Перевод: со всех языков на все языки

со всех языков на все языки

samuel

  • 101 Brown, Samuel

    [br]
    b. unknown
    d. 1849 England
    [br]
    English cooper, inventor of a gas vacuum engine.
    [br]
    Between the years 1823 and 1833, Brown achieved a number of a firsts as a pioneer of internal-combustion engines. In 1824 he built a full-scale working model of a pumping engine; in 1826, a vehicle fitted with a gas vacuum engine ascended Shooters Hill in Kent; and in 1827 he conducted trials of a motor-driven boat on the Thames that were witnessed by Lords of the Admiralty. The principle of Brown's engine had been demonstrated by Cecil in 1820. A burning gas flame was extinguished within a closed cylinder, creating a partial vacuum; atmospheric pressure was then utilized to produce the working stroke. By 1832 a number of Brown's engines in use for pumping water were reported, the most notable being at Croydon Canal. However, high fuel consumption and running costs prevented a wide acceptance of Brown's engines, and a company formed in 1825 was dissolved only two years later. Brown continued alone with his work until his death.
    [br]
    Bibliography
    1823, British patent no. 4,874 (gas vacuum engine).
    1826, British patent no. 5,350 (improved gas vacuum engine).
    1846, British patent no. 11,076, "Improvements in Gas Engines and in Propelling Carriages and Vessels" (no specification was enrolled).
    Further Reading
    Various discussions of Brown's engines can be found in Mechanics Magazine (1824) 2:360, 385; (1825) 3:6; (1825) 4:19, 309; (1826) 5:145; (1826) 6:79; (1827) 7:82–134; (1832) 17:273.
    The Engineer 182:214.
    A.K.Bruce, Samuel Brown and the Gas Engine.
    Dugald Clerk, 1895, The Gas and Oil Engine, 6th edn, London, pp. 2–3.
    KAB

    Biographical history of technology > Brown, Samuel

  • 102 Dore (Dorr), Samuel Griswold

    SUBJECT AREA: Textiles
    [br]
    b. USA
    d. 1794 England
    [br]
    American inventor of the first rotary shearing machine.
    [br]
    To give a smooth surface to cloth such as the old English broadcloth, the nap was raised and then sheared off. Hand-operated shears of enormous size cut the fibres standing proud of the surface while the cloth was laid over a curved table top. Great skill was required to achieve a smooth finish. Various attempts, such as that in 1784 by James Harmer, a clergyman of Sheffield, were made to mechanize the process by placing several pairs of shears in a frame and operating them by cranks, but these were not successful. The first version of a rotary machine was made by Samuel Griswold Dore (sometimes spelt Dorr), an American from Albany, New York. His first frame, patented in 1792 in America, consisted of a wheel of twelve "spring knives" that were fixed like spokes and set at an angle of about 45° to the horizontal. Under this wheel, and on the same axle, rode a second one, carrying four "tangent knives" that lay almost flat upon the cloth. As the two wheels rotated above the cloth's surface, they acted in "the manner of shears". The principle used in Dore's machine is certainly different from that in the later, successful machine of John Lewis. The machine was thought to be too complicated and expensive for American woollen manufacturers and was much better suited to circumstances in the English industry, Dore therefore moved to England. However, in his British patent in 1793, he introduced a different design, which was more like that on which both Lewis's machine and the lawnmower were based, with knives set across the periphery of a hollow cylinder or barrel. Little more was heard of his machine in Britain, possibly because of Dore's death, which is mentioned in his patent of 1794, although it was used in America and France. Dore's son and others improved the machine in America and brought new specifications to England in 1811, when several patents were taken out.
    [br]
    Bibliography
    1792. US patent (rotary shearing machine).
    1793. British patent no. 1,945 (rotary shearing machine). 1794. British patent no. 1,985.
    Further Reading
    D.J.Jeremy, 1981, Transatlantic Industrial Revolution. The Diffusion of Textile Technologies Between Britain and America, 1790–1830s, Oxford (examines Dore's inventions and their transfer to Britain).
    Mention of Dore can be found in: J. de L.Mann, 1971, The Cloth Industry in the West of England from 1660 to 1880, Oxford; K.G.Ponting, 1971, The Woollen Industry of South-West England, Bath.
    C.Singer (ed.), 1958, A History of Technology, Vol. IV, Oxford: Clarendon Press (discusses Dore's inventions).
    RLH

