Перевод: со всех языков на английский

с английского на все языки

pumping+period

  • 1 период насосной эксплуатации

    Русско-английский словарь по нефти и газу > период насосной эксплуатации

  • 2 период насосной эксплуатации скважины

    Русско-английский словарь нормативно-технической терминологии > период насосной эксплуатации скважины

  • 3 длительность накачки

    1) Telecommunications: pump period, pumping period
    2) Household appliances: pumping time

    Универсальный русско-английский словарь > длительность накачки

  • 4 период насосной эксплуатации

    2) Oil&Gas technology pumping period

    Универсальный русско-английский словарь > период насосной эксплуатации

  • 5 период насосной эксплуатации скважины

    Универсальный русско-английский словарь > период насосной эксплуатации скважины

  • 6 Gaskill, Harvey Freeman

    [br]
    b. 19 January 1845 Royalton, New York, USA
    d. 1 April 1889 Lockport, New York, USA
    [br]
    American mechanical engineer, inventor of the water-pumping engine with flywheel and reciprocating pumps.
    [br]
    Gaskill's father was a farmer near New York, where the son attended the local schools until he was 16 years old. At the age of 13 he already showed his mechanical aptitude by inventing a revolving hayrake, which was not exploited because the family had no money. His parents moved to Lockport, New York, where Harvey became a student at Lockport Union School and then the Poughkeepsie Commercial College, from which he graduated in 1866. After a period in his uncle's law office, he entered the firm of Penfield, Martin \& Gaskill to manufacture a patent clock. Then he was involved in a planing mill and a sash-and-blind manufactory. He devised a clothes spinner and a horse hayrake, but he did not manufacture them. In 1873 he became a draughtsman in the Holly Manufacturing Company in Lockport, which made pumping machinery for waterworks. He was promoted first to Engineer and then to Superintendent of the company in 1877. In 1885 he became a member of the Board of Directors and Vice-President. But for his untimely death, he might have become President. He was also a director of several other manufacturing concerns, public utilities and banks. In 1882 he produced a pump driven by a Woolf compound engine, which was the first time that rotary power with a crank and flywheel had been applied in waterworks. His design was more compact, more economical and lower in cost than previous types and gave the Holly Company a considerable advantage for a time over their main rivals, the Worthington Pump \& Machinery Company. These steam pumps became very popular in the United States and the type was also adopted in Britain.
    [br]
    Further Reading
    As well as obituaries appearing in many American engineering journals on Gaskill's death, there is an entry in the Dictionary of American Biography, 1931, Vol. VII, New York, C.Scribner's Sons.
    RLH

