Перевод: со всех языков на английский

с английского на все языки

saw+device

  • 41 Bigelow, Erastus Brigham

    SUBJECT AREA: Textiles
    [br]
    b. 2 April 1814 West Boyleston, Massachusetts, USA
    d. 6 December 1879 USA
    [br]
    American inventor of power looms for making lace and many types of carpets.
    [br]
    Bigelow was born in West Boyleston, Massachusetts, where his father struggled as a farmer, wheelwright, and chairmaker. Before he was 20, Bigelow had many different jobs, among them farm labourer, clerk, violin player and cotton-mill employee. In 1830, he went to Leicester Academy, Massachusetts, but he could not afford to go on to Harvard. He sought work in Boston, New York and elsewhere, making various inventions.
    The most important of his early inventions was the power loom of 1837 for making coach lace. This loom contained all the essential features of his carpet looms, which he developed and patented two years later. He formed the Clinton Company for manufacturing carpets at Leicester, Massachusetts, but the factory became so large that its name was adopted for the town. The next twenty years saw various mechanical discoveries, while his range of looms was extended to cover Brussels, Wilton, tapestry and velvet carpets. Bigelow has been justly described as the originator of every fundamental device in these machines, which were amongst the largest textile machines of their time. The automatic insertion and withdrawal of strong wires with looped ends was the means employed to raise the looped pile of the Brussels carpets, while thinner wires with a knife blade at the end raised and then severed the loops to create the rich Wilton pile. At the Great Exhibition in 1851, it was declared that his looms made better carpets than any from hand looms. He also developed other looms for special materials.
    He became a noted American economist, writing two books about tariff problems, advocating that the United States should not abandon its protectionist policies. In 1860 he was narrowly defeated in a Congress election. The following year he was a member of the committee that established the Massachusetts Institute of Technology.
    [br]
    Further Reading
    National Cyclopedia of American Biography III (the standard account of his life). F.H.Sawyer, 1927, Clinton Item (provides a broad background to his life).
    C.Singer (ed.), 1958, A History of Technology, Vol. V, Oxford: Clarendon Press (describes Bigelow's inventions).
    RLH

    Biographical history of technology > Bigelow, Erastus Brigham

  • 42 Brennan, Louis

    [br]
    b. 28 January 1852 Castlebar, Ireland
    d. 17 January 1932 Montreux, Switzerland
    [br]
    Irish inventor of the Brennan dirigible torpedo, and of a gyroscopically balanced monorail system.
    [br]
    The Brennan family, including Louis, emigrated to Australia in 1861. He was an inventive genius from childhood, and while at Melbourne invented his torpedo. Within it were two drums, each with several miles of steel wire coiled upon it and mounted on one of two concentric propeller shafts. The propellers revolved in opposite directions. Wires were led out of the torpedo to winding drums on land, driven by high-speed steam engines: the faster the drums on shore were driven, the quicker the wires were withdrawn from the drums within the torpedo and the quicker the propellers turned. A steering device was operated by altering the speeds of the wires relative to one another. As finally developed, Brennan torpedoes were accurate over a range of 1 1/2 miles (2.4 km), in contrast to contemporary self-propelled torpedoes, which were unreliable at ranges over 400 yards (366 in).
    Brennan moved to England in 1880 and sold the rights to his torpedo to the British Government for a total of £110,000, probably the highest payment ever made by it to an individual inventor. Brennan torpedoes became part of the defences of many vital naval ports, but never saw active service: improvement of other means of defence meant they were withdrawn in 1906. By then Brennan was deeply involved in the development of his monorail. The need for a simple and cheap form of railway had been apparent to him when in Australia and he considered it could be met by a ground-level monorail upon which vehicles would be balanced by gyroscopes. After overcoming many manufacturing difficulties, he demonstrated first a one-eighth scale version and then a full-size, electrically driven vehicle, which ran on its single rail throughout the summer of 1910 in London, carrying up to fifty passengers at a time. Development had been supported financially by, successively, the War Office, the India Office and the Government of the Indian state of Jammu and Kashmir, which had no rail access; despite all this, however, no further financial support, government or commercial, was forthcoming.
    Brennan made many other inventions, worked on the early development of helicopters and in 1929 built a gyroscopically balanced, two-wheeled motor car which, however, never went into production.
    [br]
    Principal Honours and Distinctions
    Companion of the Bath 1892.
    Bibliography
    1878, British patent no. 3359 (torpedo) 1903, British patent no. 27212 (stability mechanisms).
    Further Reading
    R.E.Wilkes, 1973, Louis Brennan CB, 2 parts, Gillingham (Kent) Public Library. J.R.Day and B.C.Wilson, 1957, Unusual Railways, London: F.Muller.
    PJGR