    Biographical history of technology > Dore (Dorr), Samuel Griswold

  • 103 Dorr, Samuel Griswold

    See: Dore, Samuel Griswold

    Biographical history of technology > Dorr, Samuel Griswold

  • 104 Downing, Samuel

    SUBJECT AREA: Civil engineering
    [br]
    b. 19 July 1811 Bagenalstown, Co. Carlow, Ireland
    d. 21 April 1882
    [br]
    Irish engineer and teacher.
    [br]
    Samuel Downing had a formative influence on the development of engineering education in Ireland. He was educated at Kilkenny College and Trinity College, Dublin, where he took a BA in 1834. He subsequently attended courses in natural philosophy at Edinburgh, before taking up work as a railway and bridge engineer. Amongst structures on which he worked were the timber viaduct connecting Portland Island to the mainland in Dorset, England, and the curved viaduct at Coed-re-Coed on the Taff Vale Railway, Wales. In 1847 he was persuaded to return to Trinity College, Dublin, as Assistant to Sir John MacNeill, who had been appointed Professor of Engineering in the School of Engineering on its establishment in 1842. MacNeill always found it difficult to give up time on his engineering practice to spend on his teaching duties, so the addition of Downing to the staff gave a great impetus to the effectiveness of the School. When MacNeill retired from the Chair in 1852, Downing was his obvious successor and held the post until his death. For thirty years Downing devoted his engineering expertise and the energy of his warm personality to the School of Engineering and its students, of whom almost four hundred passed through the School in the years when he was responsible for it.
    [br]
    Principal Honours and Distinctions
    Associate Member, Institution of Civil Engineers 1852.
    Bibliography
    Further Reading
    Proceedings of the Institution of Civil Engineers 72:310–11.
    AB

    Biographical history of technology > Downing, Samuel

  • 105 Fox, Samuel

    [br]
    b. 1815 Bradfield, near Sheffield, England
    d. February 1887 Sheffield, England
    [br]
    English inventor of the curved steel umbrella frame.
    [br]
    Samuel Fox was the son of a weaver's shuttle maker in the hamlet of Bradwell (probably Bradfield, near Sheffield) in the remote hills. He went to Sheffield and served an apprenticeship in the steel trade. Afterwards, he worked with great energy and industry until he acquired sufficient capital to start in business on his own account at Stocksbridge, near Sheffield. It was there that he invented what became known as "Fox's Paragon Frame" for umbrellas. Whalebone or solid steel had previously been used for umbrella ribs, but whalebone was unreliable and steel was heavy. Fox realized that if he grooved the ribs he could make them both lighter and more elastic. In his first patent, taken out in 1852, he described making the ribs and stretchers of parasols and umbrellas from a narrow strip of steel plate partially bent into a trough-like form. He took out five more patents. The first, in 1853, was for strengthening the joints. His next two, in 1856 and 1857, were more concerned with preparing the steel for making the ribs. Another patent in 1857 was basically for improving the formation of the bit at the end of the rib where it was fixed to the stretcher and where the end of the rib has to be formed into a boss: this was so it could have a pin fixed through it to act as a pivot when the umbrella has to be opened or folded and yet support the rib and stretcher. The final patent, in 1865, reverted once more to improving the manufacture of the ribs. He made a fortune before other manufacturers knew what he was doing. Fox established a works at Lille when he found that the French import duties and other fiscal arrangements hindered exporting umbrellas and successful trading there, and was thereby able to develop a large and lucrative business.
    [br]
    Bibliography
    1852. British patent no. 14,055 (curved steel ribs and stretchers for umbrellas). 1853. British patent no. 739 (strengthened umbrella joints).
    1856. British patent no. 2,741 (ribs and stretchers for umbrellas). 1857. British patent no. 1,450 (steel wire for umbrellas).
    1857, British patent no. 1,857 (forming the bit attached to the ribs). 1865, British patent no. 2,348 (improvements in making the ribs).
    Further Reading
    Obituary, 1887, Engineer 63.
    Obituary, 1887, Iron 29.
    RLH