    Biographical history of technology > Gaskill, Harvey Freeman

  • 7 Stephenson, George

    [br]
    b. 9 June 1781 Wylam, Northumberland, England
    d. 12 August 1848 Tapton House, Chesterfield, England
    [br]
    English engineer, "the father of railways".
    [br]
    George Stephenson was the son of the fireman of the pumping engine at Wylam colliery, and horses drew wagons of coal along the wooden rails of the Wylam wagonway past the house in which he was born and spent his earliest childhood. While still a child he worked as a cowherd, but soon moved to working at coal pits. At 17 years of age he showed sufficient mechanical talent to be placed in charge of a new pumping engine, and had already achieved a job more responsible than that of his father. Despite his position he was still illiterate, although he subsequently learned to read and write. He was largely self-educated.
    In 1801 he was appointed Brakesman of the winding engine at Black Callerton pit, with responsibility for lowering the miners safely to their work. Then, about two years later, he became Brakesman of a new winding engine erected by Robert Hawthorn at Willington Quay on the Tyne. Returning collier brigs discharged ballast into wagons and the engine drew the wagons up an inclined plane to the top of "Ballast Hill" for their contents to be tipped; this was one of the earliest applications of steam power to transport, other than experimentally.
    In 1804 Stephenson moved to West Moor pit, Killingworth, again as Brakesman. In 1811 he demonstrated his mechanical skill by successfully modifying a new and unsatisfactory atmospheric engine, a task that had defeated the efforts of others, to enable it to pump a drowned pit clear of water. The following year he was appointed Enginewright at Killingworth, in charge of the machinery in all the collieries of the "Grand Allies", the prominent coal-owning families of Wortley, Liddell and Bowes, with authorization also to work for others. He built many stationary engines and he closely examined locomotives of John Blenkinsop's type on the Kenton \& Coxlodge wagonway, as well as those of William Hedley at Wylam.
    It was in 1813 that Sir Thomas Liddell requested George Stephenson to build a steam locomotive for the Killingworth wagonway: Blucher made its first trial run on 25 July 1814 and was based on Blenkinsop's locomotives, although it lacked their rack-and-pinion drive. George Stephenson is credited with building the first locomotive both to run on edge rails and be driven by adhesion, an arrangement that has been the conventional one ever since. Yet Blucher was far from perfect and over the next few years, while other engineers ignored the steam locomotive, Stephenson built a succession of them, each an improvement on the last.
    During this period many lives were lost in coalmines from explosions of gas ignited by miners' lamps. By observation and experiment (sometimes at great personal risk) Stephenson invented a satisfactory safety lamp, working independently of the noted scientist Sir Humphry Davy who also invented such a lamp around the same time.
    In 1817 George Stephenson designed his first locomotive for an outside customer, the Kilmarnock \& Troon Railway, and in 1819 he laid out the Hetton Colliery Railway in County Durham, for which his brother Robert was Resident Engineer. This was the first railway to be worked entirely without animal traction: it used inclined planes with stationary engines, self-acting inclined planes powered by gravity, and locomotives.
    On 19 April 1821 Stephenson was introduced to Edward Pease, one of the main promoters of the Stockton \& Darlington Railway (S \& DR), which by coincidence received its Act of Parliament the same day. George Stephenson carried out a further survey, to improve the proposed line, and in this he was assisted by his 18-year-old son, Robert Stephenson, whom he had ensured received the theoretical education which he himself lacked. It is doubtful whether either could have succeeded without the other; together they were to make the steam railway practicable.
    At George Stephenson's instance, much of the S \& DR was laid with wrought-iron rails recently developed by John Birkinshaw at Bedlington Ironworks, Morpeth. These were longer than cast-iron rails and were not brittle: they made a track well suited for locomotives. In June 1823 George and Robert Stephenson, with other partners, founded a firm in Newcastle upon Tyne to build locomotives and rolling stock and to do general engineering work: after its Managing Partner, the firm was called Robert Stephenson \& Co.
