-
61 fratto
-
62 Разложение в ряд
The (a) series expansion in Chebyshev polynomials (in orthogonal functions, in rational functions)A (the) one-dimensional Taylor series expansion of a real function about a pointРусско-английский словарь по прикладной математике и механике > Разложение в ряд
-
63 в то же время
В то же время мы могли бы задать вопрос, возможно ли описать какое-либо отношение рационального предпочтения некоторой функцией полезности? Оказывается, что в общем случае это невозможно. — At the same time, one might wonder, can any rational preference relation be described by some utility function? It turns out that, in general, the answer is no.
-
64 оказывается, что
it turns out that; it happens thatОказывается, что доля респондентов, сообщивших, что они отправятся в другой магазин ради скидки 5 долларов, значительно больше доли тех, кто сообщил, что они отправятся туда, когда вопрос изменят так, что экономия 5 долларов придется на стерео. — It turns out that the fraction of respondents saying that they would travel to the other store for the 5 dollar discount is much higher than the fraction who say they would travel when the question is changed so that the 5 dollar saving is on the stereo.
В то же время мы могли бы задать вопрос: возможно ли описать какое-либо отношение рационального предпочтения некоторой функцией полезности? Оказывается, что в общем случае это невозможно. — At the same time, one might wonder: can any rational preference relation be described by some utility function? It turns out that, in general, the answer is no.
Russian-English Dictionary "Microeconomics" > оказывается, что
-
65 случай
Множество вальрасовых бюджетов Bp, w представлено на рисунке 2 для случая L = 2. — A Walrasian budget set Bp, w is depicted in Figure 2 for the case of L = 2.
Случай, когда невозможно так поступить, обсуждается в последующем разделе. — An example where it is not possible to do so will be discussed in the section that follows.
Один из случаев, когда отношение рационального предпочтения всегда может быть представлено с помощью функции полезности, появляется при конечном Х. — One case in which we can always represent a rational preference relation with a utility function arises when X is finite.
- случай зависимого спроса - случай, когда - крайний случай - простой случай обучения - случай одного потребителя - промежуточный случайК сожалению, этот частный случай является слишком частным для экономики. — Unfortunately, this special case is too special for economics.
-
66 закон
м. law; rule; principleзакон Гейгера—Неттола — Geiger-Nuttall rule
закон дистрибутивности дизъюнкции относительно конъюнкции — distributive law of disjunction over conjunction
закон дистрибутивности конъюнкции относительно дизъюнкции — distribution law of conjunction over disjunction
закон излучения Рэлея—Джинса — Rayleigh-Jeans law
разъяснить смысл правовой нормы, закона — to clarify the law
преступление, караемое по закону — offence punishable by law
предстать перед судом; ответить по закону — to answer in law
Антонимический ряд: -
67 bureaucracy