    Biographical history of technology > Fox, Samuel

  • 106 Henson, William Samuel

    SUBJECT AREA: Aerospace
    [br]
    b. 3 May 1812 Nottingham, England
    d. 22 March 1888 New Jersey, USA
    [br]
    English (naturalized American) inventor who patented a design for an "aerial steam carriage" and combined with John Stringfellow to build model aeroplanes.
    [br]
    William Henson worked in the lacemaking industry and in his spare time invented many mechanical devices, from a breech-loading cannon to an ice-machine. It could be claimed that he invented the airliner, for in 1842 he prepared a patent (granted in 1843) for an "aerial steam carriage". The patent application was not just a vague outline, but contained detailed drawings of a large monoplane with an enclosed fuselage to accommodate the passengers and crew. It was to be powered by a steam engine driving two pusher propellers aft of the wing. Henson had followed the lead give by Sir George Cayley in his basic layout, but produced a very much more advanced structural design with cambered wings strengthened by streamlined bracing wires: the intended wing-span was 150 ft (46 m). Henson probably discussed the design of the steam engine and boiler with his friend John Stringfellow (who was also in the lacemaking industry). Stringfellow joined Henson and others to found the Aerial Transit Company, which was set up to raise the finance needed to build Henson's machine. A great publicity campaign was mounted with artists' impressions of the "aerial steam carriage" flying over London, India and even the pyramids. Passenger-carrying services to India and China were proposed, but the whole project was far too optimistic to attract support from financiers and the scheme foundered. Henson and Stringfellow drew up an agreement in December 1843 to construct models which would prove the feasibility of an "aerial machine". For the next five years they pursued this aim, with no real success. In 1848 Henson and his wife emigrated to the United States to further his career in textiles. He became an American citizen and died there at the age of 75.
    [br]
    Bibliography
    Henson's diary is preserved by the Institute of Aeronautical Sciences in the USA. Henson's patent of 1842–3 is reproduced in Balantyne and Pritchard (1956) and Davy (1931) (see below).
    Further Reading
    H.Penrose, 1988, An Ancient Air: A Biography of John Stringfellow, Shrewsbury.
    A.M.Balantyne and J.L.Pritchard, 1956, "The lives and work of William Samuel Henson and John Stringfellow", Journal of the Royal Aeronautical Society (June) (an attempt to analyse conflicting evidence; includes a reproduction of Henson's patent).
    M.J.B.Davy, 1931, Henson and Stringfellow, London (an earlier work with excellent drawings from Henson's patent).
    JDS

