Перевод: со всех языков на английский

с английского на все языки

reheated+engine

  • 1 форсированный двигатель

    Универсальный русско-английский словарь > форсированный двигатель

  • 2 реактивный двигатель с форсажной камерой

    Engineering: reheated engine

    Универсальный русско-английский словарь > реактивный двигатель с форсажной камерой

  • 3 Adamson, Daniel

    [br]
    b. 1818 Shildon, Co. Durham, England
    d. January 1890 Didsbury, Manchester, England
    [br]
    English mechanical engineer, pioneer in the use of steel for boilers, which enabled higher pressures to be introduced; pioneer in the use of triple-and quadruple-expansion mill engines.
    [br]
    Adamson was apprenticed between 1835 and 1841 to Timothy Hackworth, then Locomotive Superintendent on the Stockton \& Darlington Railway. After this he was appointed Draughtsman, then Superintendent Engineer, at that railway's locomotive works until in 1847 he became Manager of Shildon Works. In 1850 he resigned and moved to act as General Manager of Heaton Foundry, Stockport. In the following year he commenced business on his own at Newton Moor Iron Works near Manchester, where he built up his business as an iron-founder and boilermaker. By 1872 this works had become too small and he moved to a 4 acre (1.6 hectare) site at Hyde Junction, Dukinfield. There he employed 600 men making steel boilers, heavy machinery including mill engines fitted with the American Wheelock valve gear, hydraulic plant and general millwrighting. His success was based on his early recognition of the importance of using high-pressure steam and steel instead of wrought iron. In 1852 he patented his type of flanged seam for the firetubes of Lancashire boilers, which prevented these tubes cracking through expansion. In 1862 he patented the fabrication of boilers by drilling rivet holes instead of punching them and also by drilling the holes through two plates held together in their assembly positions. He had started to use steel for some boilers he made for railway locomotives in 1857, and in 1860, only four years after Bessemer's patent, he built six mill engine boilers from steel for Platt Bros, Oldham. He solved the problems of using this new material, and by his death had made c.2,800 steel boilers with pressures up to 250 psi (17.6 kg/cm2).
    He was a pioneer in the general introduction of steel and in 1863–4 was a partner in establishing the Yorkshire Iron and Steel Works at Penistone. This was the first works to depend entirely upon Bessemer steel for engineering purposes and was later sold at a large profit to Charles Cammell \& Co., Sheffield. When he started this works, he also patented improvements both to the Bessemer converters and to the engines which provided their blast. In 1870 he helped to turn Lincolnshire into an important ironmaking area by erecting the North Lincolnshire Ironworks. He was also a shareholder in ironworks in South Wales and Cumberland.
    He contributed to the development of the stationary steam engine, for as early as 1855 he built one to run with a pressure of 150 psi (10.5 kg/cm) that worked quite satisfactorily. He reheated the steam between the cylinders of compound engines and then in 1861–2 patented a triple-expansion engine, followed in 1873 by a quadruple-expansion one to further economize steam. In 1858 he developed improved machinery for testing tensile strength and compressive resistance of materials, and in the same year patents for hydraulic lifting jacks and riveting machines were obtained.
    He was a founding member of the Iron and Steel Institute and became its President in 1888 when it visited Manchester. The previous year he had been President of the Institution of Civil Engineers when he was presented with the Bessemer Gold Medal. He was a constant contributor at the meetings of these associations as well as those of the Institution of Mechanical Engineers. He did not live to see the opening of one of his final achievements, the Manchester Ship Canal. He was the one man who, by his indomitable energy and skill at public speaking, roused the enthusiasm of the people in Manchester for this project and he made it a really practical proposition in the face of strong opposition.
    [br]
    Principal Honours and Distinctions
    President, Institution of Civil Engineers 1887.
    President, Iron and Steel Institute 1888. Institution of Civil Engineers Bessemer Gold Medal 1887.
    Further Reading
    Obituary, Engineer 69:56.
    Obituary, Engineering 49:66–8.
    H.W.Dickinson, 1938, A Short History of the Steam Engine, Cambridge University Press (provides an illustration of Adamson's flanged seam for boilers).
    R.L.Hills, 1989, Power from Steam. A History of the Stationary Steam Engine, Cambridge University Press (covers the development of the triple-expansion engine).
    RLH

    Biographical history of technology > Adamson, Daniel

  • 4 ТРДДФ - турбореактивный двухконтурный форсированный двигатель

    Универсальный русско-английский словарь > ТРДДФ - турбореактивный двухконтурный форсированный двигатель

См. также в других словарях:

  • Variable Cycle Engine — In a Variable Cycle Engine (VCE) the engine cycle is deliberately modified from that which would occur under normal circumstances.The next generation of Supersonic transport (SST) may require some form of VCE. SST engines require a high Specific… …   Wikipedia

  • Mikoyan-Gurevich MiG-21 variants — MiG 21 This is a list of variants and specifications for variants of the Mikoyan Gurevich MiG 21, which differed considerably between models. Co …   Wikipedia

  • Rolls-Royce Olympus — Olympus Preserved Bristol Siddeley Olympus Mk 301 Engine Change Unit (ECU) complete with ancillaries and bulkheads. Type …   Wikipedia

  • Rolls-Royce/Snecma Olympus 593 — Olympus 593 Preserved Olympus 593 engine at the Imperial War Museum Duxford Type Turbojet …   Wikipedia

  • Mikoyan-Gurevich MiG-21 Variants — The original developmental prototypes and concepts, to the first (pre)production aircraft. (Major variants: Ye 1, Ye 2, Ye 2A/MiG 23, Ye 4, Ye 50, Ye 50A/MiG 23U, Ye 5, MiG 21). Ye 1 (1954) Preliminary swept wing design around the Mikulin AM 5A… …   Wikipedia

  • petroleum refining — Introduction  conversion of crude oil into useful products. History Distillation of kerosene and naphtha       The refining of crude petroleum owes its origin to the successful drilling of the first oil well in Titusville, Pa., in 1859. Prior to… …   Universalium

  • Brayton cycle — Thermodynamics …   Wikipedia

  • De Havilland Spectre — Spectre Spectre rocket engine …   Wikipedia

  • Diffusion of technology in Canada — This article outlines the history of the diffusion or spread of technology in Canada. Technologies chosen for treatment here include, in rough order, transportation, communication, energy, materials, industry, public works, public services… …   Wikipedia

  • Icewind Dale II — Infobox VG |title = Icewind Dale II developer = Black Isle Studios publisher = Interplay designer = engine = Infinity Engine version = 2.01 (October 18 2002) released = August 27, 2002 genre = Computer role playing game modes = Single player,… …   Wikipedia

  • Sukhoi Su-30MKI — Infobox Aircraft name= Su 30MKI type= Air Superiority Fighter, Multirole Fighter, Heavy Class Fighter, Long Range Fighter, Strike Fighter crew= 2 manufacturer= Sukhoi HAL caption= Su 30MKI in Service with the Indian Air Force designer= first… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»