    Biographical history of technology > Brennan, Louis

  • 43 Davenport, Thomas

    SUBJECT AREA: Electricity
    [br]
    b. 9 July 1802 Williamstown, Vermont, USA
    d. 6 July 1851 Salisbury, Vermont, USA
    [br]
    American craftsman and inventor who constructed the first rotating electrical machines in the United States.
    [br]
    When he was 14 years old Davenport was apprenticed to a blacksmith for seven years. At the close of his apprenticeship in 1823 he opened a blacksmith's shop in Brandon, Vermont. He began experimenting with electromagnets after observing one in use at the Penfield Iron Works at Crown Point, New York, in 1831. He saw the device as a possible source of power and by July 1834 had constructed his first electric motor. Having totally abandoned his regular business, Davenport built and exhibited a number of miniature machines; he utilized an electric motor to propel a model car around a circular track in 1836, and this became the first recorded instance of an electric railway. An application for a patent and a model were destroyed in a fire at the United States Patent Office in December 1836, but a second application was made and Davenport received a patent the following year for Improvements in Propelling Machinery by Magnetism and Electromagnetism. A British patent was also obtained. A workshop and laboratory were established in New York, but Davenport had little financial backing for his experiments. He built a total of over one hundred motors but was defeated by the inability to obtain an inexpensive source of power. Using an electric motor of his own design to operate a printing press in 1840, he undertook the publication of a journal, The Electromagnet and Mechanics' Intelligencer. This was the first American periodical on electricity, but it was discontinued after a few issues. In failing health he retired to Vermont where in the last year of his life he continued experiments in electromagnetism.
    [br]
    Bibliography
    1837, US patent no. 132, "Improvements in Propelling Machinery by Magnetism and Electromagnetism".
    6 June 1837 British patent no. 7,386.
    Further Reading
    F.L.Pope, 1891, "Inventors of the electric motor with special reference to the work of Thomas Davenport", Electrical Engineer, 11:1–5, 33–9, 65–71, 93–8, 125–30 (the most comprehensive account).
    Annals of Electricity (1838) 2:257–64 (provides a description of Davenport's motor).
    W.J.King, 1962, The Development of Electrical Technology in the 19th Century, Washington, DC: Smithsonian Institution, Paper 28, pp. 263–4 (a short account).
    GW