    Biographical history of technology > Henson, William Samuel

  • 107 Lister, Samuel Cunliffe, 1st Baron Masham

    SUBJECT AREA: Textiles
    [br]
    b. 1 January 1815 Calverly Hall, Bradford, England
    d. 2 February 1906 Swinton Park, near Bradford, England
    [br]
    English inventor of successful wool-combing and waste-silk spinning machines.
    [br]
    Lister was descended from one of the old Yorkshire families, the Cunliffe Listers of Manningham, and was the fourth son of his father Ellis. After attending a school on Clapham Common, Lister would not go to university; his family hoped he would enter the Church, but instead he started work with the Liverpool merchants Sands, Turner \& Co., who frequently sent him to America. In 1837 his father built for him and his brother a worsted mill at Manningham, where Samuel invented a swivel shuttle and a machine for making fringes on shawls. It was here that he first became aware of the unhealthy occupation of combing wool by hand. Four years later, after seeing the machine that G.E. Donisthorpe was trying to work out, he turned his attention to mechanizing wool-combing. Lister took Donisthorpe into partnership after paying him £12,000 for his patent, and developed the Lister-Cartwright "square nip" comber. Until this time, combing machines were little different from Cartwright's original, but Lister was able to improve on this with continuous operation and by 1843 was combing the first fine botany wool that had ever been combed by machinery. In the following year he received an order for fifty machines to comb all qualities of wool. Further combing patents were taken out with Donisthorpe in 1849, 1850, 1851 and 1852, the last two being in Lister's name only. One of the important features of these patents was the provision of a gripping device or "nip" which held the wool fibres at one end while the rest of the tuft was being combed. Lister was soon running nine combing mills. In the 1850s Lister had become involved in disputes with others who held combing patents, such as his associate Isaac Holden and the Frenchman Josué Heilmann. Lister bought up the Heilmann machine patents and afterwards other types until he obtained a complete monopoly of combing machines before the patents expired. His invention stimulated demand for wool by cheapening the product and gave a vital boost to the Australian wool trade. By 1856 he was at the head of a wool-combing business such as had never been seen before, with mills at Manningham, Bradford, Halifax, Keighley and other places in the West Riding, as well as abroad.
    His inventive genius also extended to other fields. In 1848 he patented automatic compressed air brakes for railways, and in 1853 alone he took out twelve patents for various textile machines. He then tried to spin waste silk and made a second commercial career, turning what was called "chassum" and hitherto regarded as refuse into beautiful velvets, silks, plush and other fine materials. Waste silk consisted of cocoon remnants from the reeling process, damaged cocoons and fibres rejected from other processes. There was also wild silk obtained from uncultivated worms. This is what Lister saw in a London warehouse as a mass of knotty, dirty, impure stuff, full of bits of stick and dead mulberry leaves, which he bought for a halfpenny a pound. He spent ten years trying to solve the problems, but after a loss of £250,000 and desertion by his partner his machine caught on in 1865 and brought Lister another fortune. Having failed to comb this waste silk, Lister turned his attention to the idea of "dressing" it and separating the qualities automatically. He patented a machine in 1877 that gave a graduated combing. To weave his new silk, he imported from Spain to Bradford, together with its inventor Jose Reixach, a velvet loom that was still giving trouble. It wove two fabrics face to face, but the problem lay in separating the layers so that the pile remained regular in length. Eventually Lister was inspired by watching a scissors grinder in the street to use small emery wheels to sharpen the cutters that divided the layers of fabric. Lister took out several patents for this loom in his own name in 1868 and 1869, while in 1871 he took out one jointly with Reixach. It is said that he spent £29,000 over an eleven-year period on this loom, but this was more than recouped from the sale of reasonably priced high-quality velvets and plushes once success was achieved. Manningham mills were greatly enlarged to accommodate this new manufacture.
    In later years Lister had an annual profit from his mills of £250,000, much of which was presented to Bradford city in gifts such as Lister Park, the original home of the Listers. He was connected with the Bradford Chamber of Commerce for many years and held the position of President of the Fair Trade League for some time. In 1887 he became High Sheriff of Yorkshire, and in 1891 he was made 1st Baron Masham. He was also Deputy Lieutenant in North and West Riding.
    [br]
    Principal Honours and Distinctions
    Created 1st Baron Masham 1891.
    Bibliography
    1849, with G.E.Donisthorpe, British patent no. 12,712. 1850, with G.E. Donisthorpe, British patent no. 13,009. 1851, British patent no. 13,532.
    1852, British patent no. 14,135.
    1877, British patent no. 3,600 (combing machine). 1868, British patent no. 470.
    1868, British patent no. 2,386.
    1868, British patent no. 2,429.
    1868, British patent no. 3,669.
    1868, British patent no. 1,549.
    1871, with J.Reixach, British patent no. 1,117. 1905, Lord Masham's Inventions (autobiography).
    Further Reading
    J.Hogg (ed.), c. 1888, Fortunes Made in Business, London (biography).
    W.English, 1969, The Textile Industry, London; and C.Singer (ed.), 1958, A History of Technology, Vol. IV, Oxford: Clarendon Press (both cover the technical details of Lister's invention).
    RLH