    In 1824 the promoters of the Liverpool \& Manchester Railway (L \& MR) invited George Stephenson to resurvey their proposed line in order to reduce opposition to it. William James, a wealthy land agent who had become a visionary protagonist of a national railway network and had seen Stephenson's locomotives at Killingworth, had promoted the L \& MR with some merchants of Liverpool and had carried out the first survey; however, he overreached himself in business and, shortly after the invitation to Stephenson, became bankrupt. In his own survey, however, George Stephenson lacked the assistance of his son Robert, who had left for South America, and he delegated much of the detailed work to incompetent assistants. During a devastating Parliamentary examination in the spring of 1825, much of his survey was shown to be seriously inaccurate and the L \& MR's application for an Act of Parliament was refused. The railway's promoters discharged Stephenson and had their line surveyed yet again, by C.B. Vignoles.
    The Stockton \& Darlington Railway was, however, triumphantly opened in the presence of vast crowds in September 1825, with Stephenson himself driving the locomotive Locomotion, which had been built at Robert Stephenson \& Co.'s Newcastle works. Once the railway was at work, horse-drawn and gravity-powered traffic shared the line with locomotives: in 1828 Stephenson invented the horse dandy, a wagon at the back of a train in which a horse could travel over the gravity-operated stretches, instead of trotting behind.
    Meanwhile, in May 1826, the Liverpool \& Manchester Railway had successfully obtained its Act of Parliament. Stephenson was appointed Engineer in June, and since he and Vignoles proved incompatible the latter left early in 1827. The railway was built by Stephenson and his staff, using direct labour. A considerable controversy arose c. 1828 over the motive power to be used: the traffic anticipated was too great for horses, but the performance of the reciprocal system of cable haulage developed by Benjamin Thompson appeared in many respects superior to that of contemporary locomotives. The company instituted a prize competition for a better locomotive and the Rainhill Trials were held in October 1829.
    Robert Stephenson had been working on improved locomotive designs since his return from America in 1827, but it was the L \& MR's Treasurer, Henry Booth, who suggested the multi-tubular boiler to George Stephenson. This was incorporated into a locomotive built by Robert Stephenson for the trials: Rocket was entered by the three men in partnership. The other principal entrants were Novelty, entered by John Braithwaite and John Ericsson, and Sans Pareil, entered by Timothy Hackworth, but only Rocket, driven by George Stephenson, met all the organizers' demands; indeed, it far surpassed them and demonstrated the practicability of the long-distance steam railway. With the opening of the Liverpool \& Manchester Railway in 1830, the age of railways began.
    Stephenson was active in many aspects. He advised on the construction of the Belgian State Railway, of which the Brussels-Malines section, opened in 1835, was the first all-steam railway on the European continent. In England, proposals to link the L \& MR with the Midlands had culminated in an Act of Parliament for the Grand Junction Railway in 1833: this was to run from Warrington, which was already linked to the L \& MR, to Birmingham. George Stephenson had been in charge of the surveys, and for the railway's construction he and J.U. Rastrick were initially Principal Engineers, with Stephenson's former pupil Joseph Locke under them; by 1835 both Stephenson and Rastrick had withdrawn and Locke was Engineer-in-Chief. Stephenson remained much in demand elsewhere: he was particularly associated with the construction of the North Midland Railway (Derby to Leeds) and related lines. He was active in many other places and carried out, for instance, preliminary surveys for the Chester \& Holyhead and Newcastle \& Berwick Railways, which were important links in the lines of communication between London and, respectively, Dublin and Edinburgh.
    He eventually retired to Tapton House, Chesterfield, overlooking the North Midland. A man who was self-made (with great success) against colossal odds, he was ever reluctant, regrettably, to give others their due credit, although in retirement, immensely wealthy and full of honour, he was still able to mingle with people of all ranks.
    [br]
    Principal Honours and Distinctions
    President, Institution of Mechanical Engineers, on its formation in 1847. Order of Leopold (Belgium) 1835. Stephenson refused both a knighthood and Fellowship of the Royal Society.
    Bibliography
    1815, jointly with Ralph Dodd, British patent no. 3,887 (locomotive drive by connecting rods directly to the wheels).
    1817, jointly with William Losh, British patent no. 4,067 (steam springs for locomotives, and improvements to track).
    Further Reading
    L.T.C.Rolt, 1960, George and Robert Stephenson, Longman (the best modern biography; includes a bibliography).
    S.Smiles, 1874, The Lives of George and Robert Stephenson, rev. edn, London (although sycophantic, this is probably the best nineteenthcentury biography).
    PJGR