Gen Mgtan organization structure with a rigid hierarchy of personnel, regulated by set rules and procedures. Max Weber believed that a bureaucracy was technically the most efficient form of organization. He described a bureaucracy as an organization structured around official functions that are bound by rules, each function having its own specified competence. The functions are structured into offices, which are organized into a hierarchy that follows technical rules and norms. Managers in a bureaucracy possess a rational-legal type of authority derived from the office they hold. Bureaucracies have been criticized for eradicating inspiration and creativity in favor of impersonality and the mundaneness and regularity of corporate life. This was best described in William H. Whyte’s The Organization Man, published in 1956, in which the individual was taken over by the bureaucratic machine in the name of efficiency. A more recent and humorous interpretation of life in a bureaucracy has been depicted by Scott Adams in The Dilbert Principle (1996). The term bureaucracy has gradually become a pejorative synonym for excessive and time-consuming paperwork and administration. Bureaucracies fell subject to delayering and downsizing from the 1980s onward, as the flatter organization became the target structure to ensure swifter market response and organizational flexibility. -
68 μέγας
μέγας, μεγάλη, μέγα (Hom.+) comp. μείζων and beside it, because of the gradual disappearance of feeling for its comp. sense, μειζότερος 3J 4 (APF 3, 1906, 173; POxy 131, 25; BGU 368, 9; ApcSed 1:5 [cp. J 15:13]; s. B-D-F §61, 2; W-S. §11, 4; Mlt-H. 166; Gignac II 158). Superl. μέγιστος (2 Pt 1:4).① pert. to exceeding a standard involving related objects, large, greatⓐ of any extension in space in all directions λίθος Mt 27:60; Mk 16:4. δένδρον Lk 13:19 v.l. (TestAbr B 3 p. 107, 6 [Stone p. 62]). κλάδοι Mk 4:32. Buildings 13:2. Fish J 21:11. A mountain (Tyrtaeus [VII B.C.], Fgm. 4, 8 D.2; Ps.-Aristot., Mirabilia 138; Theopomp. [IV B.C.]: 115 Fgm. 78 Jac.) Rv 8:8. A star vs. 10. A furnace 9:2 (ParJer 6:23). A dragon (Esth 1:1e; Bel 23 Theod.) 12:3, 9. ἀετός (Ezk 17:3; ParJer 7:18 [RHarris; om. Kraft-Purintun]) vs. 14. μάχαιρα a long sword 6:4. ἅλυσις a long chain 20:1. πέλαγος AcPl Ha 7, 23 (first hand).ⓑ with suggestion of spaciousness ἀνάγαιον a spacious room upstairs Mk 14:15; Lk 22:12. θύρα a wide door 1 Cor 16:9. A winepress Rv 14:19 (ληνός μ. ‘trough’ JosAs 2:20); χάσμα a broad chasm (2 Km 18:17) Lk 16:26. οἰκία (Jer 52:13) 2 Ti 2:20.ⓒ with words that include the idea of number ἀγέλη μ. a large herd Mk 5:11. δεῖπνον a great banquet, w. many invited guests (Da 5:1 Theod.; JosAs 3:6) Lk 14:16. Also δοχὴ μ. (Gen 21:8) Lk 5:29; GJs 6:2.ⓓ of age (Jos., Ant. 12, 207 μικρὸς ἢ μέγας=‘young or old’); to include all concerned μικροὶ καὶ μεγάλοι small and great (PGM 15, 18) Rv 11:18; 13:16; 19:5, 18; 20:12. μικρῷ τε καὶ μεγάλῳ Ac 26:22. ἀπὸ μικροῦ ἕως μεγάλου (Gen 19:11; 4 Km 23:2; 2 Ch 34:30; POxy 1350) 8:10; Hb 8:11 (Jer 38:34). μέγας γενόμενος when he was grown up 11:24 (Ex 2:11). ὁ μείζων the older (O. Wilck II, 144, 3 [128 A.D.]; 213, 3; 1199, 2; LXX; cp. Polyb. 18, 18, 9 Σκιπίων ὁ μέγας; 32, 12, 1) Ro 9:12; 13:2 (both Gen 25:23).② pert. to being above average in quantity, great πορισμός a great means of gain 1 Ti 6:6. μισθαποδοσία rich reward Hb 10:35.