    Biographical history of technology > Lister, Samuel Cunliffe, 1st Baron Masham

  • 108 Marsden, Samuel

    [br]
    b. 1764 Parsley, Yorkshire, England
    d. 1838 Australia
    [br]
    English farmer whose breeding programme established the Australian wool industry.
    [br]
    Although his father was a farmer, at the age of 10 Samuel Marsden went to work as a blacksmith, and continued in that trade for ten years. He then decided to go into the Church, was educated at Hull Grammar School and Cambridge, and was ordained in 1793. He then emigrated to Australia, where he took up an appointment as Assistant Chaplain to the Colony. He was stationed at Parramatta, where he was granted 100 acres and bought a further 128 acres himself. In 1800 he became Principal Chaplain, and by 1802 he farmed the third largest farm in the colony. Initially he was able to obtain only two Marino rams and was forced to crossbreed with imported Indian stock. However, with this combination he was able to improve wool quality dramatically, and this stock provided the basis of his breeding stock. In 1807 he returned to Britain, taking 160 lb of wool with him. This was woven into 40 yards (36.5 m) of cloth in a mill near Leeds, and from this Marsden had a suit made which he wore when he visited George III. The latter was so impressed with the cloth that he presented Marsden with five Marino ewes in lamb, with which he returned to Australia. By 1811 he was sending more than 5,000 lb of wool back to the UK each year. In 1814 Marsden concentrated more on Church matters and made the first of seven missionary visits to New Zealand. He made the last of these excursions the year before his death.
    [br]
    Principal Honours and Distinctions
    Vice-President, New South Wales Agricultural Society (on its foundation) 1821.
    Further Reading
    Michael Ryder, 1983, Sheep and Man, Duckworth (a definitive study on sheep history that deals in detail with Marsden's developments).
    AP

    Biographical history of technology > Marsden, Samuel

  • 109 Morland, Sir Samuel

    [br]
    b. 1625 Sulhampton, near Reading, Berkshire, England
    d. 26 December 1695 Hammersmith, near London, England
    [br]
    English mathematician and inventor.
    [br]
    Morland was one of several sons of the Revd Thomas Morland and was probably initially educated by his father. He went to Winchester School from 1639 to 1644 and then to Magdalene College, Cambridge, where he graduated BA in 1648 and MA in 1652. He was appointed a tutor there in 1650. In 1653 he went to Sweden in the ambassadorial staff of Bulstrode Whitelocke and remained there until 1654. In that year he was appointed Clerk to Mr Secretary Thurloe, and in 1655 he was accredited by Oliver Cromwell to the Duke of Savoy to appeal for the Waldenses. In 1657 he married Susanne de Milleville of Boissy, France, with whom he had three children. In 1660 he went over to the Royalists, meeting King Charles at Breda, Holland. On 20 May, the King knighted him, creating him baron, for revealing a conspiracy against the king's life. He was also granted a pension of£500 per year. In 1661, at the age of 36, he decided to devote himself to mathematics and invention. He devised a mechanical calculator, probably based on the pattern of Blaise Pascal, for adding and subtracting: this was followed in 1666 by one for multiplying and other functions. A Perpetual Calendar or Almanack followed; he toyed with the idea of a "gunpowder engine" for raising water; he developed a range of speaking trum-pets, said to have a range of 1/2 to 1 mile (0.8–1.6 km) or more; also iron stoves for use on board ships, and improvements to barometers.
    By 1675 he had started selling a range of pumps for private houses, for mines or deep wells, for ships, for emptying ponds or draining low ground as well as to quench fire or wet the sails of ships. The pumps cost from £5 to £63, and the great novelty was that he used, instead of packing around the cylinder sealing against the bore of the cylinder, a neck-gland or seal around the outside diameter of the piston or piston-rod. This revolutionary step avoided the necessity of accurately boring the cylinder, replacing it with the need to machine accurately the outside diameter of the piston or rod, a much easier operation. Twenty-seven variations of size and materials were included in his schedule of'Pumps or Water Engines of Isaac Thompson of Great Russel Street', the maker of Morland's design. In 1681 the King made him "Magister mechanicorum", or Master of Machines. In that year he sailed for France to advise Louis XIV on the waterworks being built at Marly to supply the Palace of Versailles. About this time he had shown King Charles plans for a pumping engine "worked by fire alone". He petitioned for a patent for this, but did not pursue the matter.
    In 1692 he went blind. In all, he married five times. While working for Cromwell he became an expert in ciphers, in opening sealed letters and in their rapid copying.
    [br]
    Principal Honours and Distinctions
    Knighted 1660.
    Bibliography
    Further Reading
    H.W.Dickinson, 1970, Sir Samuel Morland: Diplomat and Inventor, Cambridge: Newcomen Society/Heffers.
    IMcN