    Biographical history of technology > Stephenson, George

  • 8 pumpeperiode

    subst. (energi) filling period pumping time

    Norsk-engelsk ordbok > pumpeperiode

  • 9 одновременно

    Одновременно - simultaneously, concurrently; at one time, at a time, at the same time; parallel with; together (вместе)
     The specimens sheared simultaneously across the two parallel faces.
     Tests... and... were run concurrently on different wear machines.
     It is possible for more than one of these conditions to occur at one time.
     A fat index finger is prone to hitting two buttons at a time.
     Each unit is designed to perform either two identical, compatible or completely different pumping applications at the same time.
     When you are hooked up to city water, both pedals are depressed together.
    Одновременно с - coincident with, coincidentally with, concurrent with, concurrently with, simultaneously with; at the same time; in parallel with (параллельно с)
     Coincident with multi-flare long term service problems, several factors influenced the next phase of development.
     The gold melting point can be observed concurent with the ash cones.
     Schemes of the latter type could exist for a probationary period in parallel with conventional control.

    Русско-английский научно-технический словарь переводчика > одновременно

  • 10 перекачка

    Русско-английский большой базовый словарь > перекачка

  • 11 Edwards, Humphrey

    [br]
    fl. c.1808–25 London (?), England
    d. after 1825 France (?)
    [br]
    English co-developer of Woolf s compound steam engine.
    [br]
    When Arthur Woolf left the Griffin Brewery, London, in October 1808, he formed a partnership with Humphrey Edwards, described as a millwright at Mill Street, Lambeth, where they started an engine works to build Woolf's type of compound engine. A number of small engines were constructed and other ordinary engines modified with the addition of a high-pressure cylinder. Improvements were made in each succeeding engine, and by 1811 a standard form had been evolved. During this experimental period, engines were made with cylinders side by side as well as the more usual layout with one behind the other. The valve gear and other details were also improved. Steam pressure may have been around 40 psi (2.8 kg/cm2). In an advertisement of February 1811, the partners claimed that their engines had been brought to such a state of perfection that they consumed only half the quantity of coal required for engines on the plan of Messrs Boulton \& Watt. Woolf visited Cornwall, where he realized that more potential for his engines lay there than in London; in May 1811 the partnership was dissolved, with Woolf returning to his home county. Edwards struggled on alone in London for a while, but when he saw a more promising future for the engine in France he moved to Paris. On 25 May 1815 he obtained a French patent, a Brevet d'importation, for ten years. A report in 1817 shows that during the previous two years he had imported into France fifteen engines of different sizes which were at work in eight places in various parts of the country. He licensed a mining company in the north of France to make twenty-five engines for winding coal. In France there was always much more interest in rotative engines than pumping ones. Edwards may have formed a partnership with Goupil \& Cie, Dampierre, to build engines, but this is uncertain. He became a member of the firm Scipion, Perrier, Edwards \& Chappert, which took over the Chaillot Foundry of the Perrier Frères in Paris, and it seems that Edwards continued to build steam engines there for the rest of his life. In 1824 it was claimed that he had made about 100 engines in England and another 200 in France, but this is probably an exaggeration.
    The Woolf engine acquired its popularity in France because its compound design was more economical than the single-cylinder type. To enable it to be operated safely, Edwards first modified Woolf s cast-iron boiler in 1815 by placing two small drums over the fire, and then in 1825 replaced the cast iron with wrought iron. The modified boiler was eventually brought back to England in the 1850s as the "French" or "elephant" boiler.
    [br]
    Further Reading
    Most details about Edwards are to be found in the biographies of his partner, Arthur Woolf. For example, see T.R.Harris, 1966, Arthur Woolf, 1766–1837, The Cornish Engineer, Truro: D.Bradford Barton; Rhys Jenkins, 1932–3, "A Cornish Engineer, Arthur Woolf, 1766–1837", Transactions of the Newcomen Society 13. These use information from the originally unpublished part of J.Farey, 1971, A Treatise on the Steam Engine, Vol. II, Newton Abbot: David \& Charles.
    RLH

