30 metres span) and eight engines. This Ca 60 flying boat was designed to carry 100 passengers. In 1921 it made one short flight lightly loaded; however, with a load of sandbags representing sixty passengers, it crashed soon after take-off. The project was abandoned but Caproni's company prospered and expanded to become one of the largest groups of companies in Italy. In the 1930s Caproni aircraft twice broke the world altitude record. Several Caproni types were in service when Italy entered the Second World War, and an unusual research aircraft was under development. The Caproni-Campini No. 1 (CC2) was a jet, but it did not have a gas-turbine engine. Dr Campini's engine used a piston engine to drive a compressor which forced air out through a nozzle, and by burning fuel in this airstream a jet was produced. It flew with limited success in August 1940, amid much publicity: the first German jet (1939) and the first British jet (1941) were both flown in secret. Caproni retained many of his early aircraft for his private museum, including some salvaged parts from his monstrous flying boat.
    [br]
    Principal Honours and Distinctions
    Created Conte di Taliedo 1940.
    Further Reading
    Dizionario biografico degli Italiani, 1976, Vol. XIX.
    The Caproni Museum has published two books on the Caproni aeroplanes: Gli Aeroplani Caproni -1909–1935 and Gli Aeroplani Caproni dal 1935 in poi. See also Jane's
    fighting Aircraft of World War 1; 1919, republished 1990.
    JDS

    Biographical history of technology > Caproni, Giovanni Battista (Gianni), Conte di Taliedo

  • 53 Junkers, Hugo

    SUBJECT AREA: Aerospace
    [br]
    b. 3 February 1859 Rheydt, Germany
    d. 3 February 1935 Munich, Germany
    [br]
    German aircraft designer, pioneer of all-metal aircraft, including the world's first real airliner.
    [br]
    Hugo Junkers trained as an engineer and in 1895 founded the Junkers Company, which manufactured metal products including gas-powered hot-water heaters. He was also Professor of Thermodynamics at the high school in Aachen. The visits to Europe by the Wright brothers in 1908 and 1909 aroused his interest in flight, and in 1910 he was granted a patent for a flying wing, i.e. no fuselage and a thick wing which did not require external bracing wires. Using his sheet-metal experience he built the more conventional Junkers J 1 entirely of iron and steel. It made its first flight in December 1915 but was rather heavy and slow, so Junkers turned to the newly available aluminium alloys and built the J 4 bi-plane, which entered service in 1917. To stiffen the thin aluminium-alloy skins, Junkers used corrugations running fore and aft, a feature of his aircraft for the next twenty years. Incidentally, in 1917 the German authorities persuaded Junkers and Fokker to merge, but the Junkers-Fokker Company was short-lived.
    After the First World War Junkers very rapidly converted to commercial aviation, and in 1919 he produced a single-engined low-wing monoplane capable of carrying four passengers in an enclosed cabin. The robust all-metal F 13 is generally accepted as being the world's first airliner and over three hundred were built and used worldwide: some were still in service eighteen years later. A series of low-wing transport aircraft followed, of which the best known is the Ju 52. The original version had a single engine and first flew in 1930; a three-engined version flew in 1932 and was known as the Ju 52/3m. This was used by many airlines and served with the Luftwaffe throughout the Second World War, with almost five thousand being built.
    Junkers was always ready to try new ideas, such as a flap set aft of the trailing edge of the wing that became known as the "Junkers flap". In 1923 he founded a company to design and manufacture stationary diesel engines and aircraft petrol engines. Work commenced on a diesel aero-engine: this flew in 1929 and a successful range of engines followed later. Probably the most spectacular of Junkers's designs was his G 38 airliner of 1929. This was the world's largest land-plane at the time, with a wing span of 44 m (144 ft). The wing was so thick that some of the thirty-four passengers could sit in the wing and look out through windows in the leading edge. Two were built and were frequently seen on European routes.
    [br]
    Bibliography
    1923, "Metal aircraft construction", Journal of the Royal Aeronautical Society, London.
    Further Reading
    G.Schmitt, 1988, Hugh Junkers and His Aircraft, Berlin.
    1990, Jane's Fighting Aircraft of World War I, London: Jane's (provides details of Junkers's aircraft).
    P. St J.Turner and H.J.Nowarra, 1971, Junkers: An Aircraft Album, London.
    JDS