③ pert. to being above standard in intensity, great δύναμις Ac 4:33; 19:8 D. Esp. of sound: loud φωνή Mk 15:37; Lk 17:15; Rv 1:10; φωνῇ μεγάλῃ (LXX; TestAbr A 5 p. 82, 20f [Stone p. 12]; ParJer 2:2; ApcMos 5:21) Mt 27:46, 50; Mk 1:26; 5:7; 15:34; Lk 4:33; 8:28; 19:37; 23:23 (Φωναῖς μεγάλαις), 46; J 11:43; Ac 7:57, 60; 8:7; Rv 5:12; 6:10 al.; μεγ. φωνῇ (ParJer 5:32); Ac 14:10; 16:28; μεγ. τῇ φωνῇ (ParJer 9:8; Jos., Bell. 6, 188) 14:10 v.l.; 26:24; ἐν φωνῇ μ. Rv 5:2. μετὰ σάλπιγγος μεγάλης with a loud trumpet call Mt 24:31. κραυγή (Ex 11:6; 12:30) Lk 1:42; Ac 23:9; cp. μεῖζον κράζειν cry out all the more Mt 20:31. κοπετός (Gen 50:10) Ac 8:2.—Of natural phenomena: ἄνεμος μ. a strong wind J 6:18; Rv 6:13. λαῖλαψ μ. (Jer 32:32) Mk 4:37. βροντή (Sir 40:13) Rv 14:2. χάλαζα Rv 11:19; 16:21a. χάλαζα λίαν μ. σφόδρα AcPl Ha 5, 7. σεισμὸς μ. (Jer 10:22; Ezk 3:12; 38:19; Jos., Ant. 9, 225) Mt 8:24; 28:2; Lk 21:11a; Ac 16:26. γαλήνη μ. a deep calm Mt 8:26; Mk 4:39; φῶς μ. a bright light (JosAs 6:3; ParJer 9:18 [16]; Plut., Mor. 567f: a divine voice sounds forth from this light; Petosiris, Fgm. 7, ln. 39 τὸ ἱερὸν ἄστρον μέγα ποιοῦν φῶς) Mt 4:16a; GJs 19:2 (Is 9:1). καῦμα μ. intense heat Rv 16:9 (JosAs 3:3).—Of surprising or unpleasant events or phenomena of the most diverse kinds (ἀπώλεια Dt 7:23; θάνατος Ex 9:3; Jer 21:6; κακόν Philo, Agr. 47) σημεῖα (Dt 6:22; 29:2) Mt 24:24; Lk 21:11b; Ac 6:8. δυνάμεις 8:13. ἔργα μ. mighty deeds (cp. Judg 2:7) Rv 15:3. μείζω τούτων greater things than these J 1:50 (μείζονα v.l.); cp. 5:20; 14:12. διωγμὸς μ. a severe persecution Ac 8:1; θλῖψις μ. (a time of) great suffering (1 Macc 9:27) Mt 24:21; Ac 7:11; Rv 2:22; 7:14. πειρασμός AcPl Ha 8, 22. πληγή (Judg 15:8; 1 Km 4:10, 17 al.; TestReub 1:7; TestSim 8:4; Philo, Sacr. Abel. 134) 16:21b. θόρυβος GJs 21:1; AcPl Ha 1, 28f (restored, s. AcPlTh [Aa I 258, 6]) λιμὸς μ. (4 Km 6:25; 1 Macc 9:24) Lk 4:25; Ac 11:28; ἀνάγκη μ. Lk 21:23; πυρετὸς μ. a high fever (s. πυρετός) 4:38.—Of emotions: χαρά great joy (Jon 4:6; JosAs 3:4; 4:2 al.; Jos., Ant. 12, 91) Mt 2:10; 28:8; Lk 2:10; 24:52. φόβος great fear (X., Cyr. 4, 2, 10; Menand., Fgm. 388 Kö.; Jon 1:10, 16; 1 Macc 10:8; TestAbr B 13 p. 117, 18 [Stone p. 82]; JosAs 6:1; GrBar 7:5) Mk 4:41; Lk 2:9; 8:37; Ac 5:5, 11; AcPl Ha 3, 33. θυμὸς μ. fierce anger (1 Macc 7:35) Rv 12:12. μείζων ἀγάπη greater love J 15:13. λύπη profound (Jon 4:1; 1 Macc 6:4, 9, 13; TestJob 7:8) Ro 9:2. σκυθρωπία AcPl Ha 7, 36. πίστις firm Mt 15:28. ἔκστασις (cp. Gen 27:33; ParJer 5:8, 12) Mk 5:42.④ pert. to being relatively superior in importance, greatⓐ of rational entities: of God and other deities θεός (SIG 985, 34 θεοὶ μεγάλοι [LBlock, Megaloi Theoi: Roscher II 2523–28, 2536–40; SCole, Theoi Megaloi, The Cult of the Great Gods at Samothrace ’84]; 1237, 5 ὀργὴ μεγάλη τ. μεγάλου Διός; OGI 50, 7; 168, 6; 716, 1; PStras 81, 14 [115 B.C.] Ἴσιδος μεγάλης μητρὸς θεῶν; POxy 886, 1; PTebt 409, 11; 22 ὁ θεὸς μ. Σάραπις, al.; PGM 4, 155; 482; 778 and oft.; 3052 μέγ. θεὸς Σαβαώθ; 5, 474; Dt 10:17 al. in LXX; En 103:4; 104:1; Philo, Cher. 29 al.; Jos., Ant. 8, 319; SibOr 3, 19; 71 al.—Thieme 36f) Tit 2:13 (Christ is meant). Ἄρτεμις (q.v.) Ac 19:27f, 34f (cp. Ael. Aristid. 48, 21 K.=24 p. 471 D. the outcry: μέγας ὁ Ἀσκληπιός); s. New Docs 1, 106 on this epithet in ref. to deities. Simon the magician is called ἡ δύναμις τ. θεοῦ ἡ καλουμένη μεγάλη Ac 8:10b (s. δύναμις 5). The angel Michael Hs 8, 3, 3; cp. 8, 4, 1.—Of people who stand in relation to the Divinity or are otherw. in high position: ἀρχιερεύς (s. ἀρχιερεύς 2a and ἱερεύς aβ.