    Biographical history of technology > Morland, Sir Samuel

  • 110 Morse, Samuel Finley Breeze

    SUBJECT AREA: Telecommunications
    [br]
    b. 27 April 1791 Charlestown, Massachusetts, USA
    d. 2 April 1872 New York City, New York, USA
    [br]
    American portrait painter and inventor, b est known for his invention of the telegraph and so-called Morse code.
    [br]
    Following early education at Phillips Academy, Andover, at the age of 14 years Morse went to Yale College, where he developed interests in painting and electricity. Upon graduating in 1810 he became a clerk to a Washington publisher and a pupil of Washington Allston, a well-known American painter. The following year he travelled to Europe and entered the London studio of another American artist, Benjamin West, successfully exhibiting at the Royal Academy as well as winning a prize and medal for his sculpture. Returning to Boston and finding little success as a "historical-style" painter, he built up a thriving portrait business, moving in 1818 to Charleston, South Carolina, where three years later he established the (now defunct) South Carolina Academy of Fine Arts. In 1825 he was back in New York, but following the death of his wife and both of his parents that year, he embarked on an extended tour of European art galleries. In 1832, on the boat back to America, he met Charles T.Jackson, who told him of the discovery of the electromagnet and fired his interest in telegraphy to the extent that Morse immediately began to make suggestions for electrical communications and, apparently, devised a form of printing telegraph. Although he returned to his painting and in 1835 was appointed the first Professor of the Literature of Art and Design at the University of New York City, he began to spend more and more time experimenting in telegraphy. In 1836 he invented a relay as a means of extending the cable distance over which telegraph signals could be sent. At this time he became acquainted with Alfred Vail, and the following year, when the US government published the requirements for a national telegraph service, they set out to produce a workable system, with finance provided by Vail's father (who, usefully, owned an ironworks). A patent was filed on 6 October 1837 and a successful demonstration using the so-called Morse code was given on 6 January 1838; the work was, in fact, almost certainly largely that of Vail. As a result of the demonstration a Bill was put forward to Congress for $30,000 for an experimental line between Washington and Baltimore. This was eventually passed and the line was completed, and on 24 May 1844 the first message, "What hath God wrought", was sent between the two cities. In the meantime Morse also worked on the insulation of submarine cables by means of pitch tar and indiarubber.
    With success achieved, Morse offered his invention to the Government for $100,000, but this was declined, so the invention remained in private hands. To exploit it, Morse founded the Magnetic Telephone Company in 1845, amalgamating the following year with the telegraph company of a Henry O'Reilly to form Western Union. Having failed to obtain patents in Europe, he now found himself in litigation with others in the USA, but eventually, in 1854, the US Supreme Court decided in his favour and he soon became very wealthy. In 1857 a proposal was made for a telegraph service across the whole of the USA; this was completed in just over four months in 1861. Four years later work began on a link to Europe via Canada, Alaska, the Aleutian Islands and Russia, but it was abandoned with the completion of the transatlantic cable, a venture in which he also had some involvement. Showered with honours, Morse became a generous philanthropist in his later years. By 1883 the company he had created was worth $80 million and had a virtual monopoly in the USA.
    [br]
    Principal Honours and Distinctions
    LLD, Yale 1846. Fellow of the Academy of Arts and Sciences 1849. Celebratory Banquet, New York, 1869. Statue in New York Central Park 1871. Austrian Gold Medal of Scientific Merit. Danish Knight of the Danneborg. French Légion d'honneur. Italian Knight of St Lazaro and Mauritio. Portuguese Knight of the Tower and Sword. Turkish Order of Glory.
    Bibliography
    E.L.Morse (ed.), 1975, Letters and Journals, New York: Da Capo Press (facsimile of a 1914 edition).
    Further Reading
    J.Munro, 1891, Heroes of the Telegraph (discusses his telegraphic work and its context).
    C.Mabee, 1943, The American Leonardo: A Life of Samuel Morse; reprinted 1969 (a detailed biography).
    KF