    Biographical history of technology > Davenport, Thomas

  • 44 Lister, Samuel Cunliffe, 1st Baron Masham

    SUBJECT AREA: Textiles
    [br]
    b. 1 January 1815 Calverly Hall, Bradford, England
    d. 2 February 1906 Swinton Park, near Bradford, England
    [br]
    English inventor of successful wool-combing and waste-silk spinning machines.
    [br]
    Lister was descended from one of the old Yorkshire families, the Cunliffe Listers of Manningham, and was the fourth son of his father Ellis. After attending a school on Clapham Common, Lister would not go to university; his family hoped he would enter the Church, but instead he started work with the Liverpool merchants Sands, Turner \& Co., who frequently sent him to America. In 1837 his father built for him and his brother a worsted mill at Manningham, where Samuel invented a swivel shuttle and a machine for making fringes on shawls. It was here that he first became aware of the unhealthy occupation of combing wool by hand. Four years later, after seeing the machine that G.E. Donisthorpe was trying to work out, he turned his attention to mechanizing wool-combing. Lister took Donisthorpe into partnership after paying him £12,000 for his patent, and developed the Lister-Cartwright "square nip" comber. Until this time, combing machines were little different from Cartwright's original, but Lister was able to improve on this with continuous operation and by 1843 was combing the first fine botany wool that had ever been combed by machinery. In the following year he received an order for fifty machines to comb all qualities of wool. Further combing patents were taken out with Donisthorpe in 1849, 1850, 1851 and 1852, the last two being in Lister's name only. One of the important features of these patents was the provision of a gripping device or "nip" which held the wool fibres at one end while the rest of the tuft was being combed. Lister was soon running nine combing mills. In the 1850s Lister had become involved in disputes with others who held combing patents, such as his associate Isaac Holden and the Frenchman Josué Heilmann. Lister bought up the Heilmann machine patents and afterwards other types until he obtained a complete monopoly of combing machines before the patents expired. His invention stimulated demand for wool by cheapening the product and gave a vital boost to the Australian wool trade. By 1856 he was at the head of a wool-combing business such as had never been seen before, with mills at Manningham, Bradford, Halifax, Keighley and other places in the West Riding, as well as abroad.
    His inventive genius also extended to other fields. In 1848 he patented automatic compressed air brakes for railways, and in 1853 alone he took out twelve patents for various textile machines. He then tried to spin waste silk and made a second commercial career, turning what was called "chassum" and hitherto regarded as refuse into beautiful velvets, silks, plush and other fine materials. Waste silk consisted of cocoon remnants from the reeling process, damaged cocoons and fibres rejected from other processes. There was also wild silk obtained from uncultivated worms. This is what Lister saw in a London warehouse as a mass of knotty, dirty, impure stuff, full of bits of stick and dead mulberry leaves, which he bought for a halfpenny a pound. He spent ten years trying to solve the problems, but after a loss of £250,000 and desertion by his partner his machine caught on in 1865 and brought Lister another fortune. Having failed to comb this waste silk, Lister turned his attention to the idea of "dressing" it and separating the qualities automatically. He patented a machine in 1877 that gave a graduated combing. To weave his new silk, he imported from Spain to Bradford, together with its inventor Jose Reixach, a velvet loom that was still giving trouble. It wove two fabrics face to face, but the problem lay in separating the layers so that the pile remained regular in length. Eventually Lister was inspired by watching a scissors grinder in the street to use small emery wheels to sharpen the cutters that divided the layers of fabric. Lister took out several patents for this loom in his own name in 1868 and 1869, while in 1871 he took out one jointly with Reixach. It is said that he spent £29,000 over an eleven-year period on this loom, but this was more than recouped from the sale of reasonably priced high-quality velvets and plushes once success was achieved. Manningham mills were greatly enlarged to accommodate this new manufacture.
    In later years Lister had an annual profit from his mills of £250,000, much of which was presented to Bradford city in gifts such as Lister Park, the original home of the Listers. He was connected with the Bradford Chamber of Commerce for many years and held the position of President of the Fair Trade League for some time. In 1887 he became High Sheriff of Yorkshire, and in 1891 he was made 1st Baron Masham. He was also Deputy Lieutenant in North and West Riding.
    [br]
    Principal Honours and Distinctions
    Created 1st Baron Masham 1891.
    Bibliography
    1849, with G.E.Donisthorpe, British patent no. 12,712. 1850, with G.E. Donisthorpe, British patent no. 13,009. 1851, British patent no. 13,532.
    1852, British patent no. 14,135.
    1877, British patent no. 3,600 (combing machine). 1868, British patent no. 470.
    1868, British patent no. 2,386.
    1868, British patent no. 2,429.
    1868, British patent no. 3,669.
    1868, British patent no. 1,549.
    1871, with J.Reixach, British patent no. 1,117. 1905, Lord Masham's Inventions (autobiography).
    Further Reading
    J.Hogg (ed.), c. 1888, Fortunes Made in Business, London (biography).
    W.English, 1969, The Textile Industry, London; and C.Singer (ed.), 1958, A History of Technology, Vol. IV, Oxford: Clarendon Press (both cover the technical details of Lister's invention).
    RLH