    Biographical history of technology > Junkers, Hugo

  • 54 Appleton, Sir Edward Victor

    [br]
    b. 6 September 1892 Bradford, England
    d. 21 April 1965 Edinburgh, Scotland
    [br]
    English physicist awarded the Nobel Prize for Physics for his discovery of the ionospheric layer, named after him, which is an efficient reflector of short radio waves, thereby making possible long-distance radio communication.
    [br]
    After early ambitions to become a professional cricketer, Appleton went to St John's College, Cambridge, where he studied under J.J.Thompson and Ernest Rutherford. His academic career interrupted by the First World War, he served as a captain in the Royal Engineers, carrying out investigations into the propagation and fading of radio signals. After the war he joined the Cavendish Laboratory, Cambridge, as a demonstrator in 1920, and in 1924 he moved to King's College, London, as Wheatstone Professor of Physics.
    In the following decade he contributed to developments in valve oscillators (in particular, the "squegging" oscillator, which formed the basis of the first hard-valve time-base) and gained international recognition for research into electromagnetic-wave propagation. His most important contribution was to confirm the existence of a conducting ionospheric layer in the upper atmosphere capable of reflecting radio waves, which had been predicted almost simultaneously by Heaviside and Kennelly in 1902. This he did by persuading the BBC in 1924 to vary the frequency of their Bournemouth transmitter, and he then measured the signal received at Cambridge. By comparing the direct and reflected rays and the daily variation he was able to deduce that the Kennelly- Heaviside (the so-called E-layer) was at a height of about 60 miles (97 km) above the earth and that there was a further layer (the Appleton or F-layer) at about 150 miles (240 km), the latter being an efficient reflector of the shorter radio waves that penetrated the lower layers. During the period 1927–32 and aided by Hartree, he established a magneto-ionic theory to explain the existence of the ionosphere. He was instrumental in obtaining agreement for international co-operation for ionospheric and other measurements in the form of the Second Polar Year (1932–3) and, much later, the International Geophysical Year (1957–8). For all this work, which made it possible to forecast the optimum frequencies for long-distance short-wave communication as a function of the location of transmitter and receiver and of the time of day and year, in 1947 he was awarded the Nobel Prize for Physics.
    He returned to Cambridge as Jacksonian Professor of Natural Philosophy in 1939, and with M.F. Barnett he investigated the possible use of radio waves for radio-location of aircraft. In 1939 he became Secretary of the Government Department of Scientific and Industrial Research, a post he held for ten years. During the Second World War he contributed to the development of both radar and the atomic bomb, and subsequently served on government committees concerned with the use of atomic energy (which led to the establishment of Harwell) and with scientific staff.
    [br]
    Principal Honours and Distinctions
    Knighted (KCB 1941, GBE 1946). Nobel Prize for Physics 1947. FRS 1927. Vice- President, American Institute of Electrical Engineers 1932. Royal Society Hughes Medal 1933. Institute of Electrical Engineers Faraday Medal 1946. Vice-Chancellor, Edinburgh University 1947. Institution of Civil Engineers Ewing Medal 1949. Royal Medallist 1950. Institute of Electrical and Electronics Engineers Medal of Honour 1962. President, British Association 1953. President, Radio Industry Council 1955–7. Légion d'honneur. LLD University of St Andrews 1947.
    Bibliography
    1925, joint paper with Barnett, Nature 115:333 (reports Appleton's studies of the ionosphere).
    1928, "Some notes of wireless methods of investigating the electrical structure of the upper atmosphere", Proceedings of the Physical Society 41(Part III):43. 1932, Thermionic Vacuum Tubes and Their Applications (his work on valves).
    1947, "The investigation and forecasting of ionospheric conditions", Journal of the
    Institution of Electrical Engineers 94, Part IIIA: 186 (a review of British work on the exploration of the ionosphere).
    with J.F.Herd \& R.A.Watson-Watt, British patent no. 235,254 (squegging oscillator).
    Further Reading
    Who Was Who, 1961–70 1972, VI, London: A. \& C.Black (for fuller details of honours). R.Clark, 1971, Sir Edward Appleton, Pergamon (biography).
    J.Jewkes, D.Sawers \& R.Stillerman, 1958, The Sources of Invention.
    KF