—ἀρχ. μέγ. is also the appellation of the priest-prince of Olba [s. PECS 641f] in Cilicia: MAMA III ’31 p. 67, ins 63; 64 [I B.C.]) Hb 4:14. προφήτης (Sir 48:22) Lk 7:16. ποιμήν Hb 13:20. Gener. of rulers: οἱ μεγάλοι the great ones, those in high position Mt 20:25; Mk 10:42. Of people prominent for any reason Mt 5:19; 20:26; Mk 10:43; Lk 1:15, 32; Ac 5:36 D; 8:9 (MSmith, HWolfson Festschr., ’65, 741: μ. here and Lk 1:32 may imply a messianic claim).—μέγας in the superl. sense (2 Km 7:9.—The positive also stands for the superl., e.g. Sallust. 4 p. 6, 14, where Paris calls Aphrodite καλή=the most beautiful. Diod S 17, 70, 1 πολεμία τῶν πόλεων=the most hostile [or especially hostile] among the cities) Lk 9:48 (opp. ὁ μικρότερος).—Comp. μείζων greater of God (Ael. Aristid. 27, 3 K.=16 p. 382 D.; PGM 13, 689 ἐπικαλοῦμαί σε, τὸν πάντων μείζονα) J 14:28; Hb 6:13; 1J 3:20; 4:4. More prominent or outstanding because of certain advantages Mt 11:11; Lk 7:28; 22:26f; J 4:12; 8:53; 13:16ab; 1 Cor 14:5. More closely defined: ἰσχύϊ καὶ δυνάμει μείζων greater in power and might 2 Pt 2:11. μεῖζον τοῦ ἱεροῦ someth. greater than the temple Mt 12:6. μείζων with superl. mng. (Ps.-Apollod., Epit. 7, 8 Wagner: Ὀδυσσεὺς τρεῖς κριοὺς ὁμοῦ συνδέων … καὶ αὐτὸς τῷ μείζονι ὑποδύς; Appian, Bell. Civ. 2, 87 §366 ἐν παρασκευῇ μείζονι= in the greatest preparation; Vett. Val. 62, 24; TestJob 3:1 ἐν μείζονι φωτί) Mt 18:1, 4; 23:11; Mk 9:34; Lk 9:46; 22:24, 26.ⓑ of things: great, sublime, important μυστήριον (GrBar 1:6; 2:6; ApcMos 34; Philo, Leg. All. 3, 100 al.; Just., A I, 27, 4) Eph 5:32; 1 Ti 3:16. Of the sabbath day that begins a festival period J 19:31; MPol 8:1b. Esp. of the day of the divine judgment (LXX; En 22:4; ApcEsdr 3:3 p. 27, 7 Tdf.; Just., D. 49, 2 al.; cp. TestAbr A 13 p. 92, 11 [Stone p. 32]) Ac 2:20 (Jo 3:4); Jd 6; Rv 6:17; 16:14. Of Paul’s superb instructional ability μ̣ε̣γάλῃ καθ̣[ηγήσει] AcPl Ha 6, 30f.—μέγας in the superl. sense (Plut., Mor. 35a w. πρῶτος; Himerius, Or. 14 [Ecl. 15], 3 μέγας=greatest, really great; B-D-F §245, 2; s. Rob. 669) ἐντολή Mt 22:36, 38. ἡμέρα ἡ μ. τῆς ἑορτῆς the great day of the festival J 7:37 (cp. Lucian, Pseudolog. 8 ἡ μεγάλη νουμηνία [at the beginning of the year]); Mel., P. 79, 579; 92, 694 ἐν τῇ μ. ἐορτῇ; GJs 1:2; 2:2 (s. deStrycker on 1:2). Of Mary’s day of parturition ὡς μεγάλη ἡ σήμερον ἡμέρα what a great day this is GJs 19:2. μείζων as comp. (Chion, Ep. 16, 8 philosophy as νόμος μείζων=higher law; Sir 10:24) J 5:36; 1J 5:9. μ. ἁμαρτία J 19:11 (cp. schol. on Pla. 189d ἁμαρτήματα μεγάλα; Ex 32:30f). τὰ χαρίσματα τὰ μείζονα the more important spiritual gifts (in the sense Paul gave the word) 1 Cor 12:31. As a superl. (Epict. 3, 24, 93; Stephan. Byz. s.v. Ὕβλαι: the largest of three cities is ἡ μείζων [followed by ἡ ἐλάττων, and finally ἡ μικρά=the smallest]. The comparative also performs the function of the superlative, e.g. Diod S 20, 22, 2, where πρεσβύτερος is the oldest of 3 men) Mt 13:32; 1 Cor 13:13 (by means of the superl. μ. Paul singles out from the triad the one quality that interests him most in this connection, just as Ael. Aristid. 45, 16 K. by means of αὐτός at the end of the θεοί singles out Sarapis, the only one that affects him).—The superl. μέγιστος, at times used by contemporary authors, occurs only once in the NT, where it is used in the elative sense very great, extraordinary (Diod S 2, 32, 1) ἐπαγγέλματα 2 Pt 1:4.—On the adv. usage Ac 26:29 s. ὀλίγος 2bβ.