    Biographical history of technology > Edwards, Humphrey

  • 12 Papin, Denis

    [br]
    b. 22 August 1647 Blois, Loire et Cher, France
    d. 1712 London, England
    [br]
    French mathematician and physicist, inventor of the pressure-cooker.
    [br]
    Largely educated by his father, he worked for some time for Huygens at Ley den, then for a time in London where he assisted Robert Boyle with his experiments on the air pump. He supposedly invented the double-acting air pump. He travelled to Venice and worked there for a time, but was back in London in 1684 before taking up the position of Professor of Mathematics at the University of Marburg (in 1669 or 1670 he became a Doctor of Medicine at Angers), where he remained from 1687 to 1695. Then followed a period at Cassel, where he was employed by the Duke of Hesse. In this capacity he was much involved in the application of steam-power to pumping water for the Duke's garden fountains. Papin finally returned to London in 1707. He is best known for his "digester", none other than the domestic pressure-cooker. John Evelyn describes it in his diary (12 April 1682): "I went this Afternoone to a Supper, with severall of the R.Society, which was all dressed (both fish and flesh) in Monsieur Papins Digestorie; by which the hardest bones of Biefe itself, \& Mutton, were without water, or other liquor, \& with less than 8 ounces of Coales made as soft as Cheeze, produc'd an incredible quantity of Gravie…. This Philosophical Supper raised much mirth among us, \& exceedingly pleased all the Companie." The pressure-cooker depends on the increase in the boiling point of water with increase of pressure. To avoid the risk of the vessel exploding, Papin devised a weight-loaded lever-type safety valve.
    There are those who would claim that Papin preceded Newcomen as the true inventor of the steam engine. There is no doubt that as early as 1690 Papin had the idea of an atmospheric engine, in which a piston in a cylinder is forced upwards by expanding steam and then returned by the weight of the atmosphere upon the piston, but he lacked practical engineering skill such as was necessary to put theory into practice. The story is told of his last trip from Cassel, when returning to England. It is said that he built his own steamboat, intending to make the whole journey by this means, ending with a triumphal journey up the Thames. However, boatmen on the river Weser, thinking that the steamboat threatened their livelihood, attacked it and broke it up. Papin had to travel by more orthodox means. Papin is said to have co-operated with Thomas Savery in the development of the lat-ter's steam engine, on which he was working c. 1705.
    [br]
    Further Reading
    Charles-Armand Klein, 1987, Denis Papin: Illustre savant blaisois, Chambray, France: CLD.
    A.P.M.Fleming and H.R.S.Brocklehurst, 1925, A History of Engineering.
    Sigvar Strandh, 1979, Machines, Mitchell Beazley.
    IMcN

    Biographical history of technology > Papin, Denis

См. также в других словарях:

  • Claverton Pumping Station — with the pump house on the left, the wheelhouse to the right and the millpond in the foreground …   Wikipedia

  • Crofton Pumping Station — The pumping station with smoke, shown on a running day in 1999 Crofton Pumping Station is a pumping station near the village of Great Bedwyn in the English county of Wiltshire: it supplies the summit pound of the Kennet and Avon Canal with wat …   Wikipedia

  • Mayfair Pumping Station — The Mayfair Pumping Station is an historic structure on Northwest side of Chicago, United States. Located at 4850 W. Wilson Avenue, the pumping station has served as the archetype for similar pumping stations worldwide. Contents 1 History 2 The… …   Wikipedia

  • Abbey Pumping Station — The Abbey Pumping Station is a museum in Leicester, England, on Corporation Road, opposite the National Space Centre.HistoryThe museum was previously a pumping station used to pump sewage to treatment works at Beaumont Leys, and was opened in… …   Wikipedia

  • период насосной эксплуатации скважины — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN pumping period of well production …   Справочник технического переводчика

  • technology, history of — Introduction       the development over time of systematic techniques for making and doing things. The term technology, a combination of the Greek technē, “art, craft,” with logos, “word, speech,” meant in Greece a discourse on the arts, both… …   Universalium

  • muscle — muscleless, adj. muscly, adj. /mus euhl/, n., v., muscled, muscling, adj. n. 1. a tissue composed of cells or fibers, the contraction of which produces movement in the body. 2. an organ, composed of muscle tissue, that contracts to produce a… …   Universalium

  • cardiovascular disease — Introduction       any of the diseases, whether congenital or acquired, of the heart and blood vessels (blood vessel). Among the most important are atherosclerosis, rheumatic heart disease, and vascular inflammation. Cardiovascular diseases are a …   Universalium

  • cell — cell1 cell like, adj. /sel/, n. 1. a small room, as in a convent or prison. 2. any of various small compartments or bounded areas forming part of a whole. 3. a small group acting as a unit within a larger organization: a local cell of the… …   Universalium

  • List of museums in London — This list of museums in London, England contains museums which are defined for this context as institutions (including nonprofit organizations, government entities, and private businesses) that collect and care for objects of cultural, artistic,… …   Wikipedia

  • List of pipeline accidents — The following is a list of pipeline accidents: This is an incomplete list, which may never be able to satisfy particular standards for completeness. You can help by expanding it with reliably sourced entries. Contents 1 Bel …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»