    Biographical history of technology > Appleton, Sir Edward Victor

  • 55 Dassault (Bloch), Marcel

    SUBJECT AREA: Aerospace
    [br]
    b. 22 January 1892 Paris, France
    d. 18 April 1986 Paris, France
    [br]
    French aircraft designer and manufacturer, best known for his jet fighters the Mystère and Mirage.
    [br]
    During the First World War, Marcel Bloch (he later changed his name to Dassault) worked on French military aircraft and developed a very successful propeller. With his associate, Henri Potez, he set up a company to produce their Eclair wooden propeller in a furniture workshop in Paris. In 1917 they produced a two-seater aircraft which was ordered but then cancelled when the war ended. Potez continued to built aircraft under his own name, but Bloch turned to property speculation, at which he was very successful. In 1930 Bloch returned to the aviation business with an unsuccessful bomber followed by several moderately effective airliners, including the Bloch 220 of 1935, which was similar to the DC-3. He was involved in the design of a four-engined airliner, the SNCASE Languedoc, which flew in September 1939. During the Second World War, Bloch and his brothers became important figures in the French Resistance Movement. Marcel Bloch was eventually captured but survived; however, one of his brothers was executed, and after the war Bloch changed his name to Dassault, which had been his brother's code name in the Resistance. During the 1950s, Avions Marcel Dassault rapidly grew to become Europe's foremost producer of jet fighters. The Ouragon was followed by the Mystère, Etendard and then the outstanding Mirage series. The basic delta-winged Mirage III, with a speed of Mach 2, was soon serving in twenty countries around the world. From this evolved a variable geometry version, a vertical-take-off aircraft, an enlarged light bomber capable of carrying a nuclear bomb, and a swept-wing version for the 1970s. Dassault also produced a successful series of jet airliners starting with the Fan Jet Falcon of 1963. When the Dassault and Breguet companies merged in 1971, Marcel Dassault was still a force to be reckoned with.
    [br]
    Principal Honours and Distinctions
    Guggenheim Medal. Deputy, Assemblée nationale 1951–5 and 1958–86.
    Bibliography
    1971, Le Talisman, Paris: Editions J'ai lu (autobiography).
    Further Reading
    1976, "The Mirage Maker", Sunday Times Magazine (1 June).
    Jane's All the World's Aircraft, London: Jane's (details of Bloch and Dassault aircraft can be found in various years' editions).
    JDS

    Biographical history of technology > Dassault (Bloch), Marcel

  • 56 Fox, Uffa

    SUBJECT AREA: Ports and shipping
    [br]
    b. 15 January 1898 Cowes, Isle of Wight, England
    d. 27 October 1972 Isle of Wight (?), England
    [br]
    English yacht designer.
    [br]
    Coming from a family that had originated in East Anglia, his first name was that of an early British king and was to typify his unusual and refreshing zest for life. Fox commenced his professional career as an apprentice with the flying boat and high-speed craft builders Messrs S.E.Saunders, and shortly after the outbreak of the First World War he was conscripted into the Royal Naval Air Service. In 1920 he made his first transatlantic crossing under sail, a much greater adventure then than now, and returned to the United Kingdom as deck-hand on a ship bound for Liverpool. He was to make the crossing under sail twice more. Shortly after his marriage in 1925, he purchased the old Floating Bridge at Cowes and converted it to living accommodation, workshops and drawing offices. By the 1930s his life's work was in full swing, with designs coming off his drawing board for some of the most outstanding mass-produced craft ever built, as well as for some remarkable one-off yachts. His experimentation with every kind of sailing craft, and even with the Eskimo kayak, gave him the knowledge and experience that made his name known worldwide. During the Second World War he designed and produced the world's first airborne parachuted lifeboat. Despite what could be described as a robust lifestyle, coupled with interests in music, art and horseriding, Fox continued to produce great designs and in the late 1940s he introduced the Firefly, followed by the beautiful Flying Fifteen class of racing keel boats. One of his most unusual vessels was Britannia, the 24 ft (7.3 m) waterline craft that John Fairfax was to row across the Atlantic. Later came Britannia II, which Fairfax took across the Pacific!
    [br]
    Principal Honours and Distinctions
    CBE 1959. Royal Designer to Industry (RDI).
    Bibliography
    Fox produced a series of yachting books, most first published in the late 1930s, and some more lighthearted volumes of reminiscences in the 1960s. Some of the best-known titles are: Sail and Power, Racing and Cruising Design, Uffa Fox's Second Book and The Crest of the Wave.
    Further Reading
    J.Dixon, 1978, Uffa Fox. A Personal Biography, Brighton: Angus \& Robertson.
    FMW