—Neut. pl. μεγάλα ποιεῖν τινι do great things for someone Lk 1:49 (cp. Dt 10:21). λαλεῖν μεγάλα καὶ βλασφημίας utter proud words and blasphemies Rv 13:5 (Da 7:8; cp. En 101:3). ἐποίει μεγ̣[ά]λα καὶ [θα]υ̣[μά]σ̣ι̣α̣ (Just., A I, 62, 4) (Christ) proceeded to perform great and marvelous deeds AcPl Ha 8, 33/BMM verso 6.⑤ pert. to being unusual, surprising, neut. μέγα εἰ … θερίσομεν; is it an extraordinary thing (i.e. are we expecting too much = our colloquial ‘is it a big deal’) if we wish to reap? 1 Cor 9:11. οὐ μέγα οὖν, εἰ it is not surprising, then, if 2 Cor 11:15 (on this constr. cp. Pla., Menex. 235d; Plut., Mor. 215f; Gen 45:28; s. AFridrichsen, ConNeot 2, ’36, 46).—B. 878f; 1309. DELG. M-M. TW. Sv.
См. также в других словарях:
Rational function — In mathematics, a rational function is any function which can be written as the ratio of two polynomial functions. DefinitionsIn the case of one variable, x , a rational function is a function of the form: f(x) = frac{P(x)}{Q(x)}where P and Q are … Wikipedia
rational function — noun Date: 1859 a function that is the quotient of two polynomials; also polynomial … New Collegiate Dictionary
rational function — Math. a function that can be written as the quotient of two polynomials with integral coefficients. [1880 85] * * * … Universalium
rational function — noun Any function whose value can be expressed as the quotient of two polynomials (except division by zero) … Wiktionary
rational function — noun 1. : polynomial 2. : the quotient of two polynomials * * * Math. a function that can be written as the quotient of two polynomials with integral coefficients. [1880 85] … Useful english dictionary
Polynomial and rational function modeling — In statistical modeling (especially process modeling), polynomial functions and rational functions are sometimes used as an empirical technique for curve fitting.Polynomial function modelsA polynomial function is one that has the form:y = a… … Wikipedia
Trigonometric rational function — In mathematics, a trigonometric rational function is a rational function in the functions sin theta; and cos theta;. Equivalently, it is a ratio of trigonometric polynomials. The simplest examples (besides sin theta; and cos theta; themselves)… … Wikipedia
Rational trigonometry — is a recently introduced approach to trigonometry that eschews all transcendental functions (such as sine and cosine) and all proportional measurements of angles. In place of angles, it characterizes the separation between lines by a quantity… … Wikipedia
Rational — may refer to: * Rationality, a concept of reason * Rational number, a number that can be expressed as a ratio of two integers * Rational function, a mathematical function which can be written as the ratio of two polynomial functions * Rational… … Wikipedia
Rational mapping — In mathematics, in particular the subfield of algebraic geometry, a rational map is a kind of partial function between algebraic varieties. In this article we use the convention that varieties are irreducible.DefinitionA first attemptSuppose we… … Wikipedia
Rational variety — In mathematics, a rational variety is an algebraic variety, over a given field K, which is birationally equivalent to projective space of some dimension over K. This is a question on its function field: is it up to isomorphism the field of all… … Wikipedia