    Biographical history of technology > Lister, Samuel Cunliffe, 1st Baron Masham

  • 45 Porta, Giovanni Battista (Giambattista) della

    [br]
    b. between 3 October and 15 November 1535 Vico Equense, near Naples, Italy
    d. 4 February 1615 Naples, Italy
    [br]
    Italian natural philosopher who published many scientific books, one of which covered ideas for the use of steam.
    [br]
    Giambattista della Porta spent most of his life in Naples, where some time before 1580 he established the Accademia dei Segreti, which met at his house. In 1611 he was enrolled among the Oziosi in Naples, then the most renowned literary academy. He was examined by the Inquisition, which, although he had become a lay brother of the Jesuits by 1585, banned all further publication of his books between 1592 and 1598.
    His first book, the Magiae Naturalis, which covered the secrets of nature, was published in 1558. He had been collecting material for it since the age of 15 and he saw that science should not merely represent theory and contemplation but must arrive at practical and experimental expression. In this work he described the hardening of files and pieces of armour on quite a large scale, and it included the best sixteenth-century description of heat treatment for hardening steel. In the 1589 edition of this work he covered ways of improving vision at a distance with concave and convex lenses; although he may have constructed a compound microscope, the history of this instrument effectively begins with Galileo. His theoretical and practical work on lenses paved the way for the telescope and he also explored the properties of parabolic mirrors.
    In 1563 he published a treatise on cryptography, De Furtivis Liter arum Notis, which he followed in 1566 with another on memory and mnemonic devices, Arte del Ricordare. In 1584 and 1585 he published treatises on horticulture and agriculture based on careful study and practice; in 1586 he published De Humana Physiognomonia, on human physiognomy, and in 1588 a treatise on the physiognomy of plants. In 1593 he published his De Refractione but, probably because of the ban by the Inquisition, no more were produced until the Spiritali in 1601 and his translation of Ptolemy's Almagest in 1605. In 1608 two new works appeared: a short treatise on military fortifications; and the De Distillatione. There was an important work on meteorology in 1610. In 1601 he described a device similar to Hero's mechanisms which opened temple doors, only Porta used steam pressure instead of air to force the water out of its box or container, up a pipe to where it emptied out into a higher container. Under the lower box there was a small steam boiler heated by a fire. He may also have been the first person to realize that condensed steam would form a vacuum, for there is a description of another piece of apparatus where water is drawn up into a container at the top of a long pipe. The container was first filled with steam so that, when cooled, a vacuum would be formed and water drawn up into it. These are the principles on which Thomas Savery's later steam-engine worked.
    [br]
    Further Reading
    Dictionary of Scientific Biography, 1975, Vol. XI, New York: C.Scribner's Sons (contains a full biography).
    H.W.Dickinson, 1938, A Short History of the Steam Engine, Cambridge University Press (contains an account of his contributions to the early development of the steam-engine).
    C.Singer (ed.), 1957, A History of Technology, Vol. III, Oxford University Press (contains accounts of some of his other discoveries).
    I.Asimov (ed.), 1982, Biographical Encyclopaedia of Science and Technology, 2nd edn., New York: Doubleday.
    G.Sarton, 1957, Six wings: Men of Science in the Renaissance, London: Bodley Head, pp. 85–8.
    RLH / IMcN

    Biographical history of technology > Porta, Giovanni Battista (Giambattista) della

  • 46 עורבא

    עוּרְבָּא, עוֹרְבָאch. sam(עורב ‘oreb). Targ. Gen. 8:7 (ed. Vien. O. עָרְבָּא); a. e.Bets.21a; Ḥull.124b א״ל ע׳ פרח said he to him, a raven flew by (an evasive answer). Gen. R. s. 65 (ref. to Gen. 27:20) (Jacob through his pious speech came near frustrating his device) לע׳ דאייתיוכ׳ like a raven that carries fire to his nest (to warm his brood). Keth.49b ע׳ בעי בניהוכ׳ the raven wants (and cares for his) children, and this man wants none; a. e.Pl. עוֹרְבִין, עוֹרְבַיָּא, עוֹרְבֵי. Targ. Is 34:11. Targ. 1 Kings 17:4; 6.Ber.56b חזאי ע׳וכ׳ I saw in my dream ravens which flew around my bed.

    Jewish literature > עורבא

  • 47 עוּרְבָּא

    עוּרְבָּא, עוֹרְבָאch. sam(עורב ‘oreb). Targ. Gen. 8:7 (ed. Vien. O. עָרְבָּא); a. e.Bets.21a; Ḥull.124b א״ל ע׳ פרח said he to him, a raven flew by (an evasive answer). Gen. R. s. 65 (ref. to Gen. 27:20) (Jacob through his pious speech came near frustrating his device) לע׳ דאייתיוכ׳ like a raven that carries fire to his nest (to warm his brood). Keth.49b ע׳ בעי בניהוכ׳ the raven wants (and cares for his) children, and this man wants none; a. e.Pl. עוֹרְבִין, עוֹרְבַיָּא, עוֹרְבֵי. Targ. Is 34:11. Targ. 1 Kings 17:4; 6.Ber.56b חזאי ע׳וכ׳ I saw in my dream ravens which flew around my bed.