    Biographical history of technology > Morse, Samuel Finley Breeze

  • 111 Soemmerring, Samuel Thomas von

    SUBJECT AREA: Telecommunications
    [br]
    b. 28 January 1755 Torun, Poland (later Thorn, Prussia)
    d. 2 March 1830 Frankfurt, Germany
    [br]
    German physician who devised an early form of electric telegraph.
    [br]
    Soemmerring appears to have been a distinguished anatomist and physiologist who in 1805 became a member of the Munich Academy of Sciences. Whilst experimenting with electric currents in acid solutions in 1809, he observed the bubbles of gases produced by the dissociation process. Using this effect at the receiver, he devised a telegraph consisting of twenty-six parallel wires (one for each letter of the alphabet) and was able to transmit messages over a distance of 2 miles (3 km), but the idea was not commercially viable. In 1812, with the help of Schilling, he experimented with soluble indiarubber as a possible cable insulator.
    [br]
    Principal Honours and Distinctions
    Knight of the Order of St Anne of Russia 1818. Hon. Member of St Petersburg Imperial Academy of Sciences 1819. FRS 1827.
    Bibliography
    Soemmerring's "electrolytic" telegraph was described in a paper read before the Munich Academy of Sciences on 29 August 1809.
    Further Reading
    J.J.Fahie, 1884, A History of Electric Telegraphy to the Year 1837, London: E\&F Spon. E.Hawkes, 1927, Pioneers of Wireless, London: Methuen.
    KF

    Biographical history of technology > Soemmerring, Samuel Thomas von

  • 112 Bowles, Samuel

    перс.
    эк. Боулз, Сэмюел (1939-; американский экономист, представитель радикальной политической экономии; автор концепции состязательного обмена и ренты принуждения; посвятил несколько книг природе и проблемам современного капитализма, причинам неизбежности дискриминации на рынке труда, чрезмерной зависимости американского образования от жестких требовани бизнеса)
    See:

    Англо-русский экономический словарь > Bowles, Samuel

  • 113 Coleman, James Samuel

    перс.
    соц. Коулман, Джеймс Сэмюэль (1926-1995; американский социолог, активный сторонник теории рационального выбора; автор исследований по применению математических методов в социологии)
    See:

    Англо-русский экономический словарь > Coleman, James Samuel

  • 114 Longfield, Samuel Mountifort

    перс.
    эк. Лонгфилд, Сэмюел Монтифорт (1802-1884; ирландский правовед и экономист, первый профессор политической экономии в Колледже Святой троицы в Дублине; один из предшественников маржиналистской революции, рассматривавший идею спроса и предложения как совместных факторов ценности, а также идею предельной производительности (Lectures on Political Economy, 1834); распространил теорию сравнительных преимуществ на случай с более чем двумя благами (Lectures on Commerce, 1835); работы остались незамеченными современниками и получили второе рождение, благодаря Э. Селигмену, в 1903 г.)
    See:

    Англо-русский экономический словарь > Longfield, Samuel Mountifort

  • 115 Pufendorf, Samuel

    перс.
    пол., юр. Пуфендорф, Самуэль (1632-1694; немецкий юрист, представитель естественно-правового учения в Германии)
    See:

    Англо-русский экономический словарь > Pufendorf, Samuel

  • 116 (the) First Book of Samuel

    Библия: Первая книга Царств

    Универсальный англо-русский словарь > (the) First Book of Samuel

  • 117 (the) Second Book of Samuel

    Библия: Вторая книга Царств

    Универсальный англо-русский словарь > (the) Second Book of Samuel

  • 118 1Sm (1 Samuel)