    Biographical history of technology > Fox, Uffa

  • 57 Heinkel, Ernst

    [br]
    b. 24 January 1888 Grünbach, Remstal, Germany
    d. 30 January 1958 Stuttgart, Germany
    [br]
    German aeroplane designer who was responsible for the first jet aeroplane to fly.
    [br]
    The son of a coppersmith, as a young man Ernst Heinkel was much affected by seeing the Zeppelin LZ 4 crash and burn out at Echterdringen, near Stuttgart. After studying engineering, in 1910 he designed his first aeroplane, but it crashed; he was more successful the following year when he made a flight in it, with an engine on hire from the Daimler company. After a period working for a firm near Munich and for LVG at Johannisthal, near Berlin, he moved to the Albatros Company of Berlin with a monthly salary of 425 marks. In May 1913 he moved to Lake Constance to work on the design of sea-planes and in May 1914 he moved again, this time to the Brandenburg Company, where he remained as a designer until 1922, when he founded his own company, Ernst Heinkel Flugzeugwerke. Following the First World War, German companies were not allowed to build military aircraft, which was frustrating for Heinkel whose main interest was high-speed aircraft. His sleek He 70 airliner, built for Lufthansa, was designed to carry four passengers at high speeds: indeed it broke many records in 1933. Lufthansa decided it needed a larger version capable of carrying ten passengers, so Heinkel produced his most famous aeroplane, the He 111. Although it was designed as a twin-engined airliner on the surface, secretly Heinkel was producing a bomber. The airliner version first flew on Lufthansa routes in 1936, and by 1939 almost 1,000 bombers were in service with the Luftwaffe. A larger four-engined bomber, the He 177, ran into development problems and it did not see service until late in the Second World War. Heinkel's quest for speed led to the He 176 rocket-powered research aeroplane which flew on 20 June 1939, but Hitler and Goering were not impressed. The He 178, with Dr Hans von Ohain's jet engine, made its historic first flight a few weeks later on 27 August 1939; this was almost two years before the maiden flight in Britain of the Gloster E 28/39, powered by Whittle's jet engine. This project was a private venture by Heinkel and was carried out in great secrecy, so the world's first jet aircraft went almost unnoticed. Heinkel's jet fighters, the He 280 and the He 162, were never fully operational. After the war, Heinkel in 1950 set up a new company which made bicycles, motor cycles and "bubble" cars.
    [br]
    Bibliography
    1956, He 1000, trans. M.Savill, London: Hutchinson (the English edition of his autobiography).
    Further Reading
    Jane's Fighting Aircraft of World War II, London: Jane's; reprinted 1989.
    P. St J.Turner, 1970, Heinkel: An Aircraft Album, London.
    H.J.Nowarra, 1975, Heinkel und seine Flugzeuge, Munich (a comprehensive record of his aircraft).
    JDS / IMcN