    Jewish literature > עוּרְבָּא

  • 48 עוֹרְבָא

    עוּרְבָּא, עוֹרְבָאch. sam(עורב ‘oreb). Targ. Gen. 8:7 (ed. Vien. O. עָרְבָּא); a. e.Bets.21a; Ḥull.124b א״ל ע׳ פרח said he to him, a raven flew by (an evasive answer). Gen. R. s. 65 (ref. to Gen. 27:20) (Jacob through his pious speech came near frustrating his device) לע׳ דאייתיוכ׳ like a raven that carries fire to his nest (to warm his brood). Keth.49b ע׳ בעי בניהוכ׳ the raven wants (and cares for his) children, and this man wants none; a. e.Pl. עוֹרְבִין, עוֹרְבַיָּא, עוֹרְבֵי. Targ. Is 34:11. Targ. 1 Kings 17:4; 6.Ber.56b חזאי ע׳וכ׳ I saw in my dream ravens which flew around my bed.

    Jewish literature > עוֹרְבָא

См. также в других словарях:

  • Saw (2003 film) — Infobox Film name =Saw 0.5 caption =The puppet delivers its message. director =James Wan producer =Darren McFarlane writer =Leigh Whannell starring =Leigh Whannell Paul Moder Katrina Mathers Dean Francis music =Charlie Clouser cinematography… …   Wikipedia

  • Saw IV — Infobox Film name = Saw IV caption = Final theatrical release poster director = Darren Lynn Bousman producer = Mark Burg Oren Koules writer = Screenplay: Patrick Melton Marcus Dunstan Story: Thomas Fenton Patrick Melton Marcus Dunstan starring =… …   Wikipedia

  • Saw set — A saw set is a device used in the sharpening of hand saws. Once the teeth have been jointed and filed, the saw set is used to adjust the set of each tooth. In the past, many tradesmen and craftsmen would sharpen their own saws and a saw set would …   Wikipedia

  • saw — saw1 sawer, n. sawlike, adj. /saw/, n., v., sawed, sawed or sawn, sawing. n. 1. a tool or device for cutting, typically a thin blade of metal with a series of sharp teeth. 2. any similar tool or device, as a rotating disk, in which a sharp… …   Universalium

  • saw — I [[t]sɔ[/t]] n. v. sawed, sawed sawn, saw•ing 1) bui a tool or device for cutting, typically a thin blade of metal with a series of sharp teeth 2) bui any similar tool or device, as a rotating disk, in which a sharp continuous edge replaces the… …   From formal English to slang

  • saw — I. /sɔ / (say saw) noun 1. a tool or device for cutting, typically a thin blade of metal with a series of sharp teeth. 2. any similar tool or device, as a rotating disc in which a sharp continuous edge replaces the teeth. –verb (sawed, sawn or… …  

  • Saw III — Infobox Film name = Saw III |210px caption = Saw III film poster director = Darren Lynn Bousman producer = Mark Burg Oren Koules Gregg Hoffman writer = James Wan Leigh Whannell starring = Tobin Bell Shawnee Smith Angus Macfadyen Bahar Soomekh… …   Wikipedia

  • Saw II — Infobox Film name =Saw II caption = Saw II film poster director =Darren Lynn Bousman producer =Gregg Hoffman Oren Koules Mark Burg writer =Leigh Whannell Darren Lynn Bousman starring =Donnie Wahlberg Tobin Bell Shawnee Smith Erik Knudsen Franky G …   Wikipedia

  • Saw — See See (s[=e]), v. t. [imp. {Saw} (s[add]); p. p. {Seen} (s[=e]n); p. pr. & vb. n. {Seeing}.] [OE. seen, sen, seon, AS. se[ o]n; akin to OFries. s[=i]a, D. zien, OS. & OHG. sehan, G. sehen, Icel. sj[=a], Sw. se, Dan. see, Goth. sa[ i]hwan, and… …   The Collaborative International Dictionary of English

  • saw set — noun A device used to sharpen the teeth of a hand saw and adjust their set (the amount each tooth protrudes to the side of the saw to create the kerf) …   Wiktionary

  • saw doctor — noun a person or device that sharpens saws …   English new terms dictionary

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»