    Религия: "Первая книга Царств"

    Универсальный англо-русский словарь > 1Sm (1 Samuel)

  • 119 2Sm (2 Samuel)

    Религия: "Вторая книга Царств"

    Универсальный англо-русский словарь > 2Sm (2 Samuel)

  • 120 Books of Samuel

    1) Общая лексика: (Two Old Testament books that, along with Deuteronomy, Joshua, Judges, and 1 and 2 Kings, belong to the tradition of Deuteronomic history first committed to writing about 550 BC during the Babylonian Exile) "Первая книга Царств" и "В

    Универсальный англо-русский словарь > Books of Samuel

См. также в других словарях:

  • Samuel — Saltar a navegación, búsqueda Samuel El profeta Samuel, en un fresco del monasterio de Mikhailovskr, Kiev (1112) Origen Hebreo Género …   Wikipedia Español

  • SAMUEL — (Heb. שְׁמוּאֵל), Israelite judge and prophet who lived in the 11th century B.C.E. His name is very close to that of the ancient Babylonian royal ancestor of Hammurapi, Sūmû la il, and similar in form to other amorite names such as Sūmû Abum,… …   Encyclopedia of Judaism

  • Samuel — samuel. m. C. Rica. Acción de samuelear. || echar un samuel. fr. C. Rica. samuelear. * * * Samuel, Herbert Louis (Šemū´ēl) …   Enciclopedia Universal

  • SAMUEL — (Mar or Samuel Yarhina ah; end of second century to mid third century), Babylonian amora. Samuel was born at Nehardea and studied with his father, abba b. abba ha kohen (Zev. 26a) and also with Levi b. Sisi (Shab. 108b),who had emigrated to… …   Encyclopedia of Judaism

  • Samuel — may refer to: *Samuel (Bible), Biblical prophet *Books of Samuel of the Bible *Samuel of Nehardea, Jewish Talmudist *Sam (name) *Samuel Jackson (1912 2002), American golfer *Samuel L. Jackson (born 1948), Actor *Adriana Samuel (born 1966),… …   Wikipedia

  • Samuel — (hebräisch שמואל : Sein Name ist Gott) steht für den männlichen Vornamen und Familiennamen, siehe Samuel (Name) für Namensträger den Propheten Samuel des Alten Testaments der Bibel, siehe Samuel (Prophet) das nach dem Propheten benannte Buch …   Deutsch Wikipedia

  • Samuel — m Biblical name (Hebrew Shemuel), possibly meaning ‘He (God) has hearkened’ (presumably to the prayers of a mother for a son). It may also be understood as a contracted form of Hebrew sha ul me el meaning ‘asked of God’. In the case of Samuel the …   First names dictionary

  • Samuel — (livres de) livres historiques de la Bible (I Samuel, 31 chapitres; II Samuel, 24 chapitres) rédigés v. la fin du VIIe s. av. J. C., chronique des règnes de Saül et de David. Dans la Vulgate et les Septante, ils forment les deux premiers livres… …   Encyclopédie Universelle

  • Samuel — [sam′yo͞o əl, sam′yool] n. [LL(Ec) < Gr(Ec) Samouēl < Heb shemuel, lit., name of God] 1. a masculine name: dim. Sam, Sammy 2. Bible a) a Hebrew judge and prophet b) either of the two books (1 Samuel, 2 Samuel) telling of Samuel, Saul, and… …   English World dictionary

  • samuel — m. C. Rica. Acción de samuelear. echar un samuel. fr. C. Rica. samuelear …   Diccionario de la lengua española

  • Samuel — Samuel, Sohn des Elkana u. der Hanna, aus dem Stamme Levi, Prophet u. letzter auf Lebenszeit erwählter Richter der Israeliten, wurde von seiner Mutter zum Nasiräat bestimmt, von Kindheit auf unter Eli beim Heiligthum zu Silo erzogen, erhielt die… …   Pierer's Universal-Lexikon

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»