    Biographical history of technology > Heinkel, Ernst

  • 58 Camm, Sir Sydney

    [br]
    b. 5 August 1893 Windsor, Berkshire, England
    d. 12 March 1966 Richmond, Surrey, England
    [br]
    English military aircraft designer.
    [br]
    He was the eldest of twelve children and his father was a journeyman carpenter, in whose footsteps Camm followed as an apprentice woodworker. He developed an early interest in aircraft, becoming a keen model maker in his early teens and taking a major role in founding a local society to this end, and in 1912 he designed and built a glider able to carry people. During the First World War he worked as a draughtsman for the aircraft firm Martinsyde, but became increasingly involved in design matters as the war progressed. In 1923 Camm was recruited by Sopwith to join his Hawker Engineering Company as Senior Draughtsman, but within two years had risen to be Chief Designer. His first important contribution was to develop a method of producing metal aircraft, using welded steel tubes, and in 1926 he designed his first significant aircraft, the Hawker Horsley torpedo-bomber, which briefly held the world long-distance record before it was snatched by Charles Lindbergh in his epic New York-Paris flight in 1927. His Hawker Hart light bomber followed in 1928, after which came his Hawker Fury fighter.
    By the mid-1930s Camm's reputation as a designer was such that he was able to wield significant influence on the Air Ministry when Royal Air Force (RAF) aircraft specifications were being drawn up. His outstanding contribution came, however, with the unveiling of his Hawker Hurricane in 1935. This single-seater fighter was to prove one of the backbones of the RAF during 1939–45, but during the war he also designed two other excellent fighters: the Tempest and the Typhoon. After the Second World War Camm turned to jet aircraft, producing in 1951 the Hawker Hunter fighter/ground-attack aircraft, which saw lengthy service in the RAF and many other air forces. His most revolutionary contribution was the design of the Harrier jump-jet, beginning with the P.1127 prototype in 1961, followed by the Kestrel three years later. These were private ventures, but eventually the Government saw the enormous merit in the vertical take-off and landing concept, and the Harrier came to fruition in 1967. Sadly Camm, who was on the Board of Sopwith Hawker Siddeley Group, died before the aircraft came into service. He is permanently commemorated in the Camm Memorial Hall at the RAF Museum, Hendon, London.
    [br]
    Principal Honours and Distinctions
    CBE 1941. Knighted 1953. Associate Fellow of the Royal Aeronautical Society 1918, Fellow 1932, President 1954–5, Gold Medal 1958. Daniel Guggenheim Medal (USA) 1965.
    Further Reading
    Alan Bramson, 1990, Pure Luck: The Authorized Biography of Sir Thomas Sopwith, 1888–1989, Wellingborough: Patrick Stephens (provides information about Camm and his association with Sopwith).
    Dictionary of National Biography, 1961–70.
    CM

    Biographical history of technology > Camm, Sir Sydney

  • 59 Handley Page, Sir Frederick

    SUBJECT AREA: Aerospace
    [br]
    b. 15 November 1885 Cheltenham, England
    d. 21 April 1962 London, England
    [br]
    English aviation pioneer, specialist in large aircraft and developer of the slotted wing for safer slow flying.
    [br]
    Frederick Handley Page trained as an electrical engineer but soon turned his attention to the more exciting world of aeronautics. He started by manufacturing propellers for aeroplanes and airships, and then in 1909 he founded a public company. His first aeroplane, the Bluebird, was not a success, but an improved version flew well. It was known as the "Yellow Peril" because of its yellow doped finish and made a notable flight across London from Barking to Brooklands. In 1910 Handley Page became one of the first college lecturers in aeronautical engineering. During the First World War Handley Page concentrated on the production of large bombers. The 0/100 was a biplane with a wing span of 100 ft (30 m) and powered by two engines: it entered service in 1916. In 1918 an improved version, the 0/400, entered service and a larger four-engined bomber made its first flight. This was the V/1500, which was designed to bomb Berlin, but the war ended before this raid took place. After the war, Handley Page turned his attention to airline operations with the great advantage of having at his disposal large bombers which could be adapted to carry passengers. Handley Page Air Transport Ltd was formed in 1919 and provided services to several European cities. Eventually this company became part of Imperial Airways, but Handley Page continued to supply them with large airliners. Probably the most famous was the majestic HP 42 four-engined biplane, which set very high standards of comfort and safety. Safety was always important to Handley Page and in 1920 he developed a wing with a slot along the leading edge: this made slow flying safer by delaying the stall. Later versions used separate aerofoil-shaped slats on the leading edge that were sometimes fixed, sometimes retractable. The HP 42 was fitted with these slats. From the 1930s Handley Page produced a series of bombers, such as the Heyford, Hampden, Harrow and, most famous of all, the Halifax, which played a major role in the Second World War. Then followed the Victor V-bomber of 1952 with its distinctive "crescent" wing and high tailplane. Sir Frederick's last venture was the Herald short-haul airliner of 1955; designed to replace the ubiquitous Douglas DC-3, it was only a limited success.
    [br]
    Principal Honours and Distinctions
    Knighted 1942. CBE 1918. Lord Lieutenant of the County of Middlesex 1956–60. Honorary Fellow of the Royal Aeronautical Society.
    Bibliography
    1950, "Towards slower and safer flying, improved take-off and landing and cheaper airports", Journal of the Royal Aeronautical Society.
    Further Reading
    D.C.Clayton, 1970, Handley Page: An Aircraft Album, London (for details of his aircraft).
    C.H.Barnes, 1976, Handley Page Aircraft since 1907, London.
    JDS

    Biographical history of technology > Handley Page, Sir Frederick

  • 60 Lithgow, James

    SUBJECT AREA: Ports and shipping
    [br]
    b. 27 January 1883 Port Glasgow, Renfrewshire, Scotland
    d. 23 February 1952 Langbank, Renfrewshire, Scotland
    [br]
    Scottish shipbuilder; creator of one of the twentieth century's leading industrial organizations.
    [br]
    Lithgow attended Glasgow Academy and then spent a year in Paris. In 1901 he commenced a shipyard apprenticeship with Russell \& Co., where his father, William Lithgow, was sole proprietor. For years Russell's had topped the Clyde tonnage output and more than once had been the world's leading yard. Along with his brother Henry, Lithgow in 1908 was appointed a director, and in a few years he was Chairman and the yard was renamed Lithgows Ltd. By the outbreak of the First World War the Lithgow brothers were recognized as good shipbuilders and astute businessmen. In 1914 he joined the Royal Artillery; he rose to the rank of major and served with distinction, but his skills in administration were recognized and he was recalled home to become Director of Merchant Shipbuilding when British shipping losses due to submarine attack became critical. This appointment set a pattern, with public duties becoming predominant and the day-to-day shipyard business being organized by his brother. During the interwar years, Lithgow served on many councils designed to generate work and expand British commercial interests. His public appointments were legion, but none was as controversial as his directorship of National Shipbuilders Security Ltd, formed to purchase and "sterilize" inefficient shipyards that were hindering recovery from the Depression. To this day opinions are divided on this issue, but it is beyond doubt that Lithgow believed in the task in hand and served unstintingly. During the Second World War he was Controller of Merchant Shipbuilding and Repairs and was one of the few civilians to be on the Board of Admiralty. On the cessation of hostilities, Lithgow devoted time to research boards and to the expansion of the Lithgow Group, which now included the massive Fairfield Shipyard as well as steel, marine engineering and other companies.
    Throughout his life Lithgow worked for the Territorial Army, but he was also a devoted member of the Church of Scotland. He gave practical support to the lona Community, no doubt influenced by unbounded love of the West Highlands and Islands of Scotland.
    [br]
    Principal Honours and Distinctions
    Military Cross and mentioned in dispatches during the First World War. Baronet 1925. Grand Cross of the Order of the British Empire 1945. Commander of the Order of the Orange-Nassau (the Netherlands). CB 1947. Served as the employers' representative on the League of Nations International Labour Conference in the 1930s. President, British Iron and Steel Cofederation 1943.
    Further Reading
    J.M.Reid, 1964, James Lithgow, Master of Work, London: Hutchinson.
    FMW

    Biographical history of technology > Lithgow, James

См. также в других словарях:

  • Second World War — Second World War, the →↑World War II …   Dictionary of contemporary English

  • Second World War — noun a war between the Allies (Australia, Belgium, Bolivia, Brazil, Canada, China, Colombia, Costa Rica, Cuba, Czechoslovakia, Dominican Republic …   Useful english dictionary

  • Second World War — N PROPER: the N The Second World War is the major war that was fought between 1939 and 1945 …   English dictionary

  • Second World War at Sea series — Second World War at Sea is a game series produced by Avalanche Press covering naval combat during World War II. The series is based on Avalanche Press Great War at Sea . The two series share many features although they are separate both from a… …   Wikipedia

  • Second World War Memorial — Die Gedenkstätte au …   Deutsch Wikipedia

  • Second World War, the — Second World ,War, the MAINLY BRITISH WORLD WAR II …   Usage of the words and phrases in modern English

  • Second World War — World War II, war between the Axis and the Allies which began in 1939 when Germany invaded Poland and ended with the surrender of Germany and Japan 1945 …   English contemporary dictionary

  • Second World War — ➡ World War II. * * * …   Universalium

  • Second World War. — See World War II. * * * …   Universalium

  • Second World War — noun → World War II …  

  • Second World War. — See World War II …   Useful